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Abstract

The field of computational mechanics applies ideas from statistical mechanics, information the-

ory, automata theory, and machine learning to create minimally-sized, optimal predictors of

stochastic processes. These predictors, called ε-machines, are a subset of a well known statis-

tical model class called the Hidden Markov Model (HMM). Despite being a subset, ε-machines

have several important advantages over traditional HMMs. This dissertation illustrates these

advantages by applying ε-machines to several problems in computer security: anomaly-based

intrusion detection in High Performance Computing (HPC) environments, automated protocol

reverse engineering, and structural drift.

Intrusion detection systems (IDSs) detect attacks on computer systems at the host or net-

work level. IDS research is largely ad hoc, and often produces systems that cannot generalize

to new attacks or raise prohibitive amounts of alerts. Our first application attempts to address

these shortcomings for HPC environments. We construct ε-machine classifiers from the com-

munication patterns of cluster nodes, as well as hardware counters including floating point and

integer operation counts. We find these features are sufficient for accurate classification of par-

allel computation as well as detection of anomalous behavior.

Next, consider computers on a network exchanging data using some protocol whose spec-

ification is unknown—for example, a botnet command and control channel. Our work in auto-

mated protocol reverse engineering constructs a protocol ε-machine using only observed net-

work traffic. The ε-machine captures both the topological and probabilistic structure of the pro-

tocol and is used for anomaly detection, traffic generation, and fuzzing without requiring access

to binaries or source code.

Finally, we introduce a model of sequential inference to study the propagation of errors in

chains of ε-machine learners. This model, called structural drift, is a generalization of mem-

oryless drift models found in the field of population dynamics. We examine the drift of mem-
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oryful models in process space and discuss the impact of model structure on the propagation

of errors through time. This propagation has implications for all finite-data applications of the

ε-machine.
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CHAPTER 1

Introduction

Our national infrastructure is vulnerable to both real and simulated cyber attacks, such as the

recent “Cyber Shockwave”.1 This simulation proved what security professionals suspected—our

infrastructure is susceptible to decades-old attack vectors such as buffer overflows and malware.

Our increasingly connected society presents an ever-growing attack surface [HOW05], as the bi-

nary distinction between insider and outsider is eroded by a plethora of always-on mobile com-

puting devices [BIS09A, BIS09B].

Intrusion detection systems (IDSs) alert us when events happen on a computer or a network

that violate security policy. Systems based on misuse detection look for signatures of disallowed

behavior, and often miss new or evolving attacks that have previously unobserved signatures.

Anomaly detection takes the opposite approach by defining a model of allowed behavior, and

flagging behavior that strays too far from the norm. This approach suffers from high false pos-

itive rates, to the extent that deployed systems are sometimes disabled due to the volume of

alerts [PAT07].

This situation can be partially attributed to the often ad hoc nature of systems-level re-

search. The selection of a model or algorithm and its associated parameters are rarely explained

or placed in a broad context. Custom algorithms and highly parametric models are used while

simpler and more general solutions from other fields go unnoticed. For example, a survey of 63

published data mining algorithms, ranging from 5 to 10 parameters each, found that nearly all

were outperformed by a simple non-parametric method using 12 lines of code [KEO04]. These

same over-fit models are typically trained on data sets with well documented flaws [MCH00,

MAH03, SAB04].

1http://bit.ly/dtg5cM
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Thus, IDS research suffers from two primary problems: a preference for ad hoc models

over mathematical models, and ad hoc parameter selection when mathematical models are

used. Our research addresses these issues by turning to the field of computational mechan-

ics [CRU89, SHA01A]—an interdisciplinary field combining models and techniques from statis-

tical mechanics, information theory, automata theory, and machine learning. A primary goal

of computational mechanics is the creation of minimally-sized, optimal predictors of stochastic

processes. These predictors, called ε-machines, are a subset of a well known class of statistical

model called the Hidden Markov Model (HMM). Despite being a subset, ε-machines have several

important advantages over traditional HMMs including reconstruction of the minimal model ar-

chitecture directly from data and closed-form calculation of information theoretic quantities.

Information theory and HMMs have been applied separately to several problems in secu-

rity. Previous work by Lee et al [LEE01] used information theory to detect anomalies in network

traces, demonstrating the utility of non-parametric approaches for understanding data without

the benefit of domain knowledge. Kayacik et al [KAY05A] continued applying information the-

ory, using information gain to identify the most relevant features for detecting intrusions in the

KDD99 dataset. Extending previous work, Warrender et al [WAR99] compared HMMs with other

techniques for detecting anomalies in sequences of system calls. HMMs were applied by Florez

et al [FL05A, FL05B] to detect anomalies in parallel computation as well as the DARPA99 dataset,

while Koo et al [KOO03] used the Viterbi algorithm [RAB89] with audit trail data. Most recently,

Fava [FAV08] used Markov models of variable order for identifying correlated attacks in a custom

dataset.

The goal of this thesis is to detail the practical application of computational mechanics,

most specifically the ε-machine, to anomaly detection and the related area of protocol inference.

The techniques described are part of a general framework that should enable reconstruction

from complex datasets across many disciplines, including those outside computer security. This

framework places emphasis on non-parametric methods for constructing models in the absence

of domain knowledge, and a systematic approach to reducing the complexity of data to enable

ε-machine reconstruction.

We proceed in 4 independent parts, beginning with a summary of the field of computa-

tional mechanics. This requires a discussion of stochastic processes and how their complexity
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is defined and measured using information theory. We also contrast the ε-machine with more

traditional Markov and Hidden Markov Models. ε-Machines are first used to classify parallel

computations using processor communication patterns, with the ultimate goal of constructing

a focused anomaly detection system for High Performance Computing environments. We next

show how ε-machines can learn the structure of network protocols in order to mimic them for

traffic generation and botnet infiltration, as well as anomaly detection and intelligent protocol

fuzzing. Finally, we introduce a new inter-disciplinary paradigm for sequential learning using

chains of re-inferred ε-machines.

The following chapters contribute a general machine learning framework for the application

of ε-machines to problems with finite, complex data. This framework uses information theory

for the construction of quantifiable models in the presence or absence of domain knowledge.

We confront the time complexity of current reconstruction algorithms by reducing the number

of symbols in a dataset using filtering, quantization, and higher order symbolic representations.

By enabling inference from complex datasets, the advantages of the ε-machine can be brought

to bear on otherwise prohibitive problems. Using these techniques we contribute novel results

to two such problems in security including anomaly detection and protocol inference. We also

generalize two long standing results in the field of population dynamics, as well as give a new

interpretation of punctuated equilibria with potential applications to computational biology.
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CHAPTER 2

Computational Mechanics

Computational mechanics [CRU89, SHA01A] provides a framework for modeling the intrinsic in-

formation processing of a system by using the statistics of external observations that indirectly

reveal the internal state of the system:

A

B

C
0

1
0

1

Process

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

P
r(

s3
)

Observer

Data Stream

. . . 001010110111 . . .

Figure 2.1: The indirect modeling of a hidden process via ob-

served measurements (adapted from Crutchfield [CRU03A])

This division between internal state and external observation is useful for a wide range of sta-

tistical modeling tasks. The most common of these is the Hidden Markov Model (HMM), an

extension of standard Markov models and also the simplest type of dynamic Bayesian network.

The construction of HMMs is often ad hoc due to insufficient domain knowledge, resulting

in non-minimal models that serve as sub-optimal predictors. Some parameters of the model

can be trained from observed data, but this training is slow and prone to get stuck in local op-

tima. Computational mechanics offers an alternative statistical hidden-state model called the

ε-machine that addresses these problems for stationary stochastic processes.

In fact, ε-machines are a subset of HMMs. However, such a brief description undercuts the

significant differences between ε-machines and their HMM brethren. Both as an abstract math-

ematical construct and an instantiated model using finite data, the ideas behind the ε-machine
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are deep and touch a wide range of inter-disciplinary research topics [VAR07, HAN93, CRU06]. To

motivate, we first give a brief background on stochastic processes and information theory while

introducing our notation. We then build up to the ε-machine by way of traditional Markov and

Hidden Markov Models.

§2.1 Stochastic Processes

Let a discrete random variable be denoted by an upper case letter, i.e. X . Then let a particular

value of X be denoted by a lower case letter, i.e. x . We define the alphabetA as the finite set of

all x ∈ X , while the probability that X takes a particular value is given by Pr(X = x ) or just Pr(x ).

The joint probability of X = x and Y = y is Pr(x , y ) and the conditional probability of Y = y

given X = x is Pr(y |x ) = Pr(x ,y )
Pr(x ) .

A discrete stochastic process is a sequence . . . X1, X2, X3 . . . of random variables Xn indexed

by time. Realizations . . . x1, x2, x3 . . . are called time series. Examples of time series include stock

prices or rainfall amounts—the topic of time series analysis touches many fields such as statistics

and economics [GER98]. We will refer to time series as strings as they are more commonly called

in computer science.

It is often mathematically convenient to consider a bi-infinite string X and divide it into a

semi-infinite past X and future X at some time t . Given a process:

X = . . . X t−2, X t−1, X t , X t+1, X t+2 . . .

the division into past and future, respectively, is:

X = . . . X t−2, X t−1

X = X t , X t+1, X t+2 . . .

Good models make accurate predictions about the future given knowledge of the past.1 To-

wards this end, we are often interested in computing Pr(X |X ), but cannot use semi-infinite se-

quences when working outside the realm of mathematical abstraction and using finite amounts

of data. Instead, we approximate semi-infinite sequences using finite blocks of L consecutive

symbols, denoted:

1It is often necessary to make measured tradeoffs between model size and accuracy to work within processor and
memory limitations. See Optimal Causal Inference [STI07] for details on one such tradeoff using ε-machines.
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X t , X t+1, . . . , X t+L−1 = X L
t

To reflect the stationary assumption that the probability distribution of X is independent of time,

we drop the time index when working with pasts and futures with the understanding that they

divide the string at some implied time t . The next-symbol probability given the previous L sym-

bols is then:

Pr(X
1
|X

L
)

Prediction may be easy or difficult, depending on the complexity of the process being mod-

eled. However, “complexity” is a loaded term—there are at least 400 definitions [SHA01B]—so

let’s detour to present our take on complexity before continuing.

§2.2 Complexity Measures

§2.2.1 Algorithmic Information Content

We focus on distinguishing two notions of string complexity. First, the Algorithmic Information

Content (AIC) introduced by Kolmogorov, is the length of the shortest computer program for a

Universal Turing Machine that exactly reproduces the string [CHA77, LI97]. This definition ties

complexity to randomness in the sense that a uniformly random string has maximal AIC. Since a

truly random string does not have a compact representation, the length of the program to print

the string will have to store the string itself, and thus the AIC grows with the length of the string.

For the opposing case, any periodic string that repeats a block of numbers will have a small AIC,

since the minimal program will simply print the block inside a loop.
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Figure 2.2: Algorithmic Information Content as a function of randomness

For example, consider a string formed by the outcome of a million flips of a fair coin. The AIC

of this string will be maximal as each flip of the coin is independent and identically distributed

(IID). Since there are no correlations between flips, the generating program must store the string

explicitly to reproduce it.

§2.2.2 Statistical Complexity

If instead we look at a statistical description of a uniformly random string, trading exact repro-

ducibility of the string for a smaller model, we get a vastly different result: the string has zero

complexity. A finite state machine with a random number generator can produce strings with

the same distribution of heads and tails as a random string. Moreover, it can do this using only

a single state. Because a single state machine needs log2(1) = 0 bits of internal state, we say the

fair coin has a statistical complexity of zero. This measure, given symbol Cµ, is the amount of

internal memory in a hidden process.
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Figure 2.3: Statistical Complexity as a function of randomness
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Thus we have two complementary notions of complexity as demonstrated by the simple

case of a biased coin. Any periodic process, such as a completely biased coin, has both zero AIC

and statistical complexity. Where they differ is the classification of purely random processes such

as a fair coin: AIC associates randomness with complexity, while statistical complexity Cµ asso-

ciates structure with complexity. AIC says a fair coin produces strings with maximal complexity,

while Cµ says such strings are not complex.

It is worth noting that AIC is not a computable number due to the halting problem [COV91],

though the Lempel-Ziv compression algorithm is sometimes used to place an upper bound on

the AIC [EVA02]. Statistical complexity, however, is computable from the ε-machine of a process.

Another measure of complexity, Shannon’s entropy rate hµ (see section 2.3.2), is also calculable

in closed form from the ε-machine and is asymptotically related to the AIC [LI97]. We will show

later that Cµ and hµ are but two of several quantities useful for characterizing hidden processes

of varying complexity, but first we ground the discussion in the basics of information theory.

§2.3 Information Theory

The complexity of a model is tied both to its size and the diversity of patterns it generates or

predicts. A period-L process repeats a block of L symbols and so its finite state presentation will

have L states. It turns out that for any period-L process, Cµ = log2(L). This means that a period-2

process and a period-4 process will have different Cµ. In some sense, however, they are similar:

neither process surprises us when we observe the next symbol, once we synchronize ourselves

to the current position in the block. From the point of synchronization onward, we gain no

additional information by observing the next symbol and the process is completely predictable.

A different measure of complexity is this average per-symbol information generated by a

process. We’ll move towards defining this measure by covering several concepts from informa-

tion theory.

§2.3.1 Entropy

We first introduce the ubiquitous Shannon entropy [COV91], the expected value (in bits) of the

information content of a discrete random variable X :
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H [X ] = − ∑
x∈X

Pr(x ) log2 Pr(x )

The use of brackets indicates H is not a function of X but rather its distribution. Entropy is

maximized by the uniform distribution, shown here for a binary random variable:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pr(X = 1)

H
[X
]

Figure 2.4: Entropy of a binary random variable

The words information, surprise, and uncertainty are often used interchangeably with en-

tropy. We are more surprised by the outcome of an uncertain event than a certain one and thus

it conveys to us more information. Entropy quantifies this information.

§2.3.2 Entropy Rate

We estimate the entropy using finite blocks of L consecutive symbols:

H (L) = − ∑
x L∈X L

Pr(x L) log2 Pr(x L)

Having defined H over finite blocks of symbols, we can now consider the per-symbol information

termed the entropy rate:2

hµ = lim
L→∞

H (L)
L

An alternate way of viewing this convergence is the difference between the entropy of consecu-

tive block lengths:

hµ = lim
L→∞

[H (L)− H (L − 1)]

It is often convenient give the block-L estimate of the entropy rate by dropping this limit:

2Entropy rate goes by several names, including metric entropy [KOL58].



10

hµ(L) =
H (L)

L
= H (L)− H (L − 1)

Of course, machines with finite memory can only approximate these limits. However, the en-

tropy rate is computable in closed form directly from the ε-machineẆe later give this equation

after introducing specifics of the model.

Consider the Golden Mean process that generates binary strings where consecutive zeros

cannot occur. This property gives the process a finite dependence on past symbols, unlike the

IID fair coin example. We examine the rate of convergence towards the true entropy rate by

computing the entropy over block length L = 1 . . . 16 symbols:

5 10 15

0.7

0.8

0.9

Block Length L

hµ(L)
hµ

Figure 2.5: Numerical convergence of block estimate to actual entropy rate

Note the excess randomness as our estimate converges. An abstract view of this convergence is

given below:

1 L

H (1)

hµ

E

hµ(L)

Figure 2.6: Abstract convergence of block estimate to actual entropy rate
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As it turns out, the area between the true entropy rate hµ and the estimate hµ(L) is another

measure of complexity, discussed next.

§2.3.3 Excess Entropy

As block length increases, longer range correlations between symbols are discovered and the

apparent randomness of the blocks is reduced. If we take the sum of these over-estimates of

randomness over all block lengths, we obtain another measure of complexity termed the excess

entropy:3

E =
∞

∑
L=1

[hµ(L)− hµ]

Excess entropy says how much information an observer needs to collect in order to measure the

true entropy rate of a process. A larger excess entropy indicates the process has longer-range

correlations between symbols and thus contains more internal structure.

One interpretation of excess entropy is the cost of amnesia, as a string will appear E bits

more random to an observer that forgets the past. The observer will subsequently need to col-

lect E bits to optimally predict the future. Prediction accuracy is limited by the irreducible per-

symbol uncertainty given by the entropy rate, and E measures how much information is needed

to predict with an error rate that approximates hµ.

§2.3.4 Mutual Information

It is often useful to compute the conditional entropy of X given knowledge of Y :

H [X |Y ] = − ∑
x∈X

∑
y∈Y

Pr(x , y ) log2 Pr(x |y )

We can use entropy and conditional entropy to measure the dependency between X and Y by

computing their mutual information (MI):

I [X ; Y ] = H [X ]− H [X |Y ]

This equation interprets mutual information as the uncertainty remaining in X when Y is known.

The following Venn diagram illustrates this idea:

3Excess entropy has many alternate names, the most well known being Grassberger’s effective measure complexity
[GRA86].
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H [X ] H [Y ]

H [X |Y ] I [X ; Y ] H [Y |X ]

H [X , Y ]

Figure 2.7: Information diagram showing the joint, marginal, and conditional en-

tropies of two random variables X and Y as well as their mutual information

Mutual information differs from the well-known Pearson correlation coefficient in that it

can measure non-linear dependencies, while Pearson’s cannot [LI90]. This comes at a cost, as the

mutual information is symmetric and cannot distinguish between negative and positive correla-

tions. In addition, mutual information is sensitive to the size of a variable’s event space [STE02].

This sensitivity is seen by comparing I between two uniform random strings and increasing the

size of the event space.4 As we increase the number of values a random variable can take but

keep data length fixed, mutual information is increasingly over-estimated.
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Figure 2.8: Finite data effects of alphabet size on mutual information

If we keep the event space fixed but vary data length, we see I is similarly over-estimated for

smaller amounts of data:

4For example, the first two strings can take binary values, the second two from the set {0, 1, 2}, and so on.
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Figure 2.9: Finite data effects of data length on mutual information

Another interpretation of the mutual information is the distance between the joint and

marginal distributions of X and Y :

I [X ; Y ] = ∑
x∈X

∑
y∈Y

Pr(x , y ) log2
Pr(x , y )

Pr(x ) Pr(y )

This allows us to restate E as the mutual information between the past and the future:

E = I [X ; X ]

= ∑
{x }

Pr(x ) log2
Pr(x )

Pr(x ) Pr(x )

This “distance” between distributions is a common quantity used in information theory, which

we introduce next.

§2.3.5 Kullback-Liebler Divergence

The Kullback-Liebler (KL) divergence, also called the KL distance or relative entropy, gives the

distance between two discrete probability distributions X and Y :

DKL

(
X ||Y

)
= ∑

x∈X

Pr(X = x ) log2
Pr(X = x )
Pr(Y = x )

This quantity is always positive (DKL >= 0) and is zero only when the distributions are equal

(DKL

(
X ||X

)
= 0). Relative entropy also gives an alternate interpretation of mutual information

as the distance between joint and marginal distributions:

I [X ; Y ] = DKL

(
Pr(x , y )||Pr(x ) Pr(y )

)
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It is important to note several shortcomings with KL divergence. Firstly, it is not a true

distance metric since it does not obey the triangle inequality. Secondly, it is not symmetric

(DKL

(
X ||Y

)
6= DKL

(
Y ||X

)
), though it can be made so by summing or averaging both direc-

tions [KUL59]. Lastly, it requires Pr(X = x ) > 0 and Pr(Y = x ) > 0 for all x ∈ X . This is rarely

the case for the empirical distributions we encounter in this dissertation. We employ Laplace

Smoothing as a workaround, assigning pseudo-counts to non-existent words and subtracting

those counts from existing word counts to preserve probability mass [JUR00].

So far we have talked about stochastic processes, discussed our notion of complexity, and

defined several information-theoretic quantities including entropy, entropy rate, excess entropy,

mutual information, and KL divergence. We now describe two finite state machine models of

stochastic processes—Markov and Hidden Markov Models—and conclude the chapter by intro-

ducing and contrasting these models with the ε-machine.

§2.4 Markov Models

A Markov Chain is a statistical model of a discrete stochastic process defined by a set of states

and transition probabilities between states, as well as a vector of initial state probabilities. It

assumes the Markov property holds for the underlying process being modeled, where the prob-

ability of the next state X t+1 is determined by the current state and not the entire past sequence

of states [NOR98]. This property is expressed as:

Pr(X t+1|X t , X t−1, . . . , X1) = Pr(X t+1|X t )

The Markov property is often assumed to hold even when the underlying process is not Marko-

vian. This approximation affects the accuracy of the model, but greatly reduces the number of

model parameters.

The future state of an order-m Markov Chain is conditionally dependent on the last m states

of the system. An order-0 Markov process is IID, where the future state is completely indepen-

dent of the past. When the order is not made explicit, it is typically assumed the model is of

order 1. Using an order greater than 1 allows the model to predict the future using more of the

recent past.
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Model parameters are often estimated from observed data. The number of parameters

grows exponentially fast with model order, and using an insufficient amount of data quickly re-

sults in an overfit model. For example, an order-9 Markov Chain of English literature requires an

entire Library of Congress worth of data [LUC91].

Let S denote the set of states and T a stochastic matrix5 of state transition probabilities. The

probability of transitioning from state i to state j is located in row i , column j and is denoted Ti j .

A simple two-state Markov Chain is specified by:

T =

1− α α

β 1− β


where α,β ∈ [0, 1] are parameters. This corresponds graphically to the following state machine

diagram:

α

β

1− α 1− β

Figure 2.10: A two state Markov Chain

The stationary distribution π gives the asymptotic probability of being in each state after an

infinite number of time steps. This can be approximated by exponentiating T to a large power

and examining any row, or obtained analytically by computing the left eigenvector for eigen-

value 1. The Perron-Frobenius theorem states this eigenvector always exists for a stochastic ma-

trix [MEY01].

Markov Chains represent only a subset of stochastic processes. Consider the Even Process,

generating binary strings where all blocks of consecutive ones are even in length (for example,

0110 and 011110 but not 010). It turns out that this process is not equivalent to a Markov Chain

of any finite order [CRU03A]. In such cases, one must employ a more sophisticated model class

such as a Hidden Markov Model.

§2.5 Hidden Markov Models

Hidden Markov Models (HMMs) extend traditional Markov Chains by allowing each state to gen-

5Each row in a stochastic matrix sums to one, meaning the transitions from every state form a valid probability
distribution.
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erate a symbol from some distribution.6 This allows modeling hidden processes where the in-

ternal state of the system is revealed to an observer only indirectly through these generated sym-

bols. Since a string of symbols can often be generated by multiple internal state sequences,

observations do not uniquely identify the state of the system.

More formally, an HMM is defined by a set of hidden states S, a state transition matrix A, a

symbol emission matrix B , and an initial state distribution π.7 We can define the Even Process

from the previous section as follows:

A =


0.5 0.5 0

0 0 1

0.5 0.5 0

 , B =


1 0

0 1

0 1

 , π =
(

1
3

1
3

1
3

)

This is equivalent to the following state machine diagram:

{Pr(0) = 1,

Pr(1) = 0}

{Pr(0) = 0,

Pr(1) = 1}

{Pr(0) = 0,

Pr(1) = 1}

0.5

0.5

1.00.5

0.5

Figure 2.11: Three state Moore HMM of the Even Process

Each edge is labeled with a state transition probability, and each node with the distribution

of symbols it emits. This type of node-emitting model is called a Moore machine, in contrast with

an edge-emitting Mealy machine. The latter representation is used by ε-machines, though the

6Since this distribution is a function of state, HMMs are sometimes called probabilistic functions of Markov
Chains.

7Note the reuse of the symbol π, here specifying initial instead of asymptotic state probabilities.
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two are mathematically equivalent.

The seminal paper by Rabiner [RAB89] describes three quantities an HMM can compute for

any given observation sequence: 1) the probability of the model generating the observations, 2)

the most likely internal state sequence that generates the observations, and 3) the model param-

eters that maximize the first quantity. These are computed by the forward-backward algorithm,

the Viterbi algorithm, and the Baum-Welch algorithm, respectively. The time complexity of the

forward-backward and Viterbi algorithms is O(N 2L) for N states and L observations. Baum-

Welch commonly trains on M strings, giving a time complexity of O(M N 2L).

Though successfully applied to problems across many domains, the specification of HMM

parameters is often ad hoc. The underlying HMM architecture, including the number of states

and their connectivity, must be specified by the modeler. For systems without available domain

knowledge, this can be a difficult decision and greatly impacts the accuracy of the model. In

addition, though transition and emission probabilities may be estimated from data using Baum-

Welch, the algorithm may not converge and is susceptible to local optima.

Architecture specification and training convergence may not be issues when domain knowl-

edge is available. When it is not available, however, these issues can be addressed by a special

type of HMM called an ε-machine.

§2.6 ε-Machines

An epsilon machine (ε-machine) is the minimally sized, optimal predictor of a stochastic pro-

cess [CRU89]. They are also unique in that any predictor having these properties is the ε-machine,

and so stochastic processes and ε-machines are in one-to-one correspondence. Though a sub-

set of HMMs, ε-machines have several important differences: 1) states are equivalence classes

of histories called causal states, 2) transitions are unifilar, 3) transient states of the process are

represented, and 4) they are edge-generating Mealy machines. We’ll discuss each of these in

turn.

Causal states are equivalence classes of histories X . The causal state partition is a unique

mapping of histories to causal states, and is created by grouping all histories with the same con-

ditional distribution over futures Pr(X |X ). That is, if the future “looks” the same after observing

some set of histories, those histories are considered causally equivalent. This equivalence re-
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lation is a sufficient statistic [FIS22], meaning the complete dataset can be discarded and the

causal states themselves used for optimal prediction. This establishes a close connection be-

tween causal equivalency and universal data compression as first defined by Rissanen [RIS83].

Causal states are divided into those that are transient and those that are recurrent. Transient

states represent an observer’s incomplete knowledge of the current causal state. As more sym-

bols are seen, the observer will eventually synchronize to the process and enter the recurrent

portion of the model. From this point forward the transient states are no longer reachable8 and

the future can be optimally predicted from the recurrent causal states. Before this, prediction is

sub-optimal due to the incomplete information of the observer.

Transitions between causal states are unifilar, meaning a causal state and a symbol uniquely

determine the next causal state. Such transitions are referred to as deterministic in automata

theory.9 Though stochastic processes have unifilar and non-unifilar presentations, ε-machines

are unifilar. This unifilarity is required to compute information-theoretic quantities such as hµ

or E.

We now discuss these differences from traditional HMMs in the context of the Even Process,

presented as an edge-generating ε-machine where a transition emitting symbol s with probabil-

ity p is labeled s | p :

A

D

C

B1 | 2
3

0 | 1
3

1 | 3
4

0 | 1
4 0 | 1

2

1 | 1
2

1 | 1.0

Figure 2.12: The ε-machine of the Even Process

States {C , D} are transient and {A, B} are recurrent. We start in transient state C having ob-

served no symbols. For as long as we observe 1s we cannot be sure if the 1 was generated by

recurrent state A or B , so we alternate between states C and D with a sub-optimal forecast of

future symbols. However, we synchronize as soon as a 0 is observed since the process must then

8Thus, the asymptotic probability of all transient states is zero.
9“Unifilar” is used to avoid the conceptual baggage that “deterministic” carries in some fields.
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be in state A. Once synchronized there are no transitions back to C and D, reflected by the sta-

tionary distribution {A = 2
3 , B = 1

3 , C = 0, D = 0}. Causal state B enforces the constraint that

symbol 1 is always followed by another 1, resulting in even length blocks of 1s.

Formally, an ε-machine is defined by a set of causal states S , an emission alphabetA, and

a set of transition matrices {T (s ) : s ∈ A}. For the recurrent portion of the Even Process, these

are:

S = {A, B}, A = {0, 1}, T (0) =

0.5 0

0 0

 , T (1) =

0 0.5

1 0


The per-symbol transition matrices allow simple calculation of the likelihood of a string (the

likelihood function) by taking the inner product of the transition matrices corresponding to each

symbol in the string:

Pr(x1, x2, . . . , xn ) =
(
π∏n

i=1 T (x i )

)
1
...

1


The column vector of ones sums the probability of all causal state paths, and the π term weights

each path by the stationary probability of its start state. For example:

Pr(0110) = πT (0)T (1)T (1)T (0)

1

1


=
(

2
3

1
3

)0.5 0

0 0


0 0.5

1 0


0 0.5

1 0


0.5 0

0 0


1

1


=

1
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This likelihood function serves the same purpose as the forward-backward algorithm for

HMMs: to compute the probability of an observation sequence given a particular model. There

are also analogs of the Viterbi and Baum-Welch algorithms, and thus we can use ε-machines to

answer, at the very least, the same set of questions asked of HMMs.

In addition, the ε-machine provides closed form expressions of the information-theoretic

quantities introduced earlier such as the entropy rate:
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hµ = − ∑
σ∈S

Pr(σ) ∑
σ′∈S ,a∈A

T (a )σσ′ log2 T (a )σσ′

This is the weighted sum over the entropy of each casual state’s transition probabilities. We can

also compute the statistical complexity as the entropy of the stationary distribution:

Cµ = − ∑
σ∈S

Pr(σ) log2 Pr(σ)

Historically, E could not be calculated analytically for arbitrary processes. However, Ellison et

al recently introduced the crypticity χ of a process as the difference between its stored and ex-

pressed information [ELL09], and manipulating this quantity gives an expression for excess en-

tropy:

E = Cµ − χ

These complementary measures, along with those inherited from HMMs, allow ε-machines

to characterize the information processing of hidden processes. So far, however, we have dealt

with ε-machines primarily as a mathematical object inferred from infinite data. The final in-

troductory section on computational mechanics discusses techniques for creating ε-machines

from finite strings of data and the difficulties that ensue.

§2.7 ε-Machine Reconstruction

An ε-machine is inferred or reconstructed from finite strings of data using a reconstruction algo-

rithm. Multiple such algorithms exist, and each makes different assumptions that affects their

ability to effectively reconstruct certain types of processes. Time series reconstruction algo-

rithms include subtree merging [CRU89], state splitting [SHA04], and optimal causal inference

[STI07]. Algorithms for other data sources such as power spectra also exist [VAR07].10 This sec-

tion details reconstruction of the Golden Mean process, generating binary strings with no con-

secutive zeros, using subtree merging.

First, we construct a finite approximation to the full joint distribution of past and future se-

quences by scanning consecutive length-D blocks of the time series with a sliding window. Each

block is inserted into a parse tree11 one symbol at a time, and each successive symbol becomes a

10We implemented the subtree merging and state splitting algorithms in Java, C++, and Python, and the latter is
available in the open source Computational Mechanics in Python (CMPy) package.

11Also known as a prefix tree or trie.
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child node of the previous symbol. The tree initially contains a root node corresponding to the

empty string λ, and we return to this root after inserting each block. A node at depth d ≤ D

stores the frequency count of the length-d block it represents, and this count is incremented

each time the node is visited. The counts of adjacent nodes at depths d and d − 1 are used to

compute the conditional probability of the symbol that connects them.

Below is a parse tree of depth 3 progressively constructed from a sliding window (shown as

an underline) over the string 01101. Nodes are labeled with their frequency counts, though we

later use the corresponding block instead. The node with count 2 results from the overlap of the

first symbol of the second window 110 and third window 101.

01101

1

1

0

1

1

1

λ

01101

0

1

10

1

1

11

1

11

1

λ

01101

0

1

1

10

01

1

1 11

1

21

1 1

λ

Figure 2.13: Incremental parse trees for the string 01101 with a length-3 sliding window

Next is the depth-4 parse tree, given infinite data:
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1 | 1
2

1 | 2
3

1 | 1.0

0 | 1
2 1 | 1

2

1 | 1
2 1 | 1

2

1 | 1
2

1 | 1.0

1 | 2
30 | 1

3

0 | 1
2

1 | 1.0

0 | 1
2

1 | 1
2

1 | 1
2

0 | 1
21 | 1.0

11

1

0110

01

011

1110 11110101

10

010

0

0111

111110

1101

101

1010 1011

λ

Figure 2.14: Complete parse tree of the Golden Mean Process

Here we label nodes with blocks instead of counts, and edges with both a symbol and conditional

probability. For block b and symbol s , this is computed as Pr(s |b ) = Pr(b ,s )
Pr(b ) .

Given the depth-D parse tree, we find the set of depth-L subtrees that represent unique con-

ditional distributions over future symbols. These subtrees are called morphs, and each unique

morph becomes a labeled causal state. We create the causal state set S by traversing the parse

tree and comparing the morph rooted at each node to all σ ∈ S . If the morph is not equivalent

to any causal state,12 we assign the morph a label and add it to S .

From the parse tree above we find S = {A, B , C}:

12There are multiple ways to test for morph equivalence. A simple approach tests that all edge symbols are the
same, and all edge probabilities are the same within a fixed tolerance. Instead, we use the Kolmogorov-Smirnov test
with a significance level α of 0.01.
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Figure 2.15: Causal state subtrees of the Golden Mean Process

Each node in the parse tree is given a label corresponding to its causal state. Nodes without a

subtree of at least depth L are pruned:
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Figure 2.16: Pruned parse tree for the Golden Mean Process with causal state labels

The final ε-machine is produced by merging nodes with identical causal state labels:
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Figure 2.17: The ε-machine of the Golden Mean Process
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As with any inference from finite data, the amount of available data impacts the accuracy

of the model. For example, consider the number of inferred causal states as a function of data

length, averaged over 100 realizations of the Golden Mean:
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Figure 2.18: Effect of data length on number of inferred causal states

for state splitting and subtree merging reconstruction algorithms

The state splitting and subtree merging algorithms both converge to the correct number of causal

states at different rates—here, subtree merging needs roughly 3 times less data.

Inference is also sensitive to the choice of model parameters. For subtree merging, these in-

clude the parse tree depth D and morph length L. As detailed by Hanson [HAN93], these param-

eters interact with the data length N and can result in non-unifilar models or “dangling states”

with no outgoing transitions. When L is too small, morphs that are distinct at length L′ > L

may appear equivalent, resulting in a model that generates sequences forbidden by the hidden

process. If L′ < L there may be insufficient data in the parse tree, and morphs that should be

equivalent will not be. A search over parameter space that results in local stability of the machine

for fixed N can often identify suitable values of L and D.

The time complexity of current reconstruction algorithms is exponential in the alphabet

size |A| and is affected differently by algorithm-specific parameters. For example, the state split-

ting reconstruction algorithm has a worst-case time complexity of O(|A|2L max+1)+O(N ) for unifi-

lar andO(L max|A|L max )+O(N ) for non-unifilar presentations [SHA04]. Here, L max is the maximum

history length, the number of past symbols to condition on when creating the causal partition.

The runtime growth of both presentations is shown below:
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Figure 2.19: Reconstruction runtime as a function of alphabet size and maximum his-

tory length for unifilar (top surface) and non-unifilar (bottom surface) presentations

This illustrates that for all but the most simple processes, unifilar presentations require vastly

more computation than their non-unifilar counterparts. We explore the tradeoffs between pre-

diction accuracy, alphabet size, and unifilarity that are necessary for reconstruction of complex

processes in chapter 3.
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CHAPTER 3

Anomaly Detection in
High Performance Computing

Intrusion Detection Systems (IDSs) look for policy violations, commonly in the form of cyber

attacks, on individual computers or networks of computers. There are two primary paradigms:

1) misuse detection, looking for well defined signatures of disallowed behavior, and 2) anomaly

detection, looking for deviations from statistical models of expected behavior. IDSs must balance

false positive rates (raising alerts for benign behavior) and false negative rates (failing to raise

alerts for disallowed behavior). Hybrid approaches combine misuse and anomaly detection in

an effort to better address these different requirements.

Misuse detection looks for well-defined signatures derived from patterns of behavior. If the

behavior changes even slightly it may no longer match its original signature, and thus many

systems will fail to detect the changed behavior. Such systems cannot adapt to new, unseen

vulnerabilities without signatures, and thus have a high false negative rate.

Anomaly detection suffers from the complementary problem—while very good at detecting

new attacks, benign behavior that strays too far from the model is also labeled anomalous. Such

false positives occur so often that administrators routinely ignore or disable many of the alerts

generated by anomaly detection systems [PAT07].

This chapter details our work developing an anomaly detection framework specifically for

High Performance Computing (HPC), a field concerned with computational solutions to large

scale scientific research problems. The massive computational power of these resources makes

them potential targets for attackers as evidenced by, for example, the growing black market for

encryption cracking services.1 Other potential abuses include password cracking and computa-

1The website wpacracker.com will crack WPA-PSK or ZIP passwords in 20 minutes for $17 using a cloud computing
infrastructure.
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tion of nuclear simulations.

At the very least, such abuses impede the progress of legitimate research, and at the very

worst threaten national security—government labs operate 6 of the 10 most powerful supercom-

puters in the world. Given the vulnerabilities demonstrated by recent events such as the previ-

ously mentioned “Cyber Shockwave”, current mechanisms for protecting HPC resources may be

insufficient to prevent their abuse. Our work aims to detect such abuse in commonly used HPC

environments, and is being developed and tested at Lawrence Berkeley National Laboratory.

Developing a system without false positives or false negatives that also generalizes to new

attacks is the ultimate goal of IDS research, and is an open problem in computer security. By

using environmental assumptions and constraints to focus the statistical accuracy of our mod-

els, we hope to show that targeted anomaly detection can strike an effective balance between

these ideals of generality and specificity. In agreement with recent observations by Sommer et

al [SOM10], we claim previous approaches have difficulty precisely because such constraints are

missing. And, by taking a more mathematical approach, we can be quantitative both in our de-

sign and evaluation of the system.

§3.1 Background

§3.1.1 Message Passing Interface

Message Passing Interface (MPI) is a communications protocol standard used by parallel pro-

grams to exchange data. There are many implementations such as OpenMPI and MPICH, but

all are based on the idea of logical processors with unique labels called ranks communicating in

groups called communicators. MPI programs have an initialization phase where each processor

joins a communicator, is assigned a rank, and learns the size of the communicator, as well as a

finalization phase to gracefully terminate.

Consider the following C program for computing π to some number of digits specified on

the command line:2

1 i n t main ( i n t argc , char ∗∗ argv )
2 {
3 MPI_Init (& argc , &argv ) ;

2Code adapted from David Letscher at St. Louis University.
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4 long t e r m s _ t o t a l = a t o l ( argv [ 1 ] ) ;
5

6 i n t rank , s i z e ;
7 MPI_Comm_rank(MPI_COMM_WORLD, &rank ) ;
8 MPI_Comm_size (MPI_COMM_WORLD, &s i z e ) ;
9

10 double pi ;
11 c a l c u l a t e _ p i ( t e r m s _ t o t a l ∗ rank / s i z e , t e r m s _ t o t a l ∗ ( rank + 1) / s i z e , pi ) ;
12

13 i f ( rank == 0)
14 {
15 double data ;
16 MPI_Status s t a t u s ;
17

18 f o r ( i n t i = 1 ; i < s i z e ; i++)
19 {
20 MPI_Recv(& data , 1 , MPI_DOUBLE, i ,
21 MPI_ANY_TAG , MPI_COMM_WORLD, &s t a t u s ) ;
22 pi += data ;
23 }
24

25 p r i n t f ( " %.18 f " , pi ) ;
26 }
27 e l s e
28 {
29 MPI_Send(& pi , 1 , MPI_DOUBLE, 0 , 0 , MPI_COMM_WORLD) ;
30 }
31

32 MPI_Finalize ( ) ;
33 }

Lines 3, 7, and 8 perform MPI initialization. The desired number of terms in the decimal

expansion is read from the command line into TERMS_TOTAL. Each processor calls CALCULATE_PI

and tells the function which one of SIZE chunks to compute based on its rank. After computing

its chunk, every rank sends its result to rank 0 on line 29. Rank 0 collects these results on line 20

and adds them to the final output, displayed to the desired precision on line 25.

This example demonstrates a basic pattern of communication: all ranks call MPI_SEND with

destination rank 0. Sophisticated applications have more complex communications, and we

are interested characterizing their pattern and structure. However, not all attributes3 of com-

munication may be helpful in classification—some may be redundant, or even detrimental. An

information-theoretic approach to evaluating these attributes is presented later. For now, we

describe how these attributes are captured from active MPI applications.

3From here on, we use the machine learning term features to refer to properties or attributes of the objects we wish
to classify.
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§3.1.2 Communication Logging

The Integrated Performance Monitoring (IPM) package is “a portable profiling infrastructure for

parallel codes... (providing) a low-overhead performance profile of the performance aspects and

resource utilization in a parallel program”. It logs features of MPI function calls to an XML file,

such as the call name, the ranks involved, and the number of bytes sent, as well as hardware

counters such as the number of integer and floating point operations. The library is enabled

with a compile-time flag, usually provided to the MPICC compiler wrapper.

Consider the following IPM log entry:

<hent call="MPI_Isend" bytes="599136" orank="1" region="0" count="26" />

These entries become rows in a two dimensional feature matrix, with each column representing

a different feature. Each function name is assigned a unique integer so the contents of the feature

matrix are purely numerical.(
int(MPI_Isend) 599136 1 0 26

)
The result is a matrix of features for each parallel program we wish to classify, and from this we

obtain the full joint feature distribution. The task at hand, then, is how best to extract patterns

from this distribution.

§3.1.3 Computational Dwarfs

A computational dwarf4 is “a pattern of communication and computation common across a set

of applications” [Asanovich06]. Each dwarf is an equivalence class of computation, and is invari-

ant to the programming language or numerical methods used for implementation. The common

use of shared libraries such as BLAS and LAPACK provides some evidence of these equivalence

classes, though dwarfs imply more than simple code reuse.

Colella et al identified seven dwarfs in HPC applications [Colella04], and Asanovich et al

asked if these seven also captured patterns from areas outside of HPC [Asanovich06]. They found

six additional dwarfs were needed to capture the distinct patterns of computation found in areas

such as machine learning, computer graphics, and databases.

4Named in reference to the Seven Dwarfs in the story of Snow White.
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Dwarfs are quite distinct when visualized as an adjacency matrix. Consider a three node

cluster where rank 1 sends messages to ranks 2 and 3, and these send messages back to 1. This

leads to the following matrix representation:
0 1 1

1 0 0

1 0 0


Adjacency matrices are plotted as a grid where the axes are rank numbers, and black pixels de-

note communicating ranks. Consider the adjacency matrix for the general relativity simulator

CACTUS:
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k

Figure 3.1: Adjacency matrix of a general relativity simulator

as well as the atmospheric dynamics simulator FVCAM:
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Figure 3.2: Adjacency matrix of an atmospheric dynamics simulator

and the linear equation solver SUPERLU:
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Figure 3.3: Adjacency matrix of a linear equation solver

Communication patterns are strongly tied to memory access within a parallel program. To see

this, examine the diagonal of CACTUS and note the communication between a rank and its imme-

diate neighbors. Such a pattern is a signature of finite difference equations and is found across

many HPC applications. A different type of equation will have a different signature, unless its

pattern of memory access is similar to a finite difference equation.

An additional layer of structure is seen by extending the adjacency matrix into a third di-

mension. Here we see the MPI call number assigned to the z-axis for CACTUS:
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Figure 3.4: Adjacency matrix of a general relativity simulator, augmented by MPI call

as well as the message size:
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Figure 3.5: Adjacency matrix of a general relativity simulator, augmented by message size

and finally, the number of times a message is repeated:
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Figure 3.6: Adjacency matrix of a general relativity simulator, augmented by number of repeated messages

These distinct visual patterns suggest that classification of different applications should be

possible. By the same argument, however, classification of applications within a particular dwarf

class may be difficult due to their similarity. As a result, we must examine these patterns beyond

their matrix representations, and for this we first turn to graph theory.

§3.2 Exploratory Data Analysis

§3.2.1 Graph Theory

Treating a communication pattern as a graph with ranks as nodes and messages as edges, we can

measure various statistical properties of the graph. The first of these, the node degree distribu-

tion, maps a number of edges (the degree) to the total number of nodes with that degree. In our
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previous 3-node example the node degree distribution is {1 : 2, 2 : 1}, meaning two nodes have

one edge and one node has two edges. A distribution for a single run of FVCAM is:
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Figure 3.7: Node degree distribution of an atmospheric dynamics simulator

while for the magnetic fusion simulator GTC we have:
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Figure 3.8: Node degree distribution of a magnetic fusion simulator

This difference is notable because the adjacency matrices of FVCAM and GTC are nearly identical,

and therefore are insufficient as a basis for classification.

In addition to which ranks communicate, the degree distribution captures the types of mes-

sages exchanged. In the example above, the ranks of GTC send many different types of MPI calls

to their neighbors, resulting in a higher average node degree than FVCAM. Having the degree

distribution, then, is akin to summing over a set of per-call adjacency matrices as in figure 3.4.

Though more informative than adjacencies alone, node degree distributions summarize a
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single aspect of the graph that may fail to distinguish different patterns. In these cases, calculat-

ing the centrality of the nodes can be helpful. Centrality measures the importance of a node in

the graph, and this importance can be defined in several ways. We look at the betweenness cen-

trality (C B ), measuring the percent of shortest paths passing through a node v in an undirected

graph [FRE77]]:

C B (v ) = ∑
s 6=v 6=t∈V

σs t (v )
σs t

where σs t (v ) is the number of shortest paths between nodes s and t that pass through v . This

number is normalized by the total number of shortest paths between s and t . The C B of v , then,

is the sum of these normalized shortest path counts over all node pairs not containing v .

Intuitively, nodes acting as coordinators of computation should have high C B . There will

be at least two such nodes in most MPI applications—rank 0, and a pseudo-rank assigned to

broadcast messages. The distribution of C B for two runs of the MADBENCH performance bench-

mark exhibits these two highly central nodes, and demonstrates how graphs with similar degree

distributions can have very different centrality distributions:
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Figure 3.9: Betweenness centrality distribution of a performance benchmark
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Figure 3.10: Alternate betweenness centrality distribution of a performance benchmark

Graph theory provides multiple ways of distinguishing parallel computation based on a lim-

ited subset of communication features. Though they may eventually be used for classification,

we use them now primarily for intuition and instead focus on methods that incorporate the com-

plete set of communication features.

§3.2.2 Self-Organizing Maps

A common first step towards understanding the structure of a high dimensional dataset is as-

signing each element to some subset of related elements, a process called clustering. One such

clustering algorithm is k -means, which creates a random set of k initial clusters and iteratively

assigns each element to the cluster whose center is deemed “closest” by some distance metric

[MAC02]. The center of a cluster is the average of all its elements, and is re-computed any time

a new element is added. A generalization of this approach is the fuzzy c -means algorithm that

allows each element to belong to multiple clusters, reflecting the uncertain membership of ele-

ments near cluster boundaries.

The Iris dataset collected by R.A. Fisher [FIS36] is a classic in the machine learning literature.

It consists of 150 four-dimensional feature vectors containing measurements of the sepal length,

sepal width, petal length, and petal width for three species of Iris flower. One possible k -means

clustering5 for k = 3 is below:

5Since the initial clusters are chosen randomly, different clusterings can result.
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Figure 3.11: Clustering of the Iris dataset using k -means with k = 3

Here, the goal of clustering is gaining intuition about the separability of communication

patterns. This separability is revealed by the proximity and shape of each cluster. In the Iris data,

we can see the blue cluster is mostly well-defined. However, if we were to draw lines separating

the elements of each cluster, we could not use straight lines to divide the red and green elements.

Such data is not linearly separable, and requires more complex techniques for accurate classifi-

cation.

Self-Organizing Maps (SOMs) perform clustering and dimensionality reduction [KOH82],

mapping elements of a high-dimensional input space onto a two dimensional grid. This map-

ping preserves the topological properties of the input space, meaning “close” elements in the in-

put space are also close on the grid. It has been shown that SOMs are a nonlinear generalization

of Principal Component Analysis and that extremely small maps behave similarly to k -means

[KOH00].

The map is initially comprised of random vectors, each having the same dimension as the

input space. Training is an iterative process of selecting a random input vector, finding the clos-

est vector in the map, and moving this closest vector and its neighbors towards the input vector.6

The number of neighbors, and the amount they are adjusted, decreases each training iteration

until the map converges or a maximum number of iterations is reached.

Algorithms such as k -means must be given the number of clusters. In contrast, SOMs infer

this number from the data. These inferred clusters, in addition to feature correlations, are easily

6This paradigm is called competitive learning, as each map vector “competes” to be closest to the input vector.
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visualized using the two dimensional map. This makes SOMs well-suited for exploratory data

analysis.

SOMs are a highly effective visualization tool, and as such, we want to see the inferred data

clustering. If the input space is three dimensional, the map can be visualized as a grid of pix-

els where each trained vector represents red, green, and blue components. For input spaces

beyond three dimensions, as is normally the case, there is no such convenient mapping. Here

we compute the U-matrix [KOH82], storing the average distance between each map vector and

its nearest neighbors. These distances are then displayed as intensities in a color-mapped grid

where cluster boundaries appear as high intensity curves. Looking at the U-matrix for the Iris

dataset:

Figure 3.12: U-matrix of the Iris dataset

two clusters are identified, separated by a high intensity curve in the center. Since the data is not

linearly separable, the map cannot distinguish the third cluster.

For further intuition, the U-matrix of a SOM trained with random data is given below:

Figure 3.13: U-matrix of a uniformly random dataset

No clear clusters emerge and the distance between most vectors and their neighbors is relatively
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large. For structured data of sufficient complexity, one might expect a U-matrix somewhere be-

tween randomness and order. Indeed, this is seen by the U-matrix of CACTUS:

Figure 3.14: U-matrix of a Cactus dataset

Though the cluster boundaries are not rigorously defined, we can see the communication pat-

tern has approximately four clusters. Thus, the U-matrix gives a qualitative view of how high

dimensional data is clustered, without knowing the number of clusters a priori.

Correlations between features are visualized by slicing the map along a particular dimen-

sion. For example, if the number of bytes sent is the third element of our 5-dimensional input

vectors, then viewing only the third dimension of the map shows how the inputs cluster accord-

ing to byte count. Again for CACTUS, these per-feature layers are shown below:

Figure 3.15: Feature layers of a Cactus dataset including source rank, MPI call, bytes sent, and repeat count

From left to right these are “source rank”, “MPI call”, “bytes sent”, and “repeat count”. Examining

the southwest corner of the “repeat count” layer reveals a high intensity region corresponding to

often-repeated messages. Since the map preserves topology, looking at the intensity of the same

region in the “bytes sent” layer tells us that repeated messages have small byte counts.

In concert with the U-matrix, these feature layers make SOMs a powerful tool for visualizing

the clustering structure and feature correlations of high dimensional datasets. For our purposes

they are a qualitative tool, useful for further demonstrating the level of structure in our commu-
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nication datasets. Having now established this structure using several methods, we next discuss

a more quantitative analysis, and finally present our preliminary classification results.

§3.2.3 Pairwise Distances

The KL divergence, introduced in section 2.3.5, measures the distance in bits between two dis-

crete probability distributions. Computing pairwise distances between MPI message distribu-

tions allows us to quantify the similarity of their generating programs. Ideally, the distance be-

tween two runs of the same program with different datasets or number of processors should be

very low to reduce false positives due to normal statistical fluctuations.

Though these pairwise distances can be summarized in a table, they are quick to visualize as

concentric circles. The radius of each circle is equal to the distance between the distribution of

messages for two programs. Circles are semi-transparent and become more opaque where there

is overlap, giving a visual estimate of the distance distribution.

Given below is a distance diagram for the molecular dynamics simulator PMEMD using 64

processors:

Figure 3.16: Pairwise relative entropies between a molecular dynamics simulator and all other datasets

Again, each circle’s radius represents the DK L between the message distribution of PMEMD and

some other parallel application from our datasets. The exact DK L values for the identity, the

closest program, and the furthest program:
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DK L(pmemd || pmemd) = 0

DK L(pmemd || paratec) = 5.79

DK L(pmemd || gtc) = 13.13

This suggests PMEMD is distinguishable from other applications by using the joint distribution of

communication features. This is not always the case, as with the quantum mechanics simulator

PARATEC:

Figure 3.17: Pairwise relative entropies between a quantum mechanics simulator and all other datasets

Here the smallest DK L is 1.8 bits to SUPERLU, which may be within the normal fluctuations of

PARATEC. Thus, we will need features such as hardware counters in addition to purely message-

based data to accurately classify some patterns.

§3.3 Classification

Classification is a machine learning task that assigns labels to members of a dataset, where each

label corresponds to a subset of members with similar features. An algorithm performing this

task is a classifier. A dataset is typically partitioned into a training set of labeled examples to train

the classifier, and a test set for evaluating how well the classifier predicts the labels of new data.

A classifier’s accuracy with the test set gives some indication of how well it generalizes to

new data, as typically a small percent of all possible data is available for training. One simple

evaluation of accuracy is to divide the number of correctly predicted labels in the test set by the

total size of the dataset. Perfect accuracy is often a sign of over-fitting and results from highly
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dimensional data, insufficient amounts of data, numerous classification parameters, or some

combination thereof. Thus, over-fitting and generalization are opposing forces, and the former

should be avoided when constructing a classifier.

A method of evaluating generalization is k -fold cross validation. Instead of a single partition,

the data is split into k chunks and the classifier is trained and evaluated k times.7 Each iteration,

a different chunk is left out of training and instead becomes the test set. The average prediction

accuracy over these different test sets gives a better measure of generalization than any single

partition.

This section presents our preliminary results for three progressively more complex classi-

fiers: Naive Bayes, Hidden Markov Models, and ε-machines. We also discuss the identification of

redundant features using information theory, which leads to lower dimensional data and thereby

reduces the risk of over-fitting.

§3.3.1 Naive Bayes

Bayes’ Theorem gives the probability of some random event A given the occurrence of event B

as follows:

Pr(A|B ) = Pr(B |A) Pr(A)
Pr(B )

This simple theorem is the cornerstone for Bayesian inference, a framework for reasoning about

evidence in support of a hypothesis. Updating the equation to reflect this interpretation for evi-

dence E and hypothesis H gives:

Pr(H |E ) = Pr(E |H ) Pr(H )
Pr(E )

Each of these terms has a name, and these will be used in place of the mathematical notation:

posterior =
likelihood · prior

evidence

In the context of classification, we compute the posterior probability of different models given

some sequence of input data. We then select the model with the highest posterior probability as

the label, and evaluate our prediction against the actual label from the test set.

7A common value for k is 10.
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Computing the posterior requires multiplying the likelihood of the data given the model by

the prior probability of the model itself. The evidence is often ignored since it remains constant.

For our joint set of communication pattern features, the calculation becomes:

Pr(feature1, feature2, . . . , featuren|pattern) Pr(pattern)

Features are “naively” assumed to be conditionally independent, so the above factors into:

Pr(pattern)
n

∏
i=1

Pr(featurei|pattern)

Previous analysis showed that our features are not conditionally independent. In fact, this

simplifying independence assumption is rarely true in practice, resulting in the classifier’s pejo-

rative name. Therefore, our primary use of the Naive Bayes classifier is a null hypothesis: classi-

fiers with more complete knowledge should perform at least as well, and if not, some explanation

is in order.

Computed over 17 datasets, including some collected from the same program using differ-

ent numbers of processors, our Naive Bayes classifier has 82.2% accuracy. Considering the ap-

proach completely ignores feature correlations,8 this sets a rather high bar for our next classifier

using Hidden Markov Models.

§3.3.2 Hidden Markov Models

Hidden Markov Models are probabilistic state machine models of stochastic processes. By de-

coupling the internal state of the model from the symbols it generates, HMMs are useful for a

variety of tasks including classification. The details of the model can be found in section 2.5.

Of primary concern when utilizing HMMs is selecting the model architecture, including the

number of states and their connectivity. State transition and symbol emission probabilities can

be trained to maximize the likelihood of generating some set of input data, or estimated directly

if the hidden state sequence of each training sequence is known. We use the latter approach

since this information is available to create a left-right HMM for each MPI communication pat-

tern.

Emission probabilities are maximum likelihood estimates of conditional feature distribu-

tions. By extending this conditional dependence to L past observations, the model leverages

8Despite the weakness of its independence assumption, Naive Bayes is often surprisingly good in practice. Among
other reasons, estimating marginal instead of joint probabilities increases the accuracy of the estimate.
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knowledge of feature correlations for label prediction. This requires the joint distribution over

length L + 1 blocks, and exponentially more data for larger L. The maximum model order is

somewhat limited as a result, and we compromise with L = 6 in order to span one complete set

of communication features.

Once the HMMs are constructed, the model with the highest posterior probability for an

observation sequence is selected as that sequence’s label. This requires computing the likeli-

hood term of an observation sequence using the forward algorithm [RAB89]. A vector of forward

probabilities is created where each element αt (i ) is the probability of being in state i after gen-

erating t observations. The initial value of α1(i ) is the stationary probability πi multiplied by the

emission probability Bi for the first observation x1:

α1(i ) = πi Bi (x1)

These forward probabilities are updated for each time-indexed observation, where |S| is the

number of states and A is the transition matrix:

αt+1(j ) =
[ |S|
∑
i=1

αt (i )A i j

]
B j (x t+1)

This multiplies the current forward probability of state i with the probability of transitioning to

state j and emitting the next observation. The per-state forward probabilities are summed at the

end, giving the likelihood that the observations were generated by the model:

Pr(x1 . . . xT |model) =
|S|

∑
i=1

αT (i )

To obtain the posterior, this likelihood is multiplied by the model’s prior probability given by the

percentage of inputs in the training data mapped to that model.

Using the set of posteriors, the most likely HMM is selected as the sequence’s label. This

yields an average accuracy of 98.7% over all MPI communication classifiers, a standard deviation

of 0.01%, and a sizable improvement over Naive Bayes (see figure 3.18).
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ε-machine Classification
Dataset Size (kb) Accuracy (%)

cactus-64 57 100
fvcam_1d 33 100

gtc-64 537 98.9
lbmhd-64 20 1.0

mdh2d 160 99.1
paratec 1289 97.2
slu-64 2646 96.0

Figure 3.18: Accuracy of Hidden Markov Model classifiers.

§3.3.3 ε-Machines

Introduced in section 2.6 is the ε-machine, a subset of traditional HMMs with several unique

properties. As a type of HMM, the same approach is used to classify communication patterns

using ε-machines: construct a model for each pattern, compute the posterior probability of each

model for some new input, and select the model with the highest posterior as the input’s label.

The likelihood function for ε-machines is given in equation 2.6, and is essentially the forward

algorithm with per-symbol transition matrices.

There are two primary advantages of ε-machines over traditional HMMs: 1) the number of

states and their transitions are inferred from the data instead of specified by the modeler, and

2) in the limit of infinite data, an ε-machine is the optimal predictor of a process with the fewest

number of states. In practice we have only finite amounts of data, and so this claim of optimality

is approximated to varying degrees.

To model with ε-machines, the underlying process must be stationary and have some tem-

poral or spatial structure. As our data is unordered, we cannot use the temporal structure of

MPI calls, and instead the ε-machine captures the non-temporal structure of individual call fea-

tures. Thus, we are using ε-machines in an atypical way due to data-imposed limitations, and

the advantages of the model class will not fully emerge until this is remedied.

Due to the time complexity of the algorithm, large alphabets are an obstacle to ε-machine

reconstruction. As a result, we employ equal-frequency binning [WIT05, GUY03] to reduce the

alphabet size. This takes the range between the minimum and maximum values of a feature and

divides it into a number of variable sized intervals (bins) such that each bin contains an equal
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number of values. Each value is then replaced by its bin number. We used 32 bins as it was the

largest divisor of our minimum cluster size that resulted in reasonable reconstruction times.

Using binning and non-deterministic presentations with a history length of 3, classification

with ε-machines had 93% accuracy with a 5% standard deviation (see figure 3.19. While lower

than the previous result, it should be noted that the alphabet size and model order is half that

of our HMMs. In fact, when using the same preprocessing techniques, HMM accuracy fell to

87% with a standard deviation of 7%—on equal footing, ε-machines performed better. Accu-

racy could be further increased by using deterministic presentations and longer history lengths,

though this was not rigorously evaluated due to speed limitations of our Python implementation.

ε-machine Classification
Dataset Size (kb) Accuracy (%)

cactus-64 57 97.7
fvcam_1d 33 82.7

gtc-64 537 99.2
lbmhd-64 20 87.1

mdh2d 160 95.1
paratec 1289 95.2
slu-64 2646 93.8

Figure 3.19: Accuracy of ε-machine classifiers.

§3.3.4 Feature Selection

All features are not created equal; some may improve accuracy more than others, or even cause

a reduction. In addition, each feature increases the dimensionality of the data, compounding

the “curse of dimensionality” [DON00]. Therefore, a systematic approach to selecting the most

informative features is important both for classification speed and generality.

There are two primary approaches to feature selection: variable ranking and variable subset

search [GUY03]. The former, called a filter, ranks features by some correlation criteria. The latter,

called a wrapper, searches through feature space and evaluates the predictor’s accuracy on dif-

ferent subsets. Filters avoid predictor bias and are generally considered faster, while wrappers

offer simplicity and independence from the biases of correlation criteria.

Information gain is another name for mutual information, and is a correlation criterion of-

ten used in machine learning. It has also found some application in security research [LEE01,
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KAY05A]. This quantity, introduced in section 2.3.4, measures the reduction of uncertainty in

variable X given knowledge of Y . For example, if Bob and Alice eat lunch together except when

Alice is out of town, then knowing that Alice is in town removes all uncertainty about who Bob ate

lunch with. If Bob’s lunch date and Alice’s travel status were variables X and Y , we only need the

outcome of Y to completely determine X . Thus, we say X is redundant. The mutual information

I is a measure of this redundancy, and is depicted by the overlapping region in the information

diagram of figure 2.7. The more information gained about X by knowing Y , the larger this region.

As noted earlier, mutual information varies with the size of a random variable’s event space.

Instead, we use the symmetric uncertainty to obtain a normalized measure of redundancy be-

tween features [WIT05]:

D = 1− I [X ; Y ]
max(H [X ], H [Y ])

Symmetric uncertainty was calculated over pairwise features for each program. The “region

code” feature was found to be completely redundant, and was later identified as an IPM logging

attribute not used in our datasets. Other redundancies varied by program: “byte count” and

“repeat count” were almost completely redundant for GTC but nearly independent for FVCAM,

and such conflicting results were common. As additional features such as hardware counters

become available, we will perform a more rigorous feature selection using both the filtering and

wrapping techniques, in hopes of identifying optimal subsets despite such conflicts.

§3.4 Related Work

Florez et al [FL05B] built neural network and HMM classifiers using both MPI calls and system

calls. They used a Linux cluster with 4 processors and a training set of 2 parallel applications

to classify sequences as anomalous or normal. Anomalous behavior was created by modifying

normal datasets. In contrast, we use clusters of 64 and 256 processors running roughly 20 parallel

programs under various workloads, and more formally select model parameters and features

using information theory.

Kamil et al [KAM10] characterized the communication patterns of 8 parallel programs using

IPM logs. They evaluated the utilization of hardware interconnects in fully connected networks,

and concluded these interconnects are underutilized by typical parallel workloads. Utilization
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was measured by the distribution of buffer sizes for collective and point-to-point communica-

tion, as well as the distribution of MPI calls and the communication topology. The latter involved

visualization of the rank adjacency matrix.

Ma et al [MA09] introduce a communication correlation coefficient to characterize the sim-

ilarity of parallel programs using several metrics. The first metric involves the average trans-

mission rate, message size, and unique neighbor count for each logical processor. The second

computes the maximum common subgraph using an NP-hard graph isomorphism algorithm;

an approach designed for invariance to the underlying architecture. Their evaluation was lim-

ited to 4 programs in the NAS parallel benchmark, and the choice of features for the correlation

coefficient was not discussed.

§3.5 Conclusion and Future Work

The preceding sections explored various structural properties of MPI communication patterns.

The ultimate goal of this exploration was to inform the construction of machine learning classi-

fiers that correctly map communication patterns to their originating parallel programs.

Graph-theoretic properties such as the adjacency matrix, node degree distribution, and be-

tweenness centrality distribution revealed patterns of rank connectivity. SOMs gave an approxi-

mate number of clusters and showed how different features were correlated. Finally, we looked

at a quantitative measure of structure using relative entropy, and progressively constructed three

machine learning classifiers.

Our classifiers, while accurate for the current datasets, will not generalize due to the un-

ordered nature of the data. Without ordering, classifiers can only label individual MPI inputs

since consecutive calls in the IPM logs are not consecutive in time. We expect the same approach

with ordered data will produce generalized classifiers with low cross-validation error.

In addition to building and evaluating classifiers, we also examined the usefulness of each

communication feature by computing pairwise redundancies using information gain. It was

found that one feature, the region code, was entirely redundant and thus was eliminated to re-

duce the dimensionality of the data. We will further explore the use of feature selection to iden-

tify optimally predictive features as hardware counter information becomes available. This is
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expected to arrive alongside ordered datasets in the next phase of research at Lawrence Berkeley

National Lab.
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CHAPTER 4

Automated Protocol Reverse Engineering

Hidden Markov Models (HMMs) have applications in several areas of computer security. One

drawback of HMMs is the selection of appropriate model parameters, which is often ad hoc or

requires domain-specific knowledge. While algorithms exist to find local optima for some pa-

rameters, the number of states must always be specified and directly impacts the accuracy and

generality of the model. In addition, domain knowledge is not always available or may be based

on assumptions that prove incorrect or sub-optimal.

We apply the ε-machine—a special type of HMM—to the task of constructing network pro-

tocol models solely from network traffic. Unlike previous approaches, ε-machine reconstruction

infers the minimal HMM architecture directly from data and is well suited to applications such

as anomaly detection. We draw distinctions between our approach and previous research, and

discuss the benefits and challenges of ε-machines for protocol model inference.

§4.1 Introduction

Understanding the structure of a network protocol allows us to “speak” its language and converse

with other systems on the network that use it. The structure of commonly used protocols, such

as HTTP and FTP, are provided by their specification. In addition, these protocols use fragments

of English as well as other ASCII text such as domain names. As a result, the presence of HTTP

or FTP traffic can be identified by visual inspection of a network trace, assuming the channel is

not encrypted. One can then use its specification, or one of many free or commercial tools, to

understand the traffic present in the trace.

The task becomes more difficult when the protocol in question uses non-ASCII representa-

tions of state to establish connections and exchange data. Still, there are many approaches to



50

identify the protocol such as using port numbers, unique payload signatures, or machine learn-

ing techniques [ERM06]. Once the protocol is identified, the traffic can again be understood by

using the specification.

In contrast to protocol identification, consider the scenario where we do not have access

to the protocol’s specification—it is either proprietary, undocumented, or otherwise obfuscated.

We can treat the protocol as a black box, where a hidden state machine governs the transmis-

sion of packets on the network. To understand the structure of the packets, the task of protocol

inference is to approximate this hidden state machine with only the observed packets as a guide.

Hidden Markov Models (HMMs) [RAB89] are a common statistical model for systems with

hidden internal states that can be measured only indirectly by observation. These models have

numerous applications in computer science, including several in computer security. An HMM is

specified by a state transition matrix and a symbol emission matrix. This means that, for an N -

state HMM with a discrete alphabet of size M , there are N (N − 1) + N (M − 1) free parameters

to be specified. These parameters can be trained using the Baum-Welch algorithm [RAB89], but

training is often slow and gets stuck in local optima. In addition, the number of states must still

be specified. A model with too many states tends to over-fit the data, while too few states may not

fit the data at all. Worse, when dealing with an unknown protocol, there is little if any knowledge

available for selecting appropriate model parameters.

Here, we treat a network protocol as a stochastic process and the traffic it generates as in-

put strings for the reconstruction algorithm. Our approach has several advantages over pre-

vious work: 1) probabilistic modeling enables anomaly detection and traffic generation, and 2)

ε-machine reconstruction avoids ad hoc specification of model parameters. Protocol ε-machines

also capture previous work involving protocol mimicry and intelligent fuzzing. For an overview

of HMMs and ε-machines, see sections 2.5 and 2.6.

We next discuss recent work done on protocol inference and the benefits of our approach.

We follow this with background on HMMs and ε-machines, and demonstrate our reconstruc-

tion technique using several simple protocols. Finally, we discuss future applications and the

limitations of our approach.
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§4.2 Related Work

Current approaches to protocol inference can be divided into two primary groups: those that

infer partial or complete protocol formats [BED05, CUI06, CUI07, LIN08, WON08, CAB09], and

those that infer a state machine model [LEI05, COM09]. Both groups can be further divided into

those that examine network traces [BED05, LEI05, CUI06, CUI07], and those that additionally

examine how a protocol implementation processes those traces [LIN08, WON08, CAB09, COM09].

Each approach has different strengths and weaknesses, but both must identify the location and

size of protocol headers.

Much of the recent work can be traced back to Protocol Informatics, which attempted to “de-

termine the location and length of fields within protocol packets” using sequence alignment al-

gorithms typically found in bioinformatics [BED05]. This approach was extended by RolePlayer,

which used heuristics to identify the locations of IP addresses and domain names in a packet, in

order to “successfully replay one side of a [protocol] session” [CUI06].

This work led to Discoverer, which focused on “reverse engineering the [complete]message

format specification” [CUI07]. In this work, Cui et al. found that selecting robust parameters

for sequence alignment was difficult, and that alignment has trouble identifying variable length

fields in messages of the same format. In response, they developed a type-based sequence align-

ment algorithm that infers the semantics of different fields, and used these semantics to cluster

messages of the same format. Inference of the state machine, which is the focus of our approach,

was left to future work.

Prospex addressed this issue by inferring non-probabilistic state machines from execution

traces of a protocol implementation [COM09]. Their state machine “reflects the sequences in

which messages may be exchanged”. They converted their machines into input specifications

for the fuzzing tool Peach, and found several known and unknown flaws in open source software.

In contrast, our ε-machine approach infers the minimal HMM from passively observed net-

work data without using execution traces. This strikes a middle ground between Discoverer and

Prospex, with several unique contributions. These include using a probabilistic model that en-

ables anomaly detection via model comparison techniques, and avoiding ad hoc specification of

model parameters by inferring them from the data. For an overview of HMMs and ε-machines,
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see sections 2.5 and 2.6.

§4.3 Protocol Inference

We first define a network protocol as a set of message types. Each message type consists of a

sequence of bits, and related bits are often grouped into headers. A particular message type may

contain a set of headers, as well as a data payload. This payload may contain data provided by

the user, or may encapsulate messages of a higher level protocol. Thus, we can think of a protocol

message at several levels of abstraction: as a sequence of bits, bytes, or headers and payloads.

As discussed in chapter 3, ε-machines have numerous advantages over Markov and Hidden

Markov Model representations of a stochastic process, but their practical application is limited

primarily by the alphabet size |A| of the process. By changing the level of abstraction, we can

adjust the order of the underlying Markov Chain as well as its alphabet size. In addition, we are

interested in the structure of the protocol and not highly entropic user data such as images or

movies, so we attempt to detect and ignore payloads. This further reduces the alphabet size, and

is essential to ε-machine reconstruction.

Consider a minimal protocol having a single message type, consisting of a 2-byte length

header and a payload. The length header specifies the number of bytes in the payload as an

unsigned 16-bit integer. A four byte message sending the ASCII characters for “no” could then

be viewed as a sequence of bits:

00000000 00000010 01101110 01101111

or of bytes:

0 2 110 111

or of headers and payloads:

2 “no”

This binary sequence has |A| = 2, but requires a prohibitive order-16 model to capture the first

header. At the byte level this becomes order-2, but |A| increases to 4. Finally, if we know where

the separation between header and payload is, we can use an order-1 model with |A| = 2. If

more messages are observed, the alphabet size of the byte representation could increase to 256,

so operating at the header level is desirable. Of course, knowing the location and size of message

headers requires either heuristics or access to the protocol specification.
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Protocols such as HTTP and FTP use ASCII tokens, so header boundaries are easily iden-

tified by inspection—typically tabs, spaces, newlines, and carriage returns. For more difficult

binary protocols, Beddoe aligns bytes across different messages using bioinformatics algorithms

and then uses simple statistics as a boundary detection heuristic [BED05]. Cui et al discuss dif-

ficulties with sequence alignment and devise a significantly improved type-based alignment al-

gorithm [CUI07]. For simplicity, we use minimum entropy clustering [LI04] to group messages

of the same type and apply the approach of Beddoe to identify likely header boundaries and

payloads.

Thus, our inference approach can be separated into three primary tasks: 1) grouping bytes

into headers, 2) filtering highly entropic data, and 3) reconstructing the ε-machine. Tasks 1 and

2 exist primarily to reduce the alphabet size, and can be changed independently of task 3. For ex-

ample, type-based alignment could be exchanged with minimum entropy clustering to transpar-

ently improve the accuracy of the inferred model. Our heuristics are adequate for the protocols

discussed here, but complex protocols may require additional sophistication.

§4.3.1 ICMP

We introduce protocol ε-machines and their accompanying notation using two simple binary

protocols, followed by two more complex protocols. The first of these, the Internet Control Mes-

saging Protocol (ICMP) [POS81] defines several message types used for network diagnostics. One

of these types, the echo request/reply, finds common use in the ping command line utility bun-

dled with most operating systems. For this discussion we focus on echo requests, consisting of a

1-byte type set to 0x80, 1-byte code set to 0x00, 2-byte checksum whose contents are a function

of the message, 2-byte identifier, 2-byte sequence number, and zero or more bytes of payload.
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type code checksum

identifier sequence number

data · · ·

type code chksum

idseqnumdata

0x80 0x00

Σ2

Σ2Σ2

Σ

EOM

1

2 3

5 4

0x8000 | 1.0

Σ2 | 1.0

Σ3 | 1.0

Σ | 1.0

EOM | 1.0

Figure 4.1: Top: Specification of an ICMP echo request [POS81], Middle: HMM representation, Bottom: ε-Machine

representation. The symbol Σ represents a random byte of data, with Σn denoting n consecutive random bytes.

The message specification, a corresponding 6-state HMM, and the ε-machine are shown

in figure 4.1. A state is created in the HMM for each header, with transitions between states

whose headers are adjacent in the specification. Transitions are labeled with the symbols to be

generated. The symbol Σn denotes n consecutive random bytes, and the symbol EOM signals the

message is complete and ready for transmission.

The ε-machine inferred from captured echo requests is shown below the HMM. Transitions

are labeled with the symbol s generated by the transition and the probability p of the transition

being taken, denoted s | p . This intentionally simple example has no branching between states,

resulting in transition probabilities of 1. The type and code headers are constant values, causing

their separate HMM states to be merged in the ε-machine.
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Many protocols contain a sequence number header represented as a 16-bit integer. How-

ever, the first byte of this header changes very rarely compared to the second byte that is in-

cremented with each message. In the requests captured for this example, the identifier header

and the first byte of the sequence number remained constant, resulting in their grouping into a

single value by the boundary detection heuristic (see the A3 transition between state 3 and 4).

While this does not match the specification, it is a reasonable grouping to make based solely on

the statistics of the observed messages. Given enough data, the bytes will be grouped into the

correct headers..

§4.3.2 Modbus

We next examine Modbus, a protocol commonly used in supervisory control and data acquisi-

tion (SCADA) systems for managing industrial and infrastructure processes such as power gener-

ation and waste management. Designed in the late 70s to operate on simple programmable logic

controllers, Modbus has gained recent notoriety due to a lack of security in the Modbus/TCP

variant that connects these systems to standard TCP/IP networks [MOD06].
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trans id prot id
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data · · ·

1
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4

3

0x00000000000600 | 1.0

0x01 | .6

0x02 | .2

0x04 | .05

0x05 | .05

0x06 | .1

0x00 | 1.0

Σ4 | 1.0EOM | 1.0

Figure 4.2: Top: Specification of a Modbus/TCP request [MOD06], Bottom: ε-Machine representation.

The specification of Modbus/TCP requests and an inferred ε-machine are shown in figure

4.2. A request consists of a 2-byte transaction id, 2-byte protocol id set to 0x00, 2-byte length,

1-byte unit id, 1-byte function code, and variable length payload.

The captured traffic, generated by a protocol simulator, consists of 150 requests where all

transaction ids and unit ids are set to 0x00. Traffic generated by the simulator is valid Modbus

traffic, and not a statistical approximation. Observed function codes include 0x01 for reading

coils, 0x02 for reading discrete inputs, 0x04 for reading input registers, 0x05 for writing single

coils, and 0x06 for writing single registers. Each payload contains 4 bytes specifying the range of

coils or registers to read or write. Branching occurs between state 2 and 3, with each transition

probability representing the maximum likelihood estimate of a different function code.
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§4.3.3 FTP and HTTP

Reconstructing more complex protocols such as FTP and HTTP is also possible. Model size pre-

vents including the full ε-machines here, so instead we present summaries of their reconstruc-

tion in figure 4.3. Shown is the scaling of inferred states and reconstruction time as a function of

data length, performed on a single core of an Intel Core 2 Duo 2.4GHz CPU under OS X 10.6.3.

A Python implementation of the state splitting reconstruction algorithm [SHA04] was used, and

will soon be available in the open source Computational Mechanics in Python (CMPy) library.

Captured traffic was obtained from the UCDavis Honeynet Project.

FTP
Symbols Inferred States Time (Seconds)

300 6 0.18
600 9 0.20
900 10 0.23

1200 10 0.11
1500 11 0.32

HTTP
Symbols Inferred States Time (Seconds)

14337 12 0.18
28674 14 0.35
43011 18 0.84
57348 20 1.16
71685 22 1.86

Figure 4.3: Scaling of inferred states and inference time as a function of preprocessed data length,

for FTP (top) and HTTP (bottom). Time is not necessarily monotonically increasing due to fi-

nite sample effects. State counts are given for non-deterministic presentations of the ε-machines.

Notably, the 18-state ε-machine was inferred from 60,000 symbols in less than a second

despite using an interpreted language. Random walks on these machines generate new packets

that are validated by remote protocol implementations, indicating the structure of the protocol

is correctly captured. These preliminary results demonstrate that probabilistic reconstruction

of both binary and text-based protocols is possible when alphabet size is managed by selecting

an appropriate level of symbol abstraction and removing high-entropy payloads. Given this, we

next discuss future applications of probabilistic models to the task of protocol inference.
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§4.4 Future Work

A distinct advantage of the ε-machine for protocol inference over other models such as mini-

mized prefix tree acceptors [BUG05] is its probabilistic nature. This enables applications such as

anomaly detection where a statistical model of behavior is inferred from “normal" traffic traces,

and deviations are flagged using various model comparison techniques [BUR02]. Towards this

end, we have investigated the use of relative entropy (see section 2.3.5). A large relative entropy

between models may indicate anomalous behavior, where “large” is some threshold chosen for

an acceptable false positive rate. We leave the selection of this threshold, as well as a comparison

of distance metrics for ε-machines, to future work.
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Figure 4.4: Overlayed distributions of block length 4 symbols using an ε-machine in-

ferred from Modbus traffic (dark gray) to generate new traffic (light gray). Relative en-

tropy between the distributions is 0.09 bits, indicating the distributions are close.

An additional application of the ε-machine is probabilistic traffic generation, as the distri-

bution of strings generated by the model should be close to that of its data source. Random

walks on the model generate ready-to-transmit packets both for traffic generation and protocol

mimicry as introduced by Cui et al [CUI06]. The fit of 500 generated Modbus packets is shown in

figure 4.4, resulting in a small DKL of 0.09 bits.
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Random walks on the ε-machine can also be used for testing the robustness of a program

by sending it random inputs or mutating valid inputs. This process is called fuzzing. If the pro-

gram does not correctly handle invalid input, fuzzing it may crash or leave the system vulnerable

to attack. While generally considered effective for finding bugs, a substantial drawback to this

approach is code coverage. For example, if the code’s execution path depends on the value of a

32-bit integer, a random input has a 1 in 232 chance of evaluating that code path [GOD07]. Work-

ing with mutated valid inputs enables more targeted testing, but requires some knowledge of

their specification. The inferred ε-machine enables such targeted fuzzing when no specification

is available.

Consider a previously known flaw in Golden FTP Server 2.70 for Windows.1 A “change direc-

tory” command sent from the client with certain large arguments crashes the server and enables

remote code execution. Using an ε-machine inferred from FTP traffic and tuned to produce

longer runs of random data, this flaw was reproduced by a random walk on the machine. A

subgraph of the ε-machine that causes the crash is given in figure 4.5. We plan to investigate if

probabilistic models confer additional benefits to targeted fuzzing in future work.

1

2

3

4

USER: test 0x0d0a | 1.0

PASS: test 0x0d0a | 1.0
CWD | 1.0

0x2f | .99

0x0d0a EOM | .01

Figure 4.5: Subgraph of the ε-machine used for fuzzing Golden FTP Server 2.70, crashing the server

when a “change directory” command is followed by more than 150 bytes. Symbol probabilities in

the inferred ε-machine were tuned to produce longer sequences of random data for guided fuzzing.

1http://bit.ly/bO22hx
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§4.5 Conclusion

We presented a novel HMM-based approach for inferring the state machine of network protocols

using only their traffic. While generally applicable to any non-encrypted protocol stream, our

emphasis is on protocols without a publicly available specification.

Our approach uses ε-machine reconstruction [CRU89, SHA04] to infer the minimal deter-

ministic HMM of a protocol. The parameters of the HMM are inferred directly from the data,

which avoids the typical pitfalls involved in parameter selection. We demonstrated our approach

by inferring ε-machines from ICMP, Modbus, FTP, and HTTP traffic, and discussed preliminary

applications of these models to protocol mimicry, fuzzing, and traffic generation. We plan to use

the probabilistic nature of our models for anomaly detection, and have early success doing so in

high performance computing environments.

Due to the limitations of traffic-based approaches, as well as sensitivity to alphabet size,

more work remains to adapt reconstruction to high complexity protocols. In some cases where

domain knowledge is available, traditional HMMs may scale better than ε-machines. However,

our approach is well suited to protocol inference when there is insufficient domain knowledge

for the manual construction of state machine models.
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CHAPTER 5

Structural Drift

We introduce a theory of sequential causal inference in which learners in a chain estimate a

structural model from their upstream “teacher” and then pass samples from the model to their

downstream “student”. It extends the population dynamics of genetic drift, recasting Kimura’s

selectively neutral theory as a special case of a generalized drift process using structured popu-

lations with memory. We examine the diffusion and fixation properties of several drift processes

and propose applications to learning, inference, and evolution. We also demonstrate how the

organization of drift process space controls fidelity, facilitates innovations, and leads to infor-

mation loss in sequential learning with and without memory.

§5.1 “Send Three- and Four-Pence, We’re Going to a Dance”

This phrase was heard, it is claimed, over the radio during WWI instead of the transmitted tactical

phrase “Send reinforcements we’re going to advance” [SMI88]. As illustrative as it is apocryphal,

this garbled yet comprehensible transmission sets the tone for our investigations here. Namely,

what happens to knowledge when it is communicated sequentially along a chain, from one in-

dividual to the next? What fidelity can one expect? How is information lost? How do innovations

occur?

To answer these questions we introduce a theory of sequential causal inference in which

learners in a communication chain estimate a structural model from their upstream “teacher”

and then, using that model, pass along samples to their downstream “student”. This reminds one

of the familiar children’s game Telephone. By way of quickly motivating our sequential learning

problem, let’s briefly recall how the game works.

To begin, one player invents a phrase and whispers it to another player. This player, believ-

ing they have understood the phrase, then repeats it to a third and so on until the last player is
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reached. The last player announces the phrase, winning the game if it matches the original. Typ-

ically it does not, and that’s the fun. Amusement and interest in the game derive directly from

how the initial phrase evolves in odd and surprising ways.

The game is often used in education to teach the lesson that human communication is

fraught with error. The final phrase, though, is not merely accreted error but the product of a

series of attempts to parse, make sense, and intelligibly communicate the phrase. The phrase’s

evolution is a trade off between comprehensibility and accumulated distortion, as well as the

source of the game’s entertainment. We employ a much more tractable setting to make ana-

lytical progress on sequential learning,1intentionally selecting a simpler language system and

learning paradigm than likely operates with children.

Specifically, we develop our theory of sequential learning as an extension of the evolutionary

population dynamics of genetic drift, recasting Kimura’s selectively neutral theory [KIM69] as

a special case of a generalized drift process of structured populations with memory. Notably,

this requires a new and more general information-theoretic notion of fixation. We examine the

diffusion and fixation properties of several drift processes, demonstrating that the space of drift

processes is highly organized. This organization controls fidelity, facilitates innovations, and

leads to information loss in sequential learning and evolutionary processes with and without

memory. We close by describing applications to learning, inference, and evolutionary processes.

To get started, we briefly review genetic drift and fixation. This will seem like a distraction,

but it is a necessary one since available mathematical results are key. Then we introduce in detail

our structured variants of these concepts—defining the generalized drift process and introduc-

ing a generalized definition of fixation appropriate to it. With the background laid out, we begin

to examine the complexity of structural drift behavior. We demonstrate that the diffusion takes

place in space that can be decomposed into a connected network of structured subspaces. We

show how to quantify the degree of structure within these subspaces. Building on this decom-

position, we explain how and when processes jump between these subspaces—innovating new

structural information or forgetting it—thereby controlling the long-time fidelity of the commu-

1There are alternative, but distinct notions of sequential learning. Our usage should not be confused with notions
in education and psychology, sometimes also referred to as analytic or step-by-step learning [FEL88]. Our notion
also differs in motivation from those developed in machine learning, such as with statistical estimation for sequential
data [DIE02], though some of the inference methods may be seen as related. Perhaps the notion here is closer to that
implicated in mimicked behavior which drives financial markets [LOW02].
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nication chain. We then close by outlining future research and listing several potential applica-

tions for structural drift, drawing out consequences for evolutionary processes that learn.

Those familiar with neutral evolution theory are urged to skip to Sec. 5.5, after skimming the

next sections to pick up our notation and extensions.

§5.2 From Genetic to Structural Drift

Genetic drift refers to the change over time in genotype frequencies in a population due to

random sampling. It is a central and well studied phenomenon in population dynamics, ge-

netics, and evolution. A population of genotypes evolves randomly due to drift, but typically

changes are neither manifested as new phenotypes nor detected by selection—they are selec-

tively neutral. Drift plays an important role in the spontaneous emergence of mutational robust-

ness[NIM99, BLO06], modern techniques for calibrating molecular evolutionary clocks [RAV07],

and nonadaptive (neutral) evolution [CRU03B, KOE06], to mention only a few examples.

Selectively neutral drift is typically modeled as a stochastic process: A random walk in geno-

type space that tracks finite populations of individuals in terms of their possessing (or not) a

variant of a gene. In the simplest models, the random walk occurs in a space that is a function

of genotypes in the population. For example, a drift process can be considered to be a random

walk of the fraction of individuals with a given variant. In the simplest cases there, the model

reduces to the dynamics of repeated binomial sampling of a biased coin, in which the empirical

estimate of bias becomes the bias in the next round of sampling. In the sense we will use the

term, the sampling process is memoryless. The biased coin, as the population being sampled,

has no memory: the past is independent of the future. The current state of the drift process is

simply the bias, a number between zero and one that summarizes the state of the population.

The theory of genetic drift predicts a number of measurable properties. For example, one

can calculate the expected time until all or no members of a population possess a particular gene

variant. These final states are referred to as fixation and deletion, respectively. Variation due

to sampling vanishes once these states are reached and, for all practical purposes, drift stops.

From then on, the population is homogeneous. These states are fixed points—in fact, absorbing

states—of the drift stochastic process.
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The analytical predictions for the time to fixation and time to deletion were developed by

Kimura and Ohta [KIM69, KIM83] in the 1960s and are based on the memoryless models and

simplifying assumptions introduced by Wright [WRI31] and Fisher [FIS00] in the early 1930s. The

theory has advanced substantially since then to handle more complicated and realistic models

and to predict the additional effects due to selection and mutation. One example is the analysis

of the drift-like effect of pseudohitchhiking (“genetic draft”) recently given [GIL00].

The following explores what happens when we relax the memoryless assumption. The orig-

inal random walk model of genetic drift forces the statistical structure at each sampling step to

be an independent, identically distributed (IID) stochastic process. This precludes any memory

in the sampling. Here, we extend the IID theory to use time-varying probabilistic state machines

to describe memoryful population sampling.

In the larger setting of sequential learning, we will show that memoryful sequential sampling

exhibits structurally complex, drift-like behavior. We call the resulting phenomenon structural

drift. Our extension presents a number of new questions regarding the organization of the space

of drift processes and how they balance structure and randomness. To examine these questions,

we require a more precise description of the original drift theory [GIL04].

§5.3 Genetic Drift

We begin with the definition of an allele, which is one of several alternate forms of a gene. The

textbook example is given by Mendel’s early experiments on heredity [MEN25], in which he ob-

served that the flowers of a pea plant were colored either white or violet, this being determined

by the combination of alleles inherited from its parents. A new, mutant allele is introduced into

a population by the mutation of a wild-type allele. A mutant allele can be passed on to an indi-

vidual’s offspring who, in turn, may pass it on to their offspring. Each inheritance occurs with

some probability.

Genetic drift, then, is the change of allele frequencies in a population over time: It is the

process by which the number of individuals with an allele varies generation after generation.

The Fisher-Wright theory [WRI31, FIS00] models drift as a stochastic evolutionary process with

neither selection nor mutation. It assumes random mating between individuals and that the
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population is held at a finite, constant size. Moreover, successive populations do not overlap in

time.

Under these assumptions the Fisher-Wright theory reduces drift to a binomial or multino-

mial sampling process—a more complicated version of familiar random walks such as Gambler’s

Ruin or Prisoner’s Escape [FEL68]. Offspring receive either the wild-type allele A1 or the mutant

allele A2 of a particular gene A from a random parent in the previous generation with replace-

ment. A population of N diploid2 individuals will have 2N total copies of these alleles. Given i

initial copies of A2 in the population, an individual has either A2 with probability i/2N or A1 with

probability 1− i/2N . The probability that j copies of A2 exist in the offspring’s generation given i

copies in the parent’s generation is:

p i j =
(

2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

.

This specifies the transition dynamic of the drift stochastic process over the discrete state

space {0, 1/N , 2/N , . . . , N−1/N , 1}.

This model of genetic drift is a discrete-time random walk, driven by samples of a biased

coin, over the space of biases. The population is a set of coin flips, where the probability of

HEADS or TAILS is determined by the coin’s current bias. After each generation of flips, the coin’s

bias is updated to reflect the number of HEADS or TAILS realized in the new generation. The walk’s

absorbing states—all HEADS or all TAILS—capture the notion of fixation and deletion.

§5.4 Genetic Fixation

Fixation occurs with respect to an allele when all individuals in the population carry that specific

allele and none of its variants. Restated, a mutant allele A2 reaches fixation when all 2N alleles

in the population are copies of A2 and, consequently, A1 has been deleted from the population.

This halts the random fluctuations in the frequency of A2, assuming A1 is not reintroduced.

Let X be a binomially distributed random variable with bias probability p that represents the

fraction of copies of A2 in the population. The expected number of copies of A2 is E[X ] = 2N p .

That is, the expected number of copies of A2 remains constant over time and depends only on its

2Though haploid populations can be used, we focus on diploid populations (two alleles per individual) for direct
comparison to Kimura’s simulations. This gives a sample length of 2N .
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initial probability p and the total number (2N ) of alleles in the population. However, A2 eventu-

ally reaches fixation or is deleted due to the variance introduced by random finite sampling and

the presence of absorbing states.

Prior to fixation, the mean and variance of the change∆p in allele frequency are:

E[∆p ] = 0and

Var[∆p ] =
p (1− p )

2N
,

respectively. On average there is no change in frequency. However, sampling variance causes

the process to drift towards the absorbing states at p = 0 and p = 1. The drift rate is determined

by the current generation’s allele frequency and the total number of alleles. For the neutrally

selective case, the average number of generations until A1’s fixation (t1) or deletion (t0) is given

by[KIM69]:

t1(p ) = − 1

p

[
4Ne (1− p ) log(1− p )

]
and

t0(p ) = −4Ne

(
p

1− p

)
log p ,

where Ne denotes effective population size. For simplicity we take Ne = N , meaning all indi-

viduals in the population are candidates for reproduction. As p → 0, the boundary condition is

given by:

t1(0) = 4Ne .

That is, excluding cases of deletion, an initially rare mutant allele spreads to the entire population

in 4Ne generations.
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Figure 5.1: Number of generations to fixation for a population of N = 10 individuals (sam-

ple size 2N = 20), plotted as a function of initial allele frequency p under different sampling

regimes: Monte Carlo (MC), Monte Carlo with pseudo-sampling variable (MC w/ PSV), and the-

oretical prediction (solid line, Theory). The time to deletion is also shown (dashed line, Theory).

One important observation that immediately falls out from the theory is that when fixation

(p = 1) or deletion (p = 0) are reached, variation in the population vanishes: Var[∆p ] = 0. With

no variation there is a homogeneous population, and sampling from this population produces

the same homogeneous population. In other words, this establishes fixation and deletion as

absorbing states of the stochastic sampling process. Once there, drift stops.

Figure 5.1 illustrates this, showing both the simulated and theoretically predicted number

of generations until fixation occurs for N = 10, as well as the predicted time to deletion, for ref-

erence. Each simulation was performed for a different initial value of p and averaged over 400

realizations. Using the same methodology as[KIM69], we include only those realizations whose

allele reaches fixation.

Different kinds of sampling dynamic have been proposed to simulate the behavior of genetic

drift. Simulations for two are shown in the figure. The first uses binomial sampling, producing an

initial population of 2N uniform random numbers between 0 and 1. An initial probability 1− p

is assigned to allele A1 and probability p to allele A2. The count i of A2 in the initial population

is incremented for each random number less than p . This represents an individual having the

allele A2 instead of A1. The maximum likelihood estimate of allele frequency in the initial sample

is simply the number of A2 alleles over the sample length:p = i/2N . This estimate of p is then used
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to generate a new population of offspring, after which we re-estimate the value of p . These steps

are repeated each generation until fixation at p = 1 or deletion at p = 0 occurs.

The second sampling dynamic uses a pseudo-sampling variable ξ in lieu of direct sampling

[KIM80]. The allele frequency pn+1 in the next generation is calculated by adding ξn to the cur-

rent frequency pn :

pn+1 = pn + ξn ,

ξn =
√

3σ2
n (2rn − 1),

whereσ2
n is the current variance given by Eq. (5.4) and rn is a uniform random number between

0 and 1. This method avoids the binomial sampling process, sacrificing some accuracy for faster

simulations and larger populations. As Fig. 5.1 shows for fixation, this method (MC w/ PSV,

there) overestimates the time to fixation and deletion.

Kimura’s theory and simulations predict the time to fixation or deletion of a mutant allele

in a finite population by the process of genetic drift. The Fisher-Wright model and Kimura’s the-

ory assume a memoryless population in which each offspring inherits allele A1 or A2 via an IID

binomial sampling process. We now generalize this to memoryful stochastic processes, giving a

new definition of fixation and exploring examples of structural drift behavior.

§5.5 Sequential Learning

How can genetic drift be a memoryful stochastic process? Consider a population of N individu-

als. Each generation consists of 2N alleles and so is represented by a string of 2N symbols, e.g.

A1A2 . . . A1A1, where each symbol corresponds to an individual with a particular allele. In the

original drift models, a generation of offspring is produced by a memoryless binomial sampling

process, selecting an offspring’s allele from a parent with replacement. In contrast, the struc-

tural drift model produces a generation of individuals in which the sample order is tracked. The

population is now a string of alleles, giving the potential for memory and structure in sampling—

temporal interdependencies between individuals within a sample or some other aspect of a pop-

ulation’s organization. (Later, we return to give several examples of alternative ordered-sampling

processes.)
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The model class we select to describe memoryful sampling consists of ε-machines, since

each is a unique, minimal, and optimal representation of a stochastic process [SHA01A]. More

to the point, ε-machines give a systematic representation of all the stochastic processes we con-

sider here. As will become clear, these properties give an important advantage when analyzing

structural drift, since they allow one to monitor the amount of structure innovated or lost during

drift, as we will show. We next give a brief overview of ε-machines and refer the reader to the

previous references for details.

ε-Machine representations of the finite-memory discrete-valued stochastic processes we

consider here form a class of deterministic probabilistic finite-state machine. An ε-machine

consists of a set of causal states S = {0, 1, . . . , k − 1} and a set of transition matrices:

{T (a )i j : a ∈ A},

where A = {A1, . . . , Am} is the set of alleles and where the transition probability T (a )i j gives the

probability of transitioning from causal state Si to causal state Sj and emitting allele a . Main-

taining our connection to diploid theory, we think of an ε-machine as a generator of popula-

tions or length-2N strings: α2N = a 1a 2 . . . a i . . . a 2N , a i ∈ A. As a model of a sampling process,

an ε-machine gives the most compact representation of the distribution of strings produced by

sampling.

We are now ready to describe sequential learning. We begin by selecting an initial popula-

tion generator M 0—an ε-machine. A random walk on M 0, guided by its transition probabilities,

generates a length-2N string α2N
0 = α1 . . .α2N that represents the first generation of N individ-

uals possessing alleles a i ∈ A. We then infer an ε-machine M 1 from the population α2N
0 . M 1

is then used to produce a new population α2N
1 , from which a new ε-machine M 2 is estimated.

(We describe alternative inference procedures shortly.) This new population has the same al-

lele distribution as the previous, plus some amount of variance. The cycle of inference and re-

inference is repeated while allele frequencies drift between generations until fixation or deletion

is reached. At that point, the populations (and so ε-machines) cannot vary further. The net result

is a stochastically varying time series of ε-machines—M 0, M 1, M 2, . . .—that terminates when the

populations αN
t generated stop changing.

Thus, at each step a new representation or model is estimated from the previous step’s sam-
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ple. The inference step highlights that this is learning: a model of the generator is estimated

from the given data. The repetition of this step creates a sequential communication chain. Said

simply, sequential learning is closely related to genetic drift, except that sample order is tracked

and this order is used in estimating the next model.

The procedure is analogous to flipping a biased coin a number of times, estimating the bias

from the results, and re-flipping the newly biased coin. Eventually, the coin will be completely

biased towards HEADS or TAILS. In our drift model the coin is replaced by an ε-machine, which

removes the IID constraint and allows for the sampling process to take on structure and mem-

ory. Not only do the transition probabilities T (a )i j change, but the structure of the model itself—

number of states and transitions—drifts over time.

Before we can explore this dynamic, we first need to examine how an ε-machine reaches

fixation or deletion.

§5.6 Structural Stasis

Consider the Alternating Process—a binary process that alternately generates 0s and 1s. The

ε-machine for this process, shown in Fig. 5.2, generates the strings 0101 . . . and 1010 . . . de-

pending on the start state.

BA

1 | 1.0

0 | 1.0

Figure 5.2: ε-Machine for the Alternating Process, consisting of two causal states S = {A, B}

and two transitions. Each transition is labeled p | a to indicate the probability p = T (a )i j of tak-

ing that transition and emitting allele a ∈ A. State A generates allele 0 with probability one

and transitions to state B , while B generates allele 1 with probability one and transitions to A.

Regardless of the start state, the ε-machine is re-inferred from any sufficiently long string it

generates. In the context of sequential learning, this means the population at each generation

is the same. However, if we consider allele A1 to be represented by symbol 0 and A2 by symbol

1, neither allele reaches fixation or deletion according to current definitions. Nonetheless, the

Alternating Process prevents any variance between generations and so, despite the population

not being all 0s or all 1s, the population does reach an equilibrium: half 0s and half 1s.
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For these reasons, one cannot use the original definitions of fixation and deletion. This leads

us to introduce structural stasis to combine the notions of fixation, deletion, and the inability to

vary caused by periodicity. However, we need a method to detect the occurrence of structural

stasis in a drift process.

A state machine representing a periodic sampling process enforces the constraint of period-

icity via its internal memory. One measure of this memory is the population diversity H (N ) [PIE67]:

H (N ) = H [A1 . . .A2N ],

= − ∑
a 2N∈A2N

Pr(a 2N ) log2 Pr(a 2N ),

where the units are [bits]. (For background on information theory, as used here, the reader is

referred to Ref. [CRU03A].)

The population diversity of the Alternating Process is H (N ) = 1 bit at any size N ≥ 1. This

single bit of information corresponds to the process’s current phase or state. The population

diversity does not change with N , meaning the Alternating Process is always in structural sta-

sis. However, using population diversity as a condition for detecting stasis fails for an arbitrary

sampling process.

Said more directly, structural stasis corresponds to a process becoming nonstochastic, since

it ceases to introduce variance between generations and so prevents further drift. The condition

for stasis could be given as the vanishing (with size N ) of the growth rate, H (N ) − H (N − 1), of

population diversity. However, this can be difficult to estimate accurately for finite population

sizes.

A related, alternate condition for stasis that avoids these problems uses the entropy rate of

the sampling process. We call this allelic entropy:

hµ = lim
N→∞

H (N )
2N

,

where the units are [bits per allele]. Allelic entropy gives the average information per allele in

bits, and structural stasis occurs when hµ = 0.

This quantity is also difficult to estimate from population samples since it relies on an asymp-

totic estimate of the population diversity. However, in structural drift we have the ε-machine

representation of the sampling process. Due to the ε-machine’s unifilarity, the allelic entropy
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can be calculated in closed-form over the causal states and their transitions (see section 2.6).

When hµ = 0, the sampling process has become periodic and lost all randomness generated via

its branching transitions. This new criterion simultaneously captures the notions of fixation and

deletion, as well as periodicity. An ε-machine has zero allelic entropy if any of these conditions

occur. More formally, we have the following statement.

Definition. Structural stasis occurs when the sampling process’s allelic entropy vanishes: hµ = 0.

Proposition 1. Structural stasis is a fixed point of finite-memory structural drift.

Proof. Finite-memory means that the ε-machine representing the population sampling process

has a finite number of states. Given this, if hµ = 0, then the ε-machine has no branching in its

recurrent states: T (a )i j = 0 or 1, where Si and Sj are asymptotically recurrent states. This results

in no variation in the inferred ε-machine when sampling sufficiently large populations. Lack of

variation, in turn, means that ∆p = 0 and so the drift process stops. Since no mutations are

allowed, a further consequence is that, if allelic entropy vanishes at time t , then it is zero for all

t ′ > t . Thus, structural stasis is an absorbing state of the drift stochastic process.

§5.7 Examples

While more can be said analytically about structural drift, our present purpose is to introduce

the main concepts. We will show that structural drift leads to interesting and nontrivial behavior.

First, we calibrate the new class of drift processes against the original genetic drift theory.

§5.7.1 Memoryless Drift

The Biased Coin Process is represented by a single-state ε-machine with a self loop for both

HEADS and TAILS symbols. It is an IID sampling process that generates populations with a bino-

mial distribution. Unlike the Alternating Process, the coin’s bias p is free to drift during sequen-

tial inference. These properties make the Biased Coin Process an ideal candidate for exploring

memoryless drift.

Two measures of the structural drift of a single realization of the Biased Coin Process are

shown in Fig. 5.3, with initial p = Pr[HEADS] = Pr[TAILS] = 0.5. Structural stasis (hµ = 0) is

reached after 115 generations. Note that the drift of allelic entropy hµ and p = Pr[TAILS] are
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inversely related, with allelic entropy converging quickly to zero as stasis is approached. This

reflects the rapid drop in population diversity. The initial Fair Coin ε-machine occurs at the left

of Fig. 5.3, and the final completely biased ε-machine occurs at the right. After stasis occurs, all

randomness has been eliminated from the transitions at state A, resulting in a single transition

that always produces TAILS. Anticipating later discussion, we note that during the run one only

sees Biased Coin Processes.
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Pr[TAILS]

Figure 5.3: Drift of allelic entropy hµ and Pr[TAILS] for a single realization of the Biased

Coin Process with sample length 2N = 100 and state splitting reconstruction (α = 0.01).

The time to stasis of the Biased Coin Process as a function of initial p = Pr[HEADS] is shown

in Fig. 5.4. Also shown is Kimura’s previous Monte Carlo drift simulation modified to terminate

when either fixation or deletion occurs. This experiment, with a 100 times larger population than

Fig. 5.1, illustrates the definition of structural stasis and allows direct comparison of structural

drift with genetic drift in the memoryless case.
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Figure 5.4: Average time to stasis as a function of initial Pr[HEADS] for the Biased Coin Process: Structural drift

of the Biased Coin and Monte Carlo simulation of Kimura’s equations. Both employ vanishing allelic entropy

at stasis. Kimura’s predicted times to fixation and deletion are shown for reference. Each estimated time is

averaged over 100 drift experiments with sample length 2N = 1000 and state splitting reconstruction (α = 0.01).

Not surprisingly, we can interpret genetic drift as a special case of the structural drift process

for the Biased Coin.3 Both simulations follow Kimura’s theoretically predicted curves, combining

the lower half of the deletion curve with the upper half of the fixation curve to reflect the initial

probability’s proximity to the absorbing states. A high or low initial bias leads to a shorter time

to stasis as the absorbing states are closer to the initial state. Similarly, a Fair Coin is the furthest

from absorption and thus takes the longest average time to reach stasis.

§5.7.2 Structural Drift

The Biased Coin Process is an IID sampling process with no memory of previous flips, reaching

stasis when Pr[HEADS] = 1.0 or 0.0 and, correspondingly, when hµ(M t ) = 0.0. We now introduce

memory by starting drift with M 0 as the Golden Mean Process, which produces binary popula-

tions with no consecutive 0s. Its ε-machine is shown in Fig. 5.5.

3Simulations used both the causal-state splitting [SHA04] and subtree merging [CRU89] ε-machine reconstruction
algorithms, with approximately equivalent results. Unless otherwise noted, state splitting used a history length of 3,
and tree merging used a morph length of 3 and tree depth of 7. Both algorithms used a significance-test value of α =
0.01 in the Kolmogorov-Smirnov hypothesis tests for state equivalence. (Other tests, such as χ2, may be substituted
with little change in results.) For the Biased Coin Process, a history length of 1 was used for direct comparison to
binomial sampling.
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BA

1 | 1.0

0 | p
1 | 1− p

Figure 5.5: The ε-machine for the Golden Mean Process, which generates a population with no

consecutive 0s. In state A the probabilities of generating a 0 or 1 are p and 1 − p , respectively.

Like the Alternating Process, the Golden Mean Process has two causal states. However,

the transitions from state A have nonzero entropy, allowing their probabilities to drift as new

ε-machines are inferred from generation to generation. If the A → B transition parameter p

(Fig. 5.5) drifts towards zero probability and is eventually removed, the Golden Mean reaches

stasis by transforming into the Fixed Coin Process identical to that shown at the bottom right

of Fig. 5.3. Instead, if the same transition drifts towards probability p = 1, the A → A transi-

tion is removed. In this case, the Golden Mean Process reaches stasis by transforming into the

Alternating Process (Fig. 5.2).

Naturally, one can start drift from any one of a number of processes. Let’s also consider the

Even Process and then compare drift behaviors. Similar in form to the Golden Mean Process, the

Even Process produces populations in which blocks of consecutive 1s must be even in length

when bounded by 0s.

Figure 5.6 (left) compares the drift of Pr[HEADS] for single runs starting with the Biased Coin,

Golden Mean, and Even Processes. One observes that the Biased Coin and Even Processes reach

stasis via the Biased Coin fixed point, while the Golden Mean Process reaches stasis via the Al-

ternating Process fixed point.
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Figure 5.6: Comparison of structural drift processes. Top: Pr[HEADS] for the Biased Coin, Golden Mean, and Even

Processes as a function of generation. The Even and Biased Coin Processes become completely biased coins

at stasis, while the Golden Mean becomes the Alternating Process. Note that the definition of structural stasis

recognizes the lack of variance in that periodic-process subspace, even though the allele probability is neither

0 nor 1. Bottom: Time to stasis as a function of initial bias parameter for each process. Each estimated time is

averaged over 100 drift experiments with sample length 2N = 1000 and state-splitting reconstruction (α = 0.01).

It should be noted that the memoryful Golden Mean and Even Processes reach stasis markedly

faster than the memoryless Biased Coin. While the top panel of Fig. 5.6 shows only a single re-

alization of each sampling process type, the bottom panel shows that the large disparity in sta-

sis times holds across all settings of each process’s initial bias. This is one of our first general

observations about memoryful processes. The structure of memoryful processes substantially

impacts the average time to stasis by increasing variance between generations.
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§5.8 Isostructural Subspaces

To illustrate the richness of structural drift and to understand how it affects average time to sta-

sis, we examine the complexity-entropy (CE) diagram [FEL08] of the ε-machines produced over

several realizations of an arbitrary sampling process. The CE diagram displays how the allelic

entropy hµ of an ε-machine varies with its allelic complexity Cµ:

Cµ = − ∑
σ∈S

Pr(σ) log2 Pr(σ),

where the units are [bits]. The allelic complexity is the Shannon entropy over an ε-machine’s

stationary state distribution Pr(S). It measures the memory needed to maintain the internal

state while producing stochastic outputs. ε-Machine minimality guarantees that Cµ is the small-

est amount of memory required to do so. Since there is a one-to-one correspondence between

processes and their ε-machines, a CE diagram is a projection of process space onto the two co-

ordinates (hµ, Cµ). Used in tandem, these two properties differentiate many types of sampling

process, capturing both their intrinsic memory (Cµ) and the diversity (hµ) of populations they

generate.
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Figure 5.7: Top: Allelic complexity Cµ versus allelic entropy hµ for 100 realizations starting with the Golden

Mean Process at p0 = 1
2 and (hµ, Cµ) ≈ ( 2

3 , 0.918), showing time spent in the Alternating and Biased

Coin subspaces. Bottom: Drift starting with the Biased Coin Process with initially fair transition probabil-

ities: p0 = 1
2 and (hµ, Cµ) = (1, 0). Point density in the higher-hµ region indicates longer times to stasis

compared to drift starting with the Golden Mean Process, which enters the Biased Coin subspace nearer

the fixed point (0, 0), jumping around (hµ, Cµ) ≈ (0.5, 0.5). Red-colored dots correspond to M t that go

to stasis as the Fixed Coin Process; blue correspond to those which end up in stasis as the Alternating Pro-

cess. Each of the 100 runs used sample length 2N = 1000 and state-splitting reconstruction (α = 0.01).

Let’s examine the structure of drift-process space further. The CE diagram for 100 realiza-

tions of the Golden Mean Process is shown in the left panel of Fig. 5.7. The M t reach stasis by

transforming into either the Fixed Coin Process or the Alternating Process, depending on how

the transition parameter p (Fig. 5.5) drifts. The Fixed Coin Process, all 1s or all 0s, exists at
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(hµ, Cµ) = (0, 0) since a process in stasis has no allelic entropy and no memory is required to

track a single state. The Golden Mean Process transforms into the Fixed Coin at p = 0. The Al-

ternating Process exists at point (hµ, Cµ) = (0, 1) as it also has no allelic entropy, but requires 1 bit

of information storage to track the phase of its 2 states. The Golden Mean Process becomes the

Alternating Process when p = 1. The two stasis points are connected by the isostructural curve

(hµ(M (p )), Cµ(M (p )), where M (p ) is the Golden Mean ε-machine of Fig. 5.5 with p ∈ [0, 1].

What emerges from examining these overlapping realizations is a broad view of how the

structure of M t drifts in process space. Roughly, they diffuse locally in the parameter space speci-

fied by the current, fixed architecture of states and transitions. During this, transition probability

estimates vary stochastically due to sampling variance. Since Cµ and hµ are continuous func-

tions of the transition probabilities, this variance causes the M t to fall on well defined curves or

regions corresponding to a particular process subspace. (See Figs. 4 and 5 in [FEL08] and the the-

ory for these curves and regions there.) We refer to the associated sets of ε-machines as isostruc-

tural subspaces. They are metastable subspaces of sampling processes that are quasi-invariant

under the structural drift dynamic. That invariance is broken by jumps between the subspaces

in which one or more ε-machine parameters diffuse sufficiently that inference is forced to shift

ε-machine topology—that is, states or transitions are gained or lost.

Such a shift occurs in the lower part of the Golden Mean isostructural curve, where states

A and B merge into a single state as transition probability p → 0, corresponding to (hµ, Cµ) ≈

(0.5, 0.5). The exact location on the curve where this discontinuity occurs is controlled by the

significance level (α), described earlier, at which two causal states are determined to be equiv-

alent by a statistical hypothesis test. Specifically, states A and B are merged closer to point

(hµ, Cµ) = (0, 0) along the Golden Mean Process isostructural curve when the hypothesis test

requires more evidence.

When causal-state merging occurs, the ε-machine leaves the Golden Mean subspace and

enters the Biased Coin subspace. In the CE diagram, the latter is the one-dimensional interval

Cµ = 0 and hµ ∈ [0, 1]. In the new subspace, the time to stasis depends only on the entry value

of p . The right panel of Fig. 5.7 shows a CE diagram of 100 realizations starting with the fair

Biased Coin Process. The process diffuses along the line Cµ = 0, never innovating a new state

or jumping to a new subspace. This demonstrates that movement between subspaces is often
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not bidirectional—innovations from a previous topology may be lost either temporarily (when

the innovation can be restored by returning to the subspace) or permanently. For example, the

Golden Mean Process commonly jumps to the Biased Coin, but the opposite is improbable.
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Figure 5.8: Top: Mean time to stasis for the Golden Mean Process as a function of initial transition probabil-

ity p . The total time to stasis is the sum of stasis times for the Fixed Coin pathway and the Alternating Process

pathway, weighted by their probability of occurrence. For initial p less than≈ 0.3, the Alternating Process

pathway was not observed during simulation due to its rarity. As initial p increases, the Alternating pathway

is weighted more heavily while the Fixed Coin pathway occurs less frequently. Bottom: Mean time to stasis

for the Fixed Coin pathway as function of initial transition probability p . The total time to stasis is the sum

of the pathway’s subspace stasis times. The Fixed Coin pathway visits the Golden Mean subspace before

jumping to the Biased Coin subspace, on its way to stasis as the Fixed Coin. Each estimated time is averaged

over 100 drift experiments with sample length 2N = 1000 and state-splitting reconstruction (α = 0.01).
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All realizations eventually find their way to structural stasis on the CE diagram’s left bound-

ary at absorbing states (hµ, Cµ) = (0, log2 P) with periods P . Nonetheless, it is clear that the

Golden Mean process, which starts at (hµ, Cµ) = ( 12 , 1), leads the drift to innovate M t s with sub-

stantially more allelic entropy and complexity. New structures—states and transitions—are spon-

taneously discovered.

In addition to the CE diagram helping to locate the fixed points and subspaces, the den-

sity of points on the isostructural curves gives an alternate view of the time to stasis plots (Fig.

5.4). Dense regions on the curve correspond to initial p values “furthest away” from the fixed

points. ε-Machines typically spend longer diffusing on these portions of the curve, resulting in

longer stasis times and a higher density of neighboring ε-machines. The difference in densities

between the post-jump Biased Coin subspace of the Golden Mean (left) and the initially fair Bi-

ased Coin subspace (right) highlights that the majority of time spent drifting in the latter is near

high-entropy, initially fair values of p . Golden Mean M t jump into the Biased Coin subspace

only after a state merging has occurred due to highly biased, low-entropy transition probabili-

ties. This causes the M t to arrive in the subspace nearer an absorbing state, resulting in a shorter

average time to stasis. This is a consequence of the Golden Mean’s structured process subspace.

However, once the Biased Coin subspace is reached, the time to stasis from that point forward

is independent of the time spent in the previous isostructural subspace. It is determined by the

effective transition parameters of the M t at time of entry.

Figure 5.8 demonstrates how the total stasis times decompose, accounting for the total time

as weighted sum of the average stasis times of its pathways. A pathway is a set of subspaces

passed through by all realizations reaching a particular fixed point. The left panel shows time

to stasis Ts (G M P(p0)) for starting the Golden Mean Process with initial transition probability

p = p0 as the weighted sum of the time spent diffusing in the Alternating and Fixed Coin path-

ways:

Ts (G M P(p0)) = ∑
γ∈{F C ,AP}

kγTs (γ|G M P(p0)),

where kγ ∈ [0, 1] are the weights coefficients and Ts (γ|·) is the time to reach each terminal (sta-

sis) subspace γ, having started in the Golden Mean Process with p = p0.

For low p0, the transition from state A to state B is unlikely, so zeros are rare and the Alter-
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nating Process pathway is taken infrequently. Thus, the total stasis time is initially dominated by

the Fixed Coin pathway. As p0 → 0.3 and above, the Alternating Process pathway becomes more

frequent and this stasis time begins to contribute to the total. Around p0 = 0.6 the Fixed Coin

pathway becomes less likely and the total time becomes dominated by the Alternating Process

pathway.

Time to stasis for a particular pathway is simply the sum of the times spent in the sub-

spaces it connects. Figure 5.8’s right panel examines the left panel’s Fixed Coin pathway time

Ts (F C |G M P(p0)) in more detail. There are two contributions. These include the time diffus-

ing on the portions of the Golden Mean subspace before the subspace jump, as well as the time

attributed to the Biased Coin subspace after the subspace jump. Note that the Biased Coin sub-

space stasis time is independent of p0, because the subspace is entered when the states A and

B are merged. This merging occurs at the same p regardless of p0. There is a dip for values of

p0 that are lower than the state-merging threshold for p , placing the initial subspace bias even

closer to its absorbing state.

Thus, the time to reach each stasis from a subspace β consists of the times taken on path-

ways c ∈ β to structural stasis that can be reached from β . As a result, the total time to stasis

starting in β is the sum of each pathway c ’s stasis time Ts (c |β ) weighted by the pathway’s likeli-

hood Pr(c |β ) starting from β :

Ts (β ) = ∑
c∈β

Pr(c |β )Ts (c |β ),

where the probabilities and times depend implicitly on the initial process’s transition parame-

ter(s).

§5.9 Discussion

§5.9.1 Summary

The Fisher-Wright model of genetic drift can be viewed as a random walk of coin biases, a stochas-

tic process that describes generational change in allele frequencies based on a strong statistical

assumption: the sampling process is memoryless. Here, we developed a generalized structural
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drift model that adds memory to the process and examined the consequences of such popula-

tion sampling memory.

The representation selected for the population sampling mechanism was the class of prob-

abilistic finite-state machines called ε-machines. We discussed how a sequential chain of infer-

ring and re-inferring ε-machines from the finite data they generate parallels the drift of alleles in

a finite population, using otherwise the same assumptions made by the Fisher-Wright model.

We revisited Kimura’s early results measuring the time to fixation of drifting alleles and

showed that the generalized structural drift process reproduces these well known results, when

staying within the memoryless sampling process subspace. Starting with populations outside

of that subspace led the sampling processes to exhibit memory effects, including greatly re-

duced times to stasis, structurally complex transients, structural innovation, and structural de-

cay. We introduced structural stasis to combine the concepts of deletion, fixation, and period-

icity for drift processes. Generally, structural stasis occurs when the population’s allelic entropy

vanishes—a quantity one can calculate in closed form due to the use of the ε-machine represen-

tation for sampling processes.

Simulations demonstrated how an ε-machine diffuses through isostructural process sub-

spaces during sequential learning. The result was a very complex time-to-stasis dependence on

the initial probability parameter—much more complicated than Kimura’s theory describes. We

showed, however, that a process’s time to stasis can be decomposed into sums over these in-

dependent subspaces. Moreover, the time spent in an isostructural subspace depends on the

value of the ε-machine probability parameters at the time of entry. This suggests an extension

to Kimura’s theory for predicting the time to stasis for each isostructural component indepen-

dently. Much of the phenomenological analysis was facilitated by the global view of drift process

space given by the complexity-entropy diagram.

Drift processes with memory generally describe the evolution of structured populations

without mutation or selection. Nonetheless, we showed that structure leads to substantially

shorter stasis times. This was seen in drifts starting with the Biased Coin and Golden Mean Pro-

cesses, where the Golden Mean jumps into the Biased Coin subspace close to an absorbing state.

This suggests that even without selection, population structure and sampling memory matter

in evolutionary dynamics. It also suggests that memoryless models severely restrict sequential
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learning, leading to overestimates of the time to stasis.

Finally, we should stress that none of these phenomena occur in the limit of infinite popula-

tions or sample size. The variance due to finite sampling drives sequential learning, the diffusion

through process space, and the jumps between isostructural subspaces.

§5.9.2 Applications

Structural drift gives an alternative view of drift processes in population genetics. In light of

new kinds of evolutionary behavior, it reframes the original questions about underlying mech-

anisms and extends their scope to phenomena that exhibit memory in the sampling process.

Examples of the latter include environmental toxins [MED07], changes in predation [TRE08], and

socio-political factors [KAY05B] where memory lies in the spatial distribution of populations. In

addition to these, several applications to areas beyond population genetics proper suggest them-

selves.

Epochal Evolution

An intriguing parallel exists between structural drift and the longstanding question about the

origins of punctuated equilibrium [GOU77] and the dynamics of epochal evolution [MIT94]. The

possibility of evolution’s intermittent progress—long periods of stasis punctuated by rapid change—

dates back to Fisher’s demonstration of metastability in drift processes with multiple alleles

[FIS00].

Epochal evolution presents an alternative to the view of metastability posed by adaptive

landscapes [WRI32]. Within epochal evolutionary theory, equivalence classes of genotype fit-

ness, called subbasins, are connected by fitness-changing portals to other subbasins. A genotype

is free to diffuse within its subbasin via selectively neutral mutations, until an advantageous mu-

tation drives genotypes through a portal to a higher-fitness subbasin. An increasing number

of genotypes derive from this founder and diffuse in the new subbasin until another portal to

higher fitness is discovered. Thus, the structure of the subbasin-portal architecture dictates the

punctuated dynamics of evolution.

Given an adaptive system which learns structure by sampling its past organization, struc-

tural drift theory implies is that its evolutionary dynamics are inevitably described by punctu-
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ated equilibria. Diffusion in an isostructural subspace corresponds to a period of structured

equilibrium and subspace shifts correspond to rapid innovation or loss of organization.

Thus, structural drift establishes a connection between evolutionary innovation and struc-

tural change and identifies the conditions for creation or loss of innovation. This suggests that

there is a need to bring these two theories together by adding mutation and selection to struc-

tural drift.

Graph Evolution

The evolutionary dynamics of structured populations have been studied using undirected graphs

to represent correlation between individuals. Edge weights w i j between individuals i and j give

the probability that i will replace j with its offspring when selected to reproduce.

By studying fixation and selection behavior on different types of graphs, Lieberman et al

found, for example, that graph structures can sometimes amplify or suppress the effects of se-

lection, even guaranteeing the fixation of advantageous mutations [LIE05].

Jain and Krishna [JAI02] investigated the evolution of directed graphs and the emergence of

self-reinforcing autocatalytic networks of interaction. They identified the attractors in these net-

works and demonstrated a diverse range of behavior from the creation of structural complexity

to its collapse and permanent loss.

Graph evolution is a complementary framework to structural drift. In the latter, graph struc-

ture evolves over time with nodes representing equivalence classes of the distribution of selec-

tively neutral alleles. Additionally, unlike ε-machines, the multinomial sampling of individuals

in graph evolution is a memoryless process. A combined approach would allow one to examine

how amplification and suppression are affected by external influences on the population struc-

ture; for example, including how a population might use temporal memory to maintain desirable

properties in anticipation of structural shifts in the environment.

Molecular Clocks

The notion that evolutionary changes occur at regular time intervals was introduced more than

40 years ago by Zuckerkandl et al [ZUC62]. Such regularity, when it holds, allows one to estimate

the date of common ancestry for two divergent species. Kimura’s theory of neutral evolution lent

support to the idea of molecular clocks by stating that most selectively neutral single-nucleotide
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mutations accumulate at the same rate across species due to fixed error rates in DNA replication

[KIM68].

Molecular clocks have been controversial due to uncertainties about the molecular mecha-

nisms on which they rely and due to the discovery of varying mutation rates. Several modifica-

tions to the theory were proposed, though none is considered universally satisfactory [HER03].

Schwartz et al proposed that regular changes in germ cells are “not, in our present understand-

ing of cell biology, tenable” [SCH06] and, instead, they suggested evolutionary changes happen

suddenly and without clock-like regularity.

The phenomena of epochal evolution and structural drift offer alternative views of the evo-

lutionary dynamics underlying molecular clocks, modeling periods of stable diffusion punctu-

ated by rapid change. Specifically, the architecture of generalized drift process space could dic-

tate how and where structured populations could have diverged in the past. They also challenge

us, however, to design experiments for testing if their mechanisms operate during evolutionary

change. In vitro evolutionary experiments with bacteria [ELE96] seem particularly amenable to

this kind of investigation.

Sequential Learning in Communication Chains

Let’s briefly return to our motivating problem of learning in chains of sequential communication

channels. In the drift behaviors explored above, the M T went to stasis (hµ = 0) corresponding to

periodic formal languages. Clearly, such a long-term condition falls short as a model of human

communication chains. In the latter, the resulting messages, though distant from those at the

beginning of the chain, are not periodic. In addition, human language is constantly varying, and

stasis points are transient. To more closely capture drift in the context of sequential language dis-

tortion, mutation and selection must be added to prevent permanent stasis and give preference

to intelligible phrases.

However, the current framework does capture the language-centric notion of dynamically

changing semantics. The symbols and words in the strings generated have a semantics given by

the structure of the ε-machine[CRU92]. Briefly, causal states provide dynamic contexts for inter-

pretation of individual symbols and words. Moreover, the allelic complexity is the total amount

of semantic content that can be generated by an M t . In this way, changes in the architecture of



87

the M t during drift correspond to semantic innovation and loss.

§5.10 Final Remarks

Structural drift is amenable to extension and application to a range of biological problems, as

was the original Fisher-Wright drift model. Here, we focused on motivating the model, drawing

comparisons to Kimura’s theory, and explaining the basic mechanisms underlying the resulting

phenomena. We will report elsewhere on more technical aspects including a predictive theory

and extensions that include mutation and selection. We close by indicating some of the chal-

lenging open technical problems.

ε-Machine minimality allowed us to monitor information processing, information storage,

and causal architecture during the drift process. However, due to the influence of inference pa-

rameters on ε-machine reconstruction, it will be more realistic to use non-minimal represen-

tations in the drift process as populations and sampling processes need not be minimal. One

would transform these representations to ε-machines so that informational properties still can

be properly measured.

There are various kinds of memory in structural drift with mutation that one must distin-

guish. On the one hand, a high mutation rate destroys a population’s ability to remember its

past. A high mutation rate leads to more rapid exploration and discovery of beneficial genotypes,

but past innovations are rapidly forgotten. On the other hand, a vanishingly small mutation rate

leads to an arbitrarily slow evolution process: There are no innovations worth remembering.

This kind of population memory is not necessarily the same as the sampling memory implicated

in basic structural drift. Nonetheless, these types of memory interact and this interaction must

eventually be understood.

We demonstrated how structural drift—diffusion and structural innovation and loss—are

controlled by the architecture of connected isostructural subspaces. Many questions remain

about these subspaces. What is the degree of subspace-jump irreversibility? Can we predict the

likelihood of these jumps? What does the phase portrait of a drift process look like? Thus, to

better understand structural drift, we need to analyze the high-level organization of generalized

drift process space.
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Fortunately, ε-machines are in one-to-one correspondence with structured processes. Thus,

the preceding question reduces to understanding the space of ε-machines and how they can be

connected by diffusion processes. Is the diffusion within each process subspace predicted by

Kimura’s theory or some simple variant? We have given preliminary evidence that it does. And

so, there are reasons to be optimistic that in face of the original complexity of structural drift, a

good deal can be predicted analytically. And this, in turn, will lead to quantitative applications.
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CHAPTER 6

Looking Forward to Looking Back

Surveying the current research landscape in computer security, I have a feeling of frustration. A

feeling, shared by some with far more experience than myself, that the field seems stuck in limit

cycle where decades-old bugs and design flaws continually reappear in both new and existing

technologies. We know that security must be integrated into design, yet never is, and so the

timeless struggle between exploit and patch marches on.

In some sense this dilemma is very predictable, though its components may not be. Tech-

nology continues to radically transform global society and does so in often unexpected ways.

Few could have predicted the near-triumph of the Green Revolution in the 2008 Iranian elec-

tions via Twitter and other social media. In response, a pro-regime group launched a DNS poi-

soning attack against Twitter, redirecting most Twitter users to the group’s homepage. Suddenly

a tool for broadcasting daily minutiae became a fulcrum of freedom, and yet this global medium

was subverted by a handful of miscreants wielding a flaw in the domain name system first doc-

umented in 1993 [SCH93]. While the rise of Twitter may have been surprising, its takedown was

not.

There are many less dramatic examples, but this one touches on many of the causes of this

cycle of insecurity. First is the problem of composability: to manage complexity we engineer

independent layers of functionality, and understanding the emergent1 interaction of these com-

posable layers is an effort that spans nearly every science. In computer security, this is com-

pounded by the asymmetric relation between attacker and defender [AT01, RUI09]: while the at-

tacker needs only one opening in an attack surface [HOW05], the defender must plug every con-

ceivable hole within the constraints of budget, usability, and performance. The defender’s task is

compounded by the insider problem and varying degrees of “insiderness”: an employee that sets

1Ah, emergence—a term as maligned and nebulous as it is ubiquitous.
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up their own wireless access point2, or trojan USB sticks3, or posts a socially-engineerable fac-

toid to their Facebook page increases the attack surface. Last but not least, how can we develop

secure systems when computational substrates are constantly evolving? When the free market

demands our kitchen appliances can connect to Twitter? In contrast, how often does a physicist

have to adapt to changes in classical mechanics?

In my studies, I examined how other fields—robotics, neuroscience, genetics, complex net-

works, nonlinear dynamics, statistical mechanics—engage the astounding complexity of both

natural and artificial systems. One anecdote that crystallized this battle with complexity was

given by Professor Raissa D’Souza4 who explained how Tom Knight at MIT would sometimes

point to a diagram of a biological network with thousands of interactions. “See this single link

here? That was a Ph.D dissertation.” Surely the natural sciences have some recommendations

for proceeding in the face of overwhelming complexity.

Others have picked up on this idea. A quick perusal of many security conference proceed-

ings will show there is some outward-looking research, and a particular influx of work motivated

by biological metaphors. Though valuable to explore, these can be murky waters to navigate: see

the debate on connectionist versus classical architectures in the cognitive sciences [FOD88] for

one of many historical fallouts over tenuous metaphors. Are we learning the right lessons from

history, or do we simply want to take an algorithm here and a buzzword there [SHA56, ELI58]?

Instead of copying metaphors, should we be adapting methodologies?

Look no further than the study of complex networks for a recent example of a field rejuve-

nated by going deeper than the metaphor. Lead by researchers such as Barabási and Albert in

the late 1990s and early 2000s, the techniques of statistical physics were applied to problems

in graph theory to create the new, hybridized field of complex networks [ALB02]. Tools such as

percolation theory and nonlinear dynamics have brought new understanding to models of net-

work growth and robustness [BAR99, ALB00], optimal resource distribution [GAS06], community

structure and clustering [NEW06, CLA08], and epidemic models [KEE05].

There are faint echoes of such connections with computer science, including the applica-

tion of symbolic dynamics [MAR95] and dynamical systems [MYT09]. In particular, the study of

2http://bit.ly/baVZb6
3http://bit.ly/bww45j
4Personal correspondence.
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phase transitions in the solution space of K-SAT has lead to a new algorithm for finding satisfy-

ing assignments of boolean variables [M0́2], and could contribute to our understanding of other

problems in NP. As more mathematically trained scientists become interested in our field, might

one day a security researcher require both a CISSP certification and the ability to write down the

Hamiltonian of a system?5

Driven by such ideals, I combined the non-parametric methods of information theory with

the techniques of computational mechanics to model systems where we don’t have the domain

knowledge to make an informed selection of model parameters. Of course, these ideals break

down in practice—finite data affects the optimality of our models, non-stationarity creeps in,

and alphabet size explodes runtime. That is, assuming we have data at all. Legitimate concerns

for privacy made my initial research interest, the extension of Beddoe’s work on protocol infer-

ence, nearly impossible. In the time that passed between having the ideas and having the data,

all but two novel contributions had been made by other papers. In the meantime, I explored an

ε-machine approach to several ideas from population genetics, resulting in my work on struc-

tural drift. This required solving several rare corner cases for finite data ε-machine reconstruc-

tion, as well as general improvements to implementation robustness and efficiency, that proved

essential to my later work. Along the way, we generalized a long standing result in population dy-

namics. Finally, with the emergence of a new project to detect anomalies on parallel computers

given gigabytes of log files, I was able to more fully develop an inter-disciplinary computational

mechanics framework that integrates machine learning, information theory, and ε-machine re-

construction. This framework enables reconstruction of previously prohibitive processes. Most

simply, this is my contribution.

While insights from all three projects contributed to the framework, there is much room left

for experimental validation and new ideas. I aim to explore the connection between ε-machine

reconstruction and grammatical inference [DE 05], as well as the broader class of graphical mod-

els that ε-machines belong to [JOR98]. Along these lines, the effectiveness of ε-machines will

be evaluated against other graphical models using established model selection and validation

frameworks [BUR02] including Akaike Information Criterion (AIC) and Bayesian Information Cri-

terion (BIC). The anomaly detection work is an ideal staging ground for this evaluation as we are

5No—the CISSP will be long dead by then.
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constructing multiple types of classifiers that should be evaluated not only in terms of their pre-

dictive power, but in terms of their number of parameters. Initial work applying AIC and BIC to

selection of traditional HMMs and ε-machines suggests we can leverage the advantages of both

models. This selection will be extended to other probabilistic models such as those inferred by

the ALERGIA algorithm [DE 05].

Returning to the protocol inference work, I plan to investigate directed information trans-

fer [MAR73, MAS90], independent component analysis [BEL95], and co-information [BEL03] for

more robust identification of protocol header boundaries. Here, the idea is to treat protocol

messages as signals to be separated by their statistical properties. This again depends on ac-

cess to data that was previously the limiting factor in developing a robust preprocessing step for

protocol ε-machine reconstruction.

Finally, we plan to apply the ideas of structural drift to empirically testable domains. Our

initial direction is the evolution of human language: how the structural properties of a language

evolve over time, how words and phrases are innovated or lost, and how different language sub-

spaces may be connected. In the presence of massive language corpi and increasingly accurate

translation tools, we can ask a new set of questions. Can we measure the time to stasis of lan-

guage? What are the rates of loss incurred by these tools? How is stasis time affected by language

innovation? How is sequential inference influenced by interacting language dynamics? Many

questions present themselves.

I certainly don’t claim that I have or will solve the grandiose problems outlined in this chap-

ter. I am merely motivated by the desire to question:

• Why model? [EPS08]

• Why that model? [BUR02]

• Why those parameters? [KEO04] (Most famously, “Why six?” [TAN02])

• Why parameters at all? [SHA48, LEE01]

In doing so, I hope this dissertation is the first step in a long journey towards understanding the

complexity of security: less of a random walk, and more of a directed run.
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