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Abstract

Inferring models from given data leads through many different changes in representation. Most
are subtle and profitably ignored. Nonetheless, any such change affects the semantic content of
the resulting model and so, ultimately, its utility. A model’s semantic structure determines
what its elements mean to an observer that has built and uses it. In the search for an
understanding of how large-scale thermodynamic systems might themselves take up the task of
modeling and so evolve semantics from syntax, the present paper lays out a constructive
approach to modeling nonlinear processes based on computation theory. It progresses from the
microscopic level of the instrument and individual measurements, to a mesoscopic scale at
which models are built, and concludes with a macroscopic view of their thermodynamic
properties. Once the computational structure of the model is brought into the analysis it
becomes clear how a thermodynamic system can support semantic information processing.
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NONLINEAR MODELING: FACT OR FICTION?

These ambiguities, redundances, and deficiencies recall those attributed by Dr. Franz Kuhn
to a certain Chinese encyclopedia entitledCelestial Emporium of Benevolent Knowledge. On
those remote pages it is written that animals are divided into (a) those that belong to the
Emperor, (b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f)
fabulous ones, (g) stray dogs, (h) those that are included in this classification, (i) those that
tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very fine camel’s
brush hair, (l) others, (m) those that have just broken a flower vase, (n) those that resemble
flies from a distance.

J. L Borges, “The Analytical Language of John Wilkins”, page 103.5

What one intends to do with a model colors the nature of the structure captured by it and
determines the effort used to build it. Unfortunately, such intentions most often are not directly
stated, but rather are implicit in the choice of representation. To model a given time series,
should one use (Fourier) power spectra, Laplace transforms, hidden Markov models, or neural
networks with radial basis functions?

Two problems arise. The first is that the choice made might lead to models that miss
structure. One solution is to take a representation that is complete: a sufficiently large model
captures the data’s properties to within an error that vanishes with increased model size. The
second, and perhaps more pernicious, problem is that the limitations imposed by such choices
are not understoodvis á vis the underlying mechanisms. This concerns the appropriateness of
the representation.

The basis of Fourier functions is complete. But the Fourier model of a square wave contains
an infinite number of parameters and so is of infinite size. This is not an appropriate representa-
tion, since the data is simply described by a two state automaton.† Although completeness is a
necessary property, it simply does not address appropriateness and should not be conflated with it.

Nonlinear modeling, which I take to be that endeavor distinguished by a geometric analysis
of processes represented in a state space, offers the hope of describing more concisely and
appropriately a range of phenomena hitherto considered random. It can do this since it enlarges
the range of representations and forces an appreciation, at the first stages of modeling, of
nonlinearity’s effect on behavior. Due to this nonlinear modeling necessarily will be effective.

From the viewpoint of appropriateness, however, nonlinear modeling is an ill-defined science:
discovered nonlinearity being the product largely of assumptions made by and resources available
to the implementor; and not necessarily a property of the process modeled. There is, then,
a question of scientific principle that transcends its likely operational success: How does
nonlinearity allow a process to perform different classes of computation and so exhibit more
or less complex behavior? This is where I think nonlinear modeling can make a contribution

† It is an appropriate representation, though, of the response of free space to carrying weak electromagnetic
pulses. Electromagnetic theory is different from the context of modelingonly from given data. It defines
a different semantics.
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beyond engineering concerns. The contention is that incorporating computation theory will go
some distance to basing modeling on first principles.

COMPUTATIONAL MECHANICS

The following discussion reviews an approach to these questions that seeks to discover and
to quantify the intrinsic computation in a process. The rules of the inference game demand
ignorance of the governing equations of motion. Each model is to be reconstructed from the
given data. It follows in the spirit of the research program for chaotic dynamics introduced
under the rubric of “geometry from a times series”,34 though it relies on many of the ideas and
techniques of computation and learning theories.2,21

I first set up the problem of modeling nonlinear processes in the general context in which
I continually find it convenient to consider this task.10 This includes delineating the effect the
measurement apparatus has on the quality and quantity of data. An appreciation of the manner
in which data is used to build a model requires understanding the larger context of modeling;
namely, given a fixed amount of data what is the best explanation? Once an acceptable model
is in hand, there are a number of properties that one can derive. It becomes possible to estimate
the entropy and complexity of the underlying process and, most importantly, to infer the nature
of its intrinsic computation. Just as statistical mechanics explains macroscopic phenomena as
the aggregation of microscopic states, the overall procedure of modeling can be viewed as going
from a collection of microscopic measurements to the discovery of macroscopic observables;
as noted by Jaynes.23 The resulting model summarizes the relation between these observables.
Not surprisingly its properties can be given a thermodynamic interpretation that captures the
combinatorial constraints on the explosive diversity of microscopic reality. This, to my mind, is
the power of thermodynamics as revealed by Gibbsian statistical mechanics.

The following sections are organized to address these issues in just this order. But before
embarking on this, a few more words are necessary concerning the biases brought to the
development.

The present framework is “discrete unto discrete.” That is, I assume the modeler starts with
a time series of quantized data and must stay within the limits of quantized representations. The
benefit of adhering to this framework is that one can appeal to computation theory and to the
Chomsky hierarchy, in particular, as giving a complete spectrum of model classes.21 By complete
here I refer to a procedure that, starting from the simplest, finite-memory models and moving
toward the universal Turing machine, will stop with a finite representation at the least powerful
computational model class. In a few words that states the overall inference methodology.11 It
addresses, in principle, the ambiguity alluded to above of selecting the wrong modeling class.
There will be somewhere in the Chomsky hierarchy an optimal representation which is finitely
expressed in the language of the least powerful class.

Finally, note that this framework does not preclude an observer from employing finite
precision approximations of real-valued probabilities. I have in mind here using arithmetic
codes to represent or transmit approximate real numbers.4 That is, real numbers are algorithms.
It is a mistake, however, to confuse these with the real numbers that are a consequence of the
inference methodology, such as the need at some point in time to solve a Bayesian or a maximum
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entropy estimation problem; as will be done in a later section. This is a fact since an observer
constrained to build models and make predictions within a finite time, or with infinite time but
access to finite resources, cannot make use of such infinitely precise information. The symbolic
problems posed by an inference methodology serve rather to guide the learning process and,
occasionally, give insight when finite manipulations of finite symbolic representations lead to
finite symbolic answers.

Fuzzy �-Instruments

The universe of discourse for nonlinear modeling consists of a process� , the measuring
apparatus�, and the modeler itself. Their relationships and components are shown schematically
in Figure 1. The goal is for the modeler, taking advantage of its available resources, to make the
“best” representation of the nonlinear process. In this section we concentrate on the measuring
apparatus. The modeler is the subject of a later section. The process, the object of the modeler’s
ultimate attention, is the unknown, but hopefully knowable, variable in this picture. And so
there is little to say, except that it can be viewed as governed by stochastic evolution equations

������ � ��
�
���� ���� �

�
(1)

where ��� is the configuration at time�, ��� some noise process, and�� the governing equations
of motion.‡ The following discussion also will have occasion to refer to the process’s measure
�
�
��
�

on its configuration space and the entropy rate	�

�
��
�

at which it produces information.

The measuring apparatus is a transducer that maps��� to some accessible states of an
instrument�. This instrument has a number of characteristics, most of which should be under
the modeler’s control. The primary interaction between the instrument and the process is
through the measurement space�� which is a projection� of ��� onto (say) a Euclidean§

space whose dimension is given by the number� of experimental probes. The instrument’s
resolution
 in distinguishing the projected states partitions the measurement space into a set
����� �

�
�� � �� � ��� � � �� � � � 
��

�
of cells. Each cell�� is the equivalence class of

projected states that are indistinguishable using that instrument. The instrument represents the

event of finding�
�
���

�
� �� by the cell’s label�. With neither loss of generality nor information,

these indices are then encoded into a time-serial binary code. As each measurement is made
its code is output into the data stream. In this way, a time series of measurements made by
the instrument becomes a binary string, the data stream� available to the modeler. This is a
discretized set of symbols� � � � � 

������������� � � � where in a single measurement
made by the modeler the instrument returns a symbol� � � in an alphabet� at time index
� � �. Here we take a binary alphabet� � ��� 	�.

This gives the overall idea, but it is in fact a gross simplification. I will discuss two important
elements that are left out: the instrument temperature and the cell dwell time.
‡ I explicitly leave out specifying the (embedding) dimension of the process. This is a secondary statistic

that is estimated12 as a topological property of the model,not something intrinsic to the present view
of the process.

§ If measuring� phases, for example, then the associated topology would be���� � � �.
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Figure 1 The Big Channel. The flow of information (measurements) on the shortest time scales is from the left,
from the underlying process, to the right toward the modeler. The latter’s task is to build the “best” representation
given the available data set and computational resources. On longer time scales the modeler may modify the
measuring apparatus and vary the experimental controls on the process. These actions are represented by the
left-going arrows. Notice that from the modeler’s perspective there is a region of ambiguity between the model
and the experiment. The model includes the measuring apparatus since it instantiates many of the modeler’s
biases toward what is worth observing. But the experiment also includes the measuring apparatus
since it couples to the process. Additionally, the apparatus is itself a physical device with its own
internal dynamics of which the modeler may be unaware or incapable of controlling.

As described, the measurement partition����� is “crisp”. Each partition cell is associated

with an indicator function that maps the state�� � �
�
��
�
� �� onto a symbolic label for that

element depending on whether the state is or is not in the domain of that indicator function. But
no real instrument implements a crisp measurement partition. There are errors in the assignment
of a state�� to a cell and so an error in the resulting symbol. There are two kinds of errors
that one might consider.

The first is a classification error in which the cell is misidentified with the projected state
�� � �

�
���

�
independent of its location within the measurement cell. If the error rate probability

is taken to be�, then the instrument’s effective temperature����� � ������	
���������
�� is simply

����� � ��� �	� ����. This is not a very realistic view of classification error. Physical devices,
such as analog-to-digital converters, fail more in correct classification near the cell boundaries
since they cannot implement exact decision thresholds. In this case error is not uniform over
the partition cells.

One solution to this follows the spirit of fuzzy logic which suggests that the cell indicator
function be generalized to a membership function that decays outside a cell.43 An example of
a fuzzy instrument that accounts for this somewhat realistically is to convolve the boundaries
of the cells in the crisp partition����� with a Fermi-Dirac density. The membership function
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then becomes

������

�

�
��
�
�

�

���������� ������������� � �
(2)

where����� is the fuzzy partition’s inverse temperature and��� � �
� is the cell’s center in the

measurement space. At zero temperature the crisp partition is recovered,�
�
� ��� �

���
�����

At sufficiently high temperatures, the instrument outputs random sequences uncorrelated with
the process within the cell.

The algebra of fuzzy measurements will not be carried through the following. I will simply
leave behind at this point knowledge of the fuzzy partition. The particular consequences for
doing this correctly, though, will be reported elsewhere. The main result is that when done
in this generality, the ensuing inference process is precluded from inferring too much and too
precise a structure in the source.

The second element excluded from the Big Channel concerns the time��� spends in each
partition cell. To account for this there should be an additional time series that gives the cell
dwell time for each state measurement. Only in special circumstances will the dwell time be
constant, if the partition is a uniform coarse-graining. When ergodicity can be appealed to the
average dwell time� can be used. In any case, it is an important parameter and one that is
readily available, but often unused.

The dwell time suggests another instrument parameter, the frequency response; or, more
properly dropping Fourier modeling bias, the instrument’s dynamic response. On short time
scales the instrument’s preceding internal states can affect its resolution in determining the
present state and the dwell time. In the simplest case, there is a shortest time below which the
instrument cannot respond. Then passages through a cell that are too brief will not be detected
or will be misreported.

All of these detailed instrumental properties can be usefully summarized by the information
acquisition rate ��. In its most general form it is given by the information gain of the fuzzy
partition ��

� with respect to the process’s asymptotic distribution	
�
��
�

projected onto the
measurement space. That is,

����
 �
 �
�� � ����
�
��
� �����

�
	
�
��
���

(3)

where�� ��� is the information gain of distribution with respect to�. Assuming ignorance
of the process’s distribution allows some simplification and gives the measurement channel
capacity

����
 �
 �
�� � ����
�
��
� ���

�

� ����
�
 �
��	 ����
�
��� ���

�

where ����
�
 �
�� � ��� 	
�� ������� � 	�
��� 	
�� � (4)

and where�
�
�
�
� ���

�
is the entropy of a cell’s membership function and������� is the

number of cells in the crisp partition. At high temperature�
�
�
�
� ���

�
�
���

	
��

�����
� ���

��� and
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the information acquisition rate vanishes, since each cell’s membership function widens to cover
the measurement space.

The Modeler

Beyond the instrument, one must consider what can and should be done with information in
the data stream. Acquisition of, processing, and inferring from the measurement sequence are the
functions of the modeler. The modeler is essentially defined in terms of its available inference
resources. These are dominated by storage capacity and computational power, but certainly
include the inference method’s efficacy, for example. Delineating these resources constitutes the
barest outline of an observer that builds models. Although the following discussion does not
require further development at this abstract a level, it is useful to keep in mind since particular
choices for these elements will be presented.

The modeler is presented with�, the bit string, some properties of which were just given.
The modeler’s concern is to go from it to a useful representation. To do this the modeler needs a
notion of the process’s effective state and its effective equations of motion. Having built a model
representing these two components, any residual error or deviation from the behavior described
by the model can be used to estimate the effective noise level of the process. It should be clear
when said this way that the noise level and the sophistication of the model depend directly on
the data and on the modeler’s resources. Finally, the modeler may have access to experimental
control parameters. And these can be used to aid in obtaining different data streams useful in
improving the model by (say) concentrating on behavior where the effective noise level is highest.

The central problem of nonlinear modeling now can be stated. Given an instrument, some
number of measurements, and fixedfinite inference resources, how much computational structure
in the underlying process can be extracted?

Limits to Modeling
Before pursuing this goal directly it will be helpful to point out several limitations imposed

by the data or the moder’s interpretation of it.

In describing the data stream’s character it was emphasized that the individual measurements
are only indirect representations of the process’s state. If the modeler interprets the measurements
as the process’s state, then it is unwittingly forced into a class of computationally less powerful
representation. These consists of finite Markov chains with states in� or in some arbitrarily
selected state alphabet.|| This will become clearer through several examples used later on. It is
important at this early stage to not over-interpret the measurements’ content as this might limit
the quality of the resulting models.

The instrument itself obviously constrains the observer’s ability to extract regularity from
the data stream and so it directly affects the model’s utility. The most basic of these constraints
are given by Shannon’s coding theorems.40 The instrument was described as a transducer, but it
also can be considered to be a communication channel between the process and the modeler. The
capacity of this channel is�� � ����

�
��
� ���

�
. As � �� and if the process is deterministic

|| As done with hidden Markov models.18,37
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and has entropy��
�
��
�
� �, a theorem of Kolmogorov’s says that this rate is maximized

for a given process if the crisp partition����� is generating.26 This property requires infinite
sequences of cell indices to be in a finite-to-one correspondence with the process’s states. A
similar result was shown to hold for the classes of process of interest here: deterministic, but
coupled to an extrinsic noise source.13 Note that the generating partition requirement necessarily
determines the number� of probes required by the instrument.

For an instrument with a crisp generating partition, Shannon’s noiseless coding theorem says
that the measurement channel must have a capacity higher than process’s entropy

�� � ��

�
��
�

(5)

If this is the case then the modeler can use the data stream to reconstruct a model of the process
and, for example, estimate its entropy and complexity. These can be obtained to within error
levels determined by the process’s extrinsic noise level.

If �� � ��

�
��
�

, then Shannon’s theorem for a channel with noise says that the modeler
will not be able to reconstruct a model with an effective noise level less than the equivocation

��

�
��
�
� �� induced by the instrument. That is, there will be an “unreconstructable” portion of

the dynamics represented in the signal.

These results assume, as is also done implicitly in Shannon’s existence proofs for codes,
that the modeler has access to arbitrary inference resources. When these are limited there will
be yet another corresponding loss in the quality of the model and an increase in the apparent
noise level. It is interesting to note that if one were to adopt Laplace’s philosophical stance
that all (classical) reality is deterministic and update it with the modern view that it is chaotic,
then the instrumental limitations discussed here are the general case. And apparent randomness
is a consequence of them.

The Explanatory Channel

A clear statement of the observer’s goal is needed, beyond just estimating the best model.
Surely a simple model is to be desired from the viewpoint of understandability of the process’s
mechanism and as far as implementation of the model in (say) a control system is concerned.
Too simple a model, though, might miss important structure, rendering the process apparently
stochastic and highly unpredictable when it is deterministic, but nonlinear. The trade-off between
model simplicity and large unpredictability can be explained in terms of a larger goal for the
modeler: to explain to another observer the process’s behavior in the most concise manner,
but in detail as well. Discussion of this interplay will be couched in terms of the explanatory
channel of Figure 2.

Before describing this view, it is best to start from some simple principles. To make contact
with existing approaches and for the brevity’s sake, the best model will be taken to be the most
likely. If one had access to a complete probabilistic description of the modeling universe, then
the goal would be to maximize the conditional probability������� of the model� given the
data stream�. This mythical complete probabilistic description����	 �� is not available, but
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Figure 2 The Explanatory Channel. The upper portion (a) of the figure illustrates the bare channel: observer�

communicates an explanation� to observer�. The lower portion (b) shows in more detail the two subchannels
making up the explanatory channel: the model channel transmits model� and the error channel transmits an
error signal�. � is first built by observer� and then loaded into�’s simulator. It is also transmitted to�
which loads into its simulator.� develops the error signal� as the deviation of the measurements in the data
stream� from those predicted by simulating the model. Only these deviations are transmitted, and at less
precision than the original individual measurements.� is to resynthesize a data stream�� by simulating the model
and when that is not predictive, to use information from the error signal.� thenexplains� if �� � �.

an approximation can be developed by factoring it using Bayes’ rule22

������� �
�������� ���
�

���

� �����
(6)

There are several comments. First and foremost, all of these probabilities are conditioned on
the choice of model class�. Second, all of the terms on the right hand side refer to a single
data stream�. Third, ������� is the probability that a model� � � produces the given
data. Thus, candidate models are considered to be generators of data. With sufficient effort,
then,������� can be estimated. Finally, the normalization����� �

�

���

������� depends

only on the given data and so can be dropped since it is a constant when maximizing�������
over the model class.

Shannon’s coding theorem established that an event of probability� can be optimally
represented by a code with length� ���

�
� bits.40 The search for the most likely explanation is

tantamount to constructing the shortest code�� for the data�. The length of the optimal code

is then
�
�
� ��
�
�
� � � ���

�
�������. Using the above Bayesian decomposition of the likelihood,

it follows that
�
�
� ��
�
�
� � � ���� �������� ���� ����� (7)



J. P. Crutchfield 9

The resulting optimization procedure can be described in terms of the explanatory channel of
Figure 2. There are two observers� and� that communicate an explanation� via a channel.
The input to this explanatory channel, what the modeler� sees, is the data stream�; the output,
what� can resynthesize given the explanation� will be denoted��.

As shown in Figure 2(b)� is transmitted over two subchannels. The first is the modeling
channel along which a model� is communicated. The second is the error channel along which
an error signal� is transmitted.� is that portion of� unexplained by the model�.

There are two criteria for a good explanation:

1. � must explain�. That is,� must be able to resynthesize the original data:�
� � �.

2. The explanation must be as short as possible. That is, the length��� � ��� � ��� in
bits of � must be minimized.

The efficiency of an explanation or, equivalently, of the model is measured by the compression
ratio

���� �� �
���

���
�
���� ���

���
(8)

This quantifies the efficacy of an explanation employing model�. � is then a cost function
over the space� of possible models. The optimal model�� then minimizes this cost

�
�
��� �

�
� ���
���

���� �� (9)

Figure 3 illustrates the basic behavior of the cost function� over the model space�. There
are two noteworthy extremes. When the model is trivial,� � �, it predicts nothing about the
data stream. In this case, the entire data stream must be sent along the error channel.��� � ���
is as large as it can be; but the model is small��� � 	. The second, complementary extreme
occurs when the data stream is taken as its own model� � �. No information needs to be sent
on the error channel since the model explains all of the data stream. In this case,��� � ���
and��� � 	. This is the overfitting regime: model parameters come to fit each measurement.

The view provided by the explanatory channel turns on the existence of an optimal code for
a given information source. The semantics is decidedly different, though, in that it interprets the
code as consisting of two parts: the model and the error. This is the main innovation beyond
Shannon’s theory. It apparently was given its first modern articulation by Kemeny24 as an
implementation of Ockham’s dictum that “diversity should not be multiplied beyond necessity”.
It has been put on a more rigorous foundation by Rissanen38 who adapted the Kolmogorov-
Chaitin-Solomonoff algorithmic theory of inductive inference29 to the needs of universal coding
theory, and by Wallace41 in the domain of statistical classification.

The notion of the explanatory channel might seem nonetheless to be a bit of an abstraction
as far as modeling nonlinear processes is concerned. It was implemented, in effect, in a software
system for reconstructing the equations of motion from dynamical system time series.12 The
system contained a symbolic dynamical system interpreter as the simulation portion of the
channel. The error signal was determined as the deviation of the input trajectory from the
deterministic dynamic. Initially, it was averaged by assuming the deviations to be IID Gaussian
variables. Optimal models were then selected by minimizing the model entropy# which consisted
# A variant of Akaike’s Boltzmann Information Criterion for model order selection.1
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Figure 3 Model optimality. A schematic illustration of the features of the cost function���� �� over the model
class�. The topology of the latter is extremely important and is by no means one dimensional. The right portion
of the graph is the region of overfitting: so many parameters are used in the model that they begin to
directly reflect individual measurements. The left portion of the graph is the region of high apparent
randomness: the model captures so little of the data that there is large prediction error.

of a model complexity term and a prediction error term. In this view, the precision of the error
signal along different directions in the tangent space to the dynamic is modulated by the spectrum
of the associated local Lyapunov characteristic exponents.

Optimal Instruments
The quantitative search for an optimal model extends to criteria for building optimal

instruments. In one view at least, the instrument is part of the model. There are two basic
principles that are easily summarized

1. Use all the data, and
2. Nothing but the data.

Formally, these translate into the following criteria for instruments.

1. Maximize the conditional entropy��������� �� ����� of the data over the space of in-
struments. As will be seen later�� is readily estimated using the reconstructed model
��������� �� �����.

2. Minimize the complexity of the reconstructed machine

���
���

��������� �� ������ (10)

With sufficiently large data sets prediction errors dominate over model size and only the first
optimization need be performed. In this regime, early results demonstrated that in accordance
with Kolmogorov’s theorem the maxima are attained at generating partitions. Going somewhat
beyond the theorem, they also showed that the dependence near the maxima was smooth. Later
results showed that the order of the conditional entropy maximum is determined by, and so is an
indication of, the smoothness of the equations of motion.10 For finite and especially small data
sets, however, the model size plays a significant role. In that regime the criteria are optimized
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simultaneously over the space of instruments. Exactly how this is done to select the optimal
instrument�� will be left for discussion elsewhere.

The overall picture here is a formalism for implementing the Baconian scientific algorithm
of experimentation and refinement. In the drive to understand and predict more of the process,
the modeler updates the instrument. An improved model allows the instrument to be modified to
remove discovered regularity from the measurements before the information is put into the data
stream. In this way, over long times the instrument as transducer provides an increasingly more
informative data stream that in principle narrows in on behavior that is less well modeled. One
consequence of the coding theoretic view is that, as the instrument takes into account more and
more regularity, the resulting data stream from it looks more and more like noise. Concomitantly,
the residual regularity requires ever larger inference resources to extract.

Such a high level view of inductive inference is all very well and good; especially in light
of the rather large number of parameters that appear. There is one problem, however, that goes
to the heart of its coding theoretic premises. This is the almost complete lack of attention to
the functional properties of the reconstructed models. It is exactly these properties that have
scientific value. Furthermore, that value is independent of the amount of data used to find
the model. This problem is reflected in the formalism’s ignorance of the topological and metric
properties of the model class and range of classes. The claim in the following is that these can be
accounted for more directly with a measure of complexity and an investigation of computational
properties of individual models. To address these the next section begins to focus on a particular
class of models. Once their inference algorithm is outlined and some basic properties described,
the discussion examines their utility and semantic content.

Computation from a Time Series

On what sort of structure in the data stream should the models be based? If the goal is
prediction, as the preceding assumed, then a natural object to reconstruct from the data series
is a representation of the instantaneous state of the process. Unfortunately, as already noted,
individual measurements are only indirect representations of the process’s state. Indeed, the
instrument simply may not supply data of adequate quality in order to discover the true states
independent of the amount of data. So how can the process’s “effective” states be accessed?

The answer to this turns on a generalization of the “reconstructed states” introduced, under
the assumption that the process is a continuous-state dynamical system, by Packardet al.34 The
contention there was that a single time series necessarily contained all of the information about
the dynamics of that time series. The notion of reconstructed state was based on Poincar´e’s view
of the intrinsic dimension of an object.36 This was defined as the largest number of successive
cuts through the object resulting in isolated points. A sphere in three dimensions by his method
is two dimensional since the first cut typically results in a circle and then a second cut, of
that circle, isolates two points. Packardet al. implemented this using probability distributions
conditioned on values of the time series’ derivatives. This was, in fact, an implementation of
the differential geometric view of the derivatives as locally spanning the graph of the dynamic.

In this reconstruction procedure a state of the underlying process is identified once the
conditional probability distribution is peaked. It was noted shortly thereafter that in the presence
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of extrinsic noise a number of conditions is reached beyond which the conditional distribution
is no longer sharpened.13 And, as a result the process’s state cannot be further identified. The
width of the resulting distribution then gives an estimate of the effective extrinsic noise level
and the minimum number of conditions first leading to this situation, an estimate of the effective
dimension.

The method of time derivative reconstruction gives the key to discovering states in discrete
times series.* For discrete time series a state is defined to be the set of subsequences that
render the future conditionally independent of the past.14† Thus, the observer identifies a state
at different times in the data stream as its being in identical conditions of ignorance about the
future. The set of future subsequences following from a state is called itsmorph.

For this definition of state several reconstruction procedures have been developed. In brief,
the simplest method consists of three steps. In the first all length� subsequences in the data
stream are represented as paths in a depth� binary “parse” tree. In the second, the morphs are
discovered by associating them with the distinct depth� � ��� subtrees found in the parse tree
down to depth���. The number of morphs is then the number of effective states. In the final
step, the state to state transitions are found by looking at how each state’s associated subtrees
map into one another on the parse tree.11,14,15

This procedure reconstructs from a data stream a “topological” machine: the skeleton of
states and allowed transitions. There are a number of issues concerning statistical estimation,
including error analysis and probabilistic structure, that need to be addressed.16 But this outline
suffices for the present purposes. The estimated models are referred to as�-machines in order
to indicate their dependence not only on measurement resolution, but also indirectly on all of
the instrumental and inferential parameters discussed so far.

�-Machines

The product of machine reconstruction is a set of states that will be associated
with a set � � ��� of vertices and a set of transitions associated with a set� ��
� � � � ��

�

��� �� �� � �� � � �
�

of labeled edges. Formally, the reconstruction proce-

dure puts no limit on the number of machine states inferred. Indeed, in some important cases
the number is infinite, such as at phase transitions.15 In the following� will be a finite set
and the machines “finitary”. One depiction of the reconstructed machine	 is as a labeled
directed graph
 � �����. Examples will be seen shortly. The full probabilistic structure is
described by a set of transition matrices

� �

�
� ���

�

�
� ���

�
��

�

� �
��

�

�
�� �� �� � �� � � �

�
(11)

where ���
�

�
� denotes the conditional probability to make a transition to state�

� from state�

on observing symbol�.

* The time delay method appears not to generalize.
† This notion of state is widespread; appearing in various guises in early symbolic dynamics, ergodic,

and automata theories. It is the basic notion of state in Markov chain theory.
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A stochastic machine is a compact way of describing the probabilities of a possibly
infinite number of measurement sequences. The probability of a given sequence�

� �
������ � � � ����� �� � �� is recovered from the machine by the telescoping product of condi-
tional transition probabilities

�
�
�
�
�

� �������
�
�

������
�
�

�� � � � ����� �

�
���

�� (12)

Here�� is the unique start state. It is the state of total ignorance, so that at the first time step
we take��� � �. The sequence��� ��� ��� � � � � ����� �� consists of those states through which
the sequence drives the machine. To summarize, a machine is the set� � �������� � ���.

Several important statistical properties are captured by the stochastic connection matrix

� �
�
���

� ��� (13)

where�� ���� � ����� is the state to state transition probability, unconditioned by the measure-
ment symbols. By construction every state has an outgoing transition. This is reflected in the
fact that� is a stochastic matrix:

�
����

���� � �. It should be clear that by dropping the input

alphabet transition labels from the machine the detailed, call it “computational”, structure of the
input data stream has been lost. All that is retained in� is the state transition structure and this
is a Markov chain. The interesting fact is that Markov chains are a proper subset of stochastic
finitary machines. Examples later on will support this contention. It is at exactly this step of
unlabeling the machine that the “properness” appears.

The stationary state probabilities��� �

�
�� �

�
���

�� � �� � � �

�
are given by the left

eigenvector of�

���� � ��� (14)

The entropy rate of the Markov chain is then

���� � � �
�
���

��
�
����

����� ��	� ����� (15)

This measures the information production rate in bits per time step of the Markov chain. Although
the mapping from input strings to the chain’s transition sequences is not in general one-to-one,
it is finite-to-one. And so, the Markov chain entropy rate is also the entropy rate of the original
data source

����� � �
�
���

��
�
����

�
���

���
�

�� ��	� ���
�

�� (16)

The complexity‡ quantifies the information in the state-alphabet sequences

	���� � 
����� � �
�
���

�� ��	� �� (17)

‡ Within the reconstruction hierarchy this is actually the finitary complexity, since the context of the
discussion implies that we are considering processes with a finite amount of memory. However, I have
not introduced this restriction in unnecessary places in the discussion. The finitary complexity has been
considered before in the context of generating partitions and known equations of motion.19,31,42
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It measures the amount of memory in the process. For completeness, note that there is an
edge-complexity that is the information contained in the asymptotic edge distribution��� ��
�� � �����

�

�� � �� �� � �� � � �� � � �

�

��

�
�� � � �

�
���

�� ���� �� (18)

These quantities are not independent. Conservation of information at each state leads to the
relation

��

�
� �� � 	� (19)

And so, there are only two independent quantities when modeling a process as a stochastic
finitary machine. The entropy	�, as a measure of the diversity of patterns, and the complexity
��, as a measure of memory, have been taken as the two elementary coordinates with which
to analyze a range of sources.15

There is another set of quantities that derive from the skeletal structure of the machine.
Dropping all of probabilistic structure, the growth rate of the number of sequences it produces
is the topological entropy

	 � ���
�

���� (20)

where
� is the principle eigenvalue of the connection matrix�� �
�
���

�
���
� . The latter is

formed from the labeled matrices�
�

���
� �

�
�

���
�

�
���

�

�
	 ���

�

�� � 



 �������
� � �

�
(21)

The state and transition topological complexities are

� � ���� ���

�� � ���� ���
(22)

In computation theory, an object’s complexity is generally taken to be the size in bits
of its representation. The quantities just defined measure the complexity of the reconstructed
machine. As will be seen in the penultimate section, when these entropies and complexities, both
topological and metric, are integrated into a single parametrized framework, a thermodynamics
of machines emerges.

Complexity

It is useful at this stage to stop and reflect on some properties of the models that we have just
described how to reconstruct. Consider two extreme data sources. The first, highly predictable,
produces a streams of 1s; the second, highly unpredictable, is an ideal random source of a binary
symbols. The parse tree of the predictable source is a single path of 1s. And there is a single
subtree, at any depth. As a result the machine has a single state and a single transition on� � 	:
a simple model of a simple source. For the ideal random source the parse tree, again to any
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depth, is the full binary tree. All paths appear in the parse tree since all binary subsequences
are produced by the source. There is a single subtree, of any morph depth at all parse tree
depths: the full binary subtree. And the machine has a single state with two transitions; one
on � � � and one on� � �. A simple machine, even though the source produces the widest
diversity of binary sequences.

A simple gedanken experiment serves to illustrate how complexity is a measure of a
machine’s memory capacity. Consider two observers� and�, each with the same model
� of some process.� is allowed to start machine� in any state and uses it to generate
binary strings that are determined by the edge labels of the transitions taken. These strings
are passed to observer� which traces there effect through its own copy of�. On average
how much information about�’s state can� communicate to� via the binary strings? If
the machine describes (say) a period three process, e.g. it outputs strings like��������� � � �,
��������� � � �, and ��������� � � �, it has ��� � � states. Since� starts� in different
states,� can learn only the information of the process’s phase in the period 3 cycle. This
is ���

�
��� � ��	
� � � � bits of information about the process’s state, if� chooses the initial

states with equal probability. However, if the machine describes an idea random binary process,
by definition� can communicate no information to�, since there is no structure in the sequences
to use for this purpose. This is reflected in the fact, as already noted above, that the corresponding
machine has a single state and its complexity is���

�
� � �. In this way, a process’s complexity

is the amount of information that someone controlling its start state can communicate to another.

These examples serve to highlight one of the most basic properties of complexity, as I use
the term. Both predictable and random sources are simple in the sense that their models are
small. Complex processes in this view have large models. In computational terms, complex
processes have, as a minimum requirement, a large amount of memory as revealed by many
internal states in the reconstructed machine. Most importantly, that memory is structured in
particular ways that support different types of computation. The sections below on knowledge
and meaning show several consequences of computational structure.

In the most general setting, I use the word “complexity” to refer to the amount of information
contained in observer-resolvable equivalence classes. For finitary machines, the complexity is
measured by the quantities labeled above by�. This notion has been referred to as the “statistical
complexity” in order to distinguish it from the Chaitin-Kolmogorov complexity,9,27 the Lempel-
Ziv complexity,28 Rissanen’s stochastic complexity,38 and others45,44 which are all equivalent

in the limit of long data streams to the process’s Kolmogorov-Sinai entropy��

�
��
�

. If the

instrument is generating and�
�
��
�

is absolutely continuous, these quantities are given by the

entropy rate of the reconstructed machine, Eq. (16).7 Accordingly, I use the word “entropy” to
refer to such quantities. They measure the diversity of sequences a process produces. Implicit
in their definitions is the restriction that the modeler must pay computationally for each random
bit. Simply stated, the overarching goal is exact description of the data stream. In the modeling
approach advocated here the modeler is allowed to flip a coin or to sample the heat bath to which
it may be coupled. “Complexity” is reserved in my vocabulary to refer to a process’s structural
properties, such as memory and other types of computational capacity.
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This is not the place to review the wide range of alternative notions of “complexity” that
have been discussed more recently in the physics and dynamics literature. The reader is referred
to the comments and especially the citations elsewhere.14,15 It is important to point out, however,
that the notion defined here does not require knowledge of the equations of motion, the prior
existence of exact conditional probabilities, Markov or even generating partitions of the state
space, continuity and differentiability of the state variables, nor the existence of periodic orbits.
Furthermore, the approach taken here differs from those based on the construction of universal
codes in the emphasis on the model’s structure. That emphasis brings it into direct contact with
the disciplines of stochastic automata, formal language theory, and thermodynamics.

Finally, statistical complexity is a highly relative concept that depends directly on the
assumed model class. In the larger setting of hierarchical reconstruction it becomes the finitary
complexity since it measures the number of states in a finite state machine representation. But
there are other versions appropriate, for example, when the finitary complexity diverges.11

Causality

There are a few points that must be brought out concerning what these reconstructed machines
represent. First, by the definition of future-equivalent states, the machines give the minimal
information dependency between the morphs. In this respect, they represent the causality of the
morphs considered as events. The machines capture the information flow within the given data
stream. If state B follows state A then A is a cause of B and B is one effect of A. Second, machine
reconstruction produces minimal models up to the given prediction error level. This minimality
guarantees that there are no other events (morphs) that intervene, at the given error level, to
render A and B independent. In this case, we say that information flows from A to B. The
amount of information that flows is the negative logarithm of the connecting edge probability.
Finally, time is the natural ordering captured by machines. An�-machine for a process is then
the minimal causal representation reconstructed using the least powerful computational model
class that yields a finite complexity.

KNOWLEDGE RELAXATION

The next two sections investigate how models can be used by an observer. An observer’s
knowledge�� of a process� consists of the data stream, its current model, and how the
information used to build the model was obtained.* Here the latter is given by the measuring
instrument� �

�
��
� ���� �

�
. To facilitate interpretation and calculations, the following will

assume a simple data acquisition discipline with uniform sampling interval� and a time-
independent zero temperature measurement partition��. Further simplification comes from
ignoring external factors, such as what the observer intends or needs to do with the model, by
assuming that the observer’s goal is solely optimal prediction with respect to the model class
of finitary machines.

* In principle, the observer’s knowledge also consists of the reconstruction method and its various
assumptions. But it is best to not elaborate this here. These and other unmentioned variables are
assumed to be fixed.
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The totality of knowledge available to an observer is given by the development of its��

at each moment during its history. If we make the further assumption that by some agency
the observer has at each moment in its history optimally encoded the available current and past
measurements into its model, then the totality of knowledge consists of four parts: the time
series of measurements, the instrument by which they were obtained, and the current model
and its current state. Stating these points so explicitly helps to make clear the upper bound on
what the observer can know about its environment. Even if the observer is allowed arbitrary
computational resources, given either finite information from a process or finite time, only a
finite amount of structure can be inferred.

An �-machine is a representations of an observer’s model of a process. To see its role in the
change in�� consider the situation in which the model structure is kept fixed. Starting from
the state�� of total ignorance about the process’s state, successive steps through the machine
lead to a refinement of the observer’s knowledge as determined by a sequence of measurements.
The average increase in�� is given by a diffusion of information throughout the model. The
machine transition probabilities, especially those connected with transient states, govern how the
observer gains more information about the process with longer measurement sequences.

A measure of information relaxation on finitary machines is given by the time-dependent
finitary complexity

����� � ��������� (23)

where��� � �
�

����

�� ���� �� is the Shannon entropy of the distribution� � ���� and

������ �� � ������	 (24)

is the probability distribution at time� beginning with the initial distribution���	� � ��
 	
 	
 
 
 
�

concentrated on the start state. This distribution represents the observer’s state of total ignorance
of the process’s state, i.e. before any measurements have been made, and correspondingly
���	� � 	. ����� is simply (the negative of) the Boltzmann�-function in the present setting.
And we have the analogous result to the�-theorem for stochastic�-machines:����� converges
monotonically when������ is sufficiently close to��� � ������: ����� �

���
��. That is, the

time-dependent complexity limits on the finitary complexity. Furthermore, the observer has the
maximal amount of information about the process, i.e. the observer’s knowledge is in equilibrium
with the process, when����� �� � ����� vanishes for all� � �����, where����� is some fixed
time characteristic of the process.

For finitary machines there are two convergence behaviors for�����. These are illustrated
in figure 4 for three processes: one�� which is period 3 and generates��	���, one�� in which
only isolated zeros are allowed, and one�� that generates 1s in blocks of even length bounded
by 0s. The first behavior type, illustrated by�� and��, is monotonic convergence from below.
In fact, the asymptotic approach occurs in finite time. This is the case for periodic and recurrent
Markov chains, where the latter refers to finite state stochastic processes whose support is a
subshift of finite type (SSFT). The convergence here is over-damped.

The second convergence type, illustrated by��, is only asymptotic; convergence to the
asymptotic state distribution is only at infinite time. There are two subcases. The first is
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Figure 4 Temporal convergence of the complexity����� for a period 3 process�� (triangles), a
Markovian process�� whose support is a subshift of finite type (circles), and a process��

that generates blocks of even numbers of 1s surrounded by 0s (squares).

monotonic increasing convergence; the conventional picture of stochastic process convergence.
The second subcase (��) is nonmonotonic convergence. In this case, starting in the condition of
total ignorance leads to a critically-damped convergence with a single overshoot of the finitary
complexity. With other initial distributions oscillations, i.e. underdamped convergence, can
be seen. Exact convergence is only at infinite time. This convergence type is associated with
machines having cycles in the transient states or, in the classification of symbolic dynamics, with
machines whose support is a strictly Sofic32 system (SSS).* For these, at some point in time the
initial distribution spreads out over more than just the recurrent states.����� can then be larger
than��. Beyond this time, it converges from above. Much of the detailed convergence behavior
is determined, of course, by� full eigenvalue spectrum. The interpretation just given, though,
can be directly deduced by examining the reconstructed machine’s graph�. One aspect which
is less immediate is that for SSSs the initial distribution relaxes through an infinite number of
Cantor sets in sequence space. For SSFTs there is only a finite number of Cantor sets.

* SSS shall also refer, in context, to stochastic Sofic systems.25
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This structural analysis indicates that the ratio

������ �
�� � �����

��
(25)

is largely determined by the amount of information in the transient states. For SSSs this quantity
only asymptotically vanishes since there are transient cycles in which information persists for all
time, even though their probability decreases asymptotically. This leads to general definition of
(chaotic or periodic) phase and phase locking. The phase of a machine at some point in time is its
current state. There are two types of phase of interest here. The first is the process’s phase and the
second is the observer’s phase which refers to the state of the observer’s model having read the
data stream up to some time. The observer has�-locked onto the process when���������� � �.
This occurs at the locking time����� which is the longest time� such that������ � �. When
the process is periodic, this notion of locking is the standard one from engineering. But it also
applies to chaotic processes and corresponds to the observer knowing what state the process is
in, even if the next measurement cannot be predicted exactly.

These two classes of knowledge relaxation lead to quite different consequences for an
observer even though the processes considered above all have a small number of states (2
or 3) and share the same single-symbol statistics:���� � �� � �

�
and���� � �� � �

�
. In the

over-damped case, the observer knows the state of the underlying process with certainty after
a finite time. In the critically-damped situation, however, the observer has only approximate
knowledge for all times. For example, setting� � �� leads to locking times shown in table 1.
Thus, the ability of an observer to infer the state depends crucially on the process’s computational
structure, viz. whether its topological machine is a SSFT or a SSS. The presence of extrinsic
noise and observational noise modify these conclusions systematically.

It is worthwhile to contrast the machine model of�� with a model based on histograms,
or look-up tables, of the same process. Both models are given sufficient storage to exactly
represent the length 3 sequence probability distribution. They are then used for predictions on
length 4 sequences. The histogram model will store the probabilities for each length 3 sequence.
This requires 8 bins each containing an 8 bit approximation of a rational number: 3 bits for the
numerator and 5 for the denominator. The total is 67 bits which includes an indicator for the
most recent length 3 sequence. The machine model, see Figure 5, must store the current state
and five approximate rational numbers, the transition probabilities, using 3 bits each: one for
the numerator and two for the denominator. This gives a model size of 17 bits.

Two observers, each given one or the other model, are presented with the sequence���.
What do they predict for the event that the fourth symbol is� � �? The histogram model predicts

��������� � �������� �
�������

������
�

���

	�

�

�

�
(26)

whereas the machine model predicts

��������� � 	��� � � (27)

The histogram model gives the wrong prediction. It says that the fourth symbol is uncertain
when it is completely predictable. A similar analysis for the prediction of measuring� � �
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Locking Times at 1% Level
Process Locked at time

Period 3 2

Isolated 0s 1

Even 1 blocks 17

Table 1 �-locking times for the periodic��, isolated 0s��, and even 1s��, processes. Note that for the latter
the locking time is substantially longer and depends on�. For the former two, the locking times
indicate the times at which asymptotic convergence has been achieved. The observer knows the state
of the underlying process with certainty at those locking times. For��, however, at� � �� the
observer is partially phase-locked with knowledge of��� of the process’s state information.

B CA

1|2/3

0|1/3
1|1/2

0|1/2

1|1

0|0

Figure 5 The even system generates sequences
�
� � � ����� � � � � � � �� ��	� � � �

�
of �s of even length, i.e. even

parity. There are three states� � �
�����. The state
 with the inscribed circle is the start state��. The edges
are labeled��� where� � � is a measurement symbol and� � �� �� is a conditional transition probability.

having observed��� shows the opposite. The histogram model predicts� � � is more likely
�
��� � ���; when it is, in fact, not predictable at all�

��� � ���. This example is illustrative of
the superiority of stochastic machine models over histogram and similar look-up table models of
time-dependent processes. In fact, there are processes with finite memory for which no finite-size
sequence histogram will give correct predictions.

In order to make the physical relevance of SSSs and their slow convergence more plausible,
the next example is taken from the Logistic map at a Misiurewicz parameter value. The Logistic
map is an iterated mapping of the unit interval

�
��� � �

�
��

�
� � ��

�
��� �

�
�� � � ��� 	
��� � ��� �� (28)

The control parameter� governs the degree of nonlinearity. At a Misiurewicz parameter
value the chaotic behavior is governed by an absolutely continuous invariant measure. The
consequence is that the statistical properties are particularly well-behaved. These parameter
values are determined by the condition that the iterates������ of the map’s maximum�� � ���
are asymptotically periodic. The Misiurewicz parameter value�� of interest here is the first root
of � �

������ � ��

������ below that at� � 	. Solving numerically yields�� � 
�����
����������.
The symbolic dynamics is produced from the measurement partition���� � ���� ���� ���� ���.
Since this partition is generating the resulting binary sequences completely capture the statistical
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0|0.276
0|0.364

1|0.724

1|0.636

D

1|1.000

1|0.479BA

0|0.521

C

Figure 6 The machine��
�
� reconstructed by parsing in forward presentation order a binary sequence

produced using a generating partition of the Logistic map at a Misiurewicz parameter value.

0|0.2760|0.364

1|0.636

D
1|1.000

1|0.506

BA

0|0.494

C

1|0.724

Figure 7 The machine��
�
� reconstructed by parsing in reverse presentation order a binary sequence

produced using a generating partition of the Logistic map at a Misiurewicz parameter value.

properties of the map. In other words, there is a one-to-one mapping between infinite binary
sequences and almost all points on the attractor.

Reconstructing the machine from one very long binary sequence in the direction in which
the symbols are produced gives the four state machine�

�

�
� shown in figure 6. The stochastic

connection matrix is

� �

�
���
����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ��	�� ����
 �����

�
��� (29)

Reconstructing the machine from the same binary sequence in the opposite direction gives
the reverse-time machine��

�
� shown in figure 7. It connection matrix is

� �

�
���
����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

�
��� (30)
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Figure 8 What the observer sees, on average, in forward and reverse lag time in terms of the
complexity convergence����� for ��

�� and��
�� . Data for the latter are plotted on the negative

lag time axis. Note that not only do the convergence characteristics differ between the
two time directions, but the asymptotic complexity values are not equal.

Notice that��
�

� has a transient state and three recurrent states compared to the four recurrent
states in��

�
� . This suggests the likelihood of some difference in complexity convergence.

Figure 8 shows that this is the case by plotting����
�

�� � �� and����
�

�� � �� for positive and
negative times, respectively. Not only do the convergence behaviors differ in type, but also in
the asymptotic values of the complexities:����

�

�� � � ���� bits and����
�

�� � � ���� bits.
This occurs despite the fact that the entropies must be and are the same for both machines:
����

�� � � ����
�� � � ���	 bits per time unit and������� � � ����

�

�� � � ���� bits per time
unit. Although the data stream is equally unpredictable in both time directions, an observer
learns about the process’s state in two different ways and obtains different amounts of state
information. The difference


��
�

� ����
�

�� �� ����
�

�� � � ���� bits (31)

is a measure of the computational irreversibility of the process. It indicates the process is not
symmetric in time from the observer’s viewpoint. This example serves to distinguish machine
reconstruction and the derived quantifiers, such as complexity, from the subsequence-based
measures, such at the two-point mutual information and the excess entropy.
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MEASUREMENT SEMANTICS OF CHAOS

Shannon’s communication theory tells one how much information a measurement gives. But
what is the meaning of a particular measurement? Sufficient structure has been developed up
to this point to introduce a quantitative definition of an observation’s meaning. Meaning, as
will be seen, is intimately connected with hierarchical representation. The following, though,
concerns meaning as it arises when crossing a single change in representation and not in the
entire hierarchy.11

A universe consisting of an observer and a thing observed has a natural semantics. The
semantics describes the coupling that occurs during measurement. The attendant meaning derives
from the dual interpretation of the information transferred at that time. As already emphasized,
the measurement is, first, an indirect representation of the underlying process’s state and, second,
information that updates the observer’s knowledge. The semantic information processing that
occurs during a measurement thus turns on the relationship between two levels of representation
of the same event.

The meaning of a message, of course, depends on the context in which its information is
made available. If the context is inappropriate, the observation will have no basis with which to
be understood. It will have no meaning. If appropriate, then the observation will be “understood”.
And if that which is understood — the content of the message — is largely unanticipated then
the observation will be more significant than a highly likely, “obvious” message.

In the present framework context is set by the model held by the observer at the time of
a measurement. To take an example, assume that the observer is capable of modeling using
the class of stochastic finite automata. And, in particular, assume the observer has estimated a
stochastic finite automaton† and has been following the process sufficiently long to know the
current state with certainty. Then at a given time the observer measures symbol� � �. If
that measurement forces a disallowed transition, then it has no meaning other than that it lies
outside of the contexts (morphs) captured in the current model. The observer clearly does not
know what the process is doing. Indeed, formally the response is for the observer to reset the
machine to the initial state of total ignorance. If, however, the measurement is associated with
an allowed transition, i.e. it is anticipated, then the amount���� of meaning is

���� � � ��� �
�

�

�
(32)

Here�
�

� denotes the machine state� � � to which the measurement brings the observer’s

knowledge of the process’s state.�
�

�

� is the corresponding morph’s probability which is given

by the associated state’s asymptotic probability. The meaning itself, i.e. the content of the
observation, is the particular morph to which the model’s updated state corresponds. In this view

† Assume also that the estimated machine is deterministic in the sense of automata theory: the transitions
from each state are uniquely labeled:�� � ���� ��� �� � �����

�

�
� . This simplifies the discussion by

avoiding the need to define the graph indeterminacy as a quantitative measure of ambiguity.14 Ambiguity
for an observer arises if its model is a stochastic nondeterministic automata.
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a measurement selects a particular pattern from a palette of morphs. The measurement’s meaning
is the selected morph‡ and the amount of meaning is determined by the latter’s probability.

To clarify these notions, let’s consider as an example a source that produces infinite binary
sequences for the regular language21 described by the expression�� � ����. We assume further
that the choice implied by the “�” is made with uniform probability. An observer given an
infinite sequence of this type reconstructs the stochastic finite machine shown in figure 5. The
observer has discovered three morphs: the states� � �����	�. But what is the meaning of
each morph? First, consider the recurrent states� and	. State� is associated with having seen
an even number of 1’s following a 0;	 with having seen an odd number. The meaning of�

is “even” and	 is “odd”. Together the pair���	� recognize the parity of the data stream The
machine as a whole accepts strings whose substrings of the form�� 
 
 
 �� have even parity of
�s. What is the meaning of state�? As long as the observer’s knowledge of the process’s state
remains in state�, there has been some number of 1’s whose parity is unknown, since a 0 must
be seen to force the transition to the parity state�. This state, a transient, serves to synchronize
the recurrent states with the data stream. This indicates the meaning content of an individual
measurement in terms of the state to which it and its predecessors bring the machine.

Before giving a quantitative analysis the time dependence of the state probabilities must be
calculated. Recall that the state probabilities are updated via the stochastic connection matrix

������ �� � ������

�
�

�

�
�
�

�
� �

�
�
�

� � �

�
� (33)

where������ � ������� ������ ������ and the initial distribution is������ � ��� �� ��. The time-
dependent state probabilities are found using�-transforms to be
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(34)

Any time a disallowed transition is forced the current state is reset to the start state and
������ is reset to the distribution representing total ignorance which is given by������.

What then is the quantitative degree of meaning of particular measurements? Let’s consider
all of the possibilities: all possible contexts, i.e. current states, and all possible measurements.
� steps after a reset, the observer is

1. In the sync state and measures� � �: �

��	
��� � � ���� ��
�

� � ������ �� ��;

‡ I simplify here. The best formal representation of meaning at present uses the set-theoretic structure
that the machine induces over the set of observed subsequences. This in turn is formulated via the
lattice theory3 of machines.20
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Observer’s Semantic Analysis of Parity Source
Observer
in State

Measures
Symbol

Interprets Meaning
as

Degree of
Meaning

(bits)

Amount of
Information

(bits)

A 1 Unsynchronized Infinity 0.585

A 0 Synchronize 0.585 1.585

B 1 Odd number of 1s 1.585 1

B 0 Even number of 1s 0.585 1

C 1 Even number of 1s 0.585 0

C 0 Confusion: lose sync,
reset to start state

0 Infinity

Table 2 The observer’s semantics for measuring the parity process of Figure 5.

2. In the sync state and measures� � �: ��

������� � � ���� ��
�

� � � ���� �����; e.g.

��
������� � ���� 	 � 
��� bits;

3. In the even state and measures� � 
: ��

�	���
� � � ���� ��
�


 � � ���� �
���� � � 
; e.g.

��
�	���
� � ���� � � ���� bits;

4. In the even state and measures� � �: ��

�	����� � � ���� ��
�

� � � ���� �����; e.g.

��
�	����� � 
 � � ���� 	 � ���� � � 
�	�� bits;

5. In the odd state and measures� � 
: ��

����
� � � ���� ��
�

� � � ���� �����; e.g.

�
����
� � � � 	 ���� 	 � ���� 	� � 
��� bits;

6. In the odd state and measures� � �, a disallowed transition. The observer resets the
machine:��

������ � � ���� ��
�

� � � ���� ����� � �.

In this scheme states� and� cannot be visited at time� � � nor state� at time � � 
.

Assuming no disallowed transitions have been observed, at infinite time��� �
�
�� �


� �


�
and

the degrees of meaning are, if the observer is

1. In the sync state and measures� � 
: ������
� � � ���� ��
�

� � �;

2. In the sync state and measures� � �: �������� � � ���� ��
�

� � ���� 	 � 
 � ���� bits;

3. In the even state and measures� � 
: ��	���
� � � ���� ��
�


 � ���� 	 � 
��� bits;

4. In the even state and measures� � �: ��	����� � � ���� ��
�

� � ���� 	� 
 � ���� bits;

5. In the odd state and measures� � 
: �����
� � � ���� ��
�

� � ���� 	 � 
 � ���� bits;

6. In the odd state and measures� � �, a disallowed transition. The observer resets the
machine:������� � � ���� ��

�

� � � ���� ����� � �.

Table 2 summarizes this analysis for infinite time. It also includes the amount of information
gained in making the specified measurement. This is given simply by the negative binary
logarithm of the associated transition probability.
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Similar definitions of meaning can be developed between any two levels in a reconstruction
hierarchy. The example just given concerns the semantics between the measurement symbol
level and the stochastic finite automaton level.11 Meaning appears whenever there is a change
in representation of events. And if there is no change, e.g. a measurement in considered only
with respect to the population of other measurements, an important special case arises.

In this view Shannon information concerns degenerate meaning: that obtained within the
same representation class. Consider the information of events in some set� of possibilities whose
occurrence is governed by arbitrary probability distributions����� � � ��. Assume that no further
structural qualifications of this representation class are made. Then the Shannon self-information
� ��� ��� �� � �� gives the degree of meaning� ���

�
�
�

�

� in the observed event� with respect

to total ignorance. Similarly, the information gain��� ��� �
�

���

�� ����
��
��

gives the average

degree of “meaning” between two distributions. The two representation levels are degenerate:
both are the events themselves. Thus, Shannon information gives the degree of meaning of an
event with respect to the set� of events and not with respect to an observer’s internal model;
unless, of course, that model is taken to be the collection of events as in a histogram or look-
up table. Although this might seem like vacuous re-interpretation, it is essential that general
meaning have this as a degenerate case.

The main components of meaning, as defined above should be emphasized. First, like
information it can be quantified. Second, conventional uses of Shannon information are a
natural special case. And third, it derives fundamentally from the relationshipacross levels
of abstraction. A given message has different connotations depending on an observer’s model
and the most general constraint is the model’s level in a reconstruction hierarchy. When model
reconstruction is considered to be a time-dependent process that moves up a hierarchy, then the
present discussion suggests a concrete approach to investigating adaptive meaning in evolutionary
systems: emergent semantics.

In the parity example above I explicitly said what a state and a measurement “meant”.
Parity, as such, is a human linguistic and mathematical convention, which has a compelling
naturalness due largely to its simplicity. A low level organism, though, need not have such a
literary interpretation of its stimuli. Meaning of (say) its model’s states, when the state sequence
is seen as the output of a preprocessor,§ derives from the functionality given to the organism, as
a whole and as a part of its environment and its evolutionary and developmental history. Said
this way, absolute meaning in nature is quite a complicated and contingent concept. Absolute
meaning derives from the global structure developed over space and through time. Nonetheless,
the analysis given above captures the representation level-to-level origin of “local” meaning.
The tension between global and local entities is not the least bit new to nonlinear dynamics.
Indeed, much of the latter’s subtlety is a consequence of their inequivalence. Analogous insights
are sure to follow from the semantic analysis of large hierarchical processes.

§ This preprocessor is a transducer version of the model that takes the input symbols and outputs strings
in the state alphabet�.
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Machine Thermodynamics

The atomistic view of nature, though professed since ancient times, was largely unsuccessful
until the raw combinatorial complication it entailed was connected to macroscopic phenomena.
Founding thermodynamics on the principles of statistical mechanics was one of, if not the major,
influence on its eventual acceptance. The laws of thermodynamics give the coarsest constraints
on the microscopic diversity of large many-particle systems. This same view, moving from
microscopic dynamics to macroscopic laws, can be applied to the task of statistical inference
of nonlinear models. And so it is appropriate after discussing the “microscopic” data of
measurement sequences and the reconstruction of “mesoscopic” machines from them, to end
with a discussion at the largest scale of description: machine thermodynamics. This gives a
concise description of the structure of the infinite set of infinite sequences generated by a machine
and also of their probabilities. It does this, in analogy with the conventional thermodynamic
treatment of microstates, by focusing on different subsets of allowed sequences.

The first step is the most basic: identification of the microstates. Consistent with machine
reconstruction’s goal to approximate a process’s internal states, microstates in modeling are the
individual measurement subsequences.|| Consider the set������� of all length� subsequences
occurring in a length� data stream�. The probability of a subsequence� � ������� is
estimated by�� � �����, where�� is the number of occurrences of� in the data stream.
The connection with the physical interpretation of thermodynamics follows from identifying a
microstate’s energy with its self-information

�� � � ��	� �� (35)

That is, improbable microstates have high energy. Energy macrostates are then given by
grouping subsequences of the same energy
 into subsets�� � �� � 
� � � ��������. At this
point there are two distributions: the microstate distribution and an induced distribution over
energy macrostates. Their thermodynamic structure is captured by the parametrized microstate
distribution

����� �
�����

�����
(36)

where� accentuates or attenuates a microstate’s weight solely according to its energy. This is
the same role (inverse) temperature plays in classical thermodynamics. The partition function

����� �
�

���������

����� �
�

���������

��� (37)

gives the total signal space volume of the distribution	���� � ������ � � � ��������. In this
way statistical mechanics explains thermodynamic properties as constraints on how this volume
changes under various conditions.

|| Going from individual measurements in a data stream to subsequences is a change in representation
from the raw data to the parse tree, a hierarchical data structure.
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From these definitions an extensive, system-size-dependent thermodynamics follows directly.
For example, given an infinitely long data stream� the average total energy in all length�
sequences is

���� �
�

���������

������� � ����

�

���������

���
����

���� � �����

�

���������

����� ���� �� (38)

And the thermodynamic entropy is given by

	��� � �
�
�����

�
� �

�

���������

����� ���� ����� (39)

where�
�
�����

�
is the Shannon information of the microstate distribution.

These are definitions of the extensive,�-dependent thermodynamic parameters for a closed
system thermally coupled to its environment. The total energy� exists in several forms. The
most important of which is the thermal energy
	, where	 is the thermodynamic entropy and

is the temperature. The remaining “free” energy is that which is stored via a reversible process
and is retrievable by one. For a closed and nonisolated system it is the Helmholtz free energy
�. The fundamental equation expressing energy conservation is then

� � � � 
	 (40)

In modeling, an observer is put into contact with the process and attempts, by collecting
measurements and estimating models, to come to “inferential” equilibrium by finding the optimal
model. The above thermodynamics describes the situation where the information in the data
stream exists in two forms. The first is that which is randomized and the second is that responsible
for the deviation from equilibrium. The thermodynamic analog of the Helmholtz free energy is

���� � ���� ���� ����� (41)

It measures the amount of nonrandom information in the ensemble described by����� at the
given temperature���.

There are three temperature limits of interest in which the preceding thermodynamics can
be simply described.

1. Equilibrium, � � : The original subsequence distribution is recovered:�� � ���� and
�� � . All of the information is “thermalized”�� � ���	� and the Helmholtz free energy
vanishes���� � �.

2. Infinite temperature,� � �: All microstates are “excited” and are equally probable:
����� � ���	 , where the partition function is equal to the total number of microstates:
�	 � ���������. The effective signal space volume is largest in this limit. The average
energy is just the sum of the microstate energies:�� � ���	

�
��. The entropy simply

depends of the multiplicity of microstates	� � ���� ���������. The free energy diverges.
3. Zero temperature,� ��: The least energetic, or most probable, microstate�� dominates:

�� � 	��� , the signal space volume is the smallest�� � �, �� � ��� , and the entropy
vanishes	� � �.
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The goal for an observer is to build a model that reproduces the observed data stream,
including the probability structure of the latter. In thermodynamic terms, the model should
minimize the Helmholtz free energy. This is what machine reconstruction produces: a stochastic
automaton that is in inferential equilibrium with the given data. How it does this is described
elsewhere.16 The following will cover the basic methods for this, using them to investigate the
thermodynamic structure of a machine’s invariant subsequences and distributions.

Dividing each of the extensive quantities by the volume� yields thermodynamic densities.
And upon taking the thermodynamic limit of the densities, the asymptotic growth rates of the
extensive parameters are obtained. These growth rates are intensive. They can be directly
computed from the reconstructed machine. In a sense the machine itself is an intensive
thermodynamic object: the effective computational equations of motion.

To obtain the intensive thermodynamics from a given stochastic machine� with � ��
� ��� � � � �

�
, a new set

�
�
���
�

� � � �
�

of parametrized transition matrices are defined by

�
�
���
�

�
���

� �
���

��

�

�
�

(42)

where���
�

�� � � ���� ���
�

�� is the information obtained on making the transition from state�

to state�� on symbol�. Note that as the parameter	 is varied the transition probabilities in
the original machine are given different weights while the overall “shape” of the transitions is
maintained. This is the intensive analog of the effect	 has on the extensive distribution
� above.

Most of the thermodynamic properties are determined by the parametrized connection matrix
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���
�

(43)

There are two quantities required from this matrix. Its principal eigenvalue

�� � ���
�������������

�
�� � ������ � ������

�
(44)

and the associated right eigenvector��

���� � ���� (45)

Note, however, that�� is not a stochastic matrix. In fact,

�
����

�
��

	
���


�
�
� 	 	 � 	

� 	 	 � 	

� 	 	 � 	

(46)

It does not directly describe, for example, the probabilities of the subset of sequences that are
associated with the relative transition weightings at the given	; except, of course, at	 � 	.

There is, however, an “equilibrium” machine, whose stochastic connection matrix is denoted
��, that produces the same sequences but with the relative weights given by��. Recall that the
state of macroscopic equilibrium is determined by one of the variational principles:

1. At given total entropy, the equilibrium state minimizes the energy;
2. At given total energy, it maximizes the thermodynamic entropy.
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Using the latter entropy representation, the equilibrium machine is that with maximal thermo-
dynamic entropy subject to the constraints imposed by��. That is, all of the nonzero edge
probabilities are allowed to vary.�� describes the process over the allowed subsequences which
are in thermodynamic equilibrium at the given temperature. It is found using Shannon’s entropy
maximization formula35,40

�� �
����������������

��
(47)

where����� is a diagonal matrix with the components of�� on the diagonal. Since this is a
stochastic matrix its principal eigenvalue is unity. However, the associated left eigenvector���

����� � ��� (48)

when normalized in probability gives the asymptotic state distribution.

The entropy rate, as seen in a previous section, is
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����� ���� ����� (49)

where����� �
�
��

�
���

. The 	-complexities are given by
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�� ���� �� (50)

where��������� � ������� . The metric�	 � �� and topological�	 � �� quantities are directly
recovered. That is,

� � �� and
 � 
�

�� � �� and
� � 
� (51)

The relation


�
� � 
� 	 ��

�
��

�
(52)

again constrains the entropy rate and the complexities.

Physically speaking����� � � ���� ����� plays the role of an interaction energy between
two states and	 is related to the inverse temperature. Although the same support, i.e. set of
sequences and topological machine, exists at all temperatures, varying	 accentuates the measure
of the process�� over different paths in the machine or, equivalently, over different subsets of
sequences. One subset’s weight changes relative to others as dictated by��’s elements.
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In the limit of long sequences the partition function’s growth rate is governed by the maximal
eigenvalue�� of the machine matrix��. That is,

����� �
���

��� (53)

The machine Helmholtz free energy density becomes

� � � ���
���

�

�
��� ��	� �����

� � ���� ��	� �� (54)

and the thermodynamic entropy is


 � ����
�
����

�
(55)

where�� is Boltzmann’s constant. Using the basic thermodynamic relation between these, the
total energy density is then readily computed by noting

� � �  �
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�
(56)

using the identification��� � ��� .

In the entropy representation, the function
���, computed from Eq. (55) and Eq. (56),
determines the thermodynamic “potential” along an arc�� in the model space� of consistent
stochastic machines. Consistent machines are those having the same set of allowed sequences as
those observed in the data stream. At each fixed� the equilibrium machine is estimated via Eq.
(47). Here equilibrium refers to a closed and isolated system specified by a fixed temperature and
so a fixed average energy�. In contrast, the graph of
��� concerns a closed, but nonisolated
system in contact with an energy reservoir at temperature��� � 	�
	
. It gives the entropies
and energies for the family of machines��. The equilibrium machine occurs at� � � where
the free energy vanishes and all of the unconstrained information is “thermal” or randomized.

This is the thermodynamic analog of a cost function like that over model space� as shown
in Figure 3. It is not the same, however, since (i)
��� is computed in the thermodynamic limits
of a long data stream and long sequence length and (ii) it represents two different optimizations,
one at each temperature and the other over all temperatures. This is the view of statistical
estimation developed in large deviation theory.8,17 It suggests a rather different appreciation
of the Sinai-Ruelle-Bowen thermodynamic formalism6,33,39for invariant measures of dynamical
systems as a foundation for nonlinear modeling.

Independent of this modeling interpretation Eq. (55) and Eq. (56) give a direct way to study
macroscopic properties of the sequences produced by a stochastic machine. In particular, the
shape of
��� determines the variation in entropy and energy within subsets of sequences that
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Figure 9 The fluctuation spectrum, thermodynamic entropy density���� versus
internal energy density�, for the machine��

�
� .

are invariant under the process. It indicates rather directly the range of likely fluctuations in
observed sequences. Two examples will serve to illustrate these points.

Figures 9 and 10 show the “fluctuation” spectra, the thermodynamic entropy density����
versus the energy density�, for the Misiurewicz machines��

�
� and��

�
� . Notice the rather

large difference in character of the two spectra. This is another indication of the computational
irreversibility of the underlying process. The topological entropies, found at the spectra’s maxima
� � ��� � � � ��, and the metric entropies, found at the unity slope point on the curves
�� � ��� � � � ��, are the same, despite this. The energy extremes���� and����, as well as
the thermodynamic entropies������� and������� differ significantly due to the irreversibility.

By way of ending this section, a final thermodynamic analogy will be mentioned. One of
the first experimentally accessible measures of complexity was the excess entropy.13 The total
excess entropy����� is a coarse measure of the average amount of memory in a measurement
sequence above and beyond its randomized information. It is defined as follows

����� � ������ ��� (57)

where
����� � ��� ���� 	
�� 	���� (58)
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Figure 10 The fluctuation spectrum, thermodynamic entropy density���� versus
internal energy density�, for the machine��

�
� .

is the total Renyi entropy and�� � �� � ���� ���
�
�� is the Renyi entropy rate. This was

referred to as the free information14 since it is easily seen to be analogous to a free energy.
The free information is the Legendre transform of the Renyi entropy�� that replaces its length
dependence with an intensive parameter��. If subsequence length� is again associated with
the volume�, a thermodynamic pressure can be associated with��. Finally, since the free
information is an approximation of the finitary complexity,14 the latter is also seen to be a type
of free energy.

A more detailed development of machine thermodynamics can be found elsewhere.16 The
preceding outline hopefully serves to indicate a bit of its utility and interest.

To summarize, the thermodynamic analysis suggests that the total information in a data
stream, as extracted by machine reconstruction and as interpreted by an observer with a model,
exists in two forms: one thermal and the other associated with information processing. The
first, randomness in the data, is measured by the thermodynamic entropy. The second, structure
in the data that causes it to deviate from simple thermal equilibrium, is that available to do
mathematical work. This work might consist of communicating from a process to an observer;
this is information transmission in space. It also can be available as static memory, which
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is information transmission across time. Most usefully, it can be available to do genuine
computation and to support thereby semantic information processing.

SCIENCE AS DATA COMPRESSION?

Thinking back to the explanatory channel, these considerations lead me to disagree with the
philosophical premise implicit in the universal coding theory approach to nonlinear modeling.
While I accept the mathematics and use the optimization criteria, its own semantics appears
wanting. Science is not data compression. The structure of models is ultimately more important
than their use in encoders and decoders for the efficient encapsulation of experience. In the limit
of large data streams and positive entropy processes, i.e. the realm of universal coding theory,
the model is essentially ignored and prediction error dominates. At the end of the day, though,
good models are independent of the amount of data used to originally infer to them.# This point
was emphasized in the preceding by the analysis of the effects their computational structure
had on knowledge relaxation and on their semantic structure. Even these naked, mathematical
objects, with which one typically does not associate meaning, do imply a semantic structure for
the act of measurement. And it is this semantics that gives models their scientific value.

The preceding discussion, though only an outline, attempted to put these issues in a
sufficiently large arena so that they can stand on their own. At the beginning there are dynamical
systems whose diverse and complicated phenomenology has rapidly become better understood.
They enrich our view of natural phenomena; though they do not necessarily deepen it. The
contrast between their often simple specification and their creation of apparent complexity leads
to computational mechanics. Computation theory in this development appears as the theorypar
excellenceof structure. During the 1960’s it gave the foundation for a theory of randomness. But
that success should not blind us to the pressing need for constructive measures of complexity for
physical, chemical, biological, and economic systems that go beyond randomness. Descriptions
of complexity need not always pay for randomness. This is as true of statistical inference applied
to nonlinear modeling as it is of thermodynamic and evolutionary systems. Indeed, it is one
of the primary lessons of nonlinear dynamics that effective randomness is cheap and easily
regenerated. Concomitantly, it also shows that ideal randomness is just that: an ideal that is
expensive and, in principle, impossible to objectively obtain. Fortunately, nature does not seem
to need it. Often only randomness effective for the task at hand is required.

This tension between randomness and order, the result of which is complexity, has always
been a part of the problem domain of thermodynamics. Indeed, phase transitions and, especially,
critical phenomena are the primary evidence of nature’s delicate balance between them. Given
this observation, the question now presents itself to nonlinear modeling, What types of com-
putation are supported by physical systems at phase transitions, at the interface between order
and chaos?** Away from “critical” processes, classical thermodynamics forms a solid basis on
which to build nonlinear modeling. To the extent Gibbsian statistical mechanics is successful,

# To describe the behavior of a thermodynamic system it suffices to communicate the equations of
state, approximate macroscopic parameters, and possibly the force laws governing the microscopic
constituents. Exact description is not only undesirable, but well nigh impossible.

** A first, constructive answer can be found elsewhere.15
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so too will optimal modeling be. Though, as I just mentioned, there is much to question within
this framework. Having described the analogy between thermodynamics and optimal modeling,
another deeper problem suggests itself.

Classical thermodynamics foundered in its description of critical phenomena due to its
confusion of the (observable) average value of the order parameter with its most likely value.
So too the universal coding theoretic association of the optimal model with the most likely,
Eq. (7), can fail for processes with either low entropy or near phase transitions. This will be
especially exaggerated for “critical” processes that exhibit fluctuations on all scales. In these
cases, fluctuations dominate behavior and averages need not be centered around the most likely
value of an observable. This occurs for high complexity processes, such as those described by
stochastic context-free and context-sensitive grammars,15,30 since they have the requisite internal
computational capacity to cause the convergence of observable statistics to deviate from the Law
of Large Numbers.

Having told this modeling story somewhat briefly, I hope it becomes at least a little
clearer how the view of microscopic processes offered by statistical mechanics needs to be
augmented. The examples analyzed demonstrate that the computational structure and semantic
content of processes are almost entirely masked and cannot be articulated within the conventional
framework. But it is exactly these properties that form the functional substrate of learning
and evolutionary systems. The claim here is that an investigation of the intrinsic computation
performed by dynamical systems is a prerequisite for understanding how physical systems
might spontaneously take up the task of modeling their nonlinear environments. I believe
the engineering by-products of this program for forecasting, design, and control, will follow
naturally.

The greatest sorcerer [writes Novalis memorably] would be the one who bewitched himself
to the point of taking his own phantasmagorias for autonomous apparitions. Would not this
be true of us?

J. L Borges, “Avatars of the Tortoise”, page 115.5
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