
DisCo: Physics-Based Unsupervised Discovery of
Coherent Structures in Spatiotemporal Systems

Adam Rupe∗, Nalini Kumar‡, Vladislav Epifanov‡, Karthik Kashinath†, Oleksandr Pavlyk‡,
Frank Schlimbach‡, Mostofa Patwary§, Sergey Maidanov‡, Victor Lee‡, Prabhat†, James P. Crutchfield∗

∗Complexity Sciences Center and Department of Physics,
University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.

‡Intel Corporation, 3600 Juliette Ln, Santa Clara, CA 95035, USA.
†Lawrence Berkeley National Laboratory, 1 Cyclotron Road, M/S 59R4010A, Berkeley, CA 94720, USA

§Baidu Research, 1195 Bordeaux Dr, Sunnyvale, CA 94089, USA.

Abstract—Extracting actionable insight from complex unla-
beled scientific data is an open challenge and key to unlocking
data-driven discovery in science. Complementary and alterna-
tive to supervised machine learning approaches, unsupervised
physics-based methods based on behavior-driven theories hold
great promise. Due to computational limitations, practical ap-
plication on real-world domain science problems has lagged
far behind theoretical development. However, powerful modern
supercomputers provide the opportunity to narrow the gap
between theory and practical application. We present our first
step towards bridging this divide - DisCo - a high-performance
distributed workflow for the behavior-driven local causal state
theory. DisCo provides a scalable unsupervised physics-based
representation learning method that decomposes spatiotemporal
systems into their structurally relevant components, which are
captured by the latent local causal state variables. Complex
spatiotemporal systems are generally highly structured and orga-
nize around a lower-dimensional skeleton of coherent structures,
and in several firsts we demonstrate the efficacy of DisCo in
capturing such structures from observational and simulated
scientific data. To the best of our knowledge, DisCo is also the
first application software developed entirely in Python to scale to
over 1000 machine nodes, providing good performance along with
ensuring domain scientists’ productivity. We developed scalable,
performant methods optimized for Intel many-core processors
that will be upstreamed to open-source Python library packages.
Our capstone experiment, using newly developed DisCo workflow
and libraries, performs unsupervised spacetime segmentation
analysis of CAM5.1 climate simulation data, processing an
unprecedented 89.5 TB in 6.6 minutes end-to-end using 1024
Intel Haswell nodes on the Cori supercomputer obtaining 91%
weak-scaling and 64% strong-scaling efficiency. This enables us
to achieve state-of-the-art unsupervised segmentation of coherent
spatiotemporal structures in complex fluid flows.

I. INTRODUCTION

A. Data-Driven Discovery in Science

Over the last decade, the Data Deluge [1] has brought
dramatic progress across all of science [2], [3], [4], [5], [6]. For
data-driven science to flourish by extracting meaningful scien-
tific insights [7], [8], new methods are required that discover
and mathematically describe complex emergent phenomena,
uncover the underlying physical and causal mechanisms, and
are better able to predict the occurrence and evolution of these

phenomena over time. Increasingly, scientists are leaning upon
machine learning (ML) [9], [10], [11], [12], [13] and, more
recently, deep learning (DL) [14], [15], [16], [17], [18] to fill
this role.

While these techniques show great promise, serious chal-
lenges arise when they are applied to scientific problems. To
better elucidate the challenges of scientific application of DL
methods, we will focus on a particular problem of utmost and
imminent importance that necessitates data-driven discovery
- detection and identification of extreme weather events in
climate data [19], [20], [21]. Driven by an ever-warming
climate, extreme weather events are changing in frequency
and intensity at an unprecedented pace [22], [23]. Scientists
are simulating a multitude of climate change scenarios using
high-resolution, high-fidelity global climate models, producing
100s of TBs of data per simulation. Currently, climate change
is assessed in these simulations using summary statistics (e.g.
mean global sea surface temperature) which are inadequate for
analyzing the full impact of climate change. Due to the sheer
size and complexity of these simulated data sets, it is essential
to develop robust and automated methods that can provide the
deeper insights we seek.

Recently, supervised DL techniques have been applied to
address this problem [24], [25], [26] including one of the
2018 Gordon Bell award winners [27]. However, there is
an immediate and daunting challenge for these supervised
approaches: ground-truth labels do not exist for pixel-level
identification of extreme weather events [21]. The DL models
used in the above studies are trained using the automated
heuristics of TECA [20] for proximate labels. While the results
in [24] qualitatively show that DL can improve upon TECA,
the results in [26] reach accuracy rates over 97%, essentially
reproducing the output of TECA. The supervised learning
paradigm of optimizing objective metrics (e.g. training and
generalization error) breaks down here [8] since TECA is not
ground truth and we do not know how to train a DL model
to disagree with TECA in just the right way to get closer to
“ground truth”.

B. Behavior-Driven Theories for Scientific Machine Learning

With the absence of ground-truth labels, many scientific
problems are fundamentally unsupervised problems. Rather
than attempt to adapt unsupervised DL approaches to a
problem like extreme weather detection, we instead take a
behavior-driven approach and start from physical principles to
develop a novel physics-based representation learning method
for discovering structure in spatiotemporal systems directly
from unlabeled data.

At the interface of physics and machine learning, behavior-
driven theories (e.g. [28], [29], [30], [31], [32]) leverage phys-
ical principles to extract actionable scientific insight directly
from unlabeled data. Focusing directly on system behavior
rather than the governing equations is necessitated for com-
plex, nonlinear systems. For these systems it is generally not
possible to deduce properties of emergent behavior from the
underlying equations [33]. As an example, despite knowing the
equations of hydrodynamics and thermodynamics, which criti-
cally govern the dynamics of hurricanes, many aspects of how
hurricanes form and evolve are still poorly understood [34].

For the problem of unsupervised segmentation of extreme
weather events in climate data, we view these events as
particular cases of more general hydrodynamic coherent struc-
tures. Atmospheric dynamics, and hydrodynamic flows more
generally, are highly structured and largely organize around
a lower dimensional skeleton of collective features referred
to as coherent structures [35], [36]. More broadly, coherent
structures in spatiotemporal systems can be understood as key
organizing features that heavily dictate the dynamics of the full
system, and, as with extreme weather, the coherent structures
are often the features of interest. Project DisCo (‘Discovery
of Coherent Structures’) combines the behavior-driven local
causal state theory of coherent structures with a first-of-its-
kind performant and highly scalable HPC implementation in
Python.

In Section III we describe the mathematical details of the
theory and its use for unsupervised segmentation. In Section III
we also present an overview of the distributed DisCo workflow
and each of its stages. We then demonstrate its utility by iden-
tifying known coherent structures in 2D turbulence simulation
data and observational data of Jupiter’s clouds from the NASA
Cassini spacecraft in Section VII. Finally, we show promising
results on CAM5.1 water vapor data and outline the path to
extreme weather event segmentation masks.

C. Need for High Performance Computing

Theoretical developments in behavior-driven theories have
far outpaced their implementation and application to real sci-
ence problems due to significant computational demands. The-
orists typically use high-productivity languages like Python,
which often incur performance penalties, only for prototyping
their method and demonstrating its use on small idealized
data sets. Since these prototypes aren’t typically optimized for
production level performance, their use in science applications
with big datasets is limited. To solve real science problems,

domain scientists often have to rewrite applications, or portions
of, in programming languages like C, C++, and Fortran[37].

Making high-productivity languages performant and scal-
able on HPC systems requires highly optimized platform-
specialized libraries with easy-to-use APIs, seamlessly in-
tegrated distributed-memory processing modes with popular
Python libraries (like scikit-learn), efficient use of JIT com-
pilers like Numba etc. In Project DisCo, we use all these
techniques to enable optimized Python code from prototype
development to production deployment on more than 1000
nodes of an HPC system. This brings us closer to bridging
the performance and productivity disconnect that typically
exists in HPC, and streamlining the process from theoretical
development to deployment at scale for science applications.

A challenge specific to DisCo is the need for distance-based
clustering of lightcone data structures (described in more detail
in Sec. III). Compared to traditional clustering datasets, light-
cones are very high-dimensional objects. Though lightcone
dimensionality depends on reconstruction parameters, even the
baseline lower bound of O(100) is already very high for typical
implementations of clustering methods. To facilitate discovery,
our experiments used lightcones with dimension as high as
4495. Also, creation of lightcone vectors increases the on-node
data by O(lightcone dimension � 2). In our largest run, we
process 89.5 TB of lightcone data, which is several orders
of magnitude larger than previously reported lightcone-based
methods.

To enable novel data-driven discovery at the frontiers of
domain science with the ability to process massive amounts
of high-dimensional data, we created a highly parallel,
distributed-memory, performance optimized implementation of
DisCo software including two specialized clustering methods
(K-Means [38] and DBSCAN [39]). In keeping with our goal
of maintaining scientists’ software development productivity,
the libraries use standard Python APIs (scikit-learn). These
distributed implementations will be up-streamed to benefit the
growing community of Python developers.

D. Contributions

Project DisCo makes the following contributions:
� First distributed-memory implementation of a novel

physics-based representation learning method allowing
unprecedented data processing capability on large scien-
tific data sets.

� Performs unsupervised coherent structure segmentation
that qualitatively outperforms state-of-the-art methods for
complex realistic fluid flows.

� Demonstrates good single-node, weak scaling, and strong
scaling performance up to 1024 nodes.

� Distributed implementation of K-Means and DBSCAN
clustering methods for high-dimensional data using stan-
dard Python APIs.

� Achieves high performance while maintaining developer
productivity by using newly developed optimized Python
library functions and efficiently using parallelizing com-
pilers.

II. RELATED WORK

The basic algorithm for real-valued local causal state recon-
struction used by DisCo largely follows that of LICORS [40],
[41]. Without an HPC implementation, LICORS focused on
statistical properties of the algorithm, e.g. convergence, and
small proof-of-concept experiments. Further, this work used
the point-wise entropy over local causal states for coherent
structure filters [42], but this approach cannot produce objec-
tive segmentation masks, as our method is capable of.

The first real-valued local causal state reconstruction was
done in [43], which also analyzed complex fluid flows and
climate simulations. They were able to work with these data
sets due to efficient data reuse and data sub-sampling from
a low-productivity single-node implementation written from
scratch. Even with these optimizations in their implementation,
DisCo produces much higher resolution results with our high-
productivity HPC optimized implementation. Compare the
bottom row of Fig. 5 in [43] with Fig. 4 in Sec. VII. They
also used the local causal state entropy, and so were also not
capable of a structural segmentation analysis.

Lagrangian Coherent Structures (LCS) is a collection of
approaches grounded in nonlinear dynamical systems theory
that seeks to describe the most repelling, attracting, and shear-
ing material surfaces that form the skeletons of Lagrangian
particle dynamics [36]. These approaches are the structural
segmentation methods for fluid flows most relevant to DisCo.
[44] gives a survey of LCS methods, including two benchmark
data sets we use here. This provides us a key point of
comparison to the state-of-the-art for method validation, given
in Section VII.

DisCo’s segmentation semantics are built on a structural
decomposition provided by the local causal states. Such a
decomposition is similar to empirical dimensionality reduction
methods, such as PCA [45] and DMD [46]. These methods
are used extensively in fluid dynamics [35] and climate ana-
lytics [47].

The key step in the DisCo pipeline requires an unsupervised
clustering method. We focus on the popular K-Means [38]
method and the density-based DBSCAN [39]. Further discus-
sion of clustering in the DisCo pipeline is given in Sections
III, IV, and VII.

Several distributed implementations of K-Means have been
developed over the years. [48] is a C-based implementation
that uses both MPI and OpenMP for parallelization. It evenly
partitions the data to be clustered among all processes and
replicates the cluster centers. At the end of each iteration,
global-sum reduction for all cluster centers is performed to
generate the new cluster centers. [49] is an extension of
this work for larger datasets of billions of points, and [50]
optimizes K-Means performance on Intel KNC processors
by efficient vectorization. The authors of [51] propose a
hierarchical scheme for partitioning data based on data flow,
centroids(clusters), and dimensions. Our K-Means implemen-
tation partitions the problem based on data size, since its
application to climate data is a weak scaling problem. We

process much larger datasizes, though [51] showcases good
performance for much higher dimensionality, up to O(10E6),
and clusters O(10E6) than our use case. For comparison,
in our capstone problem, in the K-Means stage of DisCo
workflow we process �70E9 lightcones (�70E6/node) of 84
dimensions into 8 clusters in 2.32 s/iteration on Intel E5-2698
v3 (vs. 2.5E6 samples of 68 dimensions into 10,000 clusters
in 2.42 s/iteration on 16 nodes of Intel i7-3770K processors
in [51]). We also use a custom distance metric for applying
temporal decay (described in Section 3.2.2) which doubles the
number of floating point operations.

Several distributed implementations have been developed
for density-based algorithms. BD-CATS is a distributed DB-
SCAN implementation using union-find data structures that
scales to 8000 nodes on Cori [52]. POPTICS [53] is a
distributed implementation of the OPTICS algorithm using
the disjoint-set data structure and scaled to 3000 nodes. HDB-
SCAN from Petuum analytics [54] uses the NN-Descent algo-
rithm and approximates the k-NN graph. While their method
has been shown to work for high-dimensional data, it has not
been shown to work at scale. Other implementations such
as PDBSCAN [55], PSDBSCAN [56], PDSDBSCAN [57],
HPDBSCAN [58], etc. have been shown to scale well, but they
use specialized indexing structures like k-d trees or ball-trees,
which are sub-optimal for clustering high-dimensional data.
To the best of our knowledge, this is the first implementation
to demonstrate clustering to O(100) dimensional data at this
data scale (56 million points per node and 57 billion points in
total).

III. DESCRIPTION OF THE DISCO PROJECT

Project DisCo combines the first distributed HPC imple-
mentation of local causal state reconstruction with theoretical
advances in using local causal states to decompose spa-
tiotemporal systems into structurally relevant components and
objectively identify coherent structures [59], [60]. When fully
deployed, DisCo promises to discover and identify extreme
weather events in climate data using an unsupervised segmen-
tation analysis with local causal states. We now outline the
mathematical basis for this claim.

Fig. 1. 2+1D lightcone template with past horizon h� = 2, future
horizon h+ = 2, speed of information propagation c = 1.

A. Local Causal States - Theory

Similar to the intuition behind autoencoder neural networks,
pattern and structure of dynamical systems derives from opti-
mal prediction with minimal resources. Thus the mathematical
representation of a system's structure is learned through a
minimal, optimally predictive stochastic model [61], [62], [63].
A body of behavior-driven theory, known ascomputational
mechanics[64], gives a principled and constructive realization
of this idea through thecausal equivalence relation

pasti � � pastj () Pr(Future jpasti) = Pr(Future jpastj):

Two pasts are causally equivalent if they make the same
prediction of the future. The equivalence classes generated by
the causal equivalence relation are thecausal states. They are
the unique minimal suf�cient statistic of the past for optimally
predicting the future [63].

Generalizing to spatiotemporal systems,lightconesare used
as local notions of past and future. The past lightcone` � of
a point (r ; t) in spacetime �eldX is de�ned as the set of all
points in the past (up to some �nite horizonh�) that could
possibly in�uenceX (r ; t):

` � (r ; t) �
�

X (r 0; t0) : t � � t0 � t ; jj r0 � rjj � c(t � t0)
	

;

wherec is the speed of information propagation in the system
and t � = t � h� . The future lightconè + of X (r ; t) is
similarly the set of all points in the future (up to a �nite
horizonh+) that X (r ; t) can possibly affect;

`+ (r ; t) �
�

X (r 0; t0) : t < t 0 � t+ ; jj r0 � rjj � c(t0 � t)
	

:

From this we arrive at thelocal causal equivalence relation:

` �
i � � ` �

j () Pr(L+ j` �
i) = Pr(L+ j` �

j)

` �
i � � ` �

j () � (` �
i) = � (` �

j) :

The associated equivalence classes are thelocal causal states
[65]. They are the unique minimal suf�cient statistics of past
lightcones for optimal prediction of future lightcones. Each
local causal state� is the set of all past lightcones with
Pr(L+ j` �) = Pr(L+ j�). The � -function, which generates the
causal equivalence classes, maps from past lightcones to local
causal states;� : ` � 7! � .

Segmentation is achieved by applying the� -function to
all points in spacetime, mapping the observable �eldX to
its latent local causal state �eldS = � (X) in a process
known as causal �ltering. Every featurex = X (~r; t) is
mapped to its classi�cation label (local causal state) via its
past lightcone� = S(~r; t) = �

�
` � (~r; t)

�
. Crucially, this

ensures the latent �eldS shares the same coordinate geometry
with the observable �eldX such thatS(~r; t) is the local
latent variable corresponding to the local observableX (~r; t).
This means the learned representation is directly utilizable for
discovering pattern and structure in the physical observable
�eld. In particular, coherent structure inX are identi�ed
through locally broken symmetries inS [59].

B. Local Causal States - Reconstruction

The core reconstruction parameters are the past lightcone
horizon, future lightcone horizon, and speed of information
propagation:(h� ; h+ ; c). These de�ne the lightcone template,
as shown in Figure 1.

1) Lightcone extraction:The main task in local causal
state reconstruction is empirical estimation of the conditional
distributions,Pr(L+ j` �), known asfuture morphs. Ultimately
this comes down to counting past lightcone - future lightcone
pairs, (` � ; `+). Thus the �rst step is to extract all such
lightcone pairs from the given spacetime �eld(s)X and store
them in the paired lists ([plcs], [flcs]). Lightcones are
stored as �attened vectors with dimension=

P h �

d=0 (2dc+1) 2.
2) Cluster lightcones:For real-valued systems, like the

�uid �ows considered here, unique(` � ; `+) pairs will never
repeat. Some form of discretization is needed for counting.
The best way to do this is to discretize over the space of
lightcones, rather than discretizing the original data itself [43].
We do this by performing (separate) distance-based clustering
on the space of past lightcones and the space of future
lightcones [40].

Let C � be the set of clusters over the real-valued past
lightcones that results from some distance-based clustering of
[plcs], with individual clusters denoted asC � and stored in
[pasts]. Two lightcones are considered
 -equivalent if they
are assigned to the same distance-based cluster:

` �
i �
 ` �

j () ` �
i 2 C �

� and ` �
j 2 C �

�

` �
i �
 ` �

j ()
 (` �
i) =
 (` �

j) :

The
 -function maps past lightcones to their associated
distance-based cluster.

All prior work has used Euclidean distance for lightcone
clustering. This gives uniform weight to all points within the
�nite time horizon of the lightcone, and no weight to all
points outside. To smooth this step discontinuity, we introduce
a lightcone distancewith an exponential temporal decay.
Consider two �nite lightcones given as �attened vectorsa and
b, each of length n;

Dlightcone (a; b) �
q

(a1 � b1)2 + : : : + e � �d (n) (an � bn)2 ;

where � is the temporal decay rate andd(i) is the temporal
depth of the lightcone vector at indexi .

3) Build morphs: After clustering [plcs] and [flcs]
to produce [pasts] and [futures], respectively, we can
empirically estimate the future morphsPr(L + j` �) using
Pr(L + j` �) � Pr(C+ j C �). The justi�cation for this is the
assumption ofcontinuous histories[40, Assumption 3.1]: if
two past lightcones̀ �

i and ` �
j are very close in lightcone-

space, their future morphsPr(L + j` �
i) andPr(L + j` �

j) must be
very similar. Using the
 -function, we state a more actionable
version of this assumption, which is implicitly used, but not
formally stated, in Ref. [40]:

 (` �
i) =
 (` �

j) =) � (` �
i) = � (` �

j) :

The conditional distributionsPr(C+ jC �) are found as rows
of the joint distribution matrixD , whereD i;j = Pr(C �

i ; C+
j).

To getD we simply count occurrences of pairs(C � ; C+) in
([pasts], [futures]).

4) Causal equivalence: With the estimated morphs
Pr(C+ jC �) in hand we can reconstruct causal equivalence of
past clusters. Two past clustersC �

i andC �
j are -equivalent

if they have the same conditional distribution over future
clusters:

C �
i � C �

j () Pr(C+ jC �
i) = Pr(C+ jC �

j)

C �
i � C �

j () (C �
i) = (C �

j) :

The resulting equivalence classes are the approximated local
causal states, and the approximation of� (` �) is given as:

� (` �) �
�

 (` �)

�
:

We reconstruct -equivalence using hierarchical agglomera-
tive clustering. Distribution similarityPr(C+ jC �

i)
� Pr(C+ j� a) is evaluated using a chi-squared test with p-
value0:05.

5) Causal �lter: Using the approximated� -map we can
perform spacetime segmentation ofX though causal �ltering.
The
 -function has already been applied to produce [pasts]
by clustering [plcs]. We then apply the learned -function
from causal equivalenceto [pasts] to produce [states].
Because all these lists are in spacetime order, we simply
reshape [states] to get the approximated local causal state
�eld S �

�

 (X)

�
.

C. Distributed Reconstruction Pipeline

1. Data loading: Stripe the spacetime data so that the spa-
tial �elds for each time-step inX are stored individually
to allow for parallel I/O. Letworkset be the time-steps
that each process will extract lightcones from. Because
lightcones extend in time, each process must load extra
time-steps (halos), h� at the beginning ofworkset
andh+ at the end. Each process loads itsworkset +
halos in parallel.

2. Lightcone extraction: The temporal haloing removes any
need for communication during lightcone extraction,
which proceeds independently for each process.

3. Communication barrier: Ensure all processes have their
local [plcs] and [flcs] lists before proceeding.

4. Cluster lightcones: First cluster the past lightcones
across all processes. Store the cluster assignments labels
locally, in order. Then do the same for future lightcones.

5. Build local morphs: Each process counts(C � ; C+) pairs
in its local ([pasts], [futures]) to build D local .

6. Communication barrier: Wait for all processes to build
D local .

7. Build global morphs: Execute an all-reduce sum of all
D local to yield Dglobal across all processes.

8. Causal equivalence: Since each process hasDglobal ,
they can independently reconstruct the approximated
local causal states and� -map.

9. Causal �lter: Each process independently applies the� -
map to theirworkset to produceSlocal .

10. Write output: Each process independently savesSlocal

with time-order labels so thatS = � (X) can be con-
structed from allSlocal .

IV. CHALLENGES OFL IGHTCONE CLUSTERING

The most signi�cant step, both computationally and concep-
tually, in the DisCo pipeline is the discretization of lightcone-
space via distance-based clustering. While there are many
choices for distance-based clustering, we focus on two of the
most popular clustering algorithms in the scienti�c commu-
nity: K-Means [38] and DBSCAN [39].

The use of clustering in a structural decomposition pipeline,
along with the need to conform to the continuous histories
assumption, would seem to favor a density-based method
like DBSCAN over a prototype-based method like K-Means.
Density-connectivity should ensure nearby lightcones are clus-
tered together, whereas K-Means must returnK clusters and
therefore may put cuts in lightcone-space that separate nearby
past lightcones, violating the continuous histories assumption.

Because we don't want to put any geometric restrictions on
the structures captured by local causal states, the ability of
DBSCAN to capture arbitrary cluster shapes seems preferable
to K-Means, which only captures convex, isotropic clusters.
Furthermore, the restriction toK clusters, as opposed to an
arbitrary number of cluster with DBSCAN, puts an upper
bound on the number of reconstructed local causal states.
To test these hypotheses we experimented with both K-
Means and DBSCAN at scale to evaluate their parallel scaling
performance and the quality of clustering in the DisCo pipeline
on real-world data sets. These experiments and results are
discussed in Sections V, VI and VII.

A. Distributed K-Means

We developed a distributed K-Means implementation which
will be upstreamed to daal4py [66], a Python package similar
in usage to scikit-learn. Daal4Py provides a Python interface
to a large set of conventional ML algorithms highly tuned for
Intel® platforms. In contrast to other distributed frameworks
for ML in Python, daal4py uses a strict SPMD approach,
and so assumes the input data to be pre-partitioned. All
communication within the algorithms is handled under the
hood using MPI.

Our single-node K-Means implementation performs one
iteration of the algorithm in the following way: all data points
are split into small blocks to be processed in parallel. For each
block, distances from all points within the block to all current
centroids are computed. Based on these distances, points are
reassigned to clusters and each thread computes the partial
sums of coordinates for each cluster. At the end of the iteration
the partials sums are reduced from all threads to produce new
centroids. We use Intel® AVX2 or Intel® AVX512 instructions,
depending on the hardware platform, for vectorizing distance
computations.

Our multi-node K-Means implementation follows the same
general pattern: on each iteration current centroids are broad-
cast to all nodes, each node computes the assignments and
partial sums of coordinates for each centroid, and then one of
the nodes collects all partial sums and produces new centroids.
We use MPI4Py for collecting partial sums. We integrate into
various methods for �nding the initial set ofK centroids - �rst
K feature vectors,K random feature vectors, and K-Means++
[38] - provided by Intel® DAAL.

B. Distributed DBSCAN

We developed both single-node and multi-node implementa-
tions of DBSCAN optimized for use with high-dimensionality
lightcone data.

The single-node DBSCAN implementation computes neigh-
borhoods without using indexing structures, like k-d tree or
ball-tree, which are less suitable for high-dimensional data.
The overall algorithmic complexity is quadratic in the number
of points and linear in feature size (lightcone dimension).
Neighborhood computation for blocks of data points is done
in parallel without use of pruning techniques. We use Intel®

AVX2 or Intel® AVX512 instructions, depending on the hard-
ware platform, to compute distances between points, giving a
2-2.5x speed-up compared to the non-vectorized version.

For multi-node DBSCAN clustering, the �rst step is geomet-
ric re-partitioning of data to gather nearby points on the same
node, inspired by the DBSCAN implementation of [52]. It is
performed using the following recursive procedure: for a group
of nodes we choose some dimension, �nd an approximate
median of this dimension from all points currently stored on
a node, split the current group of nodes into two halves (with
value of chosen dimension lesser/greater than the median) and
reshuf�e all points so that each node contains only points
satisfying the property above.

Next, do geometric re-partitioning recursively for the two
resulting halves (groups) of nodes. Then each node gathers
from other nodes any extra points that fall into its bounding
box (extended by the epsilon in each direction) similar to [57].
Using these gathered points the clustering is performed locally
on each node (single node implementation) and the results
from all the nodes are then merged into a single clustering.

Because we use an approximate value of the median, the
geometric partitions can sometimes have imbalanced sizes.
This can impact the overall performance since different nodes
will complete local clustering at different times and no node
can proceed further until every node has �nished. Also, the
number of extra points for some geometric partitions lying in
low and high density regions of the data set may be different,
which may also cause some load imbalance among nodes.

V. EXPERIMENTAL SETUP

Here we describe the data sets used for both the science
results and scaling measurements. We also describe the HPC
system – Cori – on which these computations were performed.

A. Description of the Cori System

All of our experiments were run on the Cori system at
the National Energy Research Scienti�c Computing Center
(NERSC) at Lawrence Berkeley National Laboratory (LBNL).
Cori is a Cray XC40 system featuring 2,004 nodes of Intel®

Xeon™ Processor E5-2698 v3 (Haswell) and 9,688 nodes of
Intel® Xeon Phi™ Processor 7250 (KNL). Both Haswell and
KNL nodes were used.

Haswell compute nodes have two 16-core Haswell proces-
sors. Each processor core has a 32 KB private L1 instruction
cache, 32 KB private L1 data and a 256 KB private L2 cache.
The 16 cores in each Haswell processor are connected with an
on-die interconnect and share a 40-MB shared L3 cache. Each
Haswell compute node has 128 GB of DDR4-2133 DRAM.

Each KNL compute node has a single KNL processor with
68 cores (each with 4 simultaneous hardware threads and
32 KB instruction and 32 KB data in L1 cache), 16 GB of
on-package MCDRAM, and 96 GB of DDR4-2400 DRAM.
Every two cores share an 1MB L2 (with an aggregate of
32MB total). The 68 cores are connected in a 2D mesh
network. All measurements on KNL reported in this paper are
performed with the MCDRAM in “cache” mode (con�gured
as a transparent, direct-mapped cache to the DRAM).

Compute nodes in both the Haswell and KNL partitions are
connected via the high-speed Cray Aries interconnect. Cori
also has a Sonnexion 2000 Lustre �lesystem, which consists
of 248 Object Storage Targets (OSTs) and 10,168 disks, giving
nearly 30PB of storage and a maximum of 700GB/sec IO
performance.

B. Libraries and Environment

The DisCo application code is written in Python using both
open-source and vendor optimized library packages. We use
Intel ® Distribution Of Python (IDP) 3.6.8 .
IDP incorporates optimized libraries such as Intel® MKL
and Intel® DAAL for machine learning and data analytics
operations to improve performance on Intel platforms. We
also useNumPy (1.16.1), SciPy (1.2.0), Numba
(0.42.1), Intel ® TBB (2019.4), Intel ® DAAL
(2019.3) and Intel ® MKL (2019.3) from Intel®

Anaconda channels.MPI4Py (3.0.0) is built to use the
Cray MPI libraries.

For all K-Means experiments, our optimized implemen-
tation was built from source with Cray MPI and ICC
(18.0.1 20171018). These will be contributed back to Intel®

daal4py. We compile our DBSCAN implementation with
Intel® C/C++ Compilers (ICC 18.0.1 20171018) and without
the-fp-model strict compiler switch which can impact
the vectorization performance. Both K-Means and DBSCAN
are linked to Cray MPI binaries as well.

For scaling tests we installed theconda environments on
the Lustre �lesystem to improve Python package import times
for large runs on Cori [37]. For K-Means experiments, we run
the code with 1 MPI process per Haswell socket and limit the
number of TBB threads to 32 on a node with-m tbb -p
32 �ags to the Python interpreter. For DBSCAN experiments

we run the code with 1 MPI process per node and 68 tbb
threads on KNL, and 1 MPI process per node with 32 threads
on Haswell nodes.

C. Datasets

Two benchmark data sets: 2D turbulence and clouds of
Jupiter, are chosen for validation against a survey of LCS
methods from [44], and a simulated climate data set to
demonstrate scienti�c and scaling performance on a real-world
scienti�c application, as in [27].

The Jupiter data is interpolated RGB video taken over
a period of 10 days by the NASA Cassini spacecraft and
converted to integer grayscale [67]. The 2D turbulence data
set is the vorticity �eld from direct numerical solutions of
2-dimensional Navier-Stokes equations using pseudo-spectral
methods in a periodic domain [68]. The climate data set,
used for scaling experiments, is simulated data of Earth's
climate from the 0.25-degree Community Atmospheric Model
(CAM5.1) [69]. Climate variables are stored on an 1152 x
768 spatial grid (�oat32), with a temporal resolution of 3
hours. Over 100 years of simulation output is available as
NetCDF �les. Our hero run processed 89.5 TB of lightcone
data (obtained from 580 GB of simulated climate data).

VI. PERFORMANCERESULTS

We performed both K-Means and DBSCAN weak-scaling
and strong-scaling experiments with the CAM5.1 climate
dataset. K-Means experiments are run on Cori Haswell nodes
and DBSCAN experiments are run on both Cori Haswell
and Cori KNL nodes. The performance of each stage of
the pipeline as well as the total time to solution (including
synchronization) for an end-to-end single run is measured in
seconds. These measurements capture the end-to-end capa-
bility of the system and software, including the single node
optimizations, ef�ciency of the distributed clustering methods,
and interconnect subsystems.

A. K-Means performance

1) Single-node performance:Table I shows the breakdown
of execution time of different stages of the DisCo pipeline
developed from scratch on one Haswell and KNL node.

The data readstage simply reads the spacetime �eld data
into memory which is then processed inextract to generate
lightcone vectors. This involves reading spatiotemporal neigh-
bors of each point in the �eld and �attening them into an
n-dimensional vector. These are serial read/write operations
that are unavoidable, but the memory access pattern can be
optimized. Using Numba decorators for jitting to improve
caching and vectorization performance, we obtained a 64x
speedup on Haswell and 134x speedup on KNL node resulting
in overall speedup of 16.9x on Haswell and 62x on KNL
over the baseline implementation inspired by [43]. For the
cluster lc stage, we compare our optimized K-Means imple-
mentation which gives� 20x better performance than stock
scikit-learn [70]. The other three stages take only a small
fraction of the execution time and have little to gain from
directed optimization.

TABLE I
SINGLE-NODE PERFORMANCE OF THE DIFFERENT STAGES OF THE

DISCO PIPELINE BEFORE AND AFTER OPTIMIZATION

Stage Haswell, time(s) — KNL, time(s)

Baseline Opti-
mized

Speed
up Baseline Opti-

mized
Speed

up

data read 3.32 3.29 1 8.44 7.01 1.2
extract 519.64 7.85 65 4713.47 35.13 134
cluster lc 399.63 19.03 21 513.63 26.34 19
morphs 0.85 0.86 1 6.19 6.16 1
equivalence 0.002 0.002 1 0.56 0.02 26
causal �lter 0.14 0.14 0.3 0.49 0.49 1
Total 923.58 31.20 29.6 5242.78 74.93 70

2) Multi-node scaling: All experiments were conducted
with h� = 3 , c = 1 , number of clustersK=8, and
iterations=100 for K-Means clustering. The results are
shown in Figure 2.Extract is embarrassingly parallel and thus,
shows excellent scaling.

For weak scaling on Haswell, we used 220MB/node of raw
data (80 timesteps of 1152 x 768 spatial �elds). After lightcone
extraction (84 dimension vectors of �oat32 data), the size
of input to the clustering stage increases to 87.44GB/node.
We achieved weak-scaling ef�ciency of 91% at 1024 nodes,
measured against performance at 8 nodes. This is expected
from increased amounts of time spent in communication at the
end of each K-Means iteration as node concurrency increases.

For strong scaling experiments on Haswell, we used 64
timesteps per node on 128 nodes, 32 timesteps per node on 256
nodes, 16 timesteps per node on 512 nodes, and 8 timesteps
per node on 1024 nodes. After lightcone extraction the total
size of input data to the clustering stage is 54GB. We achieved
64% overall scaling ef�ciency and 81% clustering ef�ciency at
1024 nodes. At 1024 nodes, the amount of local computation
workload on a node is small compared to the number of
synchronization steps within K-Means and in the end-to-end
pipeline.

B. DBSCAN performance

1) Single-node performance:We used the pipeline opti-
mized for K-Means results for which are shown in Table I.
In thecluster lc stage, we use our implementation of the DB-
SCAN algorithm discussed in Section III. Designed for high-
dimensional clustering, it does not use indexing data structures
for nearest neighbor calculations. On the 2D turbulence data
set, the scikit-learn DBSCAN with brute-force neighborhood
computation is more than 3x faster than the default scikit-learn
DBSCAN, which uses k-d trees, while producing reasonable
results (less than20%noise points). In turn, our DBSCAN im-
plementation is more than 3x faster than the scikit-learn brute
implementation (same clustering parameters) due to better on-
node parallelization and use of AVX2 and AVX512 vector
instructions for computing neighborhoods and distances.

2) Multi-node scaling:We performed DBSCAN weak scal-
ing and strong scaling runs using the climate data set on both
Haswell and KNL nodes. All experiments were conducted with

Fig. 2. Breakdown of execution time spent in various stages of the DisCo on Haswell nodes with K-Means. Left : weak scaling and Right:
strong scaling. Parallel ef�ciency are plotted on the secondary axis.

Fig. 3. Breakdown of execution time spent in various stages of the DisCo on Haswell and KNL nodes with DBSCAN. Left : weak scaling
and Right: strong scaling. Parallel ef�ciency are plotted on the secondary axis.

minpts = 10 andeps=0.05 for DBSCAN clustering. The
results are shown in Figure 3.

For weak scaling on Haswell and KNL, we split a single
timestep of the 1152 x 768 spatial �eld across 8 nodes. At
1024 nodes, we achieved a scaling ef�ciency of 34.6%. The
poor scaling ef�ciency can be attributed to several reasons.
One, as discussed in Section III, distributed DBSCAN uses
geometric partitioning to gather adjacent points on the same
node. Then, at each step, every node clusters its local data
subset before merging results among different nodes. Two,
since we didn't use indexing data structures to perform lo-
cal clustering in DBSCAN, the complexity of each step is
O(dimensionality � j size of the partition j2). Third, the
total clustering time is equal to the running time of the slowest
node, which is the node containing the largest data partition.
As the number of nodes increases, it leads to an increase

TABLE II
LOAD DISTRIBUTION FROM GEOMETRIC PARTITIONING IN

DBSCAN

Nodes 128 256 512 1024
Min 87392 81960 84963 70824
Max 130867 130147 154574 172377
Average 105156 105156 105156 105156
Median 104378 104759 103854 103666

in imbalance in number of points between nodes (II and
increased total running time, as can be seen in Figure 3. We are
exploring ways of better partitioning the initial data to resolve
the load imbalance issue while maintaining the scalability with
increasing number of dimensions.

For strong scaling on Haswell and KNL, we used a single
timestep of the 1152 x 768 spatial �eld per node for the

128-nodes run; one timestep across 2 nodes for the 256-
nodes run; one timestep across 4 nodes for the 512-nodes run;
and one timestep across 8 nodes for the 1024-nodes run. We
achieved an overall scaling ef�ciency of 38% and clustering
ef�ciency of 52% on 1024 Haswell nodes. Increasing the
number of nodes, while preserving the total input data size,
results in a proportional decrease of partition sizes gathered
per node. From the quadratic dependency on the number of
points mentioned earlier, reducing the sizes of the partitions
by 2x, decreases the execution time by4x. However, since
the partitions are not balanced, the obtained ef�ciency from
increasing the number of nodes is marginally lower than the
expected4x reduction in execution time.

C. Hero Run

Our hero run processed 89.5 TB of lightcone data (obtained
from 580 GB of simulated climate data) with distributed K-
Means clustering on 1024 Intel Haswell nodes with 2 MPI
ranks/node and 32 tbb threads/processor. We do not use Cori
burst buffer. 580GB of climate data is read from the Cori
/cscratch/ �lesystem for generating nearly 90TB of lightcone
data, afterextract, which resides in the on-node memory. The
left column of Figure 2 shows execution times for this run.
The total time to solution was 6.6 minutes with a weak scaling
ef�ciency of 91%, which suggests that further scaling may be
possible to process unprecedented amounts of scienti�c data
and facilitate physics-based discovery in realistic systems.

VII. SCIENCE RESULTS

Snapshot images for our segmentation results on the three
scienti�c data sets using K-Means clustering in the DisCo
pipeline are shown in Figure 4. DBSCAN results are discussed
at the end of this section. We emphasize that DisCo produces
a spacetimesegmentation; the images shown are single-time
snapshots taken from spacetime videos. The left image of
each row in Figure 4 – (a), (d), and (f) – are snapshots
from the unlabeled “training” data used for local causal state
reconstruction. The other image(s) in each row are correspond-
ing snapshots from the local causal state segmentation �elds.
Full segmentation videos are available at the DisCo YouTube
channel [71].

The extreme weather event segmentation masks
shown in [27] have the following semantics:cyclone ,
atmospheric river , and background . In contrast,
the segmentation classes of DisCo are the local causal states.
Each unique color in the segmentation images – Figure 4 (b),
(c), (e), and (g) – corresponds to a unique local causal state.
Further post-processing is needed to assign semantic labels
such ascyclone and atmospheric river to sets of
local causal states. We will discuss this further in Sec. VII.1
and Sec. VII.3.

1) Structural Decomposition:The local causal state �elds
that are the direct output of DisCo, without additional semantic
labels, can be considered a “structural decomposition” of
the �ow. Incorporating the physics of local interactions to
generalize the computational mechanics theory of structure to

spatiotemporal systems, the local causal states are a more prin-
cipled and well-motivated decomposition approach compared
to empirical dimensionality reduction methods such as PCA
and DMD (see Sec. II), or automated heuristics like TECA.

But does the structural decomposition of the local causal
states capture meaningful “structure”? What constitutes phys-
ically meaningful structure in complex �uid �ows is an incred-
ibly challenging open problem [35], [44]. Even something as
seemingly obvious as a �uid vortex does not have a generally
accepted rigorous de�nition [72]. This is to say that it is
impossible to give a quantitative assessment of how close
our method gets to ground truth because ground truth for this
problem currently does not exist.

2) Lagrangian Coherent Structures:In the absence of a
quality metric to compare different methods against, the com-
munity standard is to qualitatively compare methods against
each other. In particular, the Lagrangian approach to coherent
structures in complex �uids is gaining wide acceptance and
[44] surveys the current state-of-the-art Lagrangian Coherent
Structure methods (see Sec. II). We directly compare our
results with the geodesic and LAVD approaches (described
below) on the 2D turbulence data set from [44] and the Jupiter
data set from [44] and [73].

There are three classes of �ow structures in the LCS
framework; elliptic LCS are rotating vortex-like structures,
parabolic LCS are generalized Lagrangian jet-cores, and hy-
perbolic LCS are tendril-like stable-unstable manifolds in the
�ow. The geodesic approach [36], [73] is the state-of-the-
art method designed to capture all three classes of LCS
and has a nice interpretation for the structures it captures in
terms of characteristic deformations of material surfaces. The
Lagrangian-Averaged Vorticity Deviation (LAVD) [74] is the
state-of-the-art method speci�cally for elliptic LCS, but is not
designed to capture parabolic or hyperbolic LCS.

The local causal states are not a Lagrangian method (they
are built from spacetime �elds, not Lagrangian particle �ow)
so they are not speci�cally designed to capture these structures.
However, LCS are of interest because they heavily dictate the
dynamics of the overall �ow, and so signatures of LCS should
be captured by the local causal states. As we will see in the
results and comparisons in 7.1 and 7.2, this is indeed the case.

3) Reconstruction Parameters:The complex �uid �ows
of interest are multi-scale phenomena and so the question
of how they are structured may not have a single answer.
Different notions of structure may exist at different length
and time scales. With this in mind, we have found that
essentially all reconstruction parameters yield a physically
valid structural decomposition. Varying parameters adjusts the
structural details captured in a satisfying way.

Larger values ofK in K-Means produce re�nements of
structural decompositions from smaller values ofK , capturing
�ner levels of detail. The speed of information propagation
c controls the spatial-scale of the structural decomposition
and the decay-rate� controls the temporal coherence scale.
Because uniqueness and optimality of local causal states are
asymptotic properties, lightcone horizons should be set as large

Fig. 4. Structural segmentation results for the three scienti�c data sets using K-Means lightcone clustering. The leftmost image of each row
shows a snapshot from the data spacetime �elds, and the other image(s) in the row show corresponding snapshots from the reconstructed
local causal state spacetime �elds. Reconstruction parameters given as(h� ; h+ ; c; K � ; �): (b) - (14, 2, 1, 10, 0.8), (c) - (14, 2, 1, 4, 0.0),
(e) - (3, 3, 3, 8, 0), (g) - (3, 3, 1, 16, 0.04).K + = 10 and 0:05 for chi-squared signi�cance level were used for all reconstructions. Full
segmentation videos are available on the DisCo YouTube channel [71]

as is computationally feasible. Though some �nite cutoff must
always be used. The lightcone horizon creates a discrete cut
in the amount information of local pasts that is taken into
account, as opposed to the smooth drop-off of the temporal
decay.

The local causal states, using different parameter values,
provide a suite of tools for analyzing structure in complex,
multi-scale spatiotemporal systems at various levels of de-
scription. Finally, we note that the� ! 1 (or, equivalently
the h� ! 0) limit produces a standard K-Means image
segmentation, which captures instantaneous structure and does

not account for coherence across time and space.

A. 2D Turbulence

While still complex and multi-scale, the idealized 2D turbu-
lence data provides the cleanest Lagrangian Coherent Structure
analysis using our DisCo structural decomposition. Figure 4
(a) shows a snapshot of the vorticity �eld, and (b) and (c)
show corresponding snapshots from structural decompositions
using different reconstruction parameter values. Both use the
same lightcone template withh� = 14, h+ = 2 , andc = 1 .
To reveal �ner structural details that persist on shorter time

	Introduction
	Data-Driven Discovery in Science
	Behavior-Driven Theories for Scientific Machine Learning
	Need for High Performance Computing
	Contributions

	Related Work
	Description of the DisCo project
	Local Causal States - Theory
	Local Causal States - Reconstruction
	Lightcone extraction
	Cluster lightcones
	Build morphs
	Causal equivalence
	Causal filter

	Distributed Reconstruction Pipeline

	Challenges of Lightcone Clustering
	Distributed K-Means
	Distributed DBSCAN

	Experimental Setup
	Description of the Cori System
	Libraries and Environment
	Datasets

	Performance Results
	K-Means performance
	Single-node performance
	Multi-node scaling

	DBSCAN performance
	Single-node performance
	Multi-node scaling

	Hero Run

	Science Results
	Structural Decomposition
	Lagrangian Coherent Structures
	Reconstruction Parameters

	2D Turbulence
	Jupiter
	Extreme Weather Events
	Lightcone Clustering Revisited

	Conclusions
	References

