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SUMMARY

Within an assumed language class optimal models can be estimated using Gibbsian
statistical mechanics. But how are model classes themselves related? We consider the
problem of moving from less to more computationally capable classes in the search for
finite descriptions of unpredictable data series.

COMPLEXITY: The Essential Tension between Order and Chaos

Complexity arises at the onset of chaos. Natural systems that evolve with and
learn from interaction with their immediate environment exhibit both structural order and
dynamical chaos. Order is the foundation of communication between elements at any
level of organization, whether that refers to a population of neurons, bees, or humans.
For an organism order is the distillation of regularities abstracted from observarions. An
organism's very form is a functional manifestation of its ancestor’s evolutionary and its
own developmental memory.

A completely ordered universe, however, would be dead. Chaos is necessary for
life. Behavioral diversity, to take an example, is fundamental to an organism's survival.
No natural environment can be modeled in its entirety, though. Approximation becomes
essential to any system with finite resources. Chaos, as we now understand it, is the
dynamical mechanism by which nature develops constrained and useful randomness from
finite resources. And from it follow diversity and the ability to anticipate the uncertain
future.

There is a tendency, whose laws we dimly comprehend, for natural systems to balance
order and chaos, to move to the interface between structure and uncertainty. The result
1s increased complexity. This often appears as a change in a system’s computational
capability. The present state of evolutionary progress suggests that one need go even
further and postulate a force that drives in time toward successively more sophisticated and
qualitatively different computation. The evidence for this is immediate. We can look back
to times in which there were no systems that attempted to model themselves, as we do now.
This is certainly one of the outstanding puzzles: how can lifeless and disorganized matter
exhibit such a drive? And the question goes to the heart of many disciplines, ranging from
philosophy and cognitive science to evolutionary and developmental biology and particle
astrophysics. The dynamics of chaos, the appearance of pattern and organization, and the
complexity quantified by computation will be inseparable components in its resolution.

In the following we consider a restriction of this general problem to a tractable one that
concerns modeling temporal sequences of measurements: i.e. inferring models of processes
from their data series. The specificity gives a concrete picture of what we mean by a model,
its class and language. Here a model will be a machine in the form of one of a variety of
stochastic automata; its class, the list of architectural constraints; and its language, the full
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range of behavior it can describe. Our problem then becomes how to jump levels from a
computationally less capable machine type to a more sophisticated one. Thus, we are not
so much interested in the optimization of estimated models within any particular class, but
rather the relation between levels. The relations consist of learning heuristics that indicate
what needs to be innovated in order to define a new more powerful class.

e-MACHINES

The central modeling abstraction is the e-machine.! For a given, possibly infinite data
stream this is the smallest deterministic machine at the least computationally powerful level
that yields a finite description. ¢ here simply refers to the dependence on the nature of the
data stream. In the past ¢ has denoted the measurement resolution with which a continuous
state system is sampled. It is also consistent with the use in Shannon’s dimension rate® and
in the complexity theory of function ::pacf:s.3 There are, of course, many other parameters
that could be listed for a data stream: ¢ is a sufficient reminder.

There is no a priori reason to expect a hierarchy of finitely-describable models for
nonlinear processes to extend ever upward or, for that matter, to terminate. The distinction
between these alternatives is not unlike a Godelian limitation. Computation theory indicates
that the task of estimating optimal models becomes more difficult as the class capability
increases. Nonetheless, we take e-machines as a definition of what is humanly conceivable
and humanly workable; and also as indicative of contemporary scientific method. From
an operational viewpoint, for example, animal learning, scientific research, and biological
evolution exhibit the property of compiling namral regularities into compact and usable
structures. Physical degrees of freedom are reconfigured into analogical models of observed
properties. These form predictive devices and a basis for generalization. The reconstruction
of e-machines gives a concrete approach to studying the common elements in these
processes.

Table 1 summarizes the overall goal as a hierarchy of ever more sophisticated e-

machines. In the progression toward higher complexity less capable models form the
representation basis for inference at the next higher level.

RECONSTRUCTION HIERARCHY

At each level of the hierarchy, there is a corresponding model class or representation
that determines the language. Each representation has a notion of current state and of
transition 1o a successor state. The set of sequences that each can recognize and generate
is indicated by the grammar type. And that in turn gives the structure of the language, i.e.
the range of expression of the model class.

A representation is a set of assumptions about the underlying process that produced the
data sream. These assumptions we refer to as symmetries, since in many cases they are
easily represented by particular semigroups. The procedure of estimating a model within
a class corresponds to factoring out the appropriate symmetries from the data stream.
Formally, the “factoring out™ reconstruction is given by an equivalence relation, generally
denoted ~.

The complexity C (5|M) of a data steam S with respect to a given model class M
is the representation’s size.*>® And this typically is taken to be the number of inferred
M-states. Just as with Shannon information, which is a special case as discussed below,
complexity is a fundamentally relative concept. It is important to note that if, at a given
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Table 1 Computational capability increases going down the table, i.e. with increasing level. See texi for discussion,

level, a process P producing a data stream S appears 1o consist of independent processes
Py @ P @ -+, then the complexity is additive C (S|M) = 3 C (Fi|M).

The models in the hierarchy are deterministic in the sense of computation theory. This
means they deterministically recognize the measurement sequence from which they are
reconstructed. In other words, the machines cannot make transitions to different successor
states on the same input. Nonetheless, when used as models to generate new sequences,
including some possibly never observed in the original data, they employ a source of
randomness to select a uniquely labeled transition from a state. That source of guesses is
referred to as a random oracle. In this sense the hierarchy is stochastic.

The computational capability of the classes increases going down the table, ie. with
increasing level. For example, Markov processes are less computationally capable than
stochastic semigroups and finite automata. This trend to increasing capability is concomitant
with the increasing specificity and strength of the assumed statistical and deterministic
structure of the process that produced the data. In moving up the hierarchy new abstractions
come into play as the appropriate assumptions about the underlying process. Thus, only at
the tree level do the notions of stationarity and sequence probability first appear; and only
at the semigroup level does intrinsic dynamics arise.

Above, we discussed the complexity in terms of factoring out symmetries from the data
stream. While true, the reconstruction process as a whole is incremental. Lower levels
provide a representation basis on top of which the next level is reconstructed. Moving
stepwise up the hierarchy is an example of incremental learning. Regular patterns of lower
level states become the states at the next higher level. In fact, the progression in the table
represents, fairly closely, the inference method used in building up finitary and nonfinitary
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e-machines; up to the level that is currently implemented: register production machines, the
hfth level. The original question then is articulated in terms of the mathematical structure
of incremental learning.

The first partial answer to the question of how to do incremental leamning comes from
considering the convergence properties of lower level representations. For example, as
discussed below, the convergence of lower level complexity with increasingly accurate
representation determines the complexity at the next higher level. For example, entropy
convergence at the tree level determines the finite dutomaton complexity. And finite
automata complexity convergence, in turn, affects the indexed context-free production
complexity at the register automaton level.

The evolution to higher capability is simply described in statistical mechanical terms.
There is a partition function for each class, Z, = E{Smms}e““‘“”stam, that is the sum
over that level's states. The complexity is the analog of the Helmholtz free energy,
Co = (1—a) 'logZ,. At each level one estimates an optimal model.78910 This is
taken as the minimal representation consistent with the data to within some error. It is
found by minimizing the analog of the Gibbs free energy which relates the change in
complexity to representation accuracy and prediction error.

Various labels in the table are given in terms of forward time reconstruction. These can
be modified, however, for reverse time reconstruction by consistently replacing “future”
with “past” and “predecessor” with “follower”. The difference in the corresponding
complexities is a measure of statistical irreversibility. The first level at which a useful
(nonzero) measure of reversibility occurs is that of Semigroup representation.

DATA STREAMS AND PROCESSES

A data stream consists of a long measurement sequence s = {sg8189---:5; € A}
whose elements are formal symbols in a finite set, the alphabet A of k symbols. Before
discussing models it is natural to lay out the assumptions concerning what is being modeled,
viz. a process that produces a symbol sequence. We are interested in process languages
consisting of observable words and their substrings. One way to motivate this notion is
10 assume that there is some process P thar emits an unending stream of symbols. We,
the observers, have no control over how the process started and must simply take the data
as it comes. If we have observed a particular word, then obviously we have observed its
subwords. When we consider processes as machines, they can start in any state and can stop
in any state. In contrast the machines We reconstruct have a single start state. This state
represents the observer’s condition of total ignorance of the process’s state. The machine
as a whole captures the temporal evolution of the observer’s knowledge of the process as
measurements are collected. The reconstruction problem is then how to infer properties of
P at a specified level given an observed subset of the process’s language L (P). This is a
central problem in the computational learning theory of inductive inference.!!

Given a data stream consisting of a long measurement sequence s =
{sos1--sy_1:5 € A} we can ask how much storage it requires. Consider the lexi-
cographic ordering of all such sequences. Since there are iV possible sequences, it will
take NV log, & bits of storage to specify the ordinal number that uniquely identifies the par-




TREES

For example, rather than explicitly listing the sequence, if we assume that similar
sequences observed at different positions in the data stream represent the same process
states, then there is a more compact storage method based on histograms. The associated
data structure is a tree, each level L of which represents the number each length L sequence
observed anywhere in the data stream.

Given this assumption, the second step in machine inference is the construction of a
parse tree. A wee T = {n,l} consists of nodes n = {n;} and directed, labeled links
1= {I.- : (n - n') , nn €n,s€ A}. connecting them in a hierarchical structure with
no closed paths. An L-level subtree T’ is a tree that starts at node n and contains all nodes
below n that can be reached within L links. The tree nodes are this representation’s state;

the links the state transitions. Trees, then, are machines with no feedback loops. There is
no notion of recurrent sequences of tree states.

To construct a tree from a measurement sequence we simply parse the latter for all
length D sequences and from this construct the tree with links up to level D that are

labeled with individual symbols up to that time. We refer to length D subsequences

P = {s,- o SigpDel t 8 = {s}j} as D-cylinders. Hence an D level tree has a length

D path corresponding to each distinct observed D-cylinder. The picture here is that a
particular D-cylinder is a name for that bundle of the underlying process’s orbits each of
which visited the sequence of measurement partition elements indexed by the D-cylinder.
The basic assumption in building a tree is that symbol sequences observed at different
tumes in the data stream approximate the same process state. Nonstationary processes are
examples for which this assumption fails.

Every node n in the tree is associated with the sequence or word w, that leads to it
starting from the top tree node n,, the tree state of total ignorance. Probabilistic structure
15 added to the tree T by recording for each node the number NV (w,, ) of occurrences of the
assuciat:d D-cylinder wy, relative to the observed total number NV (1) of length [ = |wy],
pl = N1 (I) N (w,) where ny = n. This provides estimates of the node proabilides

Pn = {pn :n € n}. And this in turn gives a hierarchical approximation of the measure in
sequence space [ljeA. Tree representations of data streams are closely related to the
hierarchical algorithm used for estimating dynamical entropies.!®!3

ENTROPY

In fact, the notion of entropy as used in information theory is intimately related to tree
data structures. For if we ask how much storage is required for a tree representation of a
data stream, Shannon’s entropy emerges as the most natural estimator for the growth rate
of the number of nodes. This follows from consideration of the fundamental relationship
between entropy, combinatorics, and probability.!* Rather than specifying the particular
data sequence as one out of k¥, it is identified via two parts: a histogram of counts and the
ordinal number within the cnscmhir: indexed by that histogram. For the given alphabet, we
must specify & counts {v; : i =1,...,k} for each symbol and each count may be as large
as N. This takes klog, IV bits. Then the observed sequence is specified as one out the
N!(v;!- - )" possible sequences descnhcd by the ensemble. The total required storage

for large .V is then dominated by —N Z % log . This is clearly related to Shannon’s

entropy. But that connecdon follows {m]y if we then assume that probabilities exist and



can be determined by the relative frequency estimator, p; = N~'v;. The analysis up to
this point has made no such assumption.

We have considered the histogram of individual symbols. It can be easily extended to
account for L-sequences and so it applies to each level of a tree representation. Within the
class of tree models the notions of typical subsequence and of probability first come into
play, moving up the hierarchy. The analysis shows in what sense entropy is dual to tree
models of data streams and how it is the appropriate measure of a tree representation’s
average size. The tree is built using a sliding window to move through the data stream.
It caprures in this way the distinct sequences and summarizes their occurrence at different
points in the data stream via a count or probability. Entropy measures the number of
distinct sequences. That number increases if there is branching as one moves down the
tree and forward in time.

Assuming that probabilities are appropriate descriptions, then the total Shannon
entropy® of length L sequences is

Hshannon (L) = - Z Pnlogs pn

nEN
|ty | L
The total Hartley entropy is given simply by the total number of distinct sequences
independent of their (positive) probability HHartle (L) = log, N (L). If the probability
distribution is uniform on the nonzero probability cyhndr:rs then these two entropies are
equal. Any difference is thus a measure of deviation of the cylinder distribution from
uniformity. .

The latter observation leads to a parametrized generalization of the entropy introduced
by Renyi. This we put into a statistical mechanical formalism by defining a partition
function for the tree. The a-order total Renyi entropy,'® or “Helmholtz free information”,
of the measurement sequence up to L-cylinders is H, (L) = (1 — a)™" log Zq (L), where
the tree partition function is

Za(D)= 3 eoorm

AEn
|wnl=L

with the probabilities p, defined on the tree nodes. The Shannon entropy corresponds to the
a = 1 case, with the application of L'Hopital’s rule, and the Hartley entropy to the a = 0,
with the appropriate definition of the zeroth power of a variable as its indicator function.

The average branching rate in the tree measures the growth rate of the number of new
sequences of increasing length. And as such it is a measure of unpredictability in that
a periodic process will at some length give rise to no more new cylinders and a random
one will. The Renyi specific entropy, i.e. entropy per measurement, is approximated!?
from the L-cylinder distribution by ho (L) = L™'H, (L) and is given asymptotically
by hy = Iim ha (L). The growth rate of total Shannon entropy is often referred to in
mformauﬂn thmry as the source entropy and in dynamical systems as the metric entropy.
It is given by h, 11m L~ Hghannon (L) The corresponding Hartley entropy growth

: — 1
rate is called the mpnlogu:a] entropy hy = Lh_n;ﬂ L= HHanle;-,r (L).
These entropy growth rates can be also given

ha = gﬂ{H&(L]_Ha{L_”}
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This form suggests a recursive algorithm for estimating them based on the difference in
the cylinder distribution between successive levels in the wee. Consider the following
information gain form for the metric entropy

hy = lim z Pus lOgo s

L—oa T Puw
o k=1

The entropy rate is then the asymptotic information gain of the L-depth tree with respect to
the (L — 1)-depth tree representation. If a tree representation is good, then the information
gain, or entropy rate, at some depth will vanish. This indicates that no further information
need be stored to represent the process. This happens for a periodic process for rees deeper
than the period. If the process is chaotic, with positive entropy, then the information
contained in the tree representation will grow exponentially fast with modeling longer
subsequences in the data soream. This indicates that the tree representation is inadequate
and suggests that the modeler innovate a new class of representations. In the present case
of temporal processes, the innovation is the noton feedback dynamics. As we will see
many chaotic processes have a finite representation at this next level, whereas they have
infinite tree representations.

DYNAMIC STATES

Let us assume then that the process is aperiodic, that is, that the information in the tree
structure grows without bound. Then we must move up to the next level of representation
whose central notions are feedback and dynamics. At this point we deviate a bit from
following the increasing representation complexity given in table 1 by jumping ahead to
what is essentially a more capable model class: finite automata.

We ask at this level if there is some dynamic process underlying the estimated tree
structure. The reconstruction goal is to infer recurrent states. As a measurement is made,
does the observer know what “state” the underlying process is in? The only window onto
the process’s state is through the intermediary of the chosen observables and measurement
method. Isolated measurements do not necessarily correspond to direct detection of the
process’s state. They are only its indirect reflections.

At this computational level e-machines are represented by a class of labeled, directed
multigraph, or I-digraphs.'® They are related to the Shannon graphs of information theory,”
to Weiss’s sofic systems in symbolic dynamics,!” to discrete finite automata in computation
theory,’® and to regular languages in Chomsky's hierarchy.!® Here we are concerned
with stochastic versions'of these. Their topological structure is described by an I-digraph
G = {V,E} that consists of vertices V = {v} and directed edges E = {¢} connecting
them, each of the latter is labeled by a symbol s € A. An edge is wiplet consisting of
an ordered pair of states E C V x V x A and a symbol. An edge e = (u—-v'ﬁ
interpreted as a transition from state v to state v' on symbol s. ’

To reconstruct a topological e-machine we define an equivalence relation, subtree
similarity, denoted ~, on the nodes of a depth D tree T by the condition that the L-

subtrees are identical: n ~ n' if andonlyif T2 = TL. Nawrally, we require that L < D
and in practice we take 2L = D. Subtree equivalence means that the link structure is
identical. We refer to the archetypal subtree link structure for each class as a “morph”.
This equivalence relation induces on T, and so on the measurement sequence s, a set of
equivalence classes {CL :m =1,2,3,...} given by

is

Cf‘:{nen:nECf‘andn'ECf‘ianAun'}
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An l-digraph G is then constructed by associating a vertex to each tree node L-level
equivalence class; that is, V = {CL :m =0...., V—1}.

If the number of inferred states is finite, ||{CL }|| < oc, then the machine is finitary.
The process associated with the machine states is a finite-order Markov chain, although
the process associated with the symbol alphabet, i.e. the transitions, need not be finite
Markovian.?

But this boundedness need not always be the case. It simply defines the finitary e-
machines. An infinite number of states can be inferred. This is what is found, in fact, at
the onset of chaos via period-doubling,?!"** quasiperiodicity,***? or intermittency.

TRANSITIONS

Two vertices v, and v; are connected by a directed edge ¢ = (vp — vy) if the ransition
exists in T between nodes in the equivalence classes: n — n' :n € Cf,n' € C{'. The
corresponding edge is labeled by the symbol associated with the tree links connecting the
tree nodes in the two equivalence classes

E= {E = (uk —PT.-']') = wnifn—nine C,‘;‘,?I' “ C}t,s c A}
] 4 4

OCCAM'S RAZOR AND EXPLANATION

In this way, e-machine reconstruction deduces from the diversity of individual patterns
in the data stream "generalized states”: the morphs, associated with the graph vertices,
that are optimal for forecasting. If an observer knows the process's state then the
average uncertainty is the minimum possible, that is, the metric entropy or, equivalently,
the process's entropy rate. From a structural viewpoint, the topological e-machines so
reconstructed capture the essential computational aspects of the data stream by virtue of
the following instantation of Occam’s Razor: Topological reconstruction of G produces
the minimal and unique machine recognizing the language and the generalized states
specified up to L-cylinders by the measurement sequence. This follows from the future
morph equivalence relation which is the analog of right equivalence in finite automata
minimization.'® This type of equivalencing goes back to Huffman’s DFA reduction® and
was formalized by Nerode and Moore.'® Although similar in principle, topological machine
reconstruction differs from those approaches in that (i) they are not concerned with data
series, rather they start with a given machine and minimize it and (ii) they are concerned
with machines that are necessarily finite. Finally, we are ultimately interested stochastic
versions of reconstruction: including ways to estimate probabilities for the topologically
reconstructed machines and for machines with stochastically similar states.

Minimality guarantees that the model contains no structure and no more properties
than the process. For example, there is a 128 state DFA that accepts all binary strings.
But we wish to interpret the number of states as a measure of the amount of the process’s
memory. The 128 state DFA is consistent with the data, but indicates that the process has
seven bits of storage. But the process clearly does not. It produces the most unpredictable,
ideally random sequences possible. The minimal representation has a single state and so
no information storage.

From the Bayesian viewpoint minimality is important since the minimal model consis-
tent with the data maximizes, with respect to all other nonminimal, but consistent models,
the posterior probability that the model could have produced that data Pr( S|\ ). Thus, via
Bayes theorem, minimal machines are the most likely explanation: Pr(M|5) is maximized.
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If the minimal machine is found to be independent of window length L then the storage
requirement is O (|V| + |E|) = O(V (1 + hy)), which is independent of the length of the
data stream.

STOCHASTIC MACHINE FROM TREE

If we wish to interpret the tree and so also the machine as representing the average
increase in the observer’s knowledge with successively longer sequences, then the machine
state and transition probabilities need to be estimated. The transition probability from a
state v € V is found by looking at the branching probabilities at the tree node labeled with
the shortest path to the state. Due to the sliding window construction of the tree this gives
estimates that use the highest count statistics since the tree node is the closest to the tree's
top. Nodes further down in the tree in the state’s equivalence class will have relatively
diluted statistics. The increased counts in turn reduce the fluctuations and so the estimation
error. So the transition probability from a state on symbol s € A is given by

Pomsiph = p“—""-. where ny — n,, n. € Cy, |w| smallest
(=

. P,

The state probabilities are estimated from the state-partitioning of tree nodes at morph
depth level L. Recall that the probability distribution, and the total number of counts
for that matter, on each level is normalized. Going down the tree then dilutes the given
constant number of counts into more tree nodes. The deepest level at the tree nodes
that have been classified gives the most refined partition. At that level the probability

distribution has relaxed as close as possible to its asymptotic value. The state probabilities
are then estimated via

S

neck

po(L) = ||CH]

where C is the set of trees nodes at level L in the equivalence class of v.

In the case that the underlying process is k-order Markovian or k-periodic, then this
method gives the appropriate estimates of the correct stochastic structure when L > k.
Increasing the length of the data stream simply improves the probability estimates’ accuracy.
We have skipped over the details required to estimate the stochastic structure of the full

class of DFAs or, equivalently, Sofic systems. But the gist of the estimation process is
made clear by presenting the Markovian case.

FINITARY COMPLEXITY

With this representation for the dara, the question becomes how an e-machine captures a
process’s dynamics. Many of the important properties of these stochastic automata models,
again, are given concisely using a statistical mechanical formalism that describes the coarse-
grained scaling structure of orbit space. The statistical structure of an e-machine is given
by a parametrized stochastic connection matrix T, = E,EﬁT{E’}. that is the sum over
each symbol of the state transition matrices T.*) = {ﬂa log pfu.-h,,,n}_ The a-order finitary

complexity is the free energy Cy (L) = (1 — a)™' log Zy (L) where the machine partition
function is Z, (L) = 3 e~*"8P+ and the probabilities p, are defined on the e-machine's

. veV L
vertices v € V. The finitary complexity is c measure of an e-machine’s information
processing capacity in terms of the amount of information stored in the morphs. It is
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directly related to the mutual information of the past and future semi-infinite sequences
and to the cunvﬂrgcnccz“'ﬁ'zﬁ of the entropy estimates h, (L). It can be interpreted, then,
as a measure of the amount of mathematical work necessary to produce a fluctuation from
asymptotic statistics. The units for complexity measures are bits of information. However,
at this level we see that the complexity begins to more strongly reflect the degree of
computational capability and so we refer to the units as Turings, rather than bits. At this
low level the difference between bits and Turings is not as dramatic as at higher levels
where each unit of machine structure is clearly associated with sophisticated computation.

The entropies and complexities are dual in the sense that the former is determined by
the principal eigenvalue A, of Ty, he = (1 — )~ logs A, and the latter by the associated
left eigenvector of Ty, pa = {p§ : v € V} that gives the asymptotic vertex probabilities.
A complexity based on the asymptotic edge probabilities 5, = {p, : ¢ € E} can also be
defined C{ = (1 - n:)'] logT.cg pg, where p, is given by the left eigenvector of the
e-machine’s edge graph. The transition complexity Cf is simply related to the entropy
and graph complexity by C7 = Cy + hy. There are, thus, only two independent quantities
for a finitary e-machine.?’

The two limits for o warrant explicit discussion. For the first, topological case (a = 0),
Th is the l-digraph’s connection matrix. The Renyi entropy hg = log A is the topological
entropy h. And the finitary complexity is Cy = log |V|. This is C (s|DFA): the size
of the minimal DFA description, or “program”, required to produce sequences in the
observed ensemble of which s is a member. This topological complexity counts all of
the reconstructed states. It is similar to the regular language complexity developed for
cellular automaton spatial patterns.?® The DFAs in that case were constructed from known
equations of motion and an assumed neighborhood template. In the second, metric case

a = 1), ha becomes the metric entropy h, = limh, = —%*2, The metric complexity
B Vg 5, ST o P
Cy = Iiml Ca = —Zyev pylogp, is the Shannon information contained in the morphs.

These measures have been discussed before as the “set complexity” version of the regular
language complexity®. Following the preceding remarks, the metric entropy is also given
directly in terms of the stochastic connection matrix

hu==2 po Y p(v]t)is)logp (v|';s)

reV v EY
ek

KNOWLEDGE RELAXATION

e-machines are representations of an observer’s model of a process. Starting from the
state of total ignorance about the process, successive steps through the machine correspond
to a refinement of the observer's knowledge based on observations. The average increase
is given by a diffusion of information throughout the given model. In the case of trees,
we have a flow of probability downwards, in increasing time, toward the leaves. This is
a unidirectional diffusion of information on an ultrametric structure.?® The ultrametric
distance on the tree is sequence length or, more simply, time itself. The tree and
machine transition probabilities, especially those connected with transient states, govern
the relaxation process of the observer gaining more information about the process with
longer measurement sequences.

A measure of information relaxation on finitary machines is given by the length-
dependent finitary complexity Cy, (t) = H (pv (t)) where H (P) is the Shannon entropy
of the distribution P and py (t) is the probability distribution at time ¢ beginning with
the initial distribution py (0) = (1,0,0,...) concentrated on the start state. The latter
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distribution represents the observer’s state of total ignorance of the process’s state, i.e.
before any measurements have been made, and correspondingly C), (0) = 0. The length-
dependent complexity C, (1) is simply (the negative of) the Boltzmann H-function in the
present setting. And we have the analogous result to the H-theorem for stochastc e-
machines: C} (t) is monotonically increasing. Furthermore, the observer has the maximal
amount of information about the process, i.e. the observer's knowledge is in equilibrium
with the process, when C), (t + 1) — C (t) vanishes for ¢ > #],.. Generally, we have
Cu(t) o) C. That is, the length-dependent complexity limits on the metric complexity.

For finitary machines there are two convergence behaviors for C, (t): finite time
convergence for periodic and Markovian (subshift of finite type: SSFT) processes and
asymptotic convergence for strictly Sofic systems (5SS).2° These are illustrated in figure
1. The effect of exmrinsic noise on this type of convergence process was studied some time
ago. It was found that extrinsic noise induces an effective Markovian process.”

(a)

(b)
Cyt)

Yock

Figure 1 Temporal convergence of length-dependent complexity C,, (t) for (2) periodic
and Markovian (subshifts of finite type) processes and (b) for strictly Sofic systems.

Periodic and SSFT processes converge in finite time. S$SSs asymptote but do not
converge in finite time due to the relaxation of the initial distribution through an infinite
number of Cantor sets. Through a structural analysis we see that the difference AC, (t) =
Cy — Cy(t) is a measure of the amount of information in the transient states. For SSSs
this quantity only asymptotically vanishes since there are transient cycles that persist for
all time, even though their probability decreases asymptotically. This leads to general
definition of (chaotic or periodic) phase locking. We say that the observer has 8-locked
onto the process when AC), (#,.x) < 5 this occurs at the locking time ¢;,.;. When the
process is periodic, this notion of locking is the standard one of engineering. But it also
applies to chaotic processes and corresponds to the observer knowing what state the process
is in, even if the next measurement cannot be predicted exactly.



MEANING

Enough structure has been developed up to this point to introduce a guantitative
definition of the meaning of an observation. The meaning of a message, of course, depends
on the context in which its information is made available. If the context is inappropriate
the observation will have no basis with which to be understood. It will have no meaning.
If appropriate, then the observation will be “understood”. And if that which is understood,
1.e. the content of the message, is largely unanticipated then the observation will be more
significant than a highly likely, “obvious”, message.

In the present discussion context is set by the model held by the observer at the time
of a measurement. To take an example, assume that the observer is capable of modeling
with respect to dynamic states. And, in particular, the observer has estimated a stochastic
finite automaton and has been following the process sufficiently long to know the current
state with certainty. Then at a particular time the observer measures symbol s € A. If that
measurement forces a disallowed transition, then it has no meaning. Indeed, the response
is for the observer to reset the machine to the initial state of its ignorance. If, however, the
measurement is allowed, i.e. it is anticipated, then the amount of meaning is — log p_.,.

Here — v denotes the machine state to which the measurement brings the observer’s
3
knowledge of the process’s state and p_, is the corresponding morph's probability. The

meaning itself, i.c. the content of the measurement, depends on the morphs to which the
model’s states correspond.

Naturally, similar definitions of meaning can be developed between any two levels in
a reconstruction hierarchy. Here we wish to emphasize the main components of meaning,
as we have defined it: (i) it is an information-like quantity and (ii) it derives fundamentally
from the relationship across levels. A given message has different connotations depending
on the level. Meaning appears as a change in connotation. This definition answers a
question posed previously.>®

INFINITARY MACHINES

Recall that it is possible to infer machines with an infinite number of states or morphs
from an infinite tree representation. As in the transition from an infinite tree representation
to a finite machine, we can ask for a measure that indicates that the finitary machine
representation is inadequate. Observing that breakdown we also look for some regularity
in the infinite “finitary” machine that we can factor out.

The measure we use for this innovation step plays the same role as entropy in going
from trees to finitary machines. We look at the growth rate at the total information contained
in the representation®?? ¢, = lim L~12C=(L), In the topological case, we consider the

=0

growth rate of the number of states ¢ = Llim L= ||V (L)||. There is also an information
gain version of this m

ce = km [gf—‘u{-’-} _ Ec,fL-u]
L—co

e = lim Z p,,lug?
o]

L—no
vEV{L=1}
wEV(L)

In the last form, v = {v'} / f is a distinct state at length L — 1 that splits into states
{v'} at length L reconstruction. When this growth rate is positive then another higher



13

level representaton is called for. In this case we have register machines that perform
string productions in registers whose lengths grow monotonically. Register machines are
inferred from morphs consisting of regular patterns of state transitions in the “infinite”
finitary machine.?!-3

We should also note one of the highest levels, that of the universal Turing machine
(UTM). As already noted, the more powerful the representation the more difficult it is to
esumate minimal models. At the level of UTMs there is no general procedure for inferring
the minimal program from a given data stream. An important difference with our approach
is that we are, in effect, considering a class of computations based on deterministic Turing
machines with access to a random register: the random oracle. This is the Bernoulli-Turing
machine (BTM).2! Modeling with respect to BTMs trades off deterministic computation
against random guessing. Thus, at every level of the hierarchy, very regular and highly
random processes are simply described and so have low complexity.

CONCLUDING REMARKS

This discussion has explored the idea of hierarchicallv reconstructing models by
focusing of the particular example of moving from a data stream to a tree representation
to a finitary machine representation, and finally to a string regisier machine representation.
Each level has an equilibrium statistical mechanics that indicates via a minimization, or
variational, principle what the optimal model at each level is. In going between levels
the significant measures are growth rates of complexity, i.e. the growth of information
contained in a representation. There is a statistical metamechanics in which the innovation
from infinite representations at one level lead via a condensation or phase transition to a
finite representation at a higher level. We gave a quantitative definition of meaning that is
appropriate to the type of incremental learning considered here.

Hierarchical reconstruction hints at how to approach complexity on much larger scales.
It indicates some of the necessary structure of evolutionary processes that appear to play
off randomness and order. Some portion of natural language undoubtedly manifests such a
developmental tension: the need for structural regularity, for example, in order to support
communication between individuals and the need for a diverse and rich language to suppont
expressiveness and specificity.

This essay has reviewed the attempt to weave together the structural framework of
computation and formal language theories and the combinatorial notions of information
theory into an approach to modeling periodic and chaotic nonlinear dynamical systems.
The tools ultimately relie on semigroup theory, symbolic dynamics, statistical mechanics,
and ergodic theory. Even Bayesian statistics appears in the parameter estimations and in
the thermodynamic analogies. The statistical mechanics of inductive inference and learning
appear to give a unified framework for these very different disciplines. Similar approaches
to learning in neural nerworks have been developed recently.?!

We close by reframing the question posed at the beginning concerning the naturalness
of the drive toward higher complexity: Is it a physical property? Or is it the figment of an
organism’s need to model its environment? These are captured in the single philosophical
question,3? where does intentionality lay? From the present discussion’s radical and
shameless mechanistic bias it is difficult to see how intentionality and the complexity
drive could not be at root a property of physical nature. The difficulty in understanding
this remains, of course, in posing the question in a scientific manner that does not strip it
of its philosophical content. We continue to wonder ... from what does the anticipation
of knowledge spring?
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