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Predictive states for stochastic processes are a nonparametric and interpretable construct with
relevance across a multitude of modeling paradigms. Recent progress on the self-supervised re-
construction of predictive states from time-series data focused on the use of reproducing kernel
Hilbert spaces. Here, we examine how Wasserstein distances may be used to detect predictive
equivalences in symbolic data. We compute Wasserstein distances between distributions over se-
quences (“predictions”), using a finite-dimensional embedding of sequences based on the Cantor set
for the underlying geometry. We show that exploratory data analysis using the resulting geometry
via hierarchical clustering and dimension reduction provides insight into the temporal structure of
processes ranging from the relatively simple (e.g., finite-state hidden Markov models) to the very
complex (e.g., infinite-state indexed grammars).
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LEAD:

Discovering the hidden structure of complex sys-
tems has been a widely-recognized goal of nonlin-
ear science for decades, originally starting with
extracting “geometry” from a time series. The
present results follow directly in this long line
of inquiry, especially that focusing on the causal
states or effective theories underlying time series
generated by complex nonlinear systems. It pro-
vides workable statistical estimation methods and
dynamical interpretations of hidden mechanisms.
It expands upon a new mathematical foundation
for causal inference of complex systems, partly
by making connections to modern machine learn-
ing. In this, its use of Cantor embeddings and
Wasserstein distances complements recent work
on reproducing-kernel Hilbert space representa-
tions.

I. INTRODUCTION

Suppose that we have a finite sequence x1 . . . xL of categor-
ical observations drawn from a temporal process. We may
suppose that the process is stationary (time-translation
invariant) and ergodic (explores all possible behaviors)
[1, 2]. We may wish to forecast from the observed infor-
mation the behavior of the next n observations. If we
suspect that the process’ temporal correlations do not
matter much beyond k symbols, then we take our data to
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be all subsequences of length n + k, splitting each subse-
quence into words of length k and n, respectively. From
these “past/future” pairs we can construct an empirical
conditional distribution

P̂x1...xn|x−k+1...x0 =
Cx−k+1...xn

Cx−k+1...x0

,

where Cw is the number of times the word w appears in
our sequence x1 . . . xL.
Suppose, though, that we do not know how long-range
the process’ temporal dependencies can stretch. Even
very simple stochastic processes can have infinite Markov
order, indicating potential long-term dependence of future
observations on the past [3]. Given sufficient data, it
would be desirable to take pasts of arbitrary length and
converge towards a prediction conditioned on the infinite
past:

Px1...xn|←−x = lim
k→∞

P̂x1...xn|x−k...x0 (1)

with the infinite sequence ←−x = (. . . , x−1, x0) of observa-
tions stretching into the past. This mathematical ideal is
known as the causal or predictive state [4, 5]. Formally, the
conditional predictions Px1...xn|←−x for all forecast lengths
n together describe a probability measure over future se-
quences −→x = (x1, x2, . . . ); the predictive state is this
measure. We denote it simply P←−x .
Predictive states are employed for inference and modeling
in dynamical systems [6], renewal processes and neural
spike-trains [7, 8], condensed matter physics [9], and spa-
tiotemporal systems [10]. A deep mathematical theory of
predictive-state inference has been correspondingly devel-
oped [3, 5, 11–16]. If the dataset x1 . . . xL is drawn from
any stationary process and if L is sufficiently large, then
Eq. (1) converges for any n and a probability-1 subset
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of pasts ←−x [3]. Recently, this result has been further
clarified: in the language of measures, P←−x converges in
distribution, with respect to the product topology of the
space of sequences XN [17].
The broad goals of predictive-state analysis are threefold
[18]. The first is to understand the overall structure of how
the predictive states relate to one another geometrically
and, possibly, use this geometry to classify pasts based
on equivalence of their predictive states. The second
is to actually reproduce the prediction to a specified
accuracy. The third is to understand the dynamics of how
predictions evolve under a stream of new observations.
The following focuses on the first, as it is a crucial build-
ing block to achieving the other two. Recent attempts
to reconstruct the geometry of predictive states embed-
ded them in reproducing kernel Hilbert spaces (RKHS)
[16, 17, 19–21]. This was achieved to great effect largely
since convergence in Hilbert spaces generated by univer-
sal kernels is equivalent to convergence in distribution
[22]. That is, these embeddings allow accurate representa-
tions of predictive states because they respect the product
topology of sequences in the same way that predictive
states themselves do [17]. Here, we achieve the same
results using a procedure that can be easily visualized
and interpreted. This makes it suitable as a method
for exploratory data analysis [23, 24], while moving fur-
ther toward interpretable machine learning of structured
processes.
Understanding the source of the power of RKHS meth-
ods in predictive-state analysis frees us to consider other
options. The following embeds symbolic sequences in a
one-dimensional space that has the same topology as the
product space. This embedding is inspired by the fractal
Cantor set [25]. Predictive states can then be thought
of as distributions in this one-dimensional space. We
then use the Wasserstein distance to compute the geom-
etry between predictive states, which is determined by
a closed-form integral for one-dimensional distributions.
This operates as an alternative to RKHS-based distances
since the Wasserstein distance also reproduces the topol-
ogy of convergence in distribution [26]. The resulting
distance matrix then is used to find low-dimensional em-
beddings [27] of the geometry or hierarchical clusterings
[28] of the predictive states. When combined with the
fractal embedding, the latter, in particular, provides a
highly interpretable visualization of the predictive-state
space.

II. EXAMPLE PROCESSES

The methods here are intended to be applied to sta-
tionary and ergodic stochastic processes that generate

categorical time-series data. For these purposes we con-
sider a stochastic process to be a collection of probability
distributions Prµ ( x1 . . . xL ) over any finite, contiguous
sequence, taking values in a finite set X . Formally, this de-
scribes a measure µ over the set of all bi-infinite sequences
(. . . , x−1, x0, x1, . . . ) ∈ X Z.
These processes are generated by a number of systems
with widely varying complexity. Most popularly studied
are those often characterized as having a degree of “finite
memory”: Markov chains, hidden Markov chains, and
observable operator models (also termed generalized hid-
den Markov chains) [3, 5]. Beyond these, one can also
generate processes using probabilistic grammars, such
as probabilistic context-free and indexed grammars [29].
Additionally, coarse-grained data from chaotic dynami-
cal systems—such as the logistic map—display behavior
varying widely in complexity [6].
We refer back frequently to the following example pro-
cesses of increasing computational complexity:

1. The fair coin process is simply generated by flipping
a coin repeatedly and writing down a 0 for every
tail and 1 for every head. There is no memory in
this process, and all pasts will map to the same
predictive state. We will discuss it occasionally as a
counterpoint to the more complex examples below.
We also provide code and figures for this example
in our GitHub repository [30].

2. The even process can be generated by repeatedly
tossing a coin and writing down a 0 for every tail
and 11 for every head. The process is essentially
random except that 1s only appear in contiguous
blocks of even size bounded by 0s. The even process
has infinite Markov order but can be generated by
a two-state hidden Markov chain [31]. A typical
example might look like 01100111101100011.

3. The anbn process can be generated by choosing a
random integer n ≥ 1 (we suppose via a Poisson pro-
cess) and writing n as followed by an equal number
of bs, and then repeating this procedure indefinitely.
This results in sequences where any contiguous block
of as is followed by a block of bs of equal size. The
anbn process cannot be generated by any finite hid-
den Markov chain, though it is a simple example of
a probabilistic context-free language [32]. A typical
example might look like abaaabbbabaabb.

4. The x + f(x) process is a probabilistic context-free
language modeling the syntactic structure of simple
mathematical expressions. It has terminal symbols
{( , ) , ; , + , f , x} and nonterminals {A, B, C},
and starts with a finite sequence of As (such as
AAA). Sequences are generated by applying the
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production rules:

A 7→ B + C ; | C ;
B 7→ B + C | C

C 7→ f(B) | x .

The sequence generation process does not “end”
until all non-terminals (that is, A’s, B’s and C’s)
have been replaced by terminal symbols. A typical
example might look like x + x; f(x + f(x)); f(f(x));
which results from the substitutions

AAA 7→ B + C ; C ; C ;
7→ C+x;f(B);f(B);
7→ x + x; f(B + C); f(C);
7→ x + x; f(C +f(C)); f(f(C));
7→ x + x; f(x + f(x)); f(f(x));

5. The anbncn process is a probabilistic indexed lan-
guage [32] that is analogous to anbn except after
writing the blocks of a’s and b’s, we also write a
block of c’s of length n. A typical example might
look like abcaaabbbcccabcaabbcc. Though it looks
very similar to the anbn process, it is in a formally
distinct complexity class, as anbn may be gener-
ated with a simple stack automaton while anbncn

requires nested stacks.
6. The Morse-Thue process is generated by sampling

from the time series of the logistic map at critical
“onset of chaos” parameter rc ≈ 3.56995:

yt+1 = ryt(1− yt)

and then coarse-graining the data by taking xt = 0
if 0 < yt ≤ 1

2 and xt = 1 if 1
2 < yt < 1

[25]. Alternatively, we can generate this process
by starting with a single 0 and executing the re-
placements 0 7→ 11 and 1 7→ 01 consecutively.
The resulting process is an indexed-context free
language [6]. A typical example might look like
11011101010111011101110101011101—the fifth gen-
eration of the replacement rule starting from 0.

Though our examples are abstract, they represent real
structures which may arise in practice.
Examples 3 through 5, in particular, involve long-range
correlations in their sequences that arise from structures
which, upon “opening,” must be “closed” an arbitrary
time later. Such structures are present in human language
as well as in genetic sequences. In the latter case, this
long-range correlation exists due to the folding of proteins
which allows distant codons to interact with one another.

Detecting and modeling these folding structures requires
more complex models than hidden Markov models, such
as the context-free grammars in examples 3 and 4 [33].
Example 6 represents the general problem of recovering
knowledge of a dynamical system of which only coarse-
grained data is available.

III. CANTOR-EMBEDDING SEQUENCES

The geometry of sequences is inherently self-similar.
Given an infinite sequence −→x = (x1, x2, . . . ), we can
split it into its leading word x1x2 . . . xL and a following
sequence −→x L = (xL+1, xL+2, . . . ). That is, the space of
sequences XN can be factored into XL × XN for any L;
much like a fractal, then, XN is comprised of copies of
itself. The fractal nature of sequence-space is encoded in
the structure of its product topology, in which the close-
ness of two sequences is measured by the number of sites
at which their values match. In other words, the neigh-
borhoods of the product topology are generated by these
smaller copies of XN.

We can visualize this self-similarity in an interesting way
by constructing a mapping between sequence space and
the celebrated Cantor set (or one of its generalizations).
Suppose a symbolic sequence (x1, x2, . . . ) takes values in
an alphabet X of size |X |. To each x ∈ X we associate a
unique integer between 0 and |X | − 1 inclusive; call this
J(x). Then, there is a function C : XN → [0, 1] that maps
every sequence to a positive real number:

C(x1, x2, . . . ) =
∞∑

k=1

2J(xk)
(2|X | − 1)k

.

For instance, suppose that |X | = 2 has two elements; then
the mapping C looks like

C(x1, x2, . . . ) =
∞∑

k=1

2J(xk)
3k

.

The range of this mapping, taken over all binary sequences,
matches the traditional Cantor set fractal, which is at-
tained by removing the middle third from the unit interval,
and repeating this process on all remaining intervals ad
infinitum. When X has more than two elements, the
resulting range is a generalized form of the Cantor set,
where instead of removing the middle (second) third, we
remove the second and fourth quintiles (|X | = 3), or sec-
ond, fourth and sixth heptiles (|X | = 4), and so on. For a
finite sequence of length L, we truncate the sum at k = L,
resulting in a finite-depth approximation to the Cantor
set.
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FIG. 1: Cantor plots for the even, anbn, anbncn, and x + f(x) processes. Each point (x, y) corresponds to a pair of
sequences corresponding to the past x and future y, respectively. The symbol on the x (y) axis indicates that all

points above (to the right of) that symbol have a past (future) whose most recent observation is that symbol. Though
not marked, further proportional subdivisions of each segment of the axes indicate the value of the second, third, and
so on symbols. For instance, one can read from the x + f(x) fractal that any past ending in f must be paired with a

future beginning in (f or (x.

Why use this somewhat convoluted construction for an em-
bedding? The reason is that the embedding C preserves
the basic structure of the product topology on sequences
[25]. Imagine, for instance, that we chose a more direct
map, such as mapping a binary sequence to the corre-
sponding binary number (e.g. 010110 · · · 7→ 0.010110 . . . ):
then dissimilar sequences such as 0111 . . . and 1000 . . .

would in fact map to the same real number. The padding

added by removed intervals in the Cantor set means we
can map distinct sequences to distinct real numbers, while
keeping similar sequences close together.

Stationary processes, due to their time-translation invari-
ance, inherit the fractal temporality of sequence space.
This can be easily visualized: Given a length-L sample
x1 . . . xL, and n, k > 0, take a sliding window of pasts and
futures, (xt−k+1 . . . xt, xt+1 . . . xn) for t = k, . . . , L − n.
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For each past-future pair, compute the truncated Cantor
embeddings on the reversed past and (unreversed) future:
(C(xt . . . xt−k+1), C(xt+1 . . . xn)). The resulting pairs of
real numbers can be plotted as (x, y)-values on a scatter
plot. The fractal that emerges contains, in essence, all
information necessary to understand a process’ temporal
structures. See Fig. 1 for examples and guidance on how
to interpret the visualization.
Note that for |X | > 2 the embedding C introduces addi-
tional structure that may or may not be desired. Associat-
ing each symbol x with an integer J(x) endows an ordinal
structure on the set X . That is, the specific mapping
from symbols to integers is arbitrary, and the way the
symbols are ordered in the Cantor embedding—for in-
stance, which symbol gets assigned to the middle segment
instead of the end segments when |X | = 3—can affect the
results of the visualization and downstream processing.
Higher-dimension embeddings may be contrived which do
not impose an ordering on the symbols. However, they
come at the cost of increased computational complexity
when determining the Wasserstein distance. So, for now,
we assume that ordinal artifacts are either desired or suf-
ficiently tolerable as to not outweigh the computational
benefits of working in one dimension.

IV. WASSERSTEIN DISTANCE ON
PREDICTIVE STATES

Figure 1’s Cantor fractals represent probability distribu-
tions: We interpret a vertical slice of the fractal, located
at horizontal position C(←−x ), as visualizing the predictive
state P←−x as a distribution over Cantor-embedded futures
C(−→x ).
For example, by examining the even process’ Cantor frac-
tal, one notices that there are effectively only 2 distinct
predictive states—every vertical column is just one of two
types. This corresponds with the 2 states of the hidden
Markov model that generates the even process. By com-
parison, if we had plotted the fair coin’s Cantor fractal,
we would have found it to be perfectly symmetric, with
every vertical column identical.
This allows us to see how predictive states distribute their
probability over the intrinsic geometry of potential futures.
We compare predictive states not only on how much their
supports overlap, but on how geometrically close their
supports are to one another. For the anbn process, for
example, we see that the first few columns (corresponding
to pasts of the form . . . ban for some n) are inherently
similar to one another, though they are shifted upwards
the closer to the axis they are. (The latter corresponds
to the increasing number of bs in the predicted future as
n increases.)

Algorithm 1: Convert a sequence of categorical
time-series data into a labeled collection of empirical

distributions of Cantor-embedded futures and a
matrix of Wasserstein distances between said

distributions.
1 function CantorWasserstein (k, n, x1 . . . xL);

input : Integers k, n of past and future lengths
input : Length-L sequence x1 . . . xL of observations
output : List UnqPasts of unique pasts
output : List of lists Cantors of Cantor-embedded

futures
output : Matrix Wass of Wasserstein distances

2 UnqPasts← [];
3 Cantors← [];
4 for t← n to L− k do
5 ←−x ← [xt−k+1, . . . , xt];
6 −→x ← [xt+1, . . . , xt+n];7

p←
n∑

ℓ=1

2J(−→x ℓ)
(2|X | − 1)ℓ

;

8 if ←−x ∈ UnqPasts then
9 append

←−x to UnqPasts;
10 append [p] to Cantors;
11 else
12 j ← index (←−x , UnqPasts);
13 append p to Cantorsj ;
14 end
15 end
16 K ← length(UnqPasts);
17 Wass← Matrix(K, K);
18 for i← 1 to K do
19 for j ← 1 to K do
20 Wassij ← Wasserstein(Cantorsi, Cantorsj);
21 Wassji ←Wassij ;
22 end
23 end

Result: UnqPasts,Cantors,Wass

This provides some intuition for how to effectively choose
a distance metric for predictive states. Metrics such as
the total variation distance or divergence-based distance
metrics are too coarse; a small shift in the support of
the distributions can result in dramatic changes in the
distances between the distributions. Instead, we want a
distance metric for distributions that quantifies the dif-
ferences between the supports. The Wasserstein metric,
also known as the earth-mover’s distance, provides this
feature [26]. As the name “earth-mover’s” suggests, we
may imagine the probability distributions as masses of
dirt, and quantify the difference between two distribution
as the cost of shifting the dirt around to transform one dis-
tribution to another. This way, if two distributions have
similar but non-overlapping supports, the Wasserstein
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metric will be small.

Formally, we can define the Wasserstein metric as follows.
Given two measures µ and ν defined on a metric spaceM
with metric d, the Wasserstein distance between µ and ν

is given by:

W (µ, ν) = min
π∈Γ(µ,ν)

∫
M×M

d(x, y)dπ(x, y) ,

where Γ(µ, ν) is the set of all measures onM×M whose
left and right marginals are µ and ν, respectively. It is
the minimal cost to “shift” the probability mass from one
distribution to match the other’s shape.

W (µ, ν) is the solution to a constrained linear optimiza-
tion (since the objective function and constraints are linear
functions of π). This can become computationally costly,
scaling as O(n3 log n) in the number of samples n [34].
However, when M ⊆ R, there is in fact a closed-form
solution to the Wasserstein optimization problem [35].
Let F and G respectively be the cumulative distributions
functions of µ and ν. Then:

W (µ, ν) =
∫ ∞
−∞
|F (t)−G(t)| dt .

This closed-form solution is considerably faster to compute
than the linear optimization required for arbitrary metric
spaces. Since the Cantor embedding embeds the space of
sequences directly into [0, 1], we can directly employ this
formula.

Topologically, the Wasserstein distance replicates the
topology of convergence in distribution, which means
that algorithms which construct predictive states using
the Wasserstein distance will converge.

Combining the Cantor embedding and Wasserstein dis-
tance leads to a straightforward program for analyzing
categorical time series:

1. Apply Algorithm 1 to the data stream x1 . . . xL for
a specified past length k and future length n, retriev-
ing the (i) set of unique observed pasts, (ii) empiri-
cal Cantor distributions corresponding to each past,
and (iii) matrix of Wasserstein distances computed
from these distributions.

2. To elucidate the relative geometry of the predictive
states, use the Wasserstein distance matrix to per-
form additional methods of geometric data analysis,
such as hierarchical clustering [28] and multidimen-
sional scaling [27].

The next two sections examine the results of this approach.

V. INTERPRETABLE PREDICTIVE STATES
WITH HIERARCHICAL CLUSTERING

Figure 2 displays the result of collecting the Cantor-
embedded empirical predictions for all pasts of a given
length for four processes—even, anbn, anbncn, and
x + f(x). For each, the Wasserstein distance between
every pair of predictions was computed and used to hi-
erarchically cluster the pasts with others that produced
similar predictions, using the Ward method [28].
The resulting clustered Cantor plots offer a highly inter-
pretable visualization of the relationship between pasts
and futures and of the predictive states’ geometry. Each
plot, in a certain sense, sorts the columns in the Cantor
fractals of Fig. 1 with the white space between columns
removed. For instance, the even process’s clustered Can-
tor plot clearly contains the two major states, with a third
“transient” state visible. (The latter corresponds to the
increasingly unlikely event of never seeing a 0 in a block of
length n.) This third state was previously hidden mostly
out of view on the far-right side of the 2-dimensional
Cantor plot of the even process in Fig. 1.
Other features are worth calling out. Close observation
shows that hierarchical clustering reveals the (mostly)
scale-free distinctions between pasts with subtle differ-
ences. For the anbn process, pasts of the form . . . ban are
distinguished for different n, as each involves a distinct
number of b’s appearing in the near future. Meanwhile,
the clustering scheme carefully distinguishes pasts of the
form . . . banbn−k for different k but not for different n,
as k is the essential variable for predicting the remain-
ing number of b’s. (The scale-free discernment of the
algorithm breaks down past n = 5—the scale at which
sampling error becomes relevant for our chosen sample
size.)
Similar discernment is seen for the anbncn and x + f(x)
processes as well. We draw attention to the manner
in which the presence of a semicolon in pasts from the
x + f(x) process affects the comparison of predictions.
By analyzing clustered Cantor plots, one gains insight
into the properties of pasts that make them similar in
terms of future predictions, even if they are superficially
quite distinct. Furthermore, the horizontal axis allows
for continued use of the Cantor set’s natural geometry
for visualizing the future forecasts associated with each
cluster of predictions.

VI. PREDICTIVE STATE GEOMETRY WITH
MULTIDIMENSIONAL SCALING

Sacrificing direct visualization of future predictions leads
to a more intuitive picture of predictive-state space geom-
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FIG. 2: (Upper left to lower right) Clustered Cantor diagrams of the even, anbn, anbncn, and x + f(x) processes.
Zoom for detail. For each, the vertical axis shows all pasts of a given length k along with their hierarchically clustered
dendrogram. k = 8 for the even, anbn, and anbncn processes and k = 4 for the x + f(x) process. For present purposes,
the coloring threshold was chosen to aid visual interpretation. The lines in each row show the empirical distribution of
Cantor-embedded futures observed following each past. As such, the horizontal axis corresponds exactly to the vertical

axis of Fig. 1.

etry. Applying any desired dimension reduction algorithm
to the matrix of Wasserstein distances between predic-
tions yields a coordinate representation of the similarities
between predictive states.

Figure 3 plots the first two dimensions of a multidimen-
sional scaling (MDS) decomposition [27] for the even and
anbn processes. MDS extracts coordinates so that the
Euclidean distance between points in MDS coordinates
matches the Wasserstein distance between the distribu-
tions being embedded. Clusters are colored in the same
manner as in Fig. 2 and labeled by the specific pattern
that distinguishes the pasts in some of the clusters. Note
that the clusters and labels are directly drawn from Fig.
2 for reference. They are not the result of the MDS algo-

rithm itself. However, interactive plotting approaches may
allow for similar exploration from these decompositions
without the need for prior clustering.
The even process, as in all other cases seen thus far, has
two dominant prediction clusters. These correspond to
the predictive states that result from seeing an even-sized
block of 1s (or, equivalently, no 1s) and that result from
seeing an odd-sized block of 1s. The lone cluster in the
middle corresponds to a transient state induced by seeing
all 1s and then a 0. The latter then synchronizes to right
cluster. By comparison, the fair coin’s MDS embedding
would have a single cluster since every past predicts the
same future.
The anbn plot is much more sophisticated. Intriguingly,
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FIG. 3: Scatterplots of the first two MDS coordinates of the reconstructed predictive states: (Left) Even process.
(Right) anbn process. Clusters colored according to the scheme determined by the dendrogram in Fig. 2 and the label

on each cluster describes the pattern that uniquely characterizes the pasts in that cluster.

its geometry not only clearly distinguishes predictively
distinct states, but organizes them in a manner highly
suggestive of an pushdown stack. The latter is particularly
appropriate given that stack automata are the natural
analog of hidden Markov chains but for context-free lan-
guages. Observing more as pushes more symbols onto
the stack, with the predictive states moving further up
towards the plot’s upper-right corner. And, as more b’s
are observed the top symbol is popped off the stack, and
the predictive states move back towards the lower left.
The latter represents equality between as and bs.

The geometric approach is particularly insightful when
computing the Wasserstein matrix between predictions
estimated from Morse-Thue process data. Recall that the
Morse-Thue process is a coarse-graining of the iterated
logistic map yt+1 = ryt(1 − yt), y0 = 0, at the critical
chaos parameter rc ≈ 3.56995. The resulting stream of 0s
and 1s is a well-known instance of high complexity at the
“order-disorder border”. Specifically, setting parameter
r on either side of rc results in sequences that can be
generated by finite hidden Markov chains. However, at rc

itself the resulting Morse-Thue process is context-sensitive
and therefore requires infinite predictive states. That is,
when it comes to capturing its behavior, the process is
several orders higher in model complexity. It is further
up the Chomsky language hierarchy.

Despite this high order of structural complexity, the pre-
dictive state geometry reconstructed from a sufficiently

large sample of the Morse-Thue process recovers the neigh-
borhoods of [0, 1] that are relevant to the dynamics of
the original logistic map. Said differently, there is a cor-
respondence between each past x−k+1 . . . x0 and a subset
Vx−k+1...x0 , such that Vx−k+1...x0 is the set of all points
y for which x(f−t(y)) = x−t for 0 ≤ t < n. (Here,
f(y) = ry(1 − y) and x(y) is the encoding y 7→ {0, 1}.)
As it happens, pasts x−k+1 . . . x0 whose predictive states
are close under the Wasserstein distance are also pasts
for which the sets f(Vx−k+1...x0) are close. That is, they
correspond to predictively similar ranges of the logistic
map variable.

Figure 4 directly visualizes the relationship between the
reconstructed predictive states of the Morse-Thue pro-
cess, neighborhoods of the logistic variable y, and the
logistic map dynamics. In short, despite the fact that the
Morse-Thue process is a highly coarse-grained form of
the logistic map, the essential geometry of that map can
be recovered by reconstructing predictive state geometry
with the Wasserstein metric and the Cantor embedding.

Note that, due to the deterministic nature of the Morse-
Thue process, the combination of the Wasserstein metric
and the Cantor embedding is particularly important to
achieving this result. Asymptotically, each past corre-
sponds to a unique future. And so, there is asymptotically
no overlap between predictions. The choice of the Cantor
map facilitates placing together forecasts that match up
to a certain time in the future. And, the Wasserstein
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FIG. 4: (Left) Scatterplot of the first two MDS coordinates of the reconstructed predictive states for the Morse-Thue
process, color-coded by cluster. (Right) Scatterplot of the corresponding points in the domain of the logistic map,

plotting for each point both the present value yt and the next value yt+1, with the x = y line for reference. Each pair
of color-coded arrows shows where each cluster maps to under the action of the logistic map. The predictively

reconstructed clusters thus correspond to dynamically similar neighborhoods of the logistic map domain.

distance allows directly comparing predictions whose sup-
ports are geometrically close. In this way, the combination
of the two approaches enables the straightforward recov-
ery of the underlying dynamical system’s (logistic map’s)
geometry.
We also note that the direct reconstruction of the logistic
map in this case is possible due to the choice of partition
to transform the continuous variable y into the discrete
variable x. The partition we chose is a generating par-
tition of the dynamical system [25], which is a special
kind of partition which preserves many of the measure-
theoretic and topological features of the original system.
Non-generating partitions would not yield the original
logistic map if our methods are applied to them; however,
nor would they if any other method were applied, as a
non-generating partition represents an irreversible loss of
information. In this case predictive state reconstruction
would still recover the minimal sufficient statistics of the
past sequence for future prediction (see, for instance, the
discussion in [36]).

VII. CONCLUDING REMARKS

We presented a general approach for predictive state
analysis—Cantor fractal embedding sequences and
Wasserstein distance comparison of predictions. We of-
fered two approaches to visualizing the results of this
method—one a direct application of multidimensional
scaling and the other being a clustered Cantor diagram
built from combining hierarchical clustering with the in-
troduced Cantor embedding.
Compared to using reproducing kernel Hilbert spaces—
a dominant approach to predictive states at present

[16, 17, 19–21]—our combining the Cantor set with the
Wasserstein distance may appear idiosyncratic. However,
as the results demonstrated, there are strong benefits
to both and together the two methods synergize their
benefits in a unique way. The topology of convergence in
distribution can be replicated with both the Wasserstein
distance and the RKHS inner product. However, the
Wasserstein distance depends on far fewer parameters—
such as, the choice of the eponymous kernel in RKHS
approaches. Moreover, its value is directly interpretable
in terms of the shapes of the distributions it compares.
Similarly, there are many ways to metrize the product
topology on sequences, but the Cantor embedding offers
a direct way to connect the product topology with a visu-
alizable geometry. And, embedding in a single dimension
enables efficient computation of the Wasserstein metric.
The benefits of the Cantor and Wasserstein approaches
adds interpretability to the resulting predictive-state ge-
ometry along two distinct axes, most clearly seen in Fig.
2’s clustered Cantor diagrams. We hope that the success
of this approach in providing clear insights will comple-
ment existing thrusts in the direction of abstract embed-
dings and mathematical formalism by motivating further
development on interpretable approaches to predictive
state analysis.
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