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Abstract

The distortions introduced by the measurement process can lead to drastic consequences for an
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Observing Complexity ... 1

1 Appearances May Be Deceiving ... But Just How So?
An observer’s notion of what is random and what is complex in its environment depends

directly on the quality of measurements and the computational resources available for inference.
The resources are coarsely measured by the amount of raw data, of memory, and of the time
available for model estimation. Although these play a key role, the discovery of structure in an
environment depends more directly and subtlely on the effects of measurement distortion.

The goal here is to give an overview of an inductive framework that addresses the problem
of measurement distortion for dynamical systems and stochastic processes. A strong emphasis
is placed on classifying processes according to their intrinsic computational capability. The
main results indicate the overwhelming effect of the simple fact that measurements are only
indirect reflections of the “internal” states of a process. In short, a process with a finite number
of internal states — i.e. of finite complexity — can appear to an observer to have infinite
complexity. The consequences for inferring regularity are clear: the resources required can be
unbounded. This results in anirreducible uncertainty in observing classical dynamical systems
and stochastic processes.

Illustrative examples will be drawn from the onset of unpredictability in nonlinear systems,
spatio-temporal pattern recognition, and finite stochastic nondeterministic processes. These
examples demonstrate the crucial role of inductive inference not only to scientific discovery
— which is obvious — but even in the simplest of ideal cases. The consequence is that the
observational theory of classical physics is nontrivial. And this seems to be somewhat at variance
with the implicit philosophical stance of several founders of modern physics that many of the
then-new properties of quantum systems were intrinsic and did not appear in classical systems.
The examples below make one suspicious of any type of blanket statement along the latter lines.

Before the examples are presented, we need to see why a measurement theory of classical
processes is necessary. This is the burden of the next section, which points out that this
requirement is the result of various types of dynamical instability in nonlinear systems — of
which chaos is just one. The section also identifies the driving force — orintentionality— of
inductive inference in this framework. This is the search for causality. The result is a relatively
new view of the information dynamics of nonlinear processes: complexity and unpredictability
are distinct and complementary properties. The examples then follow immediately. A final
commentary is given in the last section along with some discussion of how to break out of the
problems that have been illustrated.

2 Observing Complexity

2.1 Measurement Theory for Classical Processes*

There are three “laws” of information dynamics that emerge in any description of unpre-
dictable systems. The laws are working assumptions that are used implicitly by many in the
application of information theory to chaotic dynamical systems. The laws cannot be proven, but

* A portion of this section is excerpted from section 1.4 “Information Dynamics” in [1]. The discussion of the three laws in the following
should be compared with that in [2] and [3].
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rather summarize experience and represent useful fundamental concepts. They are hypotheses
to be validated and modified in their application to interpreting experiments. I will list them
first as a group and then discuss each in turn, mentioning some analogies with equilibrium
thermodynamics.

1. Total information is conserved.

2. An observer’s information about the state of a chaotic system can only decrease, without
additional measurement.

3. An observer cannot obtain infinite information about a system’s state.

In the first law total information refers to the entire observer-experiment system. The
observer and the system-under-study are subsystems of a larger, encompassing system. This
larger system can be called the universe of discourse. (See Figure 1). For the present purposes
an observer is a subsystem that (i) interacts with a system-under-study (its environment), (ii)
has internal states that are correlated with the system-under-study’s instantaneous states, and
(iii) has internal states that are correlated with the system-under-study’s future states. The latter
condition says that the observer attempts to predict the system-under-study’s behavior. The
second and third conditions will be construed to mean that an observer attempts to model the
system-under-study. Conservation within the universe refers to the equality of the amount of
information obtained by the observer and lost by the system-under-study during measurement.
This section assumes a (Heisenberg) bidirectional flow of information between the observer and
the system-under-study during measurement. The remainder of the discussion, however, restricts
the interaction to (Einstein) unidirectional flow from the system-under-study to the observer.
Finally, as in information theory proper, information content is a basic undefined notion.* Ways
to quantify it will be given shortly.

Observer

System

under

Study

Figure 1 The universe of discourse for information dynamics. (After [1].) The double-headed arrow between
the system-under-study and the observer indicates the (Heisenberg) bidirectional flow of information during

measurement. In the latter portions of the discussion the interaction will be restricted to (Einstein) unidirectional
measurement interaction in which information flows only from the system-under-study to the observer.

* While notable, this is not the least bit unusual. Energy in physics has a similar ontological status.
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The total information context is the universe. If information appears not to be conserved,
then the boundaries of the universe are not sufficiently large. Thus, like the first law of
thermodynamics, information conservation can be made to hold by fiat.

This apparently simple point needs some elaboration. One need not appeal to the first law of
thermodynamics — that energy is conserved — and its elevation of energy to a primary concept
for all physical systems. Indeed, there are processes for which energy either is not defined or
simply is not a primary descriptive concept. Dissipative dynamical systems or, more generally,
open systems come to mind. Generally, only information and measurement need be defined.
In this framework energy is a derivative concept, appropriate to a subclass of processes. For
these it is based on and verified as a property of the information collected by measurement.
For a much broader range of processes there is still a first law — conservation of information
— for the universe. In some ways it is really not much more than a different way of saying
that a probability distribution is normalized.* And ultimately, like energy conservation, it is a
principle imposed by us and our formalisms on the world: if violated we invent new concepts
— interactions, forces, particles, complexities, what have you — to reestablish its correctness.
This is how “physical principles”, like energy conservation, differ from “physical laws”, like the
ideal gas law. So, perhaps, one should refer to the above three “laws” as “principles”.

The second law reflects an observer’s inability to accurately predict the future evolution of
a chaotic system. A measurement reveals that the system-under-study is in some small region
of its state space. As long as there is any error in determining the exact state, however, the
observer will be unable to predict the chaotic system’s behavior beyond some finite time, due
to the chaotic dynamics. The measurement uncertainty means that any model for prediction
cannot be put into a state identical to the system-under-study’s. Even assuming that the model
completely describes the system’s dynamics, the deviation of the model’s behavior from the
system’s will grow exponentially. When the deviation is as large as the system’s attractor (say)
the behavior is no longer predictable.

The second law is analogous to that in thermodynamics which says the entropy of an isolated
system increases to a maximum. The thermodynamic entropy can be formulated in terms of
“missing information” about the state of a thermodynamic system once a macroscopic state —
fixed by the volume, the total energy, and so on — is specified. According to Boltzmann,
thermodynamic entropy is the logarithm of the number of microscopic states giving rise to
the same value of the macroscopic state function. An observer’s measurement of the system-
under-study is a macroscopic act that isolates the system to within some set of indistinguishable
microscopic states. Boltzmann’s idea then is that the thermodynamic entropy is proportional to
the informationobtained via measurementthat indicates the system is in a given macroscopic
state.

Preparing a thermodynamic system in a small ensemble of microscopic states with fixed
energy (say) corresponds to having low entropy, or a large amount of information about the
system’s macroscopic state. Subject to energy conservation and assuming the microscopic
dynamics is in “molecular chaos”, however, the system evolves toward equilibrium visiting
larger regions of state space than initially. It appears more disordered, the entropy increases,

* It can be argued that measurement information is more basic than probability.[4]
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and the observer’s initial information can be used with decreasing effectiveness to determine the
system’s current microscopic state.

From information conservation, the system produces information that “displaces” the ob-
server’s. As time goes on, the observer is less able to predict the system’s microscopic state.
The observer “loses” information until the next measurement is made.

The third law is equivalent to the impossibility of the observer making infinitely precise
measurements about a system’s state. It is analogous to the third law of thermodynamics that
says a system cannot be prepared in states of zero entropy, such as zero temperature. Zero
entropy corresponds to perfect knowledge of a system’s state. There is no missing information
because an infinitely precise measurement yields a complete determination of the system’s state.

Chaotic systems, although purely classical, obey the above third law because they exponen-
tially amplify fluctuations.* The third law applies to the observer’s measurements of a chaotic
system as the latter continually receives information from other parts of the universe,including
the observer. Consequently, the state of the observer must be included in the classical complete
determination of the system-under-study.

An estimate of the effect of external fluctuations on chaotic behavior will illustrate their
importance when observing chaotic systems. This will provide a quantitative motivation for
including the observer and the rest of the universe in a complete (arbitrarily precise) state-
determination of a chaotic system. Consider the gravitational effect of an electron at the “edge”
of the known universe (˜17 billion light years) on a terrestrial game of billiards. Assume, for
simplicity, that during a given shot the game is energy conserving over half an hour and that
the balls are hit sufficiently hard to cause a few collisions each second. The unpredictability of
the billiards’ state can be conservatively estimated as an information loss rate of approximately
1 bit per second. The uncertainty caused by the existence or nonexistence of the electron at
the edge of the universe leads to total unpredictability in about six minutes. An electron at
the edge of the solar system does so in four minutes, and if they move around, the billiard
players do so in about one half minute. Similarly, an erratic dripping kitchen faucet[6] becomes
unpredictable in less than half a minute if the uncertainties are produced by the neighbor’s cat
prowling in the garden. Such is the sensitivity of chaos to external influences. This comes about
by its exponential amplification of uncertainty, noise, and error. These examples demonstrate
the necessity of considering the observer in an arbitrarily accurate determination of a chaotic
system’s state. Not only will the occasional measurement perturb the system-under-study, but
the system is constantly bathed in and amplifies information from any couplings — gravitational
or otherwise — to the observer.

The observer’s attempt at a complete determination of the system-under-study necessarily
leads to an attempt at determination of the entire universe of which the observer is part. The
observer must observe and measure itself, since the exact state of the system-under-study includes
observer-state information. This produces an infinite regression of necessary measurements and
requires the storage of information of the universe’s state within a subsystem of it. The process
of storage itself involves the measurement and manipulation of further subsystems’ states. The
infinite regression thus requires the storage of an infinite amount of information. Regardless

* The “fluctuations” are to be thought of as coming not only from extrinsic influences, but also from the deterministic dynamics.[5]
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of the size of the universe, this self-observation and internal self-coding is impossible. One
concludes that arbitrarily precise measurements of the chaotic system-under-study’s state are not
possible. The third law of information dynamics seems forced upon us by the sensitivity of
chaos to external information sources.

This result and its argument remind one, somewhat loosely, of the self-referential paradoxes
associated with G¨odel’s incompleteness theorem.[7] Godel’s results state that in a formal system
of sufficient structure there are true statements expressible in the system’s syntax that are not
provable using the system’s rules. The formal system cannot “know” everything implicit in
its axioms and rules of deduction. In the present setting, the analog of the “formal system
with sufficient structure” is the universe of discourse consisting of an observer that models the
system-under-study. The act of state determination plays the role of “true statements”. That chaos
requires the observer to determine the universe’s state is analogous to Gödel’s construction of a
self-referential statement about the formal system. And the incompleteness result itself appears
here as the conclusion that the universe’s state cannot be stored within a subsystem of the
universe. Indeed, this last statement is more similar to Turing’s use of the diagonal construction
from Cantor’s theory of infinite sets to demonstrate the existence of uncomputable real numbers
— i.e. there are entities that exist outside the algorithmic framework.[8] In this way the third law
of information dynamics represents a type of “measurement” incompleteness or “observational”
uncomputability for chaotic dynamics.

The conclusion drawn from these points is that chaos, and many other types of instability
for that matter, force one to consider at the outset the full universe of discourse. As noted, this
is due to the basic nature of chaotic behavior: exponential amplification of errors requires a full
accounting for the flow of information. It has been pointed out that chaos leads via Kolmogorov’s
notion of complexity to infinite (universal Turing machine) models, if one requires Laplacian
determinism.[9] But this is a trivial extreme case that turns on notions of infinite precision
and computational capabilities. In practice, of course, available precision and computational
resources are finite. The consequence of this finiteness is that one must make an explicit model
of the measurement process for classical (nonlinear) physics. In this the consequences of chaotic
behavior for general physical theory are qualitatively different from periodic and purely stochastic
behavior — behavior types admitted decades ago as “physics”. Accounting for the measurement
process, in turn, introduces the study of the subjectivity and model representation dependence
inherent in an observer’s ability to discover and recognize structure in the system-under-study;
this will be the subject of later sections. Chaos thus motivates the study of how measurement
distortion complicates the inference of structure.

2.2 Endo contra Exo

In this light, my simple summary of the “endo-exo problem for physics”, or at least that
classical part which is addressed below,* is the following. The physical properties of the system-
under-study that an observer can distinguish differ from those accessible outside the universe of
discourse. Endophysics is the collection of theories and facts the observer develops to predict

* There is no direct attempt, for example, to see quantum mechanics in classical physics as suggested by R¨ossler.[10] But I find the results
from the measurement distortion examples highly suggestive. For direct consideration of the quantum context see [11] and [12].
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and model the system-under-study. In contrast, exophysics describes the universe of discourse
in its entirety. Restated in these terms the working hypothesis then is that endophysics differs
from exophysics.

The question is, then, does this hypothesis have any (i) mathematical and (ii) empirical
consequences? I believe the answer is affirmative in both cases. So how might we study this?

The following gives several concrete examples of how the interaction of an observer
and the system-under-study can lead to significant limitations on what the observer can infer
from experimentation. The interaction is called a measurement; the effective dynamics of the
interaction is an instrument. I see no way in principle to distinguish in a physical theory the
notions in each of these pairwise identifications. The usual distinction is based on measurement
(say) having something to do with the intentionality[13] of an observer; namely, the observer
intends to model the system-under-study. And this is tantamount to invoking some sort of
“intelligence” to describe the capabilities of one part of the universe of discourse. But the point
is that, as far as we know at this time, there is no physical basis for identifying intelligent
subsystems. Thus, if system�� “interacts” with system��, then�� “measures” some aspect of
��’s state. Information is transferred, possibly both ways. The time-dependent manner in which
the information is transferred determines the effective “instrumentation”. Until we can define
and detect intelligent subsystems in physical terms, we are left with these identifications.

By no means do the examples encompass the entire problem. In fact, one major simplification
in all of the following is that during measurement information flows only from the system-under-
study to the observer; and not the other way around. Nonetheless, I fail to see how concrete
progress on the endo-exo problem can ignore the difficulties indicated by the examples.

2.3 The Search for Causality

The axiom of this entire approach — and perhaps the very explanability of nature in terms
of classical physics — is the search for causal states. By this I mean the following. An observer
notes at some time that the system-under-study appears to be in some configuration� and at
some (say) later time it is seen to be in configuration�. Then some elements of� “caused” some
elements of� to occur if and only if varying elements of� would have led to different elements
of � occurring. The remainder of this section gives this notion of causality a concrete form.

Over the last decade or so there has been a good deal of effort expended to understand
how this notion of causality can be formalized and, perhaps more importantly, implemented
for measurements of a chaotic classical process. The key notion is that a causal state renders
the future conditionally independent of the past. In other words, if the observer knows the
system-under-study’s current causal state, the observer needs no other information from the past
to determine the range of future behavior. In this way, causal states summarize or compress the
(possibly infinite) past. But how can this idea be reduced to practice?

The answer to this turns on a generalization of the “reconstructed states” introduced, under
the assumption that the process is a continuous-state dynamical system, by Packardet al.[14] The
contention there was that a single time series necessarily contained all of the information about
the dynamics of that time series. The notion of reconstructed state was based on Poincar´e’s view
of the intrinsic dimension of an object.[15] This was defined as the largest number of successive
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cuts through the object resulting in isolated points. A spherical shell in three dimensions by his
method is two dimensional since the first cut typically results in a circle and then a second cut,
of that circle, isolates two points. One way Packardet al. implemented this used probability
distributions conditioned on values of the time series’ derivatives. That is, the coordinates of the
reconstructed state space were taken to be successive time derivatives and the cuts were specified
by setting their values. This was, in fact, an implementation of the differential geometric view
of the derivatives as locally spanning the graph of the dynamic.

In this reconstruction procedure a state of the underlying process is identified by increasing
the number of conditioning variables, employing successively higher derivatives, until the
conditional probability distribution peaks. It was noted shortly thereafter that in the presence of
extrinsic noise a number of conditions is reached beyond which the conditional distribution is no
longer sharpened. And, as a result, the process’s state cannot be further identified. The width of
the resulting distribution then gives an estimate of the effective extrinsic noise level and so also
an estimate of the maximum amount of information contained in observable states. The minimum
number of conditions first leading to this situation is an estimate of the effective dimension.[16]

The method of time-derivative reconstruction gives the key to discovering causal states in
a more general setting. It is important first to note that there is a basic flaw in the original
formulations of reconstruction. If information important in determining the observed behavior is
not “contained” in the time series, then there is an irreducible amount of apparent randomness for
the observer. (Explicit examples will be given in the next section.) This reflects dynamics that
is not reconstructible. The failure in the first proposals is that they did not properly formalize
the effect of extrinsic information, or noise, on the reconstruction process. The problem is
unavoidable, naturally. In applications it was typically dealt with in anad hoc manner and
not seen as the fundamental andprior issue that it is. In the context of continuous time series
the problem is addressed systematically with model order estimation methods which balance
deterministic structure and apparent randomness.[17] But even this approach is only a partial
solution. It confuses several basic difficulties in modeling which can be avoided by recasting
reconstruction as the search for causal states, as done here.

To see how the generalization goes, let’s restrict consideration to discrete-valued time series.
If one is interested in describing continuum-state systems, then this move should be seen as
purely pragmatic: an instrument will have some finite accuracy, generically denoted�, and
individual measurements, denoted�, will range over an alphabet� �

�
�� �� �� � � � � ��� � �

�
.

For discrete time series a causal state is defined to be the set of subsequences that render the
future conditionally independent of the past. Thus, the observer identifies a state at different
times in a data stream as being in identical conditions of ignorance about the future.[18] (See
Figure 2 for a schematic illustration that ignores probabilistic aspects.)

Now we can begin to formalize the notion of causal state. Consider two parts of a data stream
� � � � � �

����������� � � �. The one-sided forward sequence��
�

� �������������� � � � and one-
sided reverse sequence��

�
� � � � �������������� are obtained from� by splitting it at time� into

the forward- and reverse-time semi-infinite subsequences. They represent the information about
the future and past, respectively. Consider the joint distribution of possible forward sequences
���� and reverse sequences���� over all times�

����	 � ������ �
�	 � ��������	�����	 (1)
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Figure 2 Within a single data stream morph-equivalence induces conditionally-independent states. When the template of
future possibilities, i.e. allowed future subsequences and their past-conditioned probabilities, has the same structure then the

process is in the same causal state. At�� and at���, the process is in the same causal state; at��� it is in a
different causal state. The figure only illustrates the nonprobabilistic aspects of morph-equivalence. (After [19].)

The conditional distribution�������� is to be understood as a function over all possible forward
sequences���� that can follow the particular sequence� where ever it occurs in�.

Then the same causal state� � � is associated with all those times�� �� �
����� ���� ��� � � � � �� � �� such that past-conditioned future distributions are the same. That
is,

� � �� if and only if ��������� � � ���������� � (2)

If the process generating the data stream is ergodic, then there are several comments that serve
to clarify how this relation defines causal states. First, the sequences�

�

�
and ��

��
are typically

distinct. If � � ��, Eq. (2) means that upon having seen different histories one can be, nonetheless,
in the same state of knowledge or ignorance about what will happen in the future. Second,�

�

�

and��
��

, when considered as particular symbol sequences, will each occur in� many times other
than� and��, respectively. Finally, the conditional distributions��������

�
� and��������

��
� are

functions over a nontrivial range of “follower” sequences��.

This gives a formal definition to the set� of causal states as equivalence classes of future
predictability: � is the underlying equivalence relation that partitions temporal shifts of the
data stream into equivalence classes. In the following the states will be taken simply as the
labels for those classes. This does more than simplify the discussion. As integers ranging
over ��� 	� 
� � � � � ��� � 	�, the states convey all of the required information to render the
future conditionally independent of the past. For a given state� the set of future sequences�
�
�

�
� � � �

�
that can be observed from it is called its future morph. (Recall Fig. 2.) The set

of sequences that lead to� is called its past morph. Note that the state and its morphs are the
contexts in which an individual measurement takes on semantic content. Each measurement is
anticipated or “understood” by the observervis á vis its model and, in particular, the structure
of the states.[20]
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Once the causal states are found, the temporal evolution of the process — its symbolic
dynamic — is given by a mapping� from states to states� � �� �; that is,���� � ���. The
pair � � ��� � � is referred to as an�-machine; where� simply reminds us that what we have
reconstructed is an approximation and depends on the measuring instrument’s characteristics —
such as its resolution. The procedure that begins with a data stream and estimates the number of
states and their transition structure and probabilities is referred to as�-machine reconstruction.[18]

There are a few points that must be brought out concerning what these reconstructed machines
represent. First, by the definition of future-equivalent states, the machines give the minimal
information dependency between the morphs. It is in this respect that they represent the causal
structure of the morphs considered as events. The machines capture the information flow within
the given data stream. If state� follows state� then� is a cause of� and� is one effect of
�. Second, machine reconstruction produces minimal models up to the given prediction error
level. This minimality guarantees that there are no other events (morphs) that intervene, at the
given error level, to render� and� independent. In this case, we say that information flows
from� to �. The amount of information that flows is the negative logarithm of the connecting
transition probability:� ���� ����. Third, time is the natural ordering captured by machines.*

Finally, anticipating the fuller definition given later, an�-machine for a process is the minimal
causal representation reconstructed using the least powerful computational model class that yields
a finite complexity. The motivations for this more elaborate definition will become clearer only
after the role of representation is appreciated.

2.4 Prediction or Modeling?

Similar notions of state can be found in many literatures, such as linear stochastic pro-
cesses,[21] symbolic dynamics,[22] ergodic theory,[23] automata theory,[24], statistical mechan-
ics,[25] and others. I would simply note that my own background — which is strictly irrelevant
to the main points, but does inform the discussion — derives from an attempt to understand the
puzzle of deterministic chaos as a physical phenomenon.

Examples of the search for causal states are quite numerous and have addressed both
temporal[14,17,18,26] and spatio-temporal[17,27–29] “chaotic” processes. The list could be
extended quite a bit if one included nonlinear modeling[30] and artificial neural networks.[31]
However, in these endeavors there typically is a strong emphasis on statistical parameter
estimation within a fixed-size model class, with a corresponding lack of effort in discovering the
intrinsic computational structure of processes. Indeed, the notion of causality and the meaning
of any measure of a process’s complexity requires the search for the smallest model consistent
with the data.

These comments bring us to the fundamental differences between prediction and modeling.
The distinctions are rather clearly drawn in computational learning theory.[32] But, roughly,
the difference is that in prediction the goal is to produce the best guess of future behavior,
by any means whatsoever; in contrast with modeling the goal is to learn something about the
process’s structure. Naturally, prediction is aided by means of a good model; but typically

* In [20] it is shown that temporal asymmetry can be detected: machines reconstructed in different “time” directions can have different numbers
of causal states.
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efforts at prediction allow for any sort of representation, as long as it gives good forecasts. And
so, for a given process there may be good predictors — such as historical look up tables —
that indicate little, if anything, about the process’s causal structure. Modeling demands much
more and, if successful, it provides much more; certainly more than just good forecasts. The
dichotomy, as drawn here, is that modeling is the search for causality, and prediction is the
search for determinism.

2.5 Unpredictability versus Complexity

With the modeling methodology laid out, several statistics can be defined that capture
how information is generated and processed. A useful coordinate-independent measure of
unpredictability is Shannon’s entropy rate.[33] If one already knows the process’s distribution
����� over infinite sequences�, then the entropy rate is defined

�� � ���
���

�
�
��
�
�
�
��

�
(3)

in which ��
�
�
�
�

is the marginal distribution, obtained from�����, over the set of length�
sequences�� and� is the average of the self-information,� �	
� ��

�
�
�
�
, over ��

�
�
�
�
. In

simple terms,�� measures the rate at which the process appears to produce information. Its
units are bits per symbol. The higher the entropy rate, the more information produced, and the
more unpredictable the process appears to be.

Unfortunately, but not surprisingly, in many situations one does not know����� and so the
definition in Eq. (3) is not directly applicable. A simple rewriting of it will show the important
role played by causal states in computing the entropy. The form of Eq. (3) indicates that the
entropy rate is the slope of the curve���� � �

�
��
�
�
�
��

. This form, it turns out, is not a
particularly good estimator of the slope. The two-point slope definition

�� � ���
���

���������� ��� (4)

often converges more quickly. This is equivalent to the conditional entropy form

�� � ���
���

�

�
��
�
������

��
(5)

in which ��
�
������

�
is the conditional distribution of the next symbol� given the past length

� � � sequences and� averages� �	
� ��
�
������

�
over ��

�
�
�
�
. Assuming that we have a

“typical” data stream� and that the process is ergodic, the entropy becomes

�� � �����������
�

� �� (6)

where����������� � is the conditional distribution of the next symbol���� given the semi-infinite
past��� and� averages the conditional distribution over������.* Now, if we know the set of
* This step is somewhat subtle. The�-limit has been replaced by an infinite past; which is no problem. The difficulty comes in realizing
that there can be large sets of sequences that remain transient with respect to the asymptotic measure. This is discussed under the heading of
“synchronization” in Ref. [20], for example. It is why the restrictions to ergodic processes and “typical” sequences are introduced. See [5] for
a more detailed discussion of typicality.
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causal states� and find the one to which��
�

leads, then we can greatly simplify the definition.
It becomes

�� � ���������� (7)

in which ������� is the conditional distribution of the next symbol� given the current state
� � �. Aside from casting off the limits in the definition, this new form is a much more
compact, and sometimes closed-form, expression for the entropy rate.

It is to be expected then that many methods for exactly computing a process’s information
production rate require the reduction to some sort of causal representation.* By the preceding
definition we see that causal states are the only way to get the correct conditional probabilities
— and the latter is what is required for entropy in Eq. (7). Perhaps this seems to be
something of a tautology. One might object that this is just an artifact of Shannon’s notion
of entropy. But I know of no other (qualitatively different) measure of unpredictability that is
coordinate independent and is not made more efficacious by some notion of causal state. Renyi’s
generalization of Shannon’s entropy, for example, is similarly improved using causal states.[5]

Interestingly, this reformulation also applies to the calculation of the entropy rate for
continuous-state dynamical systems. Often, the most direct means for this class of processes is
to partition the continuous state space into a finite set of elements that can be associated with a
Markov chain or Markov process. Then with an estimate of the probability of these Markovian
states and their transition probabilities, the entropy rate follows directly from Eq. (7).†

Another useful, and closely related, measure of the range of behavior is the topological
entropy�, which simply looks at the growth rate of the total number���� of sequences with
increasing length�

� � ���
���

�	

�
����

�
(8)

It follows from Eq. (3) that� � �� and that if��
�
�
�
�

is constant over those�� which occur,
then � � ��.

Thinking about quantifying unpredictability in these ways suggests there are other, and
perhaps more immediate, measures of a process’s structure: the complexities. A process’s
topological complexity�� is simply given in terms of the minimal number of causal states

�� � �	

�
��� (9)

It is an upper bound on the amount of information needed to specify which state a process is
in. Following the complementary relation between the entropy rate and the topological entropy,
there is a probabilistic version of the “counting” topological complexity. It is formulated as

* Indeed, I like to think of each and every algorithm or analytic method for calculating the entropy as effectively defining, perhaps indirectly,
a notion of state. Shannon suggested a particularly clever way of estimating the entropy rate of English without recourse to an explicit notion of
state.[34] This empirical method used human subjects as the “conditioning” agents; thereby employing the human ability to recognize appropriate
conditionally-independent contexts for predicting printed texts.
† If one knows the equations of motion, unlike our observer, then there is another approach to calculating the entropy rate as the sum of the
positive Lyapunov exponents.[35–37]
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follows. The��� � ��� transition probability matrix� determines the asymptotic causal state
probabilities as its left eigenvector

��� � �� (10)

in which �� is normalized in probability:
�

���

�� � �. From this we have an informational

quantity for the machine’s size

�� � ����� (11)

It is called the statistical complexity. If, as provided by machine reconstruction, the machine is
minimal, then�� is the amount of memory in bits contained in the process.[18]

3 The Complexity of Observing ...
Up to this point the framework of the endo-exo distinction, the basic motivations for a

classical measurement theory, and a few quantifiers have been presented. This section gets
down to practicalities — What happens to the internal information if an observer does not have
direct access to the internal states of the system-under-study? What if the observer has selected
a representation that does not match the system-under-study’s internal information-processing
architecture?

The examples in this section all concern effects induced by the observer viewing the internal
structure through some instrument. They show just what can happen and how the consequences
force one to consider the general question of mapping between representations — one “inside”
the universe of discourse and the other “outside”. The inside, or endophysical, view is that
of the observer. The representation of interest is the observer’s model of the system-under-
study. The outside, or exophysical, view is that of omniscience, that is, of the universe of
discourse’s designer. The exophysical representation is complete by definition. In particular, it
contains the exact equations of motion for the system-under-study. The central concern is the
difference between the endo- and exophysical representations of the system-under-study, since
the latter is the (possibly) common element. The system-under-study itself is a process that
can be categorized by the computational class — e.g. stochastic finite-memory processes —
required to produce its behavior. Before learning and modeling can begin, though, the observer
itself must adopt some model class. This is a range of models from which, given a data stream,
it must choose the most appropriate. Naturally, the selected class brings its own descriptional
capabilities and limitations to the modeling task. In the spirit of the preceding sections, the main
assumption made in the following is that the observer is constrained to causal model classes. In
effect, the examples are a study of mapping between endo- and exocomputational complexity
classes. And the questions posed above become questions about how the complexity changes,
both quantitatively and qualitatively.

To appreciate the approach and its consequences we can delve a little further into these
considerations by drawing parallels. Recall that the goal here is for the observer to infer how
much of the structure in a data stream can be ascribed to the observer’s selected representation,
or model class. The selection of a model class induces a set of equivalences in the space of
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processes. If, for example, one represents binary sources only in terms of the frequency of
�s and�s, then a uniformly random source and the periodic source producing� � � ������ � � �

are indistinguishable. More generally, if the observer assumes a model class that accounts for
periodicity and for ideal randomness, then it will be able to finitely represent processes that
consist of various combinations of those elementary ones. This decomposes the space of all
processes into equivalence classes that only distinguish these components. A quantity, like
entropy or statistical complexity, that is constant in each equivalence class is said to be an
invariant of the modeling decomposition.

Of course, there are circumstances in which the model class is inadequate; where a more
descriptive representation must be used. When infinite representations appear necessary, for
example, they hint that the model class should be augmented. And this, in turn, will refine the
decomposition and lead to new invariants. A later section addresses this problem directly.

The overall picture is simple: the observer is trying to map the structure of an unknown
process onto that describable in terms of its selected representation. An analogous, but restricted
type of cross-class representation is also pursued formally in ergodic and computation theories by
showing how particular objects — stationary processes or computational tasks — can be mapped
onto one another. The motivations there are that the structure of the induced decomposition
defines the equivalence concept and, furthermore, the latter can be quantified by an invariant.
A classic problem in ergodic theory has been to identify those systems that are isomorphic to
Bernoulli processes, which are idealizations of randomness. The associated invariant used for this
is the metric entropy, introduced into dynamical systems theory by Kolmogorov[38] and Sinai[39]
from Shannon’s information theory, i.e. Eq. (3). It turns out that two Bernoulli processes
are equivalent if they have the same entropy and satisfy a few other natural constraints.[40]
Similarly, in computation theory there has been a continuing effort to establish an equivalence
between various hard-to-solve, but easily-verified computational tasks. This is the class of
nondeterministic polynomial (NP) problems. If one can guess an answer, it can be determined
to be correct or not in polynomial time. The equivalence between NP problems requires that
within a polynomial number of computational steps a problem can be reduced to some hardest
problem. These hardest problems are called NP-complete.[41] The invariant of this polynomial-
time reduction equivalence is a coarsened version of the growth rate, as a function of problem
size, of the computation required to solve the problem.

These parallels simply serve to illustrate the venerable tradition of “mapping between
classes”. The implied methodology is that the fiducial representation is more familiar and so
has more semantic content. With a mapping established, one “understands” characteristics of
the original problem in terms of their appearance in the fiducial representation.

Inference for an observer is no different in this regard. The strategy in the following is
to give examples of the endo-exo problem as a mismatch between the system-under-study’s
exocomplexity — its intrinsic complexity class — and its endocomplexity — its apparent causal
complexity class. The examples come from three rather different disciplines: stochastic finite-
memory processes, deterministic spatial automata, and continuum-state dynamical systems. It
turns out that, even if an entropy-rate-like quantity is an invariant of the measurement process,
the endocomplexity can diverge. At the very minimum it becomes clear that one cannot associate
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information production, and especially information conservation, solely with Shannon’s entropy
rate: complexity plays a key role.

3.1 ... Indeterminism

The first example illustrates how a measuring instrument can introduce indeterminism into
the observation of a very simple, purely temporal process. The indeterminism vastly increases
the apparent complexity. The example following this one then shows how the same phenomenon
extends to spatio-temporal processes. The problem there is greatly exacerbated; and so the purely
temporal example is something of a prerequisite. In computational terms, this section studies
the cost of inferring a causal model of a nondeterministic finite-memory process. The observer
assumes the process can be represented with a less powerful class of causal models: stochastic
deterministic finite automata. The basic ideas and terminology will be introduced by example
and the results summarized in terms of “mapping between classes”.

1|1/2
1|1/2 1|1/2

0|1/2

A
(1/2)

B
(1/2)

Figure 3 The source is a stochastic nondeterministic finite automaton — a class sometimes referred to as hidden Markov
models. The hidden process consists of two states����� and uniform branching between them — denoted by the fractions�

on the edge labels���. The observer does not have access to the internal state sequences, but instead views the process
through the symbols� on the edge labels���. The inscribed circle in each state indicates that both states are start states. The

fractions in parentheses give their asymptotic probabilities, which also will be taken as their initial probabilities.

The system-under-study is the two-state stochastic process shown in Figure 3. There are
two internal states�����. Transitions between them are indicated with labeled, directed edges.
The labels��� give the probability� of taking the transition. When the transition is taken the
observer receives the measurement symbol� � ��� ��. The association of these symbols with
the transitions constitutes the instrument through which the observer views the internal state
dynamics. The observer assumes it has no knowledge of the start state and so the process could
have started in either� or � with equal likelihood.

Figure 4 shows the minimal machine for the process’s internal state dynamics. It is the
single state Bernoulli process�

�
�

�
� �
�

�
— a fair coin. From Eqs. (7) and (10) it is evident that

the metric entropy is�� � � bit per symbol, as is the topological entropy�. From Eqs. (9),
(10), and (11) both the topological complexity and statistical complexities are zero. It is a very
random, but simple process.

The goal, of course, is for the observer, using as long a��� �� data stream as is necessary, to
learn the causal structure of this simple process. It has no knowledge of Figure 3, for example.
The overall inference procedure is best illustrated in two steps. The first is learning a model
of the “topological” process that produces the set of sequences in the data stream, ignoring the
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B|1/2A|1/2

Figure 4 The minimal machine for Figure 3’s internal state process. It has a single state and equal branching probabilities.
The topological and statistical complexities are zero and the topological and metric entropies are 1 bit per state symbol — a

highly unpredictable, but low complexity process. That this is the correct minimal description of the internal
state process follows directly from using machine reconstruction, assuming direct access to the internal state

sequences������ � � �. All state sequences are allowed and those of equal length have the same probability.

1

1

0

(2/3)
a

(1/3)
b

Figure 5 The process’s topological structure is given by a deterministic finite automaton — the golden mean
machine. The only rule defining the sequences is “no consecutive�s”. The number of sequences of length
� is given by the Fibonacci number����; the growth rate or topological entropy�, by the golden mean
� � �

�

�
� �

�
�
�
: � � ��	� �. The numbers in parentheses give the states’ asymptotic probabilities.

probabilities with which they occur. The second step is to also learn a model that gives the
sequences’ probabilities.

The first step is relatively straightforward and can be explained briefly in words. (Though, I
highly recommend the exercise of finding the morphs via Eq. (2) and their transition structure.)
Inspection of the stochastic automaton’s output symbols in Figure 3 shows that if� � � is
observed, then� � � must follow. Further reflection shows that this is the only restriction:
consecutive�s are not produced. All other binary sequences occur.

The automaton, again “topological”, that captures this property is shown in Figure 5. This
automaton is also what machine reconstruction generates. (It is the answer to the topological
portion of the reconstruction exercise.) There are several things to notice. First, the statea has
a circle inscribed in it. This denotes thata is the start state; and it happens to be the unique
start state. The reconstructed machine has removed the first element of non-causality in the
original process: ignorance of the start state. Second, the automaton is deterministic — a term
used here as it is in formal language theory and which doesnot refer to probabilistic elements.
Determinism means that from each state a symbol selects a unique successor state. Note that
the original process (Figure 3) with its measurement labeling is not deterministic. If the process
happens to be in state� and the observer then sees� � �, then at the next time step the internal
process can be in either state� or �. This ambiguity grows as one looks at longer and longer
sequences. Generally, indeterminism leads to a many-to-one association between internal state
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sequences and measurement sequences. In this example, the observation of���� could have
been produced from either the internal state sequence����� or �����.

The consequences of indeterminism, though, become apparent in the second inference step:
learning the observed sequences’ probabilities. The machine resulting from full reconstruction
is shown in Figure 6. It has an infinite number of causal states. All of their transitions are
deterministic. Note that the infinite machine preserves the original process’s reset property:
when � � � is observed the machine moves to a unique state and from this state� � � must
be seen. But what happened, in comparison to the finite machine of Figure 5, to produce the
infinite machine in Figure 6? The indeterminism mentioned above for state� has lead to a
causal representation that keeps track of the number of consecutive�s since the last� � �. For
example, if�� has been observed, then���� � �� � �

� and���� � �� � �
� . But if ��� has been

observed,���� � �� � �
� and���� � �� � �

� . In this way the causal representation accounts for
the observer’s uncertainty in each internal states’ contribution to producing the next symbol. The
result is that as more consecutive�s are seen the relative probability of seeing� � � or � � �

continues to change — and eventually converges to a fair coin. This is reflected in the change
in transition probabilities down the machine’s backbone. Causal machine reconstruction shows
exactly what accounting is required in order to correctly predict the transition probabilities. But
it gives more than just optimal prediction. It provides an estimate of the process’s complexity
and a complete representation of the distribution����� over infinite sequences.

1|5/81|3/4 1|2/3

0|1/3 0|3/8

1|1

0|1/4

1A1B
(1/4)

1A2B
(3/16)

1A0B
(1/4)

1A3B
(1/8)

1|1/2

1A   B
(0)
∞

0|1/2

1A4B
(5/64)

0|2/5

1|3/5

Figure 6 The infinite causal representation of the nondeterministic process of Figure 3. The
labels in the states indicate the relative weights of the original internal states�����. The

numbers in parentheses are the asymptotic state probabilities:���� � �	�
� � ��� �������.

Interestingly, even if the observer has knowledge of Figure 3, the infinite causal machine
of Figure 6 represents in a graphical way the requirements for achieving optimal predictability
of the original process. There is no shortcut to computing, for example, the original process’s
entropy rate and complexities, since the machine in Figure 6, though infinite, is minimal. That
is, there is no smaller (causal) machine that correctly gives�����. From the topological machine
it follows that the topological entropy is� � �	
� � � ������ and from Eqs. (7) and (10)
that the metric entropy is�� � �������� bits per symbol. Recall that the original process’s
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topological and statistical complexities were zero. From Eqs. (9), (10), and (11) the causal
machine’s topological complexity is infinite,�� � ���

�
���, and its statistical complexity is

�� � ������� bits. These are rather large changes in appearance due to the instrumentation.

This example is just one from a rich class of processes called — depending on the field
— recurrent hidden Markov models, stochastic nondeterministic finite automata, or functions of
Markov chains. The difficulty of finding the entropy rate for these processes was first noted in
the late 1950’s.[42] It is only recently, however, that a procedure for determining the equivalence
of two such processes has been given.[43] That this problem area bears on the complexity of
observation and the result that finite complexity processes can appear infinitely complex is also
recent.[44]
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Figure 7 The computational hierarchy for finite-memory nonstochastic (below the Measure-Support line) and
stochastic discrete processes (above). Here “Support” refers to the sets of sequences, i.e. what the “topological”
machines describe; “Measure” refers to sequence probabilities, i.e. what the “stochastic” machines describe. The
abbreviations are: A is automaton, F is finite, D is deterministic, N is nondeterministic, S is stochastic, MC is

Markov chain, HMM is hidden Markov model, RHMM is recurrent HMM, and FMC is function of MC.

Getting back to the view of “mapping between classes”, the preceding results can be
summarized using the computational model hierarchy of Figure 7. In this figure each ellipse
denotes a model class. As one moves up the diagram classes become more powerful in the sense
that they can finitely describe a wider range of processes than lower classes. A class below and
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connected to a given one can finitely describe only a subset of the processes finitely described by
the higher one. Additionally, the hierarchy is only a partial ordering of representation capability.
There can be incomparable classes.

In formal language theory it is well-known that deterministic finite automata (���) are as
powerful as nondeterministic finite automata (���).[24] This is shown in the hierarchy as both
classes being connected at the same height. But the equivalence is just topological; that is, it
concerns only the descriptive capability of each class for sets of observed sequences. If one
augments these two classes, though, to account for probabilistic structure over the sequences,
the equivalence is broken in a dramatic way — as the above example demonstrated. This is
shown in the figure. The class of���� is higher than that of the stochastic deterministic finite
automata (����). Crudely speaking, if a��� has transition probabilities added to its edges,
one obtains the single class of����. But if transition probabilities are added to���, then
the class is qualitatively more powerful and, as it turns out, splits into three distinct classes.[44]
Each of these classes is more powerful than the���� class. The new causal classes — called
stochastic deterministic automata (���) — are distinguished by having a countable infinity, a
fractional continuum, or a full continuum of causal states.

Initially, the original process (Figure 3) was undistinguished as an SNFA process. Via the
analysis outlined above its causal representation showed that it is equivalent to a denumerable
stochastic deterministic automaton (����). And, generally, in terms of descriptive power
���� � ����. But recall that we interpret the SNFA as the system-under-study, which is a
Markov chain (��), plus a measuring instrument. So the computational class interpretation of
the endocomplexity explosion is that������� under measurement distortion. That is,��

and���� are qualitatively different classes and, in particular,�� � ����, as shown in the
hierarchy. The representational divergence that separates them is characteristic of the transition
from a lower to a higher class.

3.2 ... Spatial Distortion

The next example illustrates how spatial measurement distortion — errors introduced in
detecting the “local” state in a small region — leads to increased apparent complexity. It turns
out that the problem is somewhat more extreme here than in the previous case. But the setting
uses two of the simplest model classes for spatial processes — cellular automata (CA) and
cellular transducers (CT). Both of these are discrete in space, time, and site value. First, the
model classes will be briefly introduced, along with a measure of the degree of reconstructibility
that will be used to monitor the success of the modeling effort. Then a series of models of a
cellular automaton will be reconstructed from pattern data observed via a local instrument. The
results will be interpreted in the larger context of a computational hierarchy for discrete spatial
processes — an analog of the one just seen for finitary stochastic processes.

The following assumes the reader is somewhat familiar with deterministic CA.[45] At
time � the global state�� of a CA is a sequence of symbols in some local state alphabet:
�� � ��

�
��
�
	 	 	 ����

�
� ��

�
� �, for an � site lattice. The global state’s temporal evolution

is specified by the CA’s rule table� 
 ����� � � that maps a neighborhood pattern
� � ��� 	 	 	 �� 	 	 	 �� � ����� of radius � to the value of the site at the next time. That
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is, the symbols in the local state at the next time are determined by the equations of motion
����� � �

�
����
� � � � ��� � � � �

���
�

�
. The look up table (LUT)� specifies the local space-time dynamics

and is identified by an integer index, the CA rule number.[45] A schematic view of a CA’s
information processing architecture is given in Figure 8.

Now consider a probabilistic generalization of CA.[46] A stochastic CA (SCA) is specified
by its probability transition table

����� �

�
� ���� �	

�
������

� � � � ��� � � � �
���
�

�

 ����	���

(12)

where�	����� is the probability of local state� conditioned on seeing neighborhood pattern� at
the previous time. The degree of an SCA’s nondeterminism is measured by the indeterminacy

���� � �
�

�������

�����
�
���

������� ���� ������� (13)

���� measures the uncertainty of a site’s value at the next time step given knowledge of the
current neighborhood pattern. Its units are bits per site per unit time. If���� � �, then the SCA
reduces to a deterministic CA of radius�: there is no choice in the future site values. Note that
estimation of the indeterminacy���� requires the reconstruction of a radius� SCA since it uses
the associated neighborhood conditional probability distribution, Eq. (12).
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Figure 8 A schematic view of a cellular automaton’s information processing architecture. The CA’s
spatially-local dynamic is shown at the center as a look up table (LUT) that maps from neighborhoods —

triplets of sites in this case — to the next value taken by the center site. The LUT shows ECA 90.

A space-time diagram showing the evolution of the binary� � 
 elementary CA (ECA) 90
from a random initial condition is shown in Figure 9 for reference. The most notable space-time
feature of ECA 90 consists of triangles in which contiguous 0 sequences shrink in length with
time. This indicates a local “saturation and reset” dynamics: a contiguous patch of three or more

s or of �
s resets to a patch of�s. Then the spatial propagation of information invades the
�-patch from the left and right sides. But other than this feature the space-time diagram appears
more or less structureless. The spatial entropy density was estimated to be������ � 
��� bits
per site — the highest possible — and the spatial statistical complexity was������ � ���� bits
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Figure 9 Space-time diagram of elementary CA 90. The horizontal axis gives the spatial site index;
the vertical, time increasing downward.� � ��� sites are shown for��� iterations, after

�� transient steps. Black cells denote��� � �; white, ��� � �. The initial pattern was arbitrary.

per site — the lowest possible. ECA 90 is a linear CA in the sense that the space-time diagram
is the superposition of the evolution from initial patterns with single�-sites.[47]

In contrast to CA or SCA the (deterministic) cellular transducer (CT) explicitly incorporates
the measurement process. There are both internal hidden states and observable symbols at each
lattice site. When the number of local internal states is finite, we refer to a finitary CT (FCT).
A schematic view of an FCT’s information processing architecture is given in Figure 10. When
the internal dynamics is governed by a CA and the instrument is also given by a CA LUT,
then we have the class of elementary FCT (EFCT). EFCT are “cellular automata with cellular
measuring instruments”.

Let’s define EFCT a little more carefully. An EFCT’s local state is a pair
�
���� �

�
�

�
of symbols,

one ��� from a finite set� of internal states and the other��� from a finite set� of observed
measurements. The global internal state�� evolves as in a CA: there is an internal state update
rule� that operates on an internal neighborhood pattern to produce the next internal state�����. In
contrast to CA, however, an observer does not have direct access to the internal states, but instead
measures symbols that are a spatially-local function of the internal state neighborhood. That is,
the observed global state�� � ��� �

�
� � � � �

���
� � ��� � �, is determined by an observation function�

����� � �
�
����� � � � ��� � � � �

���
�

�
(14)

Let � and� denote the CA rule number associated with the� and� rule tables. Then EFCT
can be denoted��� with the first number identifying the internal state rule table and the second,
the observation function. In this notation ECA 90 is equivalent to FCT 90\204 since� � ���

is the nearest neighbor identity LUT.
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Figure 10 A schematic view of a finitary cellular transducer’s information processing architecture. The hidden state and
hidden dynamic (lower layer) are governed by a local finite state machine that maps neighborhoods to the center site’s next

local state. The instrument (upper layer) also maps from neighborhoods, but to the observed symbol at the center site. If both
the hidden and instrumentation local state machines are LUTs, then we have the class of elementary FCTs.

The observed patterns���� generated by FCT 90\222 are shown in Figure 11 in the same
format as Figure 9. For direct comparison, the same initial state was used in both figures.
This is reflected in the spatio-temporal coincidence of the�-triangles, for example, in the two
diagrams. Other than this there is little superficial commonality to the space-time diagrams.
For FCT 90\222 there are fewer�-triangles, a very high proportion of��� � � sites, and a
number of isolated��� � � sites. The observed entropy and complexity were������ � ����
and������ � ���� bits per site; the comparable internal quantities are given by ECA 90:���

and ���, respectively, as noted above. Thus, although the internal and observed patterns are
largely unpredictable, more memory must be used to predict the FCT’s observed patterns. This
example illustrates a property of deterministic instruments: the observed data’s unpredictability
cannot be larger than the internal process’s; but the statistical complexity can be either increased
or decreased.

The spatial inference problem of interest can now be stated — Can the observed space-time
data from FCT 90\222 be reconstructed as a CA? Or, in statistical terms, how well does an
estimated model approximate the probability distribution

	


�
������

. . .
...

������� ����� �������

� � � ����� ��� ����� � � �

������� ����� �������
...

. . .

�
������

(15)

over space-time regions?

Figure 12 shows a space-time diagram generated from the radius� � � estimated CA — it
is actually a stochastic CA. The evolution should be compared with Figures 9 and 11. All three
space-time diagrams used the same initial pattern.

Estimating the radius� � � to � � � nearest-neighbor conditional transition tables gave
SCAs with relatively large indeterminacies:���� � ������� ����� ���� ����� with � �
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Figure 11 Space-time diagram of elementary FCT 90\222. Same initial pattern and format as in Figure 9.

�� �� �� �, respectively. This indicates that the estimated dynamic is moderately stochastic.
Figure 12 indicates more graphically that the estimated SCA differs from FCT 90\222. There
is, for example, no spatio-temporal coincidence of�-triangles when compared to Figure 11.
Additionally, the size distribution of�-triangles has shifted to smaller lengths and there are
almost no�-triangles topped with contiguous�s. These differences are not reflected in the SCA’s
spatial entropy,������ � ����, which is close to that����	� found for FCT 90\222. Though the
SCA’s patterns are less complex,������ � ���, than those generated by FCT 90\222������.

Nonetheless, it turns out that the indeterminacy remains relatively high at larger radius and
therefore the data series is not well modeled by SCA. It even appears to reach a plateau. On an
� 
 ��� site lattice that started from an arbitrary pattern and that was allowed to relax for���

iterations, a radius� 
 �� indeterminacy of����� � ��� bits was estimated over��� iterations.
Note that the CA model at� 
 �� has something like����� parameters to be estimated; though,
only several thousand require much data for estimation, since they appear to be neither��� nor
���. The FCT 90\222 space-time data appear “unreconstructible” with respect to the CA class.

The conclusion from space-time diagrams, indeterminacy, entropy, and statistical complexity,
is that even large radius SCA, let alone deterministic CA, do not capture the structures generated
by nearest-neighbor EFCT. Large indeterminacy at large radius suggests, erroneously, that the
mechanism underlying the FCT data series has, at a minimum, a large spatial radius dynamic
coupled to a stochastic process. Thus, even though the FCT considered has radius one, to an
observer the patterns appear to be generated by a relatively nonlocal SCA: important structure
appears in neighborhoods of 21 sites rather than just 3 sites. It is also noteworthy that when
the estimated dynamic is unstable (�� � �) even the smallest indeterminacy leads to significant
prediction errors between the given and the simulated data series. This appeared in the lack
of absolute time and space correlation between the FCT and reconstructed SCA time histories
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Figure 12 Simulation of the radius� � � SCA estimated from an FCT 90\222 pattern data series. Same initial pattern and
format as in Figure 11. The��� SCA LUT parameters were estimated using spatial data series collected, after��

�

transient iterations, over��� iterations on an� � ��� site lattice starting from an arbitrary initial state.

in Figures 11 and 12; which was due, of course, to the instability-driven amplification of the
SCAs stochastic behavior.

So what, if anything, is troubling about this? First of all, the exponential explosion in model
complexity with increasing radius puts severe constraints on the observer’s ability to predict
space-time patterns and their probabilities of occurrence. The complexity of the SCA class is
exponential in radius: there are����� conditional transition probabilities at radius� that must be
estimated. Any observer with finite computational resources — finite in time or in storage, for
example — that assumes CA or SCA classes will rapidly run out of these resources when trying
to improve predictability by (say) increasing radius. An irreducible randomness is the result
of reaching that point of exhaustion. Second of all, as designers of the universe of discourse
we know that it simply is not the case that the dynamics is either stochastic — the FCT is
purely deterministic — or that it used an infinite amount of computational power to produce the
space-time patterns — the FCT used two nearest-neighbor LUTs and stored two binary states,
one internal and one external.

As in the previous section, the apparent-complexity explosion can be summarized via a
computational hierarchy. (See Figure 13.) This one describes the model classes for spatial
systems that are discrete in space, time, and local state. It is concerned with the representability
of spatio-temporal patterns with respect to automata that operate in parallel, at every site
simultaneously, rather than with respect to automata that serially scan the spatio-temporal pattern
into one-dimensional symbol strings. The latter approach to complexity classification is used,
for example, in Refs. [29], [45], and [48]. Finally, it is focused on deterministic machine
architectures and not, for example, on grammars or production rules.
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The endocomplexity explosion is reflected in the spatial discrete computation hierarchy as
the inequivalence of elementary FCT and CA. The hierarchy indicates that FCT is a more
powerful class. The implication is that the observer’s use of a lower level representation leads
to an infinite representation for spatio-temporal processes — i.e. systems-under-study — that
are strictly produced in a higher level class.

Hidden
States

Visible
States

Finitary Spatial
Automaton

Cellular
Transducer

Cellular
Automata

Finitary
CT

Elementary
FCT

Spatial
Automaton

Look Up
Table

Finite State
Machine

State
Machine

Figure 13 The spatial computation hierarchy for discrete-local-state lattice dynamical systems. Unlike the previous hierarchy
of Figure 7 the stochastic analogs are not shown. Little appears to be known about that extension. The classes here represent

the minimal parallel (deterministic) automaton architectures necessary for representing spatio-temporal patterns.
Their relationship to the recognition complexity classes for spatio-temporal patterns that are scanned into

one-dimensional string languages is not yet worked out. The abbreviation CT denotes cellular transducer. The phrases
“Look up Table”, “Finite State Machine”, and “State Machine”, refer to the type of local equations of motion.

3.3 ... Chaos

The previous two examples concerned processes over discrete-alphabet strings. As such their
complexity and structure could be analyzed in much the same way that contemporary computation
theory views formal languages: explicit computational hierarchies could be delineated, for
example. But many models used in science deal with processes with continuous states. This
section briefly reviews some work along these lines that addresses the measurement problem.
The idea is to take iterated maps of the interval — a favorite set of prototypes — as a legitimate
real-valued computation class.* First a particular iterated map is introduced and then three
examples are presented to illustrate the intrinsic complexity in continuum-state processes and
the effect of measurement distortion.

* This should be compared with Ref. [49].
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The data streams of interest here are derived from a trajectory of a continuum-state dynamical
system, the logistic map, observed with a very coarse measuring instrument. The trajectory is
generated by iterating the map

���� � ����� (16)

with the logistic function���� � ���� � �� in which � � ��� �� and �� � ��� ��. The map’s
maximum occurs at�� � �

�
. The trajectory� � �������� 	 	 	 is converted to a discrete sequence

by observing it via the generating binary partition

� � ��� � ��� ���� � � �� �� � ���� ��� � � �� (17)

The generating property means that sufficiently long binary sequences identify arbitrarily small
segments of initial conditions. Due to this, the information processing in the logistic map can
be studied using the “coarse” measuring instrument�.

The first example looks at the period-doubling onset of chaos at� � �� �


�������������� 	 	 	. The data stream produced at the onset of chaos leads to an in-
finite machine. (For details see Refs. [18] and [50].) This is consonant with the view
introduced by Feigenbaum that this onset of chaos can be viewed as a phase transition at which
the correlation length diverges.[51] The computational analog, as we have analyzed it, is that
the process intrinsically has an infinite memory capacity. There is more that the computational
analysis gives, however. For example, the infinite memory is organized in a particular way
such that the logistic map is not a universal Turing machine, but a less powerful nested stack
automaton. The complexity here is a property not so much of the measuring instrument, but
of the internal dynamics; even though the internal continuum states are observed with a coarse
(binary) measuring instrument. Infinite complexity also appears for other routes to chaos, such
as that found via the frequency-locking of incommensurate oscillators.

The second example examines the logistic map at� � 
��, well into the map’s chaotic
regime. The reconstructed machine is shown in Figure 14. As in any estimation procedure
there are parameters to be set in machine reconstruction. For the machine shown in the figure
the two parameters of interest are the tree depth� and the morph depth�, which were set to
����� � ���� ��. As the caption notes, however, at larger reconstruction parameters more states
are found. The machine size grows very slowly, as the observer attempts to make better models.
Unlike the onset of chaos for which there is a linear lower bound growth, at� � 
�� one does
not know whether the machine size will become finite or will diverge. In contrast, there are
other�-values at which one knows the topological machines are finite; these are characterized by
������ becoming asymptotically periodic. But at� � 
�� it simply appears that the topological
and metric machines are infinite. If this is the case, then the continuum computational process
may be manifesting itself by leading to infinite discrete representations.

The final example of this section shows how to construct an instrument so that the logistic
map, at its most random and least complex parameter value, appears equivalent to the simple
SNFA of Figure 3.

First, set� � � — a parameter at which the logistic map’s attractor fills the interval and has
the maximal entropy rate of	 � 	� � �. Here the topological and statistical complexities vanish.
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Figure 14 The six state machine reconstructed from a binary partition of the logistic map at� � ��� using��� iterations, after
��� transient iterations, and using tree depth� � �� and morph depth� � �. If � � �� and� � � we also find six causal

states and nearly the same transition probabilities. But at� � �� and� � �� seven causal states are reconstructed; at
� � �� and� � ��, there were eight causal states; at� � �	 and� � ��, there were eleven causal states.

The probability density function of the invariant measure over “internal” states� � ��� �� is

����� 	
�

�
�
�� ��

(18)

Second, associate a state� with the event�� � ��� ��� and a state� with the event�� � ���� ��.
Finally, use a sliding-block code on the resulting� � � stream that outputs� 	 � when the
length 2 subsequences��, ��, or �� occur, and� 	 � when�� occurs. The binary data
stream that is produced is exactly that produced by the SNFA of Figure 3.

This can be seen by noting that the two intermediate states here are the same as the SNFA
internal states. They also have the same asymptotic probabilities; that is

����� 	

���

�

������� 	
�



(19)

and by symmetry����� 	 �

�
. The two inverse iterates of��, �� 	 ��� �

�
�
�
, delimit the interval

segments corresponding to the occurrence of� �� pairs. These are then used to compute the
transition probabilities, such as

����� �� 	
������

�����
	 


�
��

�

������� (20)

It turns out they are all equal to�
�
.

This construction might seem somewhat contrived with the use of the pairwise��� coding.
But it can be reinterpreted without recourse to an intermediate code. It turns out that the� � �

data stream comes directly from the binary partition

� 	 ��� � ��� �
�� � 	 �� �� � ��
� ��� � 	 �	 (21)
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This is a partition that is not much more complicated than the original. The main difference is
that the “decision point”, originally at�

�
, has been moved over to��.

The observer can be considered to have simply selected the wrong instrument. The penalty
is infinite complexity, as a previous section demonstrated for the simple SNFA of Figure 3.
Thus, the logistic map can appear to have an infinite number of causal states and so infinite
topological complexity. As in the preceding two sections, and in contrast to the preceding
two logistic map examples which illustrated infinite intrinsic complexity, this one illustrates
measurement-induced complexity, but for a continuum-state process.

4 Just So

4.1 Complexity of Generation �� Complexity of Recognition

These examples have shown that there can be several mechanisms responsible for the
appearance of infinite complexity. One was that the process, such as the logistic map at the
onset of chaos, intrinsically has an infinite amount of memory. The other, and the one that
was emphasized, was indeterminism caused by measurement distortion. The operant mechanism
in the latter cases was that indeterminism induced by the measurement process mapped the
distribution over hidden state sequences onto the measurement sequence distribution in a subtle
infinite-to-one way. Information appeared to have been lost since the entropy was reduced, but it
reappeared as apparent complexity. Indeed, just throwing information away is not enough, since
the infinite-to-one mapping to all�s produces zero complexity in the measurement sequences.
And this as a data stream is eminently reconstructible. To result in an infinite number of causal
states, measurement distortion must additionally generate an infinity of conditional measures
from the (possibly finite complexity) internal state sequence measure.

I hope it is clear that simple processes can appear to be quite complex. Stated more formally,
the examples show how the complexity of recognizing behavior can be substantially higher than
the complexity of generating that behavior. This appears as two types of problem: (i) the
behavior appears quantitatively more or less complex and (ii) it appears qualitatively more
or less complex. The latter refers to the change of computational classes that measurement
distortion requires for causal recognition.

4.2 Extrinsic Noise and Limited Resources

The most mundane way the complexity explosion affects the study of endo-exo problems
appears when considering observers with finite inference resources — like compute time and
storage. As soon as these are limited then infinite complexity leads either to the appearance of
effective randomness or to the need to change the observer’s current model class. The next two
sections address these in turn.

Before this, it is important to briefly remark on the effect of adding additional extrinsic noise
by (say) flipping measurement symbols in a way that is uncorrelated with the internal dynamics
or by putting the internal states themselves in contact with a heat bath. In turns out that in
these cases, the apparent complexity is reduced monotonically with increasing extrinsic noise
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level.[16] This type of corruption of the internal state throws information away. Moreover,
infinite apparent complexity becomes finite, even for infinitesimal noise. The coupling between
the effects of extrinsic noise and apparent complexity gives one approximation to the analysis
of how finite computational resources for inference affect apparent complexity.

4.3 Irreducible Classical Uncertainty

The preceding discussion turned on a curious problem: locally-deterministic or locally-
stochastic behavior viewed with a locally-deterministic instrument can appear substantially more
random than it is to all levels of approximation. What might the physical implications be? If
local temporal or spatio-temporal states are obscured necessarily by the act of measurement,
then microphysical reality would forever appear irreducibly uncertain. This would occur without
invoking randomness; it could be a property of a purely deterministic world. Information
distortion during measurement could be due to some intrinsic nonlinearity of the measurement
act on microphysical scales. This might be analogous to (say) that seen in the stochastic NFA or
in the unreconstructible FCT 90\222. Or it could be given by a measurement transducer more
general than a LUT; for example, one that was itself dynamic. Apparent randomness, even on
the shortest time scales, is consistent with underlying determinism.

Irreducible indeterminacy, as illustrated above, is consistent with internal deterministic
dynamics, even though the latter may never be accessible, testable, or identifiable, using
“reasonable” representations. Conversely, more sophisticated modeling techniques may be
required for the discovery of internal structure than the estimation of local LUT-like statistics
that assume strict independence in some form. At the very least, the physical implications point
to an important role that a measurement theory of nonlinear chaotic processes can play in basic
physical theory. In concert with this, a systematic reevaluation of how accepted model classes
preclude the discovery of natural mechanisms appears necessary. An emphasis on discovering
causal states would seem especially helpful in this. The two computational hierarchies presented
here also go some distance in this direction.

4.4 Towards a Theory of Hierarchical Learning

Is there a way around the problem of distortion-induced complexity? Or, will we always
be precluded from discovering simplicity due to our lack of prior knowledge of the structure
of nature’s processes? Given its determinant role in answering these questions, how can
representation dependence be addressed? This last section sketches a solution to these questions
— a way to break out of weak model classes, to learn more powerful ones. It is called hierarchical
machine reconstruction.[48,52]

First, recall the common aspects of the computational hierarchies in Figures 7 and 13. At
each level in a hierarchy there are a number of elements that can be identified, such as the
following.

1. Models�, in some class�, consisting of states and transitions observed via a measurement
function.

2. Languages being the ensembles of finitely representable behaviors.
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3. Symmetries reflecting the observer’s assumptions about a process’s structure. These deter-
mine the semantic content of the model class�, which is defined by equivalence relations
� corresponding to each symmetry.

4. Reconstruction being the procedure for producing estimated models. It factors out a
symmetry from a data stream�. Formally, reconstruction of model� � � is denoted
as� � �� �.

5. Complexity of a process being the size of a reconstructed model� with respect to the
given class�: ������ � ���.

6. Predictability being estimated with reference to the distinguishable states as in Eq. (7).

It is crucial that reconstructed models� � � be minimal. This is so that� contains no
more structure than and no additional properties beyond the system-under-study. The simplest
explication of this is to note that there are many multiple state representations of an ideal random
binary string. But if the size of representation is to have any meaning, such as the amount of
memory, only the single state process can be allowed as the model from which it is computed.
Additionally, a minimal model maximizes posterior distribution������� over� via Bayesian
balancing of the modeling prior����� and the sample likelihood�������. It is important to
keep in mind that Bayesian optimization is applied only within a given model class. But as such
it does allow one to automatically determine the setting of the reconstruction parameters.

At this level of abstraction, viz. discussing the structure of the hierarchy of model classes,
the relativity of information, entropy, and complexity becomes clear. They all depend on the
observer’s assumed representation. And the representation’s properties determine what they can
mean.

�-machine reconstruction was introduced above as a way to find causal states. It was also
noted that these states appeared to be related to notions of state familiar from other fields. But, it
should now be clear that there is an inductive hierarchy delineated by different notions of state.

Finally, sufficient groundwork has been laid in order to formulate the definition of an�-
machine. An�-machine is that

minimal model at the
least computationally powerful level yielding a
finite description.

The definition builds in an adaptive notion that the observer initially might not have the
correct model class. How does it find a better representation? Moving up the inductive hierarchy
can be associated with the innovation of new notions of state and so new representations. One
can envision a procedure — call it hierarchical machine reconstruction — that implements this
incremental movement up the hierarchy as follows.*

1. At the lowest level, the data stream is its own, rather degenerate and uninformative, model:
�� � �. Initially set the hierarchy level indicator to one step higher:� � �.

2. Reconstruct the level� model�� from the lower level model by factoring out the regularities
— equivalence classes — in the state transition structure of the lower level model����:
�� � ����� �, where� denotes the equivalence relation defining the equivalence classes.

* The procedure assumes a (possibly infinite) collection of symmetries that is complete.
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Literally, one looks for regularities in groups of states in����. The groups revealing
regularity in���� become the states of��; the transitions between the����-state groups
become the transitions in��.

3. Test the parsimony of the�-level class’s descriptive capability by estimating successively
more accurate models. The degree of approximation is generally denoted� here, with
� � � being the limit of increasingly accurate models. If the model complexity diverges,
���� �

���

�, then set� � � � � and go back to 2 and move up another level.

4. If ���� �
���

�, then the procedure has found the first level that is the least computationally

powerful and that gives a finite description. An�-machine has been reconstructed. Quit.

The process of going from step 3 back to step 2 — i.e. of jumping up the hierarchy to a new
model class — is called “innovation”. A large part of innovating a new model class is simply a
reapplication of machine reconstruction. As noted, the central method of discovering structure is
to group lower-level states into equivalence classes of the same future morph. These equivalence
classes then become the notion of state at the new level. A series of increasingly accurate lower
level models are, in this sense, a data stream —������������

�
�

�

�
�����

�
�

�

�
�����

�
�

�

�
� � � � —

for reconstruction at the next higher level��. For example, at the onset of chaos hierarchical
machine reconstruction goes across four levels — data, trees, finite automata, and stack automata
— before finding a finite representation.

There is an additional element beyond the grouping of states according to their transition
(morph) structure, though. This is seen in the SNFA example as the innovation of a resettable
counter for DSDA,[44] at the onset of chaos as the innovation of string productions,[50] and in
discrete spatial processes as the innovation of local state machines to break away from cellular
automata LUT representations.[28] In each case it was quite straightforward to find the additional
structural element riding on top of the higher level causal states. But since, as far as I know,
no one has delineated an exhaustive and ordered spectrum of basic computational elements,
innovation must contain a component, albeit small, of undetermined discovery.

I still hold out a hope for complete automation of hierarchical machine reconstruction. But
I hold no illusions as to its simplicity. The simplest way to say this is that the inductive
computational hierarchy, like others, is only a partial ordering. There is no reason to think that
it would be a linear order — other than one’s belief in the simplicity of nature, perhaps. And,
for that matter, there is no reason (yet) to think that the branching degree, as one moves up the
inductive hierarchy, will be finite, let alone small.

The meta-reconstruction algorithm results in a hierarchy of computation classes — the�-
machine hierarchy. Unlike the generative hierarchy of Chomsky,[24] this is a causal hierarchy
for inductive inference. It takes into account the possibility, for example, that causal recognition
might be distinct from the complexity of the generating process.
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