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KNOWLEDGE AND MEANING ... CHAOS AND COMPLEXITY
J. P. Crutchfield

What are models good for? Taking a largely pedagogical view, the following essay discusses

the semantics of measurement and the uses to which an observer can put knowledge of

a process’s structure. To do this in as concrete a way as possible, it first reviews the

reconstruction of probabilistic finite automata from time series of stochastic and chaotic

processes. It investigates the convergence of an observer’s knowledge of the process’s state;

assuming that the process is in, and the observer also uses for internal representation, that

model class. The conventional notions of phase and phase-locking are extended beyond

periodic behavior to include deterministic chaotic processes. The meaning of individual

measurements of an unpredictable process is then defined in terms of the computational

structure in a model that an observer built.

1. Experimental Epistemology

The grammar of a language can be viewed as a theory of the structure of this language.

Any scientific theory is based on a certain finite set of observations and, by establishing

general laws stated in terms of certain hypothetical constructs, it attempts to account

for these observations, to show how they are interrelated and to predict an indefinite

number of new phenomena.

General linguistic theory can be viewed as a metatheory which is concerned with the

problem of how to choose such a grammar in the case of each particular language on

the basis of a finite corpus of sentences.

N. Chomsky[1]

There is a deep internal conflict in the scientific description of a classical universe. The first

aspect of this conflict is the conviction that nature is, in a sense, a deductive system: pushing
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forward through time according to the dictates of microscopic deterministic equations of

motion. The second, polar aspect is that a scientist, or any physical subsystem of the

universe which attempts to model other portions of the universe, is an inferential system:

destined always to estimate and approximate from finite data and, for better or worse, project

unverifiable structure onto the local environment. The conflict is simply that the logical

types of these concomitant views do not match. Presumably due to the difficulty represented

by this tension, the premises underlying scientific description leave unanswered the primary

questions: Of what does knowledge consist? And, from what does meaning emerge?

Answers to questions like these usually fall under the purview of the philosophy of

science.[2] Unfortunately, investigations along these lines tend to be more concerned with

developing an internally-consistent language for the activity of science than with testing

concrete hypotheses about the structure of knowledge and the mechanisms governing the

emergence of meaning in physical systems. Retreating some distance from the general

setting of epistemology and ontology, the following attempts to address these questions in

the philosophically restricted domain of nonlinear modeling. The presentation is narrowed,

in fact, even further to building stochastic automata from time series of finite resolution

measurements of nonlinear stationary processes. Nonetheless, I think that some progress is

made by introducing these issues into modeling complex phenomena and that the results

reflect back positively on the larger problems.

Why are semantics and epistemology of interest to the study of chaos and complexity?

Surely such philosophical questions have arisen before for mechanical systems. The early

days of information theory, cybernetics, control theory, and linguistics, come to mind.

Perhaps the most direct early approach is found in MacKay’s collectionInformation,

Meaning and Mechanism.[3] But I find the questions especially compelling, and even

a bit poignant, in light of the recent developments in dynamics. We now know of easily-

expressed nonlinear systems to whose temporal behavior we ascribe substantial complication.

In stark opposition to Laplacian determinism, even if we know their governing equations of

motion, they can remain irreducibly unpredictable. The behavior’s complication and its

unpredictability contrasts sharply with the simplicity of the equations of motion.* And

so, in the microcosm of nonlinear modeling a similar epistemological tension arises: the

deterministic evolution of simple systems gives rise to complex phenomena in which an

observer is to find regularity.

I should also mention another premise guiding these concerns. A goal here is to aid

investigations in the dynamics of evolution. The premise is that the questions of experimental

epistemology and the emergence of semantics must be addressed at the very low level of

* This is also testimony to how much we still do not understand about how genuine complexity is
generated by dynamical systems such as the oft-studied logistic and circle maps. The engineering
suggestions[4–7] that there exist physically plausible dynamical systems implementing Turing
machines, though they appear to address the problem of physical complexity, are irrelevant as
they skirt the issue of its emergence through time evolution.



the following. Additionally, these issues must be tackled head on if we are to understand

genuine learning and intrinsic self-organization beyond mere statistical parameter estimation

and pattern stabilization, with which they respectively are often confused.

The epistemological problem of nonlinear modeling is: Have we discovered something in

our data or have we projected the new-found structure onto it?* This was the main lesson of

attempting to reconstruct equations of motion from a time series:[9] When it works, it works;

when it doesn’t, you don’t know what to do; and in both cases it is ambiguous what you have

learned. Even though data was generated by well-behaved, smooth dynamical systems, there

was an extreme sensitivity to the assumed model class that completely swamped “model

order estimation”. Worse still there was noa priori way to select the class appropriate to the

process.† This should be contrasted with what is probably one of the more important practical

results in statistical modeling: within a model class a procedure exists to find, given a finite

amount of data, an optimal model that balances prediction error against model complexity.[10]

Despite representations to the contrary, this “model order estimation” procedure does not

address issues of class inappropriateness and what to do when confronted with failure.

There appears to be a way out of the model class discovery dilemma. The answer that

hierarchical machine reconstruction gives is to start at the lowest level of representation, the

given discrete data, and to build adaptively a series of models within a series of model classes

of increasing computational capability until a finite causal model is found.[11] Within each

level there is a model-order-estimation inference of optimal models, as just indicated. And

there is an induction from a series of approximate models within a lower “inappropriate”

class to the next higher model class. This additional inductive step, beyond the standard

model order estimation procedure, is the price to be paid for formalizing adaptive modeling.

The success at each stage in hierarchical reconstruction is controlled by the amount of

given data, since this puts an upper bound on statistical accuracy, and an error threshold,

which is largely determined by the observer’s available computational resources. The goal

is to find a finite causal model of minimal size and prediction error while maximizing the

extraction of information from the given data.

Within this hierarchical view the epistemological problem of nonlinear modeling can

be crudely summarized as the dichotomy between engineering and science. As long as a

representation is effective for a task, an engineer does not care what it implies about the

underlying mechanisms; to the scientist though the implication makes all the difference in

the world. The engineer certainly is concerned with minimizing implementation cost, such

as representation size, compute time, and storage; but the scientist presumes, at least, to be

* In philosophy such considerations currently appear under the rubric of “intentionality”.[8] I do not
have in mind, however, verbal intercourse, but rather the intentionality arising in the dialogue, and
sometimes monologue, between science and nature. One of the best examples of this is the first
“law” of thermodynamics: energy conservation.

† In artificial intelligence this is referred to as the “representation problem”.
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focused on what the model meansvis á vis natural laws. The engineering view of science is

that it is mere data compression; scientists seem to be motivated by more than this.

From these general considerations a number of pathways lead to interesting and basic

problems. The following will address the questions of what individual measurements mean to

the observer who has made them and how an observer comes to know the state of a process.

There are two main themes: knowledge convergence and measurement semantics. While

these are relatively simple compared to the problems of an experimental epistemology, they

do shed some light on where to begin and so complement direct studies of the emergence

of intrinsic computation. Before the two themes are considered I quickly review stochastic

automata and their reconstruction. Indeed, to complete the semantic chain of meaning and

to suggest how it can emerge, I must say first where models come from. Then, after the

main topics are presented, the discussion ends with some general remarks on causality and

complexity.

2. COMPUTATIONAL MECHANICS

The overall goal is to infer from a series of measurements of a process a model of the

generating mechanism. Additionally, the model is to indicate the process’s computational

structure. This refers not only to its statistical properties, such as the decay of correlation,

but also to the amount of memory it contains and, for example, whether or not it is capable

of producing the digit string of (say)
�
�. The extraction of these properties from the model

determines the utility of the model class beyond mere temporal prediction of the process’s

behavior.

The first subsection starts off by defining the character of the data from which the model

is built. The next two subsections then review machine reconstruction and the statistical

mechanics of the inferred stochastic machines. The section closes with some comments on

complexity and model minimality.

2.1 The Measurement Channel

The universe of discourse for nonlinear modeling consists of a process� , the measuring

apparatus�, and the modeler itself. Their relationships and components are shown schemat-

ically in Fig. 1. The goal is for the modeler, by taking advantage of its available resources,

to make the “best” representation of the nonlinear process.

The process� , the object of the modeler’s ultimate attention, is the unknown, but

hopefully knowable, variable in this picture. And so there is little to say, except that it can

be viewed as governed by stochastic evolution equations

������ �
��
�
���� ���� �

�
(1)

where ��� is the configuration at time�, ��� some noise process, and�� the governing equations

of motion. The following discussion also will have occasion to refer to the process’s



measure�
�
��
�

on its configuration space and the entropy rate��

�
��
�

at which it produces

information.

The measuring apparatus is a transducer that maps��� to some accessible states of an

instrument�. This instrument has a number of characteristics, most of which should be

under the modeler’s control. The primary interaction between the instrument and the process

is through the measurement space�� which is a projection� of ��� onto (say) a Euclidean

space whose dimension is given by the number� of experimental probes. An instrument that

distinguishes the projected states to within a resolution� partitions the measurement space

into a set����� �
�
�� � �� � ��� � � �� � � � ���

�
of cells. Each cell�� is the equivalence

class of projected states that are indistinguishable using that instrument. The instrument

represents the event of finding�
�
���

�
� �� by the cell’s label�. With neither loss of

generality nor information, these indices are then encoded into a time-serial binary code. As

each measurement is made its code is output into the data stream. In this way, a time series of

measurements made by the instrument becomes a binary string, the data stream� available to

the modeler. This is a discretized set of symbols� � � � � 	
��	��	��	��	�	�	�	�	� � � � where

in a single measurement made by the modeler the instrument returns a symbol	� � � in an

alphabet� at time index
 � �. Here we take a binary alphabet� � ��� 	�.

Beyond the instrument, one must consider what can and should be done with information

in the data stream. Acquisition of, processing, and inferring from the measurement sequence

are the functions of the modeler. The modeler is essentially defined in terms of its available

inference resources. These are dominated by storage capacity and computational power, but

certainly include the inference method’s efficacy, for example. Delineating these resources

constitutes the barest outline of an observer that builds models. Although the following

discussion does not require further development at this abstract a level, it is useful to keep

in mind since particular choices for these elements will be presented.

The modeler is presented with�, the bit string, some properties of which were just given.

The modeler’s concern is to go from it to a useful representation. To do this the modeler

needs a notion of the process’s effective state and its effective equations of motion. Having

built a model consisting of these two components, any residual error or deviation from

the behavior described by the model can be used to estimate the process’s effective noise

level. This level is determined by the amount of data “unexplained” by the inferred model.

It should be clear when said this way that the noise level and the model’s sophistication

depend directly on the data and on the modeler’s resources. Finally, the modeler may have

access to experimental control parameters. And these can be used to aid in obtaining different

data streams useful in improving the model by (say) concentrating on behavior where the

effective noise level is highest.

The central problem of nonlinear modeling now can be stated. Given an instrument,

some number of measurements, and fixedfinite inference resources, how much computational

structure in the underlying process can be extracted?



6

1

...10110...
Instrument

 t
o 

B
in

ar
y

E
nc

od
er

   

D = 2 probesε

ε-D

ε-D

Modeler

Experiment

ε

Model

Fig. 1 The Big Channel. The flow of information (measurements) on the shortest time scales is from the left,
from the underlying process, to the right toward the modeler. The latter’s task is to build the “best”
representation given the available data set and computational resources. On longer time scales the modeler
may modify the measuring apparatus and vary the experimental controls on the process. These actions are
represented by the left-going arrows. Notice that from the modeler’s perspective there is a region of
ambiguity between the model and the experiment. The model includes the measuring apparatus since it
instantiates many of the modeler’s biases toward what is worth observing. But the experiment also includes
the measuring apparatus since it couples to the process. Additionally, the apparatus is itself a physical device
with its own internal dynamics of which the modeler may be unaware or incapable of controlling.

Before pursuing this goal directly it will be helpful to point out several limitations

imposed by the data or, rather, the moder’s interpretation of it.

In describing the data stream’s character it was emphasized that the individual measure-

ments are only indirect representations of the process’s state. If the modeler interprets the

measurements as the process’s state, then it is unwittingly forced into a class of computation-

ally less powerful representations. These consist of finite Markov chains with states in� or

in some arbitrarily selected state alphabet. This will become clearer through several exam-

ples used later on. The point is that it is important to not over-interpret the measurements’

content at this early stage of inference as this might limit the quality of the resulting models.

The instrument itself obviously constrains the observer’s ability to extract regularity

from the data stream and so it directly affects the model’s utility. The most basic of these

constraints are given by Shannon’s coding theorems.[12] The instrument was described as

a transducer, but it also can be considered to be a communication channel between the

process and the modeler. The capacity of this channel in bits per measurement is�� �

�����������, where������� � �
�

����

�� ��	� �� is the Shannon entropy of the distribution



��� � ����� � �� � ���. If the process is deterministic and has entropy��
�
��
�
� �, a

theorem of Kolmogorov’s says that this rate is maximized for a given process if the partition

����� is generating.[13] This property requires infinite sequences of cell indices to be in

a finite-to-one correspondence with the process’s states. A similar result was shown to

hold for the classes of process of interest here: deterministic, but coupled to an extrinsic

noise source.[14] Note that the generating partition requirement necessarily determines the

number� of probes required by the instrument.

This is, however, the mathematical side of the problem here: verification of a generating

partition requires knowledge of the equations of motion. Thus, Kolmogorov’s result turns the

inference problem on its head. Here interest is focused on the opposite, pragmatic problem of

discovering structure from given data. As indicated in [14], the notion of generating partitions

gives an operational definition of a good instrument that is useful if the instrument can be

altered. If the data is simply given, one can still proceed with modeling. The conclusions

cannot be as strong, though, as when the equations of motion are known. Then, again, such

knowledge is an idealization.

For an instrument with a generating partition, Shannon’s noiseless coding theorem says

that the measurement channel must have a capacity higher than process’s entropy

�� � ��

�
��
�

(2)

If this is the case then the modeler can use the data stream to reconstruct a model of the

process and, for example, estimate its entropy and complexity. These can be obtained to

within error levels determined by the process’s extrinsic noise level and the number of

measurements.

If �� 	 ��

�
��
�

, then Shannon’s theorems say that the modeler will not be able to

reconstruct a model with an effective noise level less than the equivocation��

�
��
�
� ��

induced by the instrument. That is, there will be an “unreconstructable” portion of the

dynamics represented in the signal.

These results assume, as is also done implicitly in Shannon’s existence proofs for codes,

that the modeler has access to arbitrary inference resources. When these are limited there

will be yet another corresponding loss in the quality of the model and an increase in the

apparent noise level. It is interesting to note in this context that if one were to adopt Laplace’s

philosophical stance that all (classical) reality is deterministic and update it with the modern

view that it is chaotic, then the inferential limitations discussed here are the general case.

Apparent randomness is a consequence of them and not a property of unobserved nature.

2.2 Computation from a Time Series

On what sort of structure in the data stream should the models be based? If the goal

includes prediction, as the preceding assumed, then a natural object to reconstruct from the

data series is a representation of the process’s instantaneous state. Unfortunately, as already
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noted, individual measurements are only indirect representations of the state. Indeed, the

instrument simply may not supply data of a quality sufficient to discover the true states,

independent of the amount of data. So how can the process’s “effective” states be accessed?

The answer to this turns on a generalization of the “reconstructed states” introduced,

under the assumption that the process is a continuous-state dynamical system, by Packard

et al.[15] The contention there was that a single time series necessarily contained all of

the information about the dynamics of that time series. The notion of reconstructed state

was based on Poincar´e’s view of the intrinsic dimension of an object.[16] This was defined

as the largest number of successive cuts through the object resulting in isolated points. A

spherical shell in three dimensions by his method is two dimensional since the first cut

typically results in a circle and then a second cut, of that circle, isolates two points. One

way Packardet al. implemented this used probability distributions conditioned on values of

the time series’ derivatives. That is, the coordinates of the reconstructed state space were

taken to be successive time derivatives and the cuts were specified by setting their values.

This was, in fact, an implementation of the differential geometric view of the derivatives as

locally spanning the graph of the dynamic.

In this reconstruction procedure a state of the underlying process is identified by increas-

ing the number of conditioning variables, i.e. employing successively higher derivatives,

until the conditional probability distribution peaks. It was noted shortly thereafter that in the

presence of extrinsic noise a number of conditions is reached beyond which the conditional

distribution is no longer sharpened.[14] And, as a result the process’s state cannot be further

identified. The width of the resulting distribution then gives an estimate of the effective ex-

trinsic noise level and so also an estimate of the maximum amount of information contained

in observable states. The minimum number of conditions first leading to this situation is an

estimate of the effective dimension.

The method of time derivative reconstruction gives the key to discovering states in

discrete times series. For discrete time series a state is defined to be the set of subsequences

that render the future conditionally independent of the past.[17]* Thus, the observer identifies

a state at different times in the data stream as its being in identical conditions of ignorance

about the future. (See Fig. 2.)

Let’s introduce some notation here. Consider two parts of the data stream� �

� � � �
����������� � � �. The one-sided forward sequence��

�
� �������������� � � � and one-

sided reverse sequence��
�

� � � � �������������� are obtained from� by splitting it at time�

into the forward- and reverse-time semi-infinite subsequences. Consider the joint distribution

of possible forward sequences���� and reverse sequences���� over all times�

� ����� ��� � ��������������� (3)

* This notion of state is widespread; appearing in various guises in early symbolic dynamics and
ergodic and automata theories. It is close to the basic notion of state in Markov chain theory.
Interestingly, the notion of conditional independence is playing an increasingly central role in the
design of expert systems.[18]
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Fig. 2 Morph-equivalence induces conditionally independent states. When the template of future
possibilities, i.e. allowed future subsequences and their past-conditioned probabilities, has the
same structure then the process is in the same generalized state. At�� and at���,
the process is in the same state; at��� it is in another different state.

The conditional distribution�������� is to be understood as a function over all possible

forward sequences���� that can follow the particular sequence� where ever it occurs in�.

Then the same state� � � is associated with all those times�� �� �

���� � ��� � ��� � � � � �� � �� such that past-conditioned future distributions are the same. That is,

� � �� if and only if ��������� � � ���������� � (4)

If the source generating the data stream is ergodic, then there are several comments that

serve to clarify how this relation defines states. First, the sequences�
�

�
and��

��
are typically

distinct. If � � ��, Eq. (4) means that upon having seen different histories one can be,

nonetheless, in the same state of anticipation or ignorance about what will happen in the

future. Second,��
�

and ��
��

, when considered as particular symbol sequences, will each

occur in� many times other than� and��, respectively. Finally, the conditional distributions

��������
�
� and��������

��
� are functions over a nontrivial range of “follower” sequences

�
�.

This gives a formal definition to the set� of states as equivalence classes of future

predictability: � is the underlying equivalence relation that partitions temporal shifts of the

data stream into equivalence classes. The states are simply labels for those classes. For a

given state� the set of future sequences
�
�
�

�
� � � �

�
that can be observed from it is called

its future morph. The set of sequences that lead to� is called its past morph. Anticipating

a later section somewhat, note that the state and its morphs are the contexts in which an

individual measurement takes on semantic content. Each measurement is anticipated or

“understood” by the observervis á vis its model and in particular the structure of the states.
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Once these states are found, the temporal evolution of the process, its (symbolic) dynamic,

is given by a mapping from states to states� � � � �; that is,���� � ���.

The available reconstruction algorithms infer the states� via various approximations

of the equivalence class conditions specified in (4).[11,17,19] I refer to these procedures

generically as “machine reconstruction”. The result of machine reconstruction, then, is the

discovery of the underlying process’s “hidden” states. This should be contrasted with thead

hoc methods employed in hidden Markov modeling in which a set of states and a transition

structure are imposed by the modeler at the outset.[20,21]

Thus, the overall procedure has two steps. This first is to identify the states and the

second is to infer the transformation� . In the following I review the simplest implementation

since this affords the most direct means of commenting on certain properties of the resulting

representations.

Initially, a parse tree is built from the data stream�. A window of width� is advanced

through� one symbol at a time. If� � � � � ������������� � � � then at some time� the� � �

subsequence��
�
� ����� is seen, followed by��

��� � �����. Each such subsequence is

represented in the parse tree as a path. The tree has depth� � �. (See Fig. 3).

Counts are accumulated at each tree node as each subsequence is put into to the parse

tree. If the associated path is not present in the tree, it is added; new nodes each begin

with a count of 1 and counts in existing nodes are incremented. If� has length� , then

a node probability, which is also the probability of the sequence leading to it, is estimated

by its relative frequency

� ��	� �

�

� ��
(5)

where 
� is the count accumulated at node	. The node-to-node transition probabilities

���	� 	�� are estimated by

��
�
	� 	

�
�
� ��

�
����

�
�

�
�������
������

� ���

��

� � �

� 	
��
����
(6)

where the length� sequence�� leads to node	 and the length� � � sequence���� � ���

leads to node	� on symbol� � �.

The window length� is an approximation parameter. The longer it is, the more

correlation, structure, and so on, is captured by the tree. Since� is of finite length the tree

depth cannot be indefinitely extended. Thus, to obtain good estimates of the subsequences

generated by the process and of the tree structure, the tree depth must be set at some optimal

value. That value in turn depends on the amount of available data. The procedure for

finding the optimal depth� is discussed elsewhere.

To infer the set of states we look for distinct subtrees of a given depth
. This is the

length of future subsequences over which the morphs must agree. This step introduces a

second approximation parameter, the morph depth
. Naturally,
 � � and typically one
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Fig. 3 The parse tree for the process “every other symbol is a 1”. The tree is a hierarchical representation of
the subsequences produced by the process. Here the tree depth is� � �. If � � � � � �������������� � �, then
the sequence��

�
� ����� will be seen. This is put into the parse tree, as shown by the bold line. Note that

time goes down the tree. When counts of the subsequence that lead to a given tree node are accumulated, the
tree gives a hierarchical representation of the infinite sequence probability distribution.

takes�� � �. Over a range of sources and for a given tree depth, that choice balances

two requirements for the morph’s optimal statistical estimation. The first is the need for

a large number of examples of any given morph. This suggests taking� � � since the

upper bound on the number of morph instances is�
����� � �. The second requirement is

to allow a sufficient diversity of morphs; and so of states. This inclines one toward taking

� � �, since the number of distinct depth� subtrees is��
�

� �. The analysis of this

optimization is presented elsewhere. Investigating the parse tree of Fig. 3 using depth� � �

subtrees one finds the three morphs shown in Fig. 4. In this way, three “machine” states

� � ������� have been discovered for the “every other symbol is a 1” process of Fig. 3

up to the approximation implied by setting� � � and� � �. It can be shown that these

are sufficient to infer an exact model of the process.

The state-to-state transition structure is obtained by looking at how the morphs change

into one another upon moving down the parse tree, i.e. upon reading� � � or � � �. The

resulting transformation� is represented graphically by the machine shown in Fig. 5. This

should be compared to the parse tree (Fig. 3). There the morph below the top node, which is

associated with machine state A, makes a transition on a 1 to a tree node with a morph below

it in the same equivalence class (machine state A). On a 0, though, the top tree node makes

a transition to a tree node with a morph associated with machine state B. In just this way the

machine of Fig. 5 summarizes the morph to morph transition structure� on the parse tree.

This exposition covered only topological reconstruction: subtrees were compared only

up to the subsequences���
�
� which were observed. Of course, what is needed are states

that are not only topologically distinct, but also distinct in probability as indicated by (4).



12

0

0

0 0

1

1 1

1

1

1

11

A B

C

Fig. 4 The morph depth� � � subtrees found below tree nodes down to depth 3 in Fig. 3’s parse tree.
Each morph, or subtree, has been labeled by its associated machine state (cf. Fig. 5).
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Fig. 5 The (topologically) reconstructed machine for the process “every other symbol is a 1”.

For this we must choose some metric to compare the conditional histograms associated with

the morphs. I will briefly sketch one way to do this.

The goal is to develop an implementable approximation to (4) which defines states in

terms of tree node conditional probability equivalence classes. Those equivalence classes

require a subtree similarity relation between two arbitrary tree nodes; denote these� and��.

First assume that these nodes are topologically similar; that is, their morphs�� and��� are

the same, up to some morph depth�,

� �
�

�� if and only if �� � ���

����� �� �
�
����

�
��	 ��� �

�
�����

�
(7)

where�� is a length� sequence. If�� �� ���, then certainly the nodes cannot be similar

in probability. Probabilistic similarity is then an additional constraint and defined by

� �
�

�� if and only if
����
����� ��

�
����

��� � �	 �� � �� (8)



� is yet another approximation parameter. Without going into details, it is important to

note that the implied comparisons for subtree similarity can be done in a relatively efficient

recursive algorithm that stops as soon as a difference in the morph structure or node transition

probabilities is found at some level in the two subtrees under comparison. Finally, the state

to state transition probabilities are then taken from the estimated node-to-node transition

probabilities. Detailed statistical analysis of the overall procedure and the optimal selection

of � is given elsewhere.

2.3 Statistical Mechanics

Machine reconstruction gives then a set of states, that will be associated with a set� � ���

of vertices, and a set of transitions, that will be associated with a set

� �
�
� � � � � �

�
��� �� �� � �� � � �

�
(9)

of labeled edges. The graphical depiction of� � ������� is a labeled directed graph as

seen above in Fig. 5. The full probabilistic structure is described by a set of input-alphabet

labeled transition matrices�
� ��� �

�
� ���

�
���

� ���
�

�� � �� �� � �� � � �

�
(10)

where���
�

�� denotes the conditional probability to make a transition to state�� from state

� on observing symbol�.

Given the current state�� at time	 the future is conditionally independent of the past


���� � 
�
�
�
�

�
�
�

���

�
� 
�

�
�
�

�����
�

�

�

����� �

� 
�
�
�
�

������
�

����� (11)

By factoring the joint distribution over the observed subsequences, the discovered states

vastly reduce the dimensionality of the process’s representation. In the case of strings of

length� , the representation changes from requiring an� -dimensional probability vector for

the joint distribution to a set of��� transition probabilities.

Rather than simply looking up the probability of a given sequence�� �

������ � � � ����� �� � �� in the table of joint probabilities, its probability is recov-

ered from the machine by computing the telescoping product of conditional transition

probabilities


�
�
�
�

�
� �������

��

������
��

�� � � ������ �
����

�� (12)

Here �� is the unique start state. By the nature of machine reconstruction it is the

state of total ignorance: before the first measurement is made��� � �. The sequence

��� ��� ��� � � � � ����� �� are those states through which the sequence�� drives the machine.
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Recall Chomsky’s criterion for a scientific theory quoted at the beginning. A recon-

structed machine is, in his sense, a theory of the source of the data from which it was

inferred. In addition, a machine presumes to ascribe structure to unobserved sequences, such

as whether or not they occur and their probabilities, by the above telescoping product (12).

In fact, a machine typically does so for an indefinite number of unseen measurements. And

this too is in accord with Chomsky’s remark that a theory “predict an indefinite number of

new phenomena”.

A machine is a compact and very informative representation of the underlying source.

In order to appreciate the properties that it captures, there are several statistics that can be

computed from a given machine. Each of these is, naturally, a simplification in one way

or another of the structure captured by the machine. Up to this point there has been no

restriction on the number��� of states. For the sake of simplicity in the following the

number of states will be assumed to be finite. This restricts the general model class to that

of stochastic finite automata.

One useful reduction of a machine� is to ask for its equivalent Markov process. This

is described by the stochastic connection matrix

� �
�
���

� ��� (13)

where �� ���� � ����� is the state to state transition probability, unconditioned by the

measurement symbols. By construction every state has an outgoing transition. This is

reflected in the fact that� is a stochastic matrix:
�
����

���� � �. It should be clear from

dropping the input-alphabet transition labels from the machine that the detailed, I call it

“computational”, structure of the input data stream has been lost. All that is retained in� is

the state transition structure and this is a Markov chain. The interesting fact is that Markov

chains are a proper subset of stochastic finite machines. Examples latter on will support this

contention. But it is exactly at this step of unlabeling the machine that the “properness”

relation between these two model classes appears.

The stationary state probabilities��� �

�
�� �

�
���

�� � �� � � �

�
are given by the left

eigenvector of�

���� � ��� (14)

The entropy rate of the Markov chain is then[12]

���� � � �
�
���

��
�
����

����� ���� ����� (15)

As it is an average of transition uncertainty over all the states, it measures the information

production rate in bits per time step. It is also the growth rate of the Shannon information

in subsequences

�� � �	

���

��	�

	
(16)



where���� � �

�

������

����� ���� �����. That is,���� �
���

���. In general, sub-

sequences are not in a one-to-one correspondence with the Markov chain’s state-to-state

transition sequences. Nonetheless, it is a finite-to-one relationship. And so, the Markov

entropy rate is also the entropy rate of the original data source:����� � ���� �. More

directly, this is given by

����� � �
�
���

	�
�
����

�
���

	��
�

�� ���� 	��
�

�� (17)

Thus, once a machine is reconstructed from a data stream, its entropy is an estimate of

underlying process’s entropy rate.

The complexity* quantifies the information in the state-alphabet sequences


���� � ���	�� � �
�
���

	� ���� 	� (18)

It measures the amount of memory in the source. For completeness, note that there is

an edge-complexity that is the information contained in the asymptotic edge distribution

�	� �

�
	� � 	�	��

�

�� � � � �

�


�
���� � �

�
���

	� ���� 	� (19)

These quantities are not independent. Conservation of information leads to the relation


�
� � 
� � �� (20)

Thus, there are only two independent quantities when modeling a source as a stochastic finite

automaton. The entropy��, as a measure of the diversity of patterns, and the complexity
�,

as a measure of memory, have been taken as the two elementary “information processing”

coordinates with which to analyze a range of sources.[19]

There is another set of quantities that derive from the skeletal structure of the machine.

If we drop all probabilistic structure on the machine, the growth rate of the raw number of

sequences it produces is the topological entropy

� � ���� 
���� (21)

where�� �
�
���

�
���
� is called the connection matrix and
���� is its principal eigenvalue.

It is formed from the symbol matrices�
�

���
� �

�
�

���
�

�
���

�

�
	 	��

�

�� � 



 ���
����

� � �

�
(22)

* Within the reconstruction hierarchy this is actually the finitary complexity, since discussion is
restricted to processes with a finite number of states. Although, I have not introduced this restriction
in unnecessary places. Related forms of the finitary complexity have been considered before,
outside of the context of reconstruction, assuming generating partitions and known equations of
motion.[22–25]
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The state and transition topological complexities are

� � ���
�
���

�
� � ���

�
���

(23)

Although it falls somewhat outside of the present discussion, it is worthwhile noting that

these entropies and complexities can be integrated into a single parametrized framework.

The resulting formulation gives a thermodynamics of�-machines.[26]

2.4 Complexity

It is useful at this stage to stop and reflect on some properties of the models whose

reconstruction and structure have just been described. Consider two extreme data sources.

The first, highly predictable, produces a stream of 1s; the second, highly unpredictable, is an

ideal random source of binary symbols. The parse tree of the predictable source is a single

path of 1s. And there is a single distinct subtree, at any depth. As a result the machine

has a single state and a single transition on� � �: a simple model of a simple source. For

the ideal random source the parse tree, again to any depth, is the full binary tree. All paths

appear in the parse tree since all binary subsequences are produced by the source. There is a

single subtree, of any morph depth, at all parse tree depths: the full binary subtree. And the

machine has a single state with two transitions: one on� � � and one on� � �. The result is

a simple machine, even though the source produces the widest diversity of binary sequences.

Thus, these two zero entropy and maximal entropy sources have zero complexity.

A simple gedanken experiment serves to illustrate how (finitary) complexity is a measure

of a machine’s memory capacity. Consider two observers� and�, each with the same

model� of some process.� is allowed to start machine� in any state and uses it to

generate binary strings that are determined by the edge labels of the transitions taken. These

strings are passed to observer� which traces their effect through its own copy of� . On

average how much information about� ’s state can� communicate to� via the binary

strings? If the machine describes (say) a period three process, e.g. it outputs strings like

��������� � � �, ��������� � � �, and��������� � � �; it has��� � � states. Since� starts�

in any state,� can learn only the information of the process’s phase in the period 3 cycle.

This is ���� ��� � ��	
� � � � bits of information on average about the process’s state, if�

chooses the initial states with equal probability. However, if the machine describes an ideal

random binary process, by definition� can communicate no information to�, since there

is no structure in the sequences to use for this purpose. This is reflected in the fact, as

already noted above, that the corresponding machine has a single state and its complexity is

����
 � ���
�
� � �. In this way, a process’s complexity is the amount of information that

someone controlling its start state can communicate to another.



These examples serve to highlight one of the most basic properties of complexity, as I

use the term.* Both predictable and random sources are simple in the sense that their models

are small. Complex processes in this view have large models. In computational terms,

complex processes have, as a minimum requirement, a large amount of memory as revealed

by many internal states in the reconstructed machine. Most importantly, this memory is

structured in particular ways that support different types of computation. The sections below

on knowledge and meaning show several consequences of computational structure.

In the most general setting, I use the word “complexity” to refer to the amount of in-

formation contained in observer-resolvable equivalence classes.[17] This approach puts the

burden directly on any complexity definition to explicitly state the representation employed

by the observer. For processes with finite memory, the complexity is measured by the quan-

tities labeled above by�. The general notion, i.e. without the finiteness restruction, has

been referred to as the “statistical complexity” in order to distinguish it from the Chaitin-

Kolmogorov complexity,[33,28] the Lempel-Ziv complexity,[34] Rissanen’s stochastic com-

plexity,[35] and others[36,37] which are all equivalent in the limit of long data streams to the

process’s Kolmogorov-Sinai entropy��
�
��
�

. If the instrument�� is generating and�
�
��
�

is absolutely continuous, these quantities are given by the entropy rate of the reconstructed

�-machine, i.e. (17).[38] Accordingly, I use the phrases “entropy” and “entropy rate” to

refer to such quantities. They measure the diversity of sequences that a process produces.

Implicit in their definitions is the restriction that the modeler must pay computationally for

each random bit. Simply stated, the overarching goal is exact description of the data stream.

In the modeling approach advocated here the modeler is allowed to flip a coin or to sample

the heat bath to which it may be coupled. “Complexity” is reserved in my vocabulary to

refer to a process’s structural properties, such as amount of memory, syntactic and semantic

properties, and other types of computational capacity.

* A number of authors have considered measures of complexity that have heuristically similar
properties. One of the first computation theoretic notions along these lines was “logical depth”.[27]
It relies on obtaining a minimal universal Turing machine program. And so, as a consequence of
Kolmogorov’s theorem, it is uncomputable.[28] Apparently, the first constructive measure proposed,
i.e. one that could be estimated from a data stream, was the excess entropy convergence rate.[29]
The closely-related total excess entropy[14,30] was also suggested as a measure of information
contained in a process. This was later recoined the “stored information”[31] and also the “effective
measure complexity”.[24] Using the kneading calculus for one-dimensional maps, algorithms were
given to estimate the number of equivalent Markov states.[22] The size of deterministic finite
automata describing patterns generated by cellular automata was used to measure the development
of spatial complexity.[23] The present author proposed a complexity measure based on the size of
the group of symmetries in an object; Los Alamos Workshop on Dimension and Entropy (1985).
Finally, the diffusion rate on a hierarchical potential was shown to exhibit similar “complexity”
properties.[32] There is clearly no lack of complexity measures. During the last five years yet more
have been proposed, including the finitary and more general complexities considered here. All of
these are seen to be similar or different according to (i) the computational model class selected,
often implicitly, and (ii) whether or not the equations of motion are assumed known.
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The present review is not the place to comment on the wide range of alternative notions

of “complexity” that have been proposed recently for nonlinear physics. The reader is

referred to the comments and especially the citations in [17,19,39]. It is important to point

out, however, that the notion defined here does not require (i) knowledge of the governing

equations of motion nor of the process’s embedding dimension, (ii) the prior existence of

exact conditional probabilities, (iii) Markov or even generating partitions of the state space,

(iv) continuity and differentiability of the state variables, nor (v) the existence of periodic

orbits. Within the framework of machine reconstruction such restrictions are to be viewed

as verifiable assumptions. They can be given explicit form in terms of�-machine properties.

This is an essential criterion for any modeling framework that seeks to roll back the frontier of

subjectivity to expose underlying mechanisms. Without it, there is little basis for appreciating

what aspects of experimental reality are masked by a given set of modeling assumptions and,

more importantly, for a study of the dynamics of modeling itself.

2.5 Compressing and Decompressing Chaos

A dynamical system, or any physical process for that matter, is a communication chan-

nel.[22,40] In the case of a chaotic physical process, the associated mechanism is viewed as

being driven by a heat bath or a randomness source. The dynamics of the effective channel

then connects the heat bath to the process’s macroscopic, observable states.

This picture is particularly explicit in the case of stochastic automata. The machine

model of the source can be reinterpreted as a transducer. A transducer is a machine that

not only reads symbols from some input, taking the appropriate transitions, but also outputs

a symbol determined by each transition taken. In the graphical representation the edges of

a transducer are labeled with both input and output symbols. The latter may come from

different alphabets. For example, the input symbols could be the binary strings considered

up to this point, and the output symbols could be labels for each of the states reached after

making a transition.

For now, consider both alphabets to be binary. Then the strings produced by a source

are generated by the following communication channel that is built from the source’s

reconstructed machine. Starting from the start state, any deterministic transition, i.e. a

state with only a single outgoing edge, is taken and that edge’s output symbol is emitted. At

states with more than one outgoing edge, a symbol is read from the heat bath and that edge

is taken whose input symbol matches the symbol read. On taking the transition, the edge’s

output symbol is emitted. This defines a transformation from (random) strings to strings

containing the constraints and structure that define the original machine.

The reverse procedure can be implemented to give a compression of a string. In this

situation, as the string is read, no symbol is output when the transition is deterministic.

When there is a branching, the corresponding string symbol is copied to the output. This

transducer thereby removes all of the (topological) regularity of the string. The result is
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Fig. 6 Two consistent models of the period two process producing� � � � ������������������ � � �.
(a) The minimal machine. (b) A nonminimal machine.

a (partially) random string. Coupling this compression transducer with the preceding heat

bath transducer gives a data transmission scheme for a string, if both transducers are built

from a model of the string.

2.6 On the Importance of Being Minimal

Given a machine model of a process, the machine’s complexity, or any other statistic for that

matter, need not be that of the process. The inference that some model property also holds for

the process generally depends on details of the reconstruction algorithm used and the attendant

assumptions and restrictions it imposes. Nonetheless, something about the underlying process

has been estimated by reconstructing the machine by the above method. In order to see just

what this is, this section focuses on an important property of the reconstruction method and

the notion of state on which it is based. The property is that machine reconstruction produces

the unique machine with the smallest number of states. As the following will argue, due to

uniqueness and minimality there are some properties of the underlying process that can be

inferred from and are well-estimated by the machine.

Figure 6 shows two machines that are (statistically) consistent models of the period two

process that produces� � � � � ����������������� � � �. In fact, both machines are exact, since

they describe the structure of the data stream without error.

Figure 7 shows two machines, from the other end of the entropy spectrum, that are

(statistically) consistent models of the ideal random process�� � ���, where� means to

choose� � � or � � � with equal probability. Again, both machines are exact, describing

as they do the source’s structure without approximation.

Minimality of the reconstructed machine ensures that its complexity is a measure, actually

a lower-bound estimate, of the process’s memory capacity. As just noted, the latter is the
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Fig. 7 Two consistent models of the ideal random process�� � ��
�. (a)

The minimal machine. (b) A nonminimal machine.

maximal amount of state-information that can be transmitted using the process as a source and

allowing one to select the source’s initial state. The state information that can be conveyed for

a periodic process is the phase of the periodic cycle. In the present case (Fig. 6), the period

was two and so one bit of phase information can be communicated. The observer receives

that bit at the moment it synchronizes to the data stream.* The period two machine with five

states, Fig. 6(b), has a complexity of���� � � ����� bits. But this amount of information

clearly cannot be transmitted with the period two source. The nonminimal machine has a

complexity that is too large. The case of the ideal random process is even more extreme. The

nonminimal machine has a complexity of���� � 	 � bits, but by definition the data stream

and source have no structure that can be used for communication. The minimal machine,

Fig. 7(a), has zero complexity, in accord with intuition.

In summary, then, even though there is a very large number of machines consistent with a

given data stream, the minimal one is singled out not only for its uniqueness and compactness,

but also in order to estimate and understand the source’s properties. Minimality keeps the

modeler from inferring structure in the source which is not justified by the given data.

3. KNOWLEDGE RELAXATION†

The next two sections investigate how models can be used by an observer. An observer’s

knowledge�� of a process� consists of the data stream, its current model, and how the

information used to build the model was obtained.‡ Here the latter is given by the measuring

instrument� 	 �
���
� ��. To facilitate interpretation and calculations, the following will

assume a simple data acquisition discipline with uniform sampling interval� and a time-

independent measurement partition
�. Further simplification comes from ignoring external

* Synchronization is the subject of a later section.
† This and the following section also appear elsewhere.[41]
‡ In principle, the observer’s knowledge also consists of the reconstruction method and its various

assumptions. But it is best to not elaborate this here. These and other unmentioned variables are
assumed to be fixed.



factors, such as what the observer intends or needs to do with the model, by assuming that

the observer’s goal is optimal prediction with respect to the model class of finitary machines.

The totality of knowledge available to an observer is given by the development of its��

at each moment during its history. If we make the further assumption that by some agency the

observer has at each moment in its history optimally encoded the available current and past

measurements into its model, then the totality of knowledge consists of four parts: the time

series of measurements, the instrument by which they were obtained, and the current model

and its current state. Stating these points so explicitly helps to make clear the upper bound on

what the observer can know about its environment. Even if the observer is allowed arbitrary

computational resources, given either finite information from a process or finite time, only

a finite amount of structure can be inferred.

For the following assume that an observer’s model of a process is an�-machine. To

see its role in the change in�� consider the situation in which the model structure is kept

fixed. Starting from the state�� of total ignorance about the process’s state, successive

steps through the machine lead to a refinement of the observer’s knowledge as determined

by a sequence of measurements. The average increase in�� is given by a diffusion of

information throughout the model. The machine transition probabilities, especially those

connected with transient states, govern how the observer gains more information about the

process with longer measurement sequences.

The average increase is governed by a diffusion of information throughout the given

model. Consider for the moment the parse tree as a model. There is a flow of probability

downwards, in increasing time, toward the leaves. This is a unidirectional diffusion of

information on an ultrametric structure.[42]* The ultrametric distance on the tree is sequence

length or, more simply, time itself. Taking the machine as the model, the distance between

two state events, (say)� � � and� � �, is the length of the shortest directed machine

path between them. The direction is determined by the order in which� and� are observed

to occur. This, in turn, translates back into the difference in parse tree levels at which the

associated morphs are found. When viewed in terms of either the parse tree or the machine,

the data stream and its joint distribution exhibit an ultrametric structure. That structure, in

turn, determines those properties of time that can be inferred from the data stream.

In a more quantitative vein, a measure of knowledge relaxation on finitary machines is

given by the time-dependent finitary complexity

����� � ��������� (24)

where������� �
�

����

�� ���� �� is the Shannon entropy of the distribution���� and

�����	 
� � ������� (25)
* Unidirectional diffusion on a hierarchical structure is described by the theory of branching processes,

and does not necessarily call into play the phenomena associated with ultrametric diffusion. If
the direction of time is unknown, however, then the diffusion of the observer’s information is
bidirectional on the parse tree and so a diffusion on an ultrametric space.
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is the probability distribution at time� beginning with the initial distribution����� �

��� �� �� � � �� concentrated on the start state. This distribution represents the observer’s

condition of total ignorance of the process’s state, i.e. before any measurements have been

made, and correspondingly����� � �. ����� is simply (the negative of) the Boltzmann

�-function in the present setting. There is an analogous�-theorem for stochastic�-

machines:����� converges monotonically when������ is sufficiently close to��� � ������:

����� �
���

��. That is, the time-dependent complexity limits on the finitary complexity.

Furthermore, the observer has the maximal amount of information about the process, i.e. the

observer’s knowledge is in equilibrium with the process, when����� ��� ����� vanishes

for all � � �����, where����� is some fixed time characteristic of the process.

For finitary machines there are two convergence behaviors for�����. These are illustrated

in Fig. 8 for three processes: one	� which is period 3 and generates������, one	� in which

only isolated zeros are allowed, and one	� that generates 1s in blocks of even length bounded

by 0s. The first behavior type, illustrated by	� and 	�, is monotonic convergence from

below. In fact, the asymptotic approach occurs in finite time. This is the case for periodic

and recurrent Markov chains, where the latter refers to finite state stochastic processes whose

support is a subshift of finite type (SSFT).[43] The convergence here is over-damped.

The second convergence type, illustrated by	�, is only asymptotic; convergence to

the asymptotic state distribution is only at infinite time. There are two subcases. The

first is monotonic increasing convergence; the conventional picture of stochastic process

convergence. The second subcase (	�) is nonmonotonic convergence. Starting in the

condition of total ignorance leads to a critically-damped convergence with a single overshoot

of the finitary complexity. With other initial distributions oscillations, i.e. underdamped

convergence, can be seen. Exact convergence is only at infinite time. This convergence

type is associated with machines having cycles in the transient states or, in the classification

of symbolic dynamics, with machines whose support is a strictly Sofic system (SSS).[43]*

For these, at some point in time the initial distribution spreads out over more than just the

recurrent states.����� can then be larger than��. Beyond this time, it converges from above.

Much of the detailed convergence behavior is determined, of course, by
 ’s full eigenvalue

spectrum. The interpretation just given, though, can be directly deduced by examining the

reconstructed machine’s graph. One aspect which is less immediate is that for SSSs the

initial distribution relaxes through an infinite number of Cantor sets in sequence space. For

SSFTs there is only a finite number of Cantor sets.

This structural analysis indicates that the ratio

������ �
��� � ������

��

(26)

is largely determined by the amount of information in the transient states. For SSSs this

quantity only asymptotically vanishes since there are transient cycles in which information

* SSS shall also refer, in context, to stochastic Sofic systems.[44]



Fig. 8 Temporal convergence of the complexity����� for a period 3 process�� (triangles), a
Markovian process�� whose support is a subshift of finite type (circles), and a process�� that
generates blocks of even numbers of 1s surrounded by 0s (squares).

persists for all time, even though their probability decreases asymptotically. This leads to a

general definition of (chaotic or periodic) phase and phase locking. The phase of a machine

at some point in time is its current state. There are two types of phase of interest here.

The first is the process’s phase and the second is the observer’s phase. The latter refers

to the state of the observer’s model having read the data stream up to some time. The

observer has�-locked onto the process when���������� � �. This occurs at the locking

time ����� which is the longest time� such that������ � �. When the process is periodic,

this notion of locking is the standard one from engineering. But it also applies to chaotic

processes and corresponds to the observer knowing what state the process is in, even if the

next measurement cannot be predicted exactly.

These two classes of knowledge relaxation lead to quite different consequences for an

observer even though the processes considered above all have a small number of states (2 or

3) and share the same single-symbol statistics:���� � �� � �

�
and���� � �� � �

�
. In the

over-damped case, the observer knows the state of the underlying process with certainty after

a finite time. In the critically-damped situation, however, the observer has only approximate

knowledge for all times. For example, setting� � �� leads to locking times shown in

table 1. Thus, the ability of an observer to infer the state depends crucially on the process’s
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Locking Times at 1% Level
Process Locked at time

Period 3 2

Isolated 0s 1

Even 1 blocks 17

Table 1 �-locking times for the periodic��, isolated 0s��, and even 1s��, processes. Note that for the
latter the locking time is substantially longer and depends on�. For the former two, the locking times
indicate the times at which asymptotic convergence has been achieved. The observer knows the state of the
underlying process with certainty at those locking times. For��, however, at� � �� the observer is
partially phase-locked with knowledge of��� of the process’s state information.

computational structure, viz. whether its topological machine is a SSFT or a SSS. The

presence of extrinsic noise and observational noise modify these conclusions systematically.

It is worthwhile to contrast the machine model of�� with a model based on histograms,

or look-up tables, of the same process. Both models are given sufficient storage to exactly

represent the length 3 sequence probability distribution. They are then used for predictions

on length 4 sequences. The histogram model will store the probabilities for each length 3

sequence. This requires 8 bins each containing an 8 bit approximation of a rational number:

3 bits for the numerator and 5 for the denominator. The total is 67 bits which includes an

indicator for the most recent length 3 sequence. The machine model of Fig. 9 must store the

current state and five approximate rational numbers, the transition probabilities, using 3 bits

each: one for the numerator and two for the denominator. This gives a model size of 17 bits.

Two observers, each given one or the other model, are presented with the sequence���.

What do they predict for the event that the fourth symbol is� � �? The histogram model

predicts

��������� � �������� �
�������

������
�

���

���
�

	



(27)

whereas the machine model predicts

��������� � ���� � � (28)

The histogram model gives the wrong prediction. It says that the fourth symbol is uncertain

when it is completely predictable. A similar analysis for the prediction of measuring� � �

having observed��� shows the opposite. The histogram model predicts� � � is more

likely, ���� � ��	, when it is, in fact, not predictable at all,���� � ���. This example

is illustrative of the superiority of stochastic machine models over histogram and similar

look-up table models of time-dependent processes. Indeed, there are processes with finite

memory for which no finite-size sequence histogram will give correct predictions.

In order to make the physical relevance of SSSs and their slow convergence more

plausible, the next example is taken from the Logistic map at a Misiurewicz parameter

value. The Logistic map is an iterated mapping of the unit interval

���� � ������ � ������ ���� � � ��� �
� �� � ��� �
 (29)



B CA

1|2/3

0|1/3
1|1/2

0|1/2

1|1

0|0

Fig. 9 The even system generates sequences
�
� � � ����� � � � � � � �� ���� � � �

�
of �s of even length, i.e. even

parity. There are three states� � �����	�. The state� with the inscribed circle is the start state��. The
edges are labeled��� where� � � is a measurement symbol and� � 
�� �� is a conditional transition probability.

0|0.276
0|0.364

1|0.724

1|0.636

D

1|1.000

1|0.479BA

0|0.521

C

Fig. 10 The machine��
�
� reconstructed by parsing in forward presentation order a binary sequence

produced using a generating partition of the Logistic map at a Misiurewicz parameter value.

The control parameter� governs the degree of nonlinearity. At a Misiurewicz parameter

value the chaotic behavior is governed by an absolutely continuous invariant measure. The

consequence is that the statistical properties are particularly well-behaved. These parameter

values are determined by the condition that the iterates������ of the map’s maximum

�� � ��� are asymptotically periodic. The Misiurewicz parameter value�� of interest here

is the first root of��
�

����� � � ������� below that at� � �. Solving numerically yields

�� � ��������		
����

�. The symbolic dynamics is produced from the measurement

partition ���� � ��	� ���� ���� 
��. Since this partition is generating the resulting binary

sequences completely capture the statistical properties of the map. In other words, there is a

one-to-one mapping between infinite binary sequences and almost all points on the attractor.

Reconstructing the machine from one very long binary sequence in the direction in

which the symbols are produced gives the four state machine���� shown in Fig. 10. The

stochastic connection matrix is

� �

�
����

	���� 	���� 	�			 	�			

	���� 	�			 	���� 	�			

	�			 	�			 	�			 
�			

	�			 	�
�
 	���� 	�			

�
���� (30)
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0|0.2760|0.364

1|0.636

D
1|1.000

1|0.506

BA

0|0.494

C

1|0.724

Fig. 11 The machine��
�
� reconstructed by parsing in reverse presentation order a binary sequence produced

using a generating partition of the Logistic map at a Misiurewicz parameter value.

Reconstructing the machine from the same binary sequence in the opposite direction

gives the reverse-time machine��
�� shown in Fig. 11. It connection matrix is

� �

�
����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

�
���� (31)

Notice that��
�� has a transient state and three recurrent states compared to the four

recurrent states in��
�� . This suggests the likelihood of some difference in complexity

convergence. Figure 12 shows that this is the case by plotting��	�
�

�� � �
 and��	�
�

�� � �


for positive and “negative” times, respectively. Not only do the convergence behaviors

differ in type, but also in the asymptotic values of the complexities:��	�
�

�� 
 � ����

bits and��	�
�

�� 
 � ���� bits. This occurs despite the fact that the entropies must be

and are the same for both machines:�	��
�� 
 � �	��

�� 
 � ���� bits per time unit and

��	�
�

�� 
 � ��	�
�

�� 
 � ���� bits per time unit. Although the data stream is equally

unpredictable in both time directions, an observer learns about the process’s state in two

different ways and obtains different amounts of state information. The difference

���
�

� ��	�
�

�� 
� ��	�
�

�� 
 � ���� bits (32)

is a measure of the computational irreversibility of the process. It indicates the process is not

symmetric in time from the observer’s viewpoint. This example serves to distinguish machine

reconstruction and the derived quantifiers, such as complexity, from the subsequence-based

measures, such as the two-point mutual information and the excess entropy.

4. MEASUREMENT SEMANTICS

Shannon’s communication theory tells one how much information a measurement gives. But

what is the meaning of a particular measurement? Sufficient structure has been developed

up to this point to introduce a quantitative definition of an observation’s meaning. Meaning,



Fig. 12 What the observer sees, on average, in forward and reverse lag time in terms of the
complexity convergence����� for ��

�� and��
�� . Data for the latter are plotted on the negative lag

time axis. Note that not only do the convergence characteristics differ between the
two time directions, but the asymptotic complexity values are not equal.

as will be seen, is intimately connected with hierarchical representation.* The following,

though, concerns meaning as it arises when crossing a single change in representation and

not in the entire hierarchy.[11]

A universe consisting of an observer and a thing observed has a natural semantics.

The semantics describes the coupling that occurs during measurement. The attendant

meaning derives from the dual interpretation of the information transferred at that time. As

already emphasized, the measurement is, first, an indirect representation of the underlying

process’s state and, second, information that updates the observer’s knowledge. The semantic

information processing that occurs during a measurement thus turns on the relationship

between two levels of representation of the same event.

The meaning of a message, of course, depends on the context in which its information

is made available. If the context is inappropriate, the observation will have no basis with

which to be understood. It will have no meaning. If appropriate, then the observation will

be “understood”. And if that which is understood — the content of the message — is largely

* The following hopefully adds some specificity to approaches to the symbol grounding problem:
How to physical states of nature take on semantic content?[45]
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unanticipated then the observation will be more significant than a highly likely, “obvious”

message.

In the present framework context is set by the model held by the observer at the time of

a measurement. To take an example, assume that the observer is capable of modeling using

the class of stochastic finite automata. And, in particular, assume the observer has estimated

a stochastic finite automaton* and has been following the process sufficiently long to know

the current state with certainty. Then at a given time the observer measures symbol� � �.

If that measurement forces a disallowed transition, then it has no meaning other than that

it lies outside of the contexts (morphs) captured in the current model. The observer clearly

does not know what the process is doing. Indeed, formally the response is for the observer

to reset the machine to the initial state of total ignorance. If, however, the measurement is

associated with an allowed transition, i.e. it is anticipated, then the degree���� of meaning is

���� � � ��� �
�

�

�
(33)

Here�
�

� denotes the machine state� � � to which the measurement brings the observer’s

knowledge of the process’s state.�
�

�

�
is the corresponding morph’s probability which is

given by the associated state’s asymptotic probability. The meaning itself, i.e. the content

of the observation, is the particular morph to which the model’s updated state corresponds.

In this view a measurement selects a particular pattern from a palette of morphs. The

measurement’s meaning is the selected morph† and the degree of meaning is determined by

the latter’s probability.

To clarify these notions, let’s consider as an example a source that produces infinite

binary sequences for the regular language[48] described by the expression�� 	 

�
�. We

assume further that the choice implied by the “	” is made with uniform probability. An

observer given an infinite sequence of this type reconstructs the stochastic finite machine

shown in Fig. 9. The observer has discovered three morphs: the states� � �����
�. But

what is the meaning of each morph? First, consider the recurrent states� and
. State� is

associated with having seen an even number of 1’s following a 0;
 with having seen an odd

number. The meaning of� is “even” and
 is “odd”. Together the pair���
� recognize a

type of parity in the data stream. The machine as a whole accepts strings whose substrings

of the form�
 � � � 

 � � � 
� have even parity of
s. What is the meaning of state�? As long

as the observer’s knowledge of the process’s state remains in state�, there has been some

number of 1’s whose parity is unknown, since a 0 must be seen to force the transition to the

* Assume also that the estimated machine is deterministic in the sense of automata theory: the
transitions from each state are uniquely labeled:�� � ���� ��� �� � �����

�

�
� . This simplifies

the discussion by avoiding the need to define the graph indeterminacy as a quantitative measure
of ambiguity.[17] Ambiguity for an observer arises if its model is a stochastic nondeterministic
automaton.

† I simplify here. The best formal representation of meaning at present uses the set-theoretic structure
that the machine induces over the set of observed subsequences. This in turn is formulated via the
lattice theory[46] of machines.[47]



parity state�. State�, a transient, serves to synchronize the recurrent states with the data

stream. This indicates for this example the meaning content of an individual measurement

in terms of the state to which it and its predecessors bring the machine.

Before giving a quantitative analysis the time dependence of the state probabilities must

be calculated. Recall that the state probabilities are updated via the stochastic connection

matrix

������ �� � ������

�
��

�

�
�
�

�

� �
�

�
�

� � �

�
�� (34)

where������ � ������� ������ ������ and the initial distribution is������ � ��� �� ��. Using

the �-transform, the time-dependent state probabilities are found to be

����� �

�
	




��

� � �� �� 	� � � �

����� � 	

�
	




��

� 	��� � � �� �� 	� � � �

����� �

	

�
�

��
� 	��� � � �� 	� 
� � � �

�� � � �
(35)

Any time a disallowed transition is forced the current state is reset to the start state and

������ is reset to the distribution representing total ignorance which is given by������.

What then is the quantitative degree of meaning of particular measurements? Let’s

consider all of the possibilities: all possible contexts, i.e. current states, and all possible

measurements.� steps after a reset, the observer is

1. In the sync state and measures� � �: ��

��	
��� � � 
��� ��
�

� � ��
��� 
 � ��;

2. In the sync state and measures� � �: ��

��	
��� � � 
��� ��
�

� � � 
��� �����; e.g.

��
��	
��� � 
��� 
 � ����� bits;

3. In the even state and measures� � �: ��

���	��� � � 
��� ��
�

� � � 
��� ������ � � �;

e.g. ��
���	��� � 
��� � � 	���� bits;

4. In the even state and measures� � �: ��

���	��� � � 
��� ��
�

� � � 
��� �����; e.g.

��
���	��� � � � 	 
��� 
 � 
��� � � ��
�	 bits;

5. In the odd state and measures� � �: ��


����� � � 
��� ��
�

� � � 
��� �����; e.g.

��

����� � 	 � 
 
��� 
 � 
��� 
� � ����� bits;

6. In the odd state and measures� � �, a disallowed transition. The observer resets the

machine:��


����� � � 
��� ��
�

� � � 
��� ����� � �.

In this scheme states� and� cannot be visited at time� � � nor state� at time � � �.

Assuming no disallowed transitions have been observed, at infinite time��� �


�� �

�
� �
�

�
and the degrees of meaning are, if the observer is

1. In the sync state and measures� � �: ���	
��� � � 
��� ��
�

� � �;
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Observer’s Semantic Analysis of Parity Source
Observer

in State

Measures

Symbol

Interprets Meaning

as

Degree of

Meaning

(bits)

Amount of

Information

(bits)

A 1 Unsynchronized Infinity 0.585

A 0 Synchronize 0.585 1.585

B 1 Odd number of 1s 1.585 1

B 0 Even number of 1s 0.585 1

C 1 Even number of 1s 0.585 0

C 0 Confusion: lose sync,

reset to start state

0 Infinity

Table 2 The observer’s semantics for measuring the parity process of Fig. 9.

2. In the sync state and measures� � �: �������� � � ���� ��
�

� � ���� 	�
 � ����
 bits;

3. In the even state and measures� � 
: ������
� � � ���� ��
�

	 � ���� 	 � 
���
 bits;

4. In the even state and measures� � �: �������� � � ���� ��
�

� � ���� 	�
 � ����
 bits;

5. In the odd state and measures� � 
: �
���
� � � ���� ��
�

� � ���� 	 � 
 � ����
 bits;

6. In the odd state and measures� � �, a disallowed transition. The observer resets the

machine:�
����� � � ���� ��
�

� � � ���� ����� � �.

Table 2 summarizes this analysis for infinite time. It also includes the amount of

information gained in making the specified measurement. This is given simply by the negative

binary logarithm of the associated transition probability.

Similar definitions of meaning can be developed between any two levels in a reconstruc-

tion hierarchy. The example just given concerns the semantics between the measurement

symbol level and the stochastic finite automaton level.[11] Meaning appears whenever there

is a change in representation of events. And if there is no change, e.g. a measurement is

considered only with respect to the population of other measurements, an important special

case arises.

In this view Shannon information concerns degenerate meaning: that obtained within the

same representation class. Consider the information of events in some set� of possibilities

whose occurrence is governed by arbitrary probability distributions����� � � ��. Assume

that no further structural qualifications of this representation class are made. Then the

Shannon self-information� ��� ��� �� � �� gives the degree of meaning� ���� ��
�

�

in the observed event� with respect to total ignorance. Similarly, the information gain

	�� ��� �
�

���

�� ����
��
��

gives the average degree of “meaning” between two distributions.

The two representation levels are degenerate: both are the events themselves. Thus, Shannon

information gives the degree of meaning of an event with respect to the set� of events and

not with respect to an observer’s internal model; unless, of course, that model is taken to be



the collection of events as in a histogram or look-up table. Although this might seem like

vacuous re-interpretation, it is essential that general meaning have this as a degenerate case.

The main components of meaning, as defined above should be emphasized. First, like

information it can be quantified. Second, conventional uses of Shannon information are a

natural special case. And third, it derives fundamentally from the relationshipacross levels

of abstraction. A given message has different connotations depending on an observer’s

model and the most general constraint is the model’s level in a reconstruction hierarchy.

When model reconstruction is considered to be a time-dependent process that moves up a

hierarchy, then the present discussion suggests a concrete approach to investigating adaptive

meaning in evolutionary systems: emergent semantics.

In the parity example above I explicitly said what a state and a measurement “meant”.

Parity, as such, is a human linguistic and mathematical convention, which has a compelling

naturalness due largely to its simplicity. A low level organism, though, need not have such

a literary interpretation of its stimuli. Meaning of (say) its model’s states, when the state

sequence is seen as the output of a preprocessor,* derives from the functionality given to the

organism, as a whole and as a part of its environment and its evolutionary and developmental

history. Said this way, absolute meaning in nature is quite a complicated and contingent

concept. Absolute meaning derives from the global structure developed over space and

through time. Nonetheless, the analysis given above captures the representation level-to-

level origin of “local” meaning. The tension between global and local entities is not the

least bit new to nonlinear dynamics. Indeed, much of the latter’s subtlety is a consequence

of their inequivalence. Analogous insights are sure to follow from the semantic analysis of

large hierarchical processes.

5. CONCLUDING REMARKS

By way of summarizing the preceding discussion, there are a few points that can be brought

out concerning what reconstructed machines represent. First, by the definition of future-

equivalent states, they give the minimal information dependency between the morphs. In

this respect, they represent the causality of the morphs considered as events. If state� follows

state� then� is a cause of� and� is one effect of�. Second, the machines capture the

information flow within the given data stream. Machine reconstruction produces minimal

models up to the given approximation level; that is, up to the amount of data available for the

estimation and up to the setting of the parameters����� ��. This minimality guarantees that

there are no other events (morphs) that intervene between successive states, at the given error

level, to render� and� independent. In this and only this case, can one unambiguously

say that information flows from� to �, under the chosen parsing direction. The amount

of information that flows is given by the mutual information������ � ����������� of

observing the state-event� followed by state-event�. This criterion for information flow

* This preprocessor is a transducer version of the model that takes the input symbols and outputs
strings in the state alphabet�.
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also extends to spatial systems. Finally, time is the natural ordering captured by machines. As

noted in the section on knowledge relaxation changing the direction of parsing the data stream

leads to a quantitative measure of a new type of irreversibility. This type of irreversibility is

a consequence of the computational, in fact, semi-group, structure of the underlying process.

Causation appears then as an efficient organization of knowledge. It is a symmetry

in the broadest sense of the word. It allows for the “factoring” of experience into lower

dimensional representations. The conditional independence basis for machine reconstruction

of states implies that�-machines are the minimal causal representations of the source, up to

the given approximation level. The hierarchical reconstruction procedure uses a slight, but

significant extension of this in order to address the question of change model classes: An

�-machine for a process is the minimal causal representation reconstructed using the least

powerful computational model class that yields a finite complexity.

At first glance the process of measurement, the elemental act of information acquisition,

would seem to be an antecedent of causality. This impression is, though, a result of

current nonphysical formulations of information theory. The essential physical contact during

measurement calls into play the entire panoply of modeling and semantics laid out above.

Information theory, as an engineering discipline, only considers the amount of information

and rates of its production, loss, and transmission, as measured by various entropies. As

such it ignores, as Shannon said it should, the question posed in the previous Woodward

proceedings when considering the geometric structure of the space of information sources

and the algebra of measurements: “what of the ‘meaning’ of ... information?”[49] The

answer here, simply stated, is that it depends on the current state of knowledge of the

observer. In restricting the class of models to stochastic finitary automata, a concrete

answer was given in terms of the discovered morphs and the observer’s anticipation of

seeing them. A more general answer, though, lies in clearly delineating the resources,

computational and observational, available to the modeler. Lending this large a context to

a quantitative theory of meaning, though, pushes the boundaries especially of theoretical

computer science, from which we must know how space and time complexities trade-off

against one another. At present, these scalings appear to be largely, if not exclusively,

studied as separate coordinates for the space of computational tasks.[48,50] Future progress

demands a more detailed understanding of the complexity-entropy landscape over the space

of computational tasks. There are some provocative hints from phenomenological studies

that phase transitions organize some aspects of this space.[19,51,52]

What is the role of nonlinearity in all of this? I would claim at this point that it is

much more fundamental than simply providing an additional and more difficult exercise in

building good models and formalizing what is seen. Rather it goes to the very heart of

genuine discovery. Let me emphasize this by way of a contrapositive point.

Linear systems are meaningless in the sense that the question of semantics need not arise

within their universe of discourse. The implementations, artificial or natural, of mechanisms

by which a linear system could be inferred are themselves nonlinear. Said another way there



is no finite linear system that learns stably. Therefore, (finite) linear systems as a class are

not self-describing; the universe is open. This indirect observation suggests that there is an

intimate connection between meaning and nonlinearity, since nontrivial semantics requires

the ability to model.

The utility of complexity, when it is seen as the arbiter of order and randomness, within

nonlinear physics can be illustrated by way of posing some final questions. Consider the

evolution of scientific theories. In particular, focus on the theories of time-dependent physical

processes, viz. Laplacian-Newtonian classical mechanics (LNCM) and Copenhagen quantum

mechanics (CQM). In LNCM (local) determinism implies complete (local) predictability. In

CQM (local) nondeterminism implies complete (local) unpredictability and so only statistical

regularity can be present. Shrödinger’s equation is, in fact, the equation of motion governing

that statistical regularity. In light of the preceding discussion of modeling, it is rather curious,

but probably no coincidence, that these two theories come from the two extremes of entropy.

The meaning of physical events is often couched only in terms of these two contenders

via (say) Bohr’s notion of complementarity. But what about the intermediate possibility:

complexity? Could these two opposed views be incomplete aspects, or projections, of a

complex nature? A nature too intricate and too detailed to be completely understood at any

one time and with finite knowledge? Whose state is too complex to determine with any

finite measurement?

It seems that such issues will only be given their proper framing when we understand

how physical nature intrinsically computes and how subsystems would spontaneously take

up the task of modeling. Then, of course, there is the nonlinear dynamics of this process.

Could this natural complexity be a state to which a system evolves spontaneously? A true

self-organized complexity?

Hopefully, the preceding made it clear that to ignore the central role of computation is

to miss the point of these questions entirely.

Many thanks to the Santa Fe Institute, where the author was supported by a Robert Maxwell

Foundation Visiting Professorship, for the warm hospitality during the writing of the present

essay. Funds from NASA-Ames University Interchange NCA2-488 and the AFOSR also

contributed to this work.

REFERENCES

1. N. Chomsky, “Three models for the description of language,”IRE Trans. Info. Th.,

vol. 2, p. 113, 1956.

2. A. O’Hear, An Introduction to the Philosophy of Science. Oxford: Oxford University

Press, 1989.

3. D. M. MacKay,Information, Meaning and Mechanism. Cambridge: MIT Press, 1969.



34

4. S. Omohundro, “Modelling cellular automata with partial differential equations,”Physica,

vol. 10D, p. 128, 1984.

5. J. P. Crutchfield, “Turing dynamical systems.” unpublished, 1987.

6. L. Blum, M. Shub, and S. Smale, “On a theory of computation over the real numbers,”

Bull. AMS, vol. 21, p. 1, 1989.

7. C. Moore, “Unpredictability and undecidability in dynamical systems,”Phys. Rev. Lett.,

vol. 64, p. 2354, 1990.

8. D. C. Dennett,The Intentional Stance. Cambridge: MIT Press, 1987.

9. J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data series,”Complex

Systems, vol. 1, p. 417, 1987.

10. J. Rissanen,Stochastic Complexity in Statistical Inquiry. Singapore: World Scientific,

1989.

11. J. P. Crutchfield, “Reconstructing language hierarchies,” inInformation Dynamics (H. A.

Atmanspracher and H. Scheingraber, eds.), (New York), p. 45, Plenum, 1991.

12. C. E. Shannon and W. Weaver,The Mathematical Theory of Communication. Champaign-

Urbana: University of Illinois Press, 1962.

13. A. N. Kolmogorov, “A new metric invariant of transient dynamical systems and

automorphisms in Lebesgue spaces,”Dokl. Akad. Nauk. SSSR, vol. 119, p. 861, 1958.

(Russian) Math. Rev. vol. 21, no. 2035a.

14. J. P. Crutchfield and N. H. Packard, “Symbolic dynamics of noisy chaos,”Physica,

vol. 7D, p. 201, 1983.

15. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry from a time

series,”Phys. Rev. Let., vol. 45, p. 712, 1980.

16. H. Poincar´e, Science and Hypothesis. New York: Dover Publications, 1952.

17. J. P. Crutchfield and K. Young, “Inferring statistical complexity,”Phys. Rev. Let., vol. 63,

p. 105, 1989.

18. J. Pearl,Probabilistic Reasoning in Intelligent Systems. New York: Morgan Kaufmann,

1988.

19. J. P. Crutchfield and K. Young, “Computation at the onset of chaos,” inEntropy,

Complexity, and the Physics of Information (W. Zurek, ed.), vol. VIII of SFI Studies

in the Sciences of Complexity, (Reading, Massachusetts), p. 223, Addison-Wesley, 1990.

20. A. Fraser, “Using hidden Markov models to predict chaos.” preprint, 1990.

21. L. R. Rabiner, “A tutorial on hidden Markov models and selected applications,”IEEE

Proc., vol. 77, p. 257, 1989.

22. J. P. Crutchfield,Noisy Chaos. PhD thesis, University of California, Santa Cruz, 1983.

Published by University Microfilms Intl, Ann Arbor, Michigan.

23. S. Wolfram, “Computation theory of cellular automata,”Comm. Math. Phys., vol. 96,

p. 15, 1984.



24. P. Grassberger, “Toward a quantitative theory of self-generated complexity,”Intl. J.

Theo. Phys., vol. 25, p. 907, 1986.

25. K. Lindgren and M. G. Nordahl, “Complexity measures and cellular automata,”Complex

Systems, vol. 2, p. 409, 1988.

26. J. P. Crutchfield and K. Young, “�-machine spectroscopy.” preprint, 1992.

27. C. H. Bennett, “Dissipation, information, computational complexity, and the definition

of organization,” inEmerging Syntheses in the Sciences (D. Pines, ed.), Redwood City:

Addison-Wesley, 1988.

28. A. N. Kolmogorov, “Three approaches to the concept of the amount of information,”

Prob. Info. Trans., vol. 1, p. 1, 1965.

29. J. P. Crutchfield and N. H. Packard, “Noise scaling of symbolic dynamics entropies,” in

Evolution of Order and Chaos (H. Haken, ed.), (Berlin), p. 215, Springer-Verlag, 1982.

30. N. H. Packard,Measurements of Chaos in the Presence of Noise. PhD thesis, University

of California, Santa Cruz, 1982.

31. R. Shaw,The Dripping Faucet as a Model Chaotic System. Santa Cruz, California:

Aerial Press, 1984.

32. C. P. Bachas and B. A. Huberman, “Complexity and relaxation of hierarchical structures,”

Phys. Rev. Let., vol. 57, p. 1965, 1986.

33. G. Chaitin, “On the length of programs for computing finite binary sequences,”J. ACM,

vol. 13, p. 145, 1966.

34. A. Lempel and J. Ziv, “On the complexity of individual sequences,”IEEE Trans. Info.

Th., vol. IT-22, p. 75, 1976.

35. J. Rissanen, “Stochastic complexity and modeling,”Ann. Statistics, vol. 14, p. 1080, 1986.

36. W. H. Zurek, “Thermodynamic cost of computation, algorithmic complexity, and the

information metric.” preprint, 1989.

37. J. Ziv, “Complexity and coherence of sequences,” inThe Impact of Processing Techniques

on Communications (J. K. Skwirzynski, ed.), (Dordrecht), p. 35, Nijhoff, 1985.

38. A. A. Brudno, “Entropy and the complexity of the trajectories of a dynamical system,”

Trans. Moscow Math. Soc., vol. 44, p. 127, 1983.

39. J. P. Crutchfield, “Inferring the dynamic, quantifying physical complexity,” inMeasures

of Complexity and Chaos (N. B. Abraham, A. M. Albano, A. Passamante, and P. E.

Rapp, eds.), (New York), p. 327, Plenum Press, 1990.

40. R. Shaw, “Strange attractors, chaotic behavior, and information flow,”Z. Naturforsh.,

vol. 36a, p. 80, 1981.

41. J. P. Crutchfield, “Semantics and thermodynamics,” inNonlinear Modeling and

Forecasting (M. Casdagli and S. Eubank, eds.), vol. XII ofSanta Fe Institute Studies in

the Sciences of Complexity, (Reading, Massachusetts), p. 317, Addison-Wesley, 1992.



36

42. R. Rammal, G. Toulouse, and M. A. Virasoro, “Ultrametricity for physicists,”Rev. Mod.

Phys., vol. 58, p. 765, 1986.

43. B. Marcus, “Sofic systems and encoding data,”IEEE Transactions on Information Theory,

vol. 31, p. 366, 1985.

44. B. Kitchens and S. Tuncel, “Finitary measures for subshifts of finite type and sofic

systems,”Memoirs of the AMS, vol. 58, p. no. 338, 1985.

45. S. Harnad, “The symbol grounding problem,”Physica, vol. 42D, p. 335, 1990.

46. G. Birkhoff,Lattice Theory. Providence: American Mathematical Society, third ed., 1967.

47. J. Hartmanis and R. E. Stearns,Algebraic Structure Theory of Sequential Machines.

Englewood Cliffs: Prentice-Hall, 1966.

48. J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and

Computation. Reading: Addison-Wesley, 1979.

49. J. P. Crutchfield, “Information and its metric,” inNonlinear Structures in Physical Systems

- Pattern Formation, Chaos and Waves (L. Lam and H. C. Morris, eds.), (New York),

p. 119, Springer-Verlag, 1990.

50. M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of

NP-Completeness. New York: W. H. Freeman, 1979.

51. C. G. Langton, “Computation at the edge of chaos: Phase transitions and emergent

computation,” inEmergent Computation (S. Forrest, ed.), p. 12, Amsterdam: North-

Holland, 1990.

52. W. Li, N. H. Packard, and C. G. Langton, “Transition phenomena in cellular automata

rule space,”Physica, vol. 45D, p. 77, 1990.


