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KNOWLEDGE AND MEANING ... CHAOS AND COMPLEXITY
J. P. Crutchfield

What are models good for? Taking a largely pedagogical view, the following essay discusses
the semantics of measurement and the uses to which an observer can put knowledge of
a process’s structure. To do this in as concrete a way as possible, it first reviews the
reconstruction of probabilistic finite automata from time series of stochastic and chaotic
processes. It investigates the convergence of an observer’s knowledge of the process’s state;
assuming that the process is in, and the observer also uses for internal representation, that
model class. The conventional notions of phase and phase-locking are extended beyond
periodic behavior to include deterministic chaotic processes. The meaning of individual
measurements of an unpredictable process is then defined in terms of the computational
structure in a model that an observer built.

1. Experimental Epistemology

The grammar of a language can be viewed as a theory of the structure of thislanguage.
Any scientific theory isbased on a certain finite set of observations and, by establishing
general laws stated in terms of certain hypothetical constructs, it attempts to account
for these observations, to show how they are interrelated and to predict an indefinite
number of new phenomena.

General linguistic theory can be viewed as a metatheory which is concerned with the
problem of how to choose such a grammar in the case of each particular language on
the basis of a finite corpus of sentences.

N. Chomsky[1]
There is a deep internal conflict in the scientific description of a classical universe. The first
aspect of this conflict is the conviction that nature is, in a sense, a deductive system: pushing
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forward through time according to the dictates of microscopic deterministic equations of
motion. The second, polar aspect is that a scientist, or any physical subsystem of the
universe which attempts to model other portions of the universe, is an inferential system:
destined always to estimate and approximate from finite data and, for better or worse, project
unverifiable structure onto the local environment. The conflict is simply that the logical
types of these concomitant views do not match. Presumably due to the difficulty represented
by this tension, the premises underlying scientific description leave unanswered the primary
questions: Of what does knowledge consist? And, from what does meaning emerge?

Answers to questions like these usually fall under the purview of the philosophy of
science.[2] Unfortunately, investigations along these lines tend to be more concerned with
developing an internally-consistent language for the activity of science than with testing
concrete hypotheses about the structure of knowledge and the mechanisms governing the
emergence of meaning in physical systems. Retreating some distance from the general
setting of epistemology and ontology, the following attempts to address these questions in
the philosophically restricted domain of nonlinear modeling. The presentation is narrowed,
in fact, even further to building stochastic automata from time series of finite resolution
measurements of nonlinear stationary processes. Nonetheless, | think that some progress is
made by introducing these issues into modeling complex phenomena and that the results
reflect back positively on the larger problems.

Why are semantics and epistemology of interest to the study of chaos and complexity?
Surely such philosophical questions have arisen before for mechanical systems. The early
days of information theory, cybernetics, control theory, and linguistics, come to mind.
Perhaps the most direct early approach is found in MacKay’s colledtidar mation,
Meaning and Mechanism.[3] But | find the questions especially compelling, and even
a bit poignant, in light of the recent developments in dynamics. We now know of easily-
expressed nonlinear systems to whose temporal behavior we ascribe substantial complication.
In stark opposition to Laplacian determinism, even if we know their governing equations of
motion, they can remain irreducibly unpredictable. The behavior's complication and its
unpredictability contrasts sharply with the simplicity of the equations of mdtioAnd
so, in the microcosm of nonlinear modeling a similar epistemological tension arises: the
deterministic evolution of simple systems gives rise to complex phenomena in which an
observer is to find regularity.

| should also mention another premise guiding these concerns. A goal here is to aid
investigations in the dynamics of evolution. The premise is that the questions of experimental
epistemology and the emergence of semantics must be addressed at the very low level of

" This is also testimony to how much we still do not understand about how genuine complexity is
generated by dynamical systems such as the oft-studied logistic and circle maps. The engineering
suggestions[4-7] that there exist physically plausible dynamical systems implementing Turing
machines, though they appear to address the problem of physical complexity, are irrelevant as
they skirt the issue of its emergence through time evolution.



the following. Additionally, these issues must be tackled head on if we are to understand
genuine learning and intrinsic self-organization beyond mere statistical parameter estimation
and pattern stabilization, with which they respectively are often confused.

The epistemological problem of nonlinear modeling is: Have we discovered something in
our data or have we projected the new-found structure ontdTit’s was the main lesson of
attempting to reconstruct equations of motion from a time series:[9] When it works, it works;
when it doesn’t, you don’t know what to do; and in both cases it is ambiguous what you have
learned. Even though data was generated by well-behaved, smooth dynamical systems, there
was an extreme sensitivity to the assumed model class that completely swamped “model
order estimation”. Worse still there was agriori way to select the class appropriate to the
process. This should be contrasted with what is probably one of the more important practical
results in statistical modeling: within a model class a procedure exists to find, given a finite
amount of data, an optimal model that balances prediction error against model complexity.[10]
Despite representations to the contrary, this “model order estimation” procedure does not
address issues of class inappropriateness and what to do when confronted with failure.

There appears to be a way out of the model class discovery dilemma. The answer that
hierarchical machine reconstruction gives is to start at the lowest level of representation, the
given discrete data, and to build adaptively a series of models within a series of model classes
of increasing computational capability until a finite causal model is found.[11] Within each
level there is a model-order-estimation inference of optimal models, as just indicated. And
there is an induction from a series of approximate models within a lower “inappropriate”
class to the next higher model class. This additional inductive step, beyond the standard
model order estimation procedure, is the price to be paid for formalizing adaptive modeling.

The success at each stage in hierarchical reconstruction is controlled by the amount of
given data, since this puts an upper bound on statistical accuracy, and an error threshold,
which is largely determined by the observer’'s available computational resources. The goal
is to find a finite causal model of minimal size and prediction error while maximizing the
extraction of information from the given data.

Within this hierarchical view the epistemological problem of nonlinear modeling can
be crudely summarized as the dichotomy between engineering and science. As long as a
representation is effective for a task, an engineer does not care what it implies about the
underlying mechanisms; to the scientist though the implication makes all the difference in
the world. The engineer certainly is concerned with minimizing implementation cost, such
as representation size, compute time, and storage; but the scientist presumes, at least, to be

* In philosophy such considerations currently appear under the rubric of “intentionality”.[8] | do not
have in mind, however, verbal intercourse, but rather the intentionality arising in the dialogue, and
sometimes monologue, between science and nature. One of the best examples of this is the first
“law” of thermodynamics: energy conservation.

TIn artificial intelligence this is referred to as the “representation problem”.



focused on what the model meawis & vis natural laws. The engineering view of science is
that it is mere data compression; scientists seem to be motivated by more than this.

From these general considerations a number of pathways lead to interesting and basic
problems. The following will address the questions of what individual measurements mean to
the observer who has made them and how an observer comes to know the state of a process.
There are two main themes: knowledge convergence and measurement semantics. While
these are relatively simple compared to the problems of an experimental epistemology, they
do shed some light on where to begin and so complement direct studies of the emergence
of intrinsic computation. Before the two themes are considered | quickly review stochastic
automata and their reconstruction. Indeed, to complete the semantic chain of meaning and
to suggest how it can emerge, | must say first where models come from. Then, after the
main topics are presented, the discussion ends with some general remarks on causality and
complexity.

2. COMPUTATIONAL MECHANICS

The overall goal is to infer from a series of measurements of a process a model of the
generating mechanism. Additionally, the model is to indicate the process’s computational
structure. This refers not only to its statistical properties, such as the decay of correlation,
but also to the amount of memory it contains and, for example, whether or not it is capable
of producing the digit string of (sayy3. The extraction of these properties from the model
determines the utility of the model class beyond mere temporal prediction of the process’s
behavior.

The first subsection starts off by defining the character of the data from which the model
is built. The next two subsections then review machine reconstruction and the statistical
mechanics of the inferred stochastic machines. The section closes with some comments on
complexity and model minimality.

2.1 The Measurement Channel

The universe of discourse for nonlinear modeling consists of a praéetse measuring
apparatug, and the modeler itself. Their relationships and components are shown schemat-
ically in Fig. 1. The goal is for the modeler, by taking advantage of its available resources,
to make the “best” representation of the nonlinear process.

The processP, the object of the modeler's ultimate attention, is the unknown, but
hopefully knowable, variable in this picture. And so there is little to say, except that it can
be viewed as governed by stochastic evolution equations

Xivar = ﬁ(ﬁwéﬁ) (1)

whereX; is the configuration at timg & some noise process, afitthe governing equations
of motion. The following discussion also will have occasion to refer to the process’s



measure: ()? ) on its configuration space and the entropy riqpé)? ) at which it produces
information.

The measuring apparatus is a transducer that mépm some accessible states of an
instrumentZ. This instrument has a number of characteristics, most of which should be
under the modeler’s control. The primary interaction between the instrument and the process
is through the measurement spde® which is a projectior? of X, onto (say) a Euclidean
space whose dimension is given by the nunmibeaf experimental probes. An instrument that
distinguishes the projected states to within a resolutigrartitions the measurement space
into a setll. (D) = {m cm CRPi=0,... e—D} of cells. Each cellr; is the equivalence
class of projected states that are indistinguishable using that instrument. The instrument
represents the event of findiri@()?t> € m; by the cell's label:;. With neither loss of
generality nor information, these indices are then encoded into a time-serial binary code. As
each measurement is made its code is output into the data stream. In this way, a time series of
measurements made by the instrument becomes a binary string, the datassérealable to
the modeler. This is a discretized set of symhbols ... s_4s_35_95_15951525354 ... Where
in a single measurement made by the modeler the instrument returns a syrabal in an
alphabetA at time indext € Z. Here we take a binary alphabaAt = {0,1}.

Beyond the instrument, one must consider what can and should be done with information
in the data stream. Acquisition of, processing, and inferring from the measurement sequence
are the functions of the modeler. The modeler is essentially defined in terms of its available
inference resources. These are dominated by storage capacity and computational power, but
certainly include the inference method’s efficacy, for example. Delineating these resources
constitutes the barest outline of an observer that builds models. Although the following
discussion does not require further development at this abstract a level, it is useful to keep
in mind since particular choices for these elements will be presented.

The modeler is presented wishthe bit string, some properties of which were just given.
The modeler's concern is to go from it to a useful representation. To do this the modeler
needs a notion of the process’s effective state and its effective equations of motion. Having
built a model consisting of these two components, any residual error or deviation from
the behavior described by the model can be used to estimate the process’s effective noise
level. This level is determined by the amount of data “unexplained” by the inferred model.
It should be clear when said this way that the noise level and the model’s sophistication
depend directly on the data and on the modeler’s resources. Finally, the modeler may have
access to experimental control parameters. And these can be used to aid in obtaining different
data streams useful in improving the model by (say) concentrating on behavior where the
effective noise level is highest.

The central problem of nonlinear modeling now can be stated. Given an instrument,
some number of measurements, and fikieide inference resources, how much computational
structure in the underlying process can be extracted?
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Fig. 1 The Big Channel. The flow of information (measurements) on the shortest time scales is from the left,
from the underlying process, to the right toward the modeler. The latter’s task is to build the “best”
representation given the available data set and computational resources. On longer time scales the modeler
may modify the measuring apparatus and vary the experimental controls on the process. These actions are
represented by the left-going arrows. Notice that from the modeler’'s perspective there is a region of
ambiguity between the model and the experiment. The model includes the measuring apparatus since it
instantiates many of the modeler’s biases toward what is worth observing. But the experiment also includes
the measuring apparatus since it couples to the process. Additionally, the apparatus is itself a physical device
with its own internal dynamics of which the modeler may be unaware or incapable of controlling.

Before pursuing this goal directly it will be helpful to point out several limitations
imposed by the data or, rather, the moder’s interpretation of it.

In describing the data stream’s character it was emphasized that the individual measure-
ments are only indirect representations of the process’s state. If the modeler interprets the
measurements as the process’s state, then it is unwittingly forced into a class of computation-
ally less powerful representations. These consist of finite Markov chains with stadestin
in some arbitrarily selected state alphabet. This will become clearer through several exam-
ples used later on. The point is that it is important to not over-interpret the measurements’
content at this early stage of inference as this might limit the quality of the resulting models.

The instrument itself obviously constrains the observer’s ability to extract regularity
from the data stream and so it directly affects the model’s utility. The most basic of these
constraints are given by Shannon’s coding theorems.[12] The instrument was described as
a transducer, but it also can be considered to be a communication channel between the
process and the modeler. The capacity of this channel in bits per measureniest is

T~ H(11(D)), whereH ({p;}) = — >_ pilog, p; is the Shannon entropy of the distribution
{pi}



{pi = p(w;) : mi € II}. If the process is deterministic and has entrdpy()?) > 0, a
theorem of Kolmogorov’s says that this rate is maximized for a given process if the partition
II(D) is generating.[13] This property requires infinite sequences of cell indices to be in
a finite-to-one correspondence with the process’s states. A similar result was shown to
hold for the classes of process of interest here: deterministic, but coupled to an extrinsic
noise source.[14] Note that the generating partition requirement necessarily determines the
numberD of probes required by the instrument.

This is, however, the mathematical side of the problem here: verification of a generating
partition requires knowledge of the equations of motion. Thus, Kolmogorov’s result turns the
inference problem on its head. Here interest is focused on the opposite, pragmatic problem of
discovering structure from given data. As indicated in [14], the notion of generating partitions
gives an operational definition of a good instrument that is useful if the instrument can be
altered. If the data is simply given, one can still proceed with modeling. The conclusions
cannot be as strong, though, as when the equations of motion are known. Then, again, such
knowledge is an idealization.

For an instrument with a generating partition, Shannon’s noiseless coding theorem says
that the measurement channel must have a capacity higher than process’s entropy

P> h,(X) )

If this is the case then the modeler can use the data stream to reconstruct a model of the
process and, for example, estimate its entropy and complexity. These can be obtained to
within error levels determined by the process’s extrinsic noise level and the number of
measurements.

If I < h, <)?> then Shannon’s theorems say that the modeler will not be able to

reconstruct a model with an effective noise level less than the equivoda,];iéﬁ) —1
induced by the instrument. That is, there will be an “unreconstructable” portion of the
dynamics represented in the signal.

These results assume, as is also done implicitly in Shannon’s existence proofs for codes,
that the modeler has access to arbitrary inference resources. When these are limited there
will be yet another corresponding loss in the quality of the model and an increase in the
apparent noise level. Itis interesting to note in this context that if one were to adopt Laplace’s
philosophical stance that all (classical) reality is deterministic and update it with the modern
view that it is chaotic, then the inferential limitations discussed here are the general case.
Apparent randomness is a consequence of them and not a property of unobserved nature.

2.2 Computation from a Time Series

On what sort of structure in the data stream should the models be based? If the goal
includes prediction, as the preceding assumed, then a natural object to reconstruct from the
data series is a representation of the process’s instantaneous state. Unfortunately, as already



noted, individual measurements are only indirect representations of the state. Indeed, the
instrument simply may not supply data of a quality sufficient to discover the true states,
independent of the amount of data. So how can the process’s “effective” states be accessed?

The answer to this turns on a generalization of the “reconstructed states” introduced,
under the assumption that the process is a continuous-state dynamical system, by Packard
et al.[15] The contention there was that a single time series necessarily contained all of
the information about the dynamics of that time series. The notion of reconstructed state
was based on Poinaais view of the intrinsic dimension of an object.[16] This was defined
as the largest number of successive cuts through the object resulting in isolated points. A
spherical shell in three dimensions by his method is two dimensional since the first cut
typically results in a circle and then a second cut, of that circle, isolates two points. One
way Packarcet al. implemented this used probability distributions conditioned on values of
the time series’ derivatives. That is, the coordinates of the reconstructed state space were
taken to be successive time derivatives and the cuts were specified by setting their values.
This was, in fact, an implementation of the differential geometric view of the derivatives as
locally spanning the graph of the dynamic.

In this reconstruction procedure a state of the underlying process is identified by increas-
ing the number of conditioning variables, i.e. employing successively higher derivatives,
until the conditional probability distribution peaks. It was noted shortly thereafter that in the
presence of extrinsic noise a number of conditions is reached beyond which the conditional
distribution is no longer sharpened.[14] And, as a result the process’s state cannot be further
identified. The width of the resulting distribution then gives an estimate of the effective ex-
trinsic noise level and so also an estimate of the maximum amount of information contained
in observable states. The minimum number of conditions first leading to this situation is an
estimate of the effective dimension.

The method of time derivative reconstruction gives the key to discovering states in
discrete times series. For discrete time series a state is defined to be the set of subsequences
that render the future conditionally independent of the past.[TAls, the observer identifies
a state at different times in the data stream as its being in identical conditions of ignorance
about the future. (See Fig. 2.)

Let's introduce some notation here. Consider two parts of the data stseam
...S5_95_1505152.... The one-sided forward sequensg = s;s;415¢+25143 ... and one-
sided reverse sequensg = ... s;_3s¢_25;—15¢ are obtained fromns by splitting it at timet
into the forward- and reverse-time semi-infinite subsequences. Consider the joint distribution
of possible forward sequencgs™} and reverse sequencés—} over all timest

Pr(s™,s7) = Pr(s7|s7)Pr(s™) 3)

" This notion of state is widespread; appearing in various guises in early symbolic dynamics and
ergodic and automata theories. It is close to the basic notion of state in Markov chain theory.
Interestingly, the notion of conditional independence is playing an increasingly central role in the
design of expert systems.[18]



Fig. 2 Morph-equivalence induces conditionally independent states. When the template of future
possibilities, i.e. allowed future subsequences and their past-conditioned probabilities, has the

same structure then the process is in the same generalized statg.aid att;s,

the process is in the same statetqtit is in another different state.

The conditional distributionPr(s™|w) is to be understood as a function over all possible

forward sequences ™} that can follow the particular sequencevhere ever it occurs in.

Then the same state ¢ S is associated with all those times # ¢
{ti,, i, ti, ... : ix € Z} such that past-conditioned future distributions are the same. That is,

t ~ 1 if and only if Pr(s™|s; ) = Pr(s”|s; ) 4)

If the source generating the data stream is ergodic, then there are several comments that
serve to clarify how this relation defines states. First, the sequeficesids, are typically
distinct. If ¢ ~ ¢, Eq. (4) means that upon having seen different histories one can be,
nonetheless, in the same state of anticipation or ignorance about what will happen in the
future. Seconds;” ands; , when considered as particular symbol sequences, will each
occur ins many times other thahand#', respectively. Finally, the conditional distributions
Pr(sT|s;7) and Pr(s™|s;7) are functions over a nontrivial range of “follower” sequences

—

S

This gives a formal definition to the sét of states as equivalence classes of future
predictability: ~ is the underlying equivalence relation that partitions temporal shifts of the
data stream into equivalence classes. The states are simply labels for those classes. For a
given states the set of future sequencgsz : S € S} that can be observed from it is called
its future morph. The set of sequences that lead s called its past morph. Anticipating
a later section somewhat, note that the state and its morphs are the contexts in which an
individual measurement takes on semantic content. Each measurement is anticipated or
“understood” by the observets a vis its model and in particular the structure of the states.



10

Once these states are found, the temporal evolution of the process, its (symbolic) dynamic,
is given by a mapping from states to states S — S; that is, Sy = T'S:.

The available reconstruction algorithms infer the ste&§esia various approximations
of the equivalence class conditions specified in (4).[11,17,19] | refer to these procedures
generically as “machine reconstruction”. The result of machine reconstruction, then, is the
discovery of the underlying process’s “hidden” states. This should be contrasted wad the
hoc methods employed in hidden Markov modeling in which a set of states and a transition
structure are imposed by the modeler at the outset.[20,21]

Thus, the overall procedure has two steps. This first is to identify the states and the
second is to infer the transformati@n In the following | review the simplest implementation
since this affords the most direct means of commenting on certain properties of the resulting
representations.

Initially, a parse tree is built from the data streamA window of width D is advanced
throughs one symbol at a time. ¥ = ...1010101110101 ... then at some timethe D =5
subsequence; = 10101 is seen, followed bys?,, = 01010. Each such subsequence is
represented in the parse tree as a path. The tree has Bepth. (See Fig. 3).

Counts are accumulated at each tree node as each subsequence is put into to the parse
tree. If the associated path is not present in the tree, it is added; new nodes each begin
with a count of 1 and counts in existing nodes are incremented. hiis length/V, then
a node probability, which is also the probability of the sequence leading to it, is estimated
by its relative frequency

Cn

“N_D

Pr(n) %)

where ¢, is the count accumulated at node The node-to-node transition probabilities
Pr(n — n') are estimated by

Pr(ssk) o Cpt
Pr(n — n') = Pr (3|5k> = P Yo, 0 (6)
0 otherwise
where the length: sequence* leads to node: and the length: + 1 sequence**! = ss*
leads to node’ on symbols € A.

The window lengthD is an approximation parameter. The longer it is, the more
correlation, structure, and so on, is captured by the tree. Simgef finite length the tree
depth cannot be indefinitely extended. Thus, to obtain good estimates of the subsequences
generated by the process and of the tree structure, the tree depth must be set at some optimal
value. That value in turn depends on the amount of available data. The procedure for
finding the optimal depthD is discussed elsewhere.

To infer the set of states we look for distinct subtrees of a given déptithis is the
length of future subsequences over which the morphs must agree. This step introduces a
second approximation parameter, the morph dépttiNaturally, . < D and typically one



Fig. 3 The parse tree for the process “every other symbol is a 1”. The tree is a hierarchical representation of
the subsequences produced by the process. Here the tree dépth s If s = ...1010101110101.. ., then

the sequence? = 10101 will be seen. This is put into the parse tree, as shown by the bold line. Note that

time goes down the tree. When counts of the subsequence that lead to a given tree node are accumulated, the
tree gives a hierarchical representation of the infinite sequence probability distribution.

takes2L = D. Over a range of sources and for a given tree depth, that choice balances
two requirements for the morph’s optimal statistical estimation. The first is the need for
a large number of examples of any given morph. This suggests tdkigg D since the
upper bound on the number of morph instancez’’s’+! — 1. The second requirement is

to allow a sufficient diversity of morphs; and so of states. This inclines one toward taking
[, ~ D, since the number of distinct depth subtrees i 1. The analysis of this
optimization is presented elsewhere. Investigating the parse tree of Fig. 3 using.depth
subtrees one finds the three morphs shown in Fig. 4. In this way, three “machine” states
S = {A, B, C} have been discovered for the “every other symbol is a 1” process of Fig. 3
up to the approximation implied by setting = 5 and . = 2. It can be shown that these

are sufficient to infer an exact model of the process.

The state-to-state transition structure is obtained by looking at how the morphs change
into one another upon moving down the parse tree, i.e. upon readng or s = 1. The
resulting transformatiofl’ is represented graphically by the machine shown in Fig. 5. This
should be compared to the parse tree (Fig. 3). There the morph below the top node, which is
associated with machine state A, makes a transition on a 1 to a tree node with a morph below
it in the same equivalence class (machine state A). On a 0, though, the top tree node makes
a transition to a tree node with a morph associated with machine state B. In just this way the
machine of Fig. 5 summarizes the morph to morph transition stru@tuva the parse tree.

This exposition covered only topological reconstruction: subtrees were compared only
up to the subsequencgs,”} which were observed. Of course, what is needed are states
that are not only topologically distinct, but also distinct in probability as indicated by (4).
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Fig. 4 The morph depti = 2 subtrees found below tree nodes down to depth 3 in Fig. 3's parse tree.
Each morph, or subtree, has been labeled by its associated machine state (cf. Fig. 5).

1/2/3 1|1/2
OSSO
0|1/2

Fig. 5 The (topologically) reconstructed machine for the process “every other symbol is a 1".
For this we must choose some metric to compare the conditional histograms associated with
the morphs. | will briefly sketch one way to do this.

The goal is to develop an implementable approximation to (4) which defines states in
terms of tree node conditional probability equivalence classes. Those equivalence classes
require a subtree similarity relation between two arbitrary tree nodes; denotetlaesk:’.

First assume that these nodes are topologically similar; that is, their morplasdm,, are
the same, up to some morph depth

n o~ n' if and only if m, = m,,

where m,, = {5L|n} and m, = {5L|nl} (7)

wheres” is a lengthL sequence. lfn, # m,, then certainly the nodes cannot be similar
in probability. Probabilistic similarity is then an additional constraint and defined by

n~ n' if and only if ‘Pr(w|n) — Pr<w|n'>‘ <6, Yw € m,, (8)



6 is yet another approximation parameter. Without going into details, it is important to
note that the implied comparisons for subtree similarity can be done in a relatively efficient
recursive algorithm that stops as soon as a difference in the morph structure or node transition
probabilities is found at some level in the two subtrees under comparison. Finally, the state
to state transition probabilities are then taken from the estimated node-to-node transition
probabilities. Detailed statistical analysis of the overall procedure and the optimal selection
of ¢ is given elsewhere.

2.3 Statistical Mechanics

Machine reconstruction gives then a set of states, that will be associated witlVa-s¢t }
of vertices, and a set of transitions, that will be associated with a set

E:{e:ewv—w)l, U,UIEV,SEA} (9)

of labeled edges. The graphical depictioniéf= {V,E, A} is a labeled directed graph as
seen above in Fig. 5. The full probabilistic structure is described by a set of input-alphabet
labeled transition matrices

{T(S) : <T(s)> , = Py—v’s vvvl S V?‘S € A} (10)

wherep,_.,» denotes the conditional probability to make a transition to stafeom state
v on ob§erving symbok.
Given the current state, at timet the future is conditionally independent of the past

Pr(s) = Pr(s‘fsaﬂ)
= Pr(sﬁ_Jsf)Pr(s;_)
= Pr(si3, |ve) Pr(v) (11)

By factoring the joint distribution over the observed subsequences, the discovered states
vastly reduce the dimensionality of the process’s representation. In the case of strings of
length NV, the representation changes from requiring\adimensional probability vector for
the joint distribution to a set ofE| transition probabilities.

Rather than simply looking up the probability of a given sequernce =
505159 .- SN_1s s; € A, in the table of joint probabilities, its probability is recov-
ered from the machine by computing the telescoping product of conditional transition
probabilities

Pr<sN> = PuoPoo—v1 Pvi—vs -+ - Pox—1 — vy (12)

50 1 SN—1
Here vy is the unique start state. By the nature of machine reconstruction it is the
state of total ignorance: before the first measurement is made= 1. The sequence
vg, V1, V2, ..., UN_1, vy are those states through which the sequedcerives the machine.
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Recall Chomsky’s criterion for a scientific theory quoted at the beginning. A recon-
structed machine is, in his sense, a theory of the source of the data from which it was
inferred. In addition, a machine presumes to ascribe structure to unobserved sequences, such
as whether or not they occur and their probabilities, by the above telescoping product (12).
In fact, a machine typically does so for an indefinite number of unseen measurements. And
this too is in accord with Chomsky’s remark that a theory “predict an indefinite number of
new phenomena”.

A machine is a compact and very informative representation of the underlying source.
In order to appreciate the properties that it captures, there are several statistics that can be
computed from a given machine. Each of these is, naturally, a simplification in one way
or another of the structure captured by the machine. Up to this point there has been no
restriction on the numbefV|| of states. For the sake of simplicity in the following the
number of states will be assumed to be finite. This restricts the general model class to that
of stochastic finite automata.

One useful reduction of a machirié is to ask for its equivalent Markov process. This
is described by the stochastic connection matrix

T=> 710 (13)

sSEA
where (T'),,, = pv—, is the state to state transition probability, unconditioned by the
measurement symbols. By construction every state has an outgoing transition. This is
reflected in the fact thal’ is a stochastic matrix: > p,,» = 1. It should be clear from

dropping the input-alphabet transition labels frgnﬁvthe machine that the detailed, | call it

“computational”, structure of the input data stream has been lost. All that is retaiffédsin

the state transition structure and this is a Markov chain. The interesting fact is that Markov

chains are a proper subset of stochastic finite machines. Examples latter on will support this
contention. But it is exactly at this step of unlabeling the machine that the “properness”

relation between these two model classes appears.

The stationary state probabilitie§, = {pv Y pp=1lv€ V} are given by the left
veEV
eigenvector ofl’

pvl =pv (14)

The entropy rate of the Markov chain is then[12]

h(T) == py > Po—w logy pu—u (15)

VeV v'EV
As it is an average of transition uncertainty over all the states, it measures the information
production rate in bits per time step. It is also the growth rate of the Shannon information
in subsequences

_ g HUL)
h, = lim 5 (16)

L—oo



where H(L) = — > Pr(w)logy Pr(w). That is, H(L) & hyL. In general, sub-
we{s"} e

sequences are not in a one-to-one correspondence with the Markov chain’s state-to-state
transition sequences. Nonetheless, it is a finite-to-one relationship. And so, the Markov
entropy rate is also the entropy rate of the original data soukgéd ) = h,(7'). More
directly, this is given by

hu(M) = - Z Po Z Z Po—o’ 10%2 Po—o’ (17)
eV vEVsEA :

Thus, once a machine is reconstructed from a data stream, its entropy is an estimate of
underlying process’s entropy rate.

The complexity quantifies the information in the state-alphabet sequences
CIL(M) = H(ﬁv) = - Z po logy py (18)
veEV

It measures the amount of memory in the source. For completeness, note that there is
an edge-complexity that is the information contained in the asymptotic edge distribution

PE = | Pe = popo—v € € E

Co(M) == pelog, pe (19)
ecE

These quantities are not independent. Conservation of information leads to the relation
C,=Cu+hy, (20)

Thus, there are only two independent quantities when modeling a source as a stochastic finite
automaton. The entropy,, as a measure of the diversity of patterns, and the compléXity

as a measure of memory, have been taken as the two elementary “information processing”
coordinates with which to analyze a range of sources.[19]

There is another set of quantities that derive from the skeletal structure of the machine.
If we drop all probabilistic structure on the machine, the growth rate of the raw number of
sequences it produces is the topological entropy

h = logy \(Th) (21)
whereT = ) Tés) is called the connection matrix and7y) is its principal eigenvalue.
sEA
It is formed from the symbol matrices

) 1 v—2' 0
{Tés): <T0(S)>W:{ oo =0, EA} (22)

0 otherwise

" Within the reconstruction hierarchy this is actually the finitary complexity, since discussion is
restricted to processes with a finite number of states. Although, | have not introduced this restriction
in unnecessary places. Related forms of the finitary complexity have been considered before,
outside of the context of reconstruction, assuming generating partitions and known equations of
motion.[22—25]
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The state and transition topological complexities are

C = log, [ V]

. (23)
C° = log, ||E||
Although it falls somewhat outside of the present discussion, it is worthwhile noting that
these entropies and complexities can be integrated into a single parametrized framework.
The resulting formulation gives a thermodynamicscahachines.[26]

2.4 Complexity

It is useful at this stage to stop and reflect on some properties of the models whose
reconstruction and structure have just been described. Consider two extreme data sources.
The first, highly predictable, produces a stream of 1s; the second, highly unpredictable, is an
ideal random source of binary symbols. The parse tree of the predictable source is a single
path of 1s. And there is a single distinct subtree, at any depth. As a result the machine
has a single state and a single transitionsoa 1: a simple model of a simple source. For

the ideal random source the parse tree, again to any depth, is the full binary tree. All paths
appear in the parse tree since all binary subsequences are produced by the source. There is a
single subtree, of any morph depth, at all parse tree depths: the full binary subtree. And the
machine has a single state with two transitions: one enl and one orx = 0. The result is

a simple machine, even though the source produces the widest diversity of binary sequences.
Thus, these two zero entropy and maximal entropy sources have zero complexity.

A simple gedanken experiment serves to illustrate how (finitary) complexity is a measure
of a machine’s memory capacity. Consider two obsernferand B, each with the same
model M of some processA is allowed to start machind/ in any state and uses it to
generate binary strings that are determined by the edge labels of the transitions taken. These
strings are passed to obserd&rwhich traces their effect through its own copy &f. On
average how much information abolif’s state canA communicate tdB via the binary
strings? If the machine describes (say) a period three process, e.g. it outputs strings like
101101101...,011011011..., and110110110. . .; it has||V|| = 3 states. Since\ startsM
in any state B can learn only the information of the process’s phase in the period 3 cycle.
This islog, | V]| = 1.584... bits of information on average about the process’s stata, if
chooses the initial states with equal probability. However, if the machine describes an ideal
random binary process, by definitioh can communicate no information B, since there
IS no structure in the sequences to use for this purpose. This is reflected in the fact, as
already noted above, that the corresponding machine has a single state and its complexity is
C,(M) =log,1 = 0. In this way, a process’s complexity is the amount of information that
someone controlling its start state can communicate to another.



These examples serve to highlight one of the most basic properties of complexity, as |
use the term. Both predictable and random sources are simple in the sense that their models
are small. Complex processes in this view have large models. In computational terms,
complex processes have, as a minimum requirement, a large amount of memory as revealed
by many internal states in the reconstructed machine. Most importantly, this memory is
structured in particular ways that support different types of computation. The sections below
on knowledge and meaning show several consequences of computational structure.

In the most general setting, | use the word “complexity” to refer to the amount of in-
formation contained in observer-resolvable equivalence classes.[17] This approach puts the
burden directly on any complexity definition to explicitly state the representation employed
by the observer. For processes with finite memory, the complexity is measured by the quan-
tities labeled above by'. The general notion, i.e. without the finiteness restruction, has
been referred to as the “statistical complexity” in order to distinguish it from the Chaitin-
Kolmogorov complexity,[33,28] the Lempel-Ziv complexity,[34] Rissanen’s stochastic com-
plexity,[35] and others[36,37] which are all equivalent in the limit of long data streams to the
process’s Kolmogorov-Sinai entrogy, ()?) If the instrumentl, is generating ang <)?>
is absolutely continuous, these quantities are given by the entropy rate of the reconstructed
e-machine, i.e. (17).[38] Accordingly, | use the phrases “entropy” and “entropy rate” to
refer to such quantities. They measure the diversity of sequences that a process produces.
Implicit in their definitions is the restriction that the modeler must pay computationally for
each random bit. Simply stated, the overarching goal is exact description of the data stream.
In the modeling approach advocated here the modeler is allowed to flip a coin or to sample
the heat bath to which it may be coupled. “Complexity” is reserved in my vocabulary to
refer to a process’s structural properties, such as amount of memory, syntactic and semantic
properties, and other types of computational capacity.

" A number of authors have considered measures of complexity that have heuristically similar
properties. One of the first computation theoretic notions along these lines was “logical depth”.[27]
It relies on obtaining a minimal universal Turing machine program. And so, as a consequence of
Kolmogorov’s theorem, it is uncomputable.[28] Apparently, the first constructive measure proposed,
i.e. one that could be estimated from a data stream, was the excess entropy convergence rate.[29]
The closely-related total excess entropy[14,30] was also suggested as a measure of information
contained in a process. This was later recoined the “stored information”[31] and also the “effective
measure complexity”.[24] Using the kneading calculus for one-dimensional maps, algorithms were
given to estimate the number of equivalent Markov states.[22] The size of deterministic finite
automata describing patterns generated by cellular automata was used to measure the development
of spatial complexity.[23] The present author proposed a complexity measure based on the size of
the group of symmetries in an object; Los Alamos Workshop on Dimension and Entropy (1985).
Finally, the diffusion rate on a hierarchical potential was shown to exhibit similar “complexity”
properties.[32] There is clearly no lack of complexity measures. During the last five years yet more
have been proposed, including the finitary and more general complexities considered here. All of
these are seen to be similar or different according to (i) the computational model class selected,
often implicitly, and (ii) whether or not the equations of motion are assumed known.
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The present review is not the place to comment on the wide range of alternative notions
of “complexity” that have been proposed recently for nonlinear physics. The reader is
referred to the comments and especially the citations in [17,19,39]. It is important to point
out, however, that the notion defined here does not require (i) knowledge of the governing
equations of motion nor of the process’s embedding dimension, (ii) the prior existence of
exact conditional probabilities, (iii) Markov or even generating partitions of the state space,
(iv) continuity and differentiability of the state variables, nor (v) the existence of periodic
orbits. Within the framework of machine reconstruction such restrictions are to be viewed
as verifiable assumptions. They can be given explicit form in termsnofchine properties.

This is an essential criterion for any modeling framework that seeks to roll back the frontier of
subjectivity to expose underlying mechanisms. Without it, there is little basis for appreciating
what aspects of experimental reality are masked by a given set of modeling assumptions and,
more importantly, for a study of the dynamics of modeling itself.

2.5 Compressing and Decompressing Chaos

A dynamical system, or any physical process for that matter, is a communication chan-
nel.[22,40] In the case of a chaotic physical process, the associated mechanism is viewed as
being driven by a heat bath or a randomness source. The dynamics of the effective channel
then connects the heat bath to the process’s macroscopic, observable states.

This picture is particularly explicit in the case of stochastic automata. The machine
model of the source can be reinterpreted as a transducer. A transducer is a machine that
not only reads symbols from some input, taking the appropriate transitions, but also outputs
a symbol determined by each transition taken. In the graphical representation the edges of
a transducer are labeled with both input and output symbols. The latter may come from
different alphabets. For example, the input symbols could be the binary strings considered
up to this point, and the output symbols could be labels for each of the states reached after
making a transition.

For now, consider both alphabets to be binary. Then the strings produced by a source
are generated by the following communication channel that is built from the source’s
reconstructed machine. Starting from the start state, any deterministic transition, i.e. a
state with only a single outgoing edge, is taken and that edge’s output symbol is emitted. At
states with more than one outgoing edge, a symbol is read from the heat bath and that edge
is taken whose input symbol matches the symbol read. On taking the transition, the edge’s
output symbol is emitted. This defines a transformation from (random) strings to strings
containing the constraints and structure that define the original machine.

The reverse procedure can be implemented to give a compression of a string. In this
situation, as the string is read, no symbol is output when the transition is deterministic.
When there is a branching, the corresponding string symbol is copied to the output. This
transducer thereby removes all of the (topological) regularity of the string. The result is



(@) (b)

Fig. 6 Two consistent models of the period two process produciag ..10101010101010101 . . ..
(&) The minimal machine. (b) A nonminimal machine.

a (partially) random string. Coupling this compression transducer with the preceding heat
bath transducer gives a data transmission scheme for a string, if both transducers are built
from a model of the string.

2.6 On the Importance of Being Minimal

Given a machine model of a process, the machine’s complexity, or any other statistic for that
matter, need not be that of the process. The inference that some model property also holds for
the process generally depends on details of the reconstruction algorithm used and the attendant
assumptions and restrictions it imposes. Nonetheless, something about the underlying process
has been estimated by reconstructing the machine by the above method. In order to see just
what this is, this section focuses on an important property of the reconstruction method and
the notion of state on which it is based. The property is that machine reconstruction produces
the unigue machine with the smallest number of states. As the following will argue, due to
uniqueness and minimality there are some properties of the underlying process that can be
inferred from and are well-estimated by the machine.

Figure 6 shows two machines that are (statistically) consistent models of the period two
process that produces=...10101010101010101. ... In fact, both machines are exact, since
they describe the structure of the data stream without error.

Figure 7 shows two machines, from the other end of the entropy spectrum, that are
(statistically) consistent models of the ideal random progess 0)*, where4 means to
chooses = 0 or s = 1 with equal probability. Again, both machines are exact, describing
as they do the source’s structure without approximation.

Minimality of the reconstructed machine ensures that its complexity is a measure, actually
a lower-bound estimate, of the process’s memory capacity. As just noted, the latter is the



20

1/0.5 0]0.5

(a) (b)

Fig. 7 Two consistent models of the ideal random progess 0)". (a)
The minimal machine. (b) A nonminimal machine.

maximal amount of state-information that can be transmitted using the process as a source and
allowing one to select the source’s initial state. The state information that can be conveyed for
a periodic process is the phase of the periodic cycle. In the present case (Fig. 6), the period
was two and so one bit of phase information can be communicated. The observer receives
that bit at the moment it synchronizes to the data stredihe period two machine with five
states, Fig. 6(b), has a complexity ok, 5 ~ 2.321 bits. But this amount of information
clearly cannot be transmitted with the period two source. The nonminimal machine has a
complexity that is too large. The case of the ideal random process is even more extreme. The
nonminimal machine has a complexity ok, 4 = 2 bits, but by definition the data stream

and source have no structure that can be used for communication. The minimal machine,
Fig. 7(a), has zero complexity, in accord with intuition.

In summary, then, even though there is a very large number of machines consistent with a
given data stream, the minimal one is singled out not only for its unigueness and compactness,
but also in order to estimate and understand the source’s properties. Minimality keeps the
modeler from inferring structure in the source which is not justified by the given data.

3. KNOWLEDGE RELAXATIONT

The next two sections investigate how models can be used by an observer. An observer’s
knowledgeK p of a processP consists of the data stream, its current model, and how the
information used to build the model was obtairfeHere the latter is given by the measuring
instrumentZ = {II.(D),r}. To facilitate interpretation and calculations, the following will
assume a simple data acquisition discipline with uniform sampling inteneaahd a time-
independent measurement partitidp. Further simplification comes from ignoring external

" Synchronization is the subject of a later section.

T This and the following section also appear elsewhere.[41]

*In principle, the observer's knowledge also consists of the reconstruction method and its various
assumptions. But it is best to not elaborate this here. These and other unmentioned variables are
assumed to be fixed.



factors, such as what the observer intends or needs to do with the model, by assuming that
the observer’s goal is optimal prediction with respect to the model class of finitary machines.
The totality of knowledge available to an observer is given by the development/opits

at each moment during its history. If we make the further assumption that by some agency the
observer has at each moment in its history optimally encoded the available current and past
measurements into its model, then the totality of knowledge consists of four parts: the time
series of measurements, the instrument by which they were obtained, and the current model
and its current state. Stating these points so explicitly helps to make clear the upper bound on
what the observer can know about its environment. Even if the observer is allowed arbitrary
computational resources, given either finite information from a process or finite time, only
a finite amount of structure can be inferred.

For the following assume that an observer's model of a process isnaachine. To
see its role in the change iGp consider the situation in which the model structure is kept
fixed. Starting from the state, of total ignorance about the process’s state, successive
steps through the machine lead to a refinement of the observer’'s knowledge as determined
by a sequence of measurements. The average incredse i given by a diffusion of
information throughout the model. The machine transition probabilities, especially those
connected with transient states, govern how the observer gains more information about the
process with longer measurement sequences.

The average increase is governed by a diffusion of information throughout the given
model. Consider for the moment the parse tree as a model. There is a flow of probability
downwards, in increasing time, toward the leaves. This is a unidirectional diffusion of
information on an ultrametric structure.[42The ultrametric distance on the tree is sequence
length or, more simply, time itself. Taking the machine as the model, the distance between
two state events, (say) € V andB € V, is the length of the shortest directed machine
path between them. The direction is determined by the order in whiahdB are observed
to occur. This, in turn, translates back into the difference in parse tree levels at which the
associated morphs are found. When viewed in terms of either the parse tree or the machine,
the data stream and its joint distribution exhibit an ultrametric structure. That structure, in
turn, determines those properties of time that can be inferred from the data stream.

In a more quantitative vein, a measure of knowledge relaxation on finitary machines is
given by the time-dependent finitary complexity

Cu(t) = H(pv (1)) (24)
whereH ({p;}) = >_ pilog, p; is the Shannon entropy of the distributi¢p;} and
piEP
pv(t+1)=pv()T (25)

" Unidirectional diffusion on a hierarchical structure is described by the theory of branching processes,
and does not necessarily call into play the phenomena associated with ultrametric diffusion. If
the direction of time is unknown, however, then the diffusion of the observer's information is
bidirectional on the parse tree and so a diffusion on an ultrametric space.
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is the probability distribution at time beginning with the initial distributiorpy(0) =
(1,0,0,...) concentrated on the start state. This distribution represents the observer’s
condition of total ignorance of the process’s state, i.e. before any measurements have been
made, and correspondingly, (0) = 0. C,(?) is simply (the negative of) the Boltzmann
H-function in the present setting. There is an analogélusheorem for stochastie-
machines:C,(¢) converges monotonically wheR; () is sufficiently close tgy = py (oo):

Cu(t) . C,. That is, the time-dependent complexity limits on the finitary complexity.
Furthermore, the observer has the maximal amount of information about the process, i.e. the
observer’s knowledge is in equilibrium with the process, wheft + 1) — C,(¢) vanishes

for all ¢ > t,,., Wheret), IS some fixed time characteristic of the process.

For finitary machines there are two convergence behaviors,for). These are illustrated
in Fig. 8 for three processes: o which is period 3 and generatei$)1)*, oneP, in which
only isolated zeros are allowed, and dhethat generates 1s in blocks of even length bounded
by 0s. The first behavior type, illustrated % and P, is monotonic convergence from
below. In fact, the asymptotic approach occurs in finite time. This is the case for periodic
and recurrent Markov chains, where the latter refers to finite state stochastic processes whose
support is a subshift of finite type (SSFT).[43] The convergence here is over-damped.

The second convergence type, illustrated By is only asymptotic; convergence to
the asymptotic state distribution is only at infinite time. There are two subcases. The
first is monotonic increasing convergence; the conventional picture of stochastic process
convergence. The second subcasgg) (is honmonotonic convergence. Starting in the
condition of total ignorance leads to a critically-damped convergence with a single overshoot
of the finitary complexity. With other initial distributions oscillations, i.e. underdamped
convergence, can be seen. Exact convergence is only at infinite time. This convergence
type is associated with machines having cycles in the transient states or, in the classification
of symbolic dynamics, with machines whose support is a strictly Sofic system (SS5).[43]
For these, at some point in time the initial distribution spreads out over more than just the
recurrent statesC',(¢) can then be larger thar,. Beyond this time, it converges from above.
Much of the detailed convergence behavior is determined, of coursg;sbiull eigenvalue
spectrum. The interpretation just given, though, can be directly deduced by examining the
reconstructed machine’s graph. One aspect which is less immediate is that for SSSs the
initial distribution relaxes through an infinite number of Cantor sets in sequence space. For
SSFTs there is only a finite number of Cantor sets.

This structural analysis indicates that the ratio

G Calt)

AC,(1) G
I

(26)

is largely determined by the amount of information in the transient states. For SSSs this
guantity only asymptotically vanishes since there are transient cycles in which information

" SSS shall also refer, in context, to stochastic Sofic systems.[44]



Fig. 8 Temporal convergence of the complexity(¢) for a period 3 proces®s (triangles), a
Markovian process?, whose support is a subshift of finite type (circles), and a proéesthat
generates blocks of even numbers of 1s surrounded by Os (squares).

persists for all time, even though their probability decreases asymptotically. This leads to a
general definition of (chaotic or periodic) phase and phase locking. The phase of a machine
at some point in time is its current state. There are two types of phase of interest here.
The first is the process’s phase and the second is the observer’'s phase. The latter refers
to the state of the observer's model having read the data stream up to some time. The
observer hasi-locked onto the process whekC', () < 5. This occurs at the locking

time #;,.; Which is the longest time such thatAC,(t) = 5. When the process is periodic,

this notion of locking is the standard one from engineering. But it also applies to chaotic
processes and corresponds to the observer knowing what state the process is in, even if the
next measurement cannot be predicted exactly.

These two classes of knowledge relaxation lead to quite different consequences for an
observer even though the processes considered above all have a small number of states (2 or
3) and share the same single-symbol statistiés{s = 1) = 2 and Pr(s = 0) = L. In the
over-damped case, the observer knows the state of the underlying process with certainty after
a finite time. In the critically-damped situation, however, the observer has only approximate
knowledge for all times. For example, settilg= 1% leads to locking times shown in

table 1. Thus, the ability of an observer to infer the state depends crucially on the process’s
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Locking Times at 1% Level
Process Locked at time
Period 3

Isolated Os
Even 1 blocks 17

Table 1 ;-locking times for the periodi@’s, isolated 0sP,, and even 13, processes. Note that for the

latter the locking time is substantially longer and depends ofror the former two, the locking times

indicate the times at which asymptotic convergence has been achieved. The observer knows the state of the
underlying process with certainty at those locking times. Pgrhowever, at = 17 the observer is

partially phase-locked with knowledge 89% of the process’s state information.

computational structure, viz. whether its topological machine is a SSFT or a SSS. The

presence of extrinsic noise and observational noise modify these conclusions systematically.

It is worthwhile to contrast the machine model Bf with a model based on histograms,

or look-up tables, of the same process. Both models are given sufficient storage to exactly
represent the length 3 sequence probability distribution. They are then used for predictions
on length 4 sequences. The histogram model will store the probabilities for each length 3
sequence. This requires 8 bins each containing an 8 bit approximation of a rational number:
3 bits for the numerator and 5 for the denominator. The total is 67 bits which includes an

indicator for the most recent length 3 sequence. The machine model of Fig. 9 must store the
current state and five approximate rational numbers, the transition probabilities, using 3 bits
each: one for the numerator and two for the denominator. This gives a model size of 17 bits.

Two observers, each given one or the other model, are presented with the sefjuence
What do they predict for the event that the fourth symbot is 1? The histogram model
predicts (011) |

Pr(011 1/6 3
Pr(1[101) ~ Pr(101) = ——= = — = —

whereas the machine model predicts
Pr(11101) = pc—_p =1 (28)

The histogram model gives the wrong prediction. It says that the fourth symbol is uncertain
when it is completely predictable. A similar analysis for the prediction of measuriad
having observed11 shows the opposite. The histogram model predicts 1 is more
likely, ps=1 = 2/3, when it is, in fact, not predictable at ap),—; = 1/2. This example
is illustrative of the superiority of stochastic machine models over histogram and similar
look-up table models of time-dependent processes. Indeed, there are processes with finite
memory for which no finite-size sequence histogram will give correct predictions.

In order to make the physical relevance of SSSs and their slow convergence more
plausible, the next example is taken from the Logistic map at a Misiurewicz parameter
value. The Logistic map is an iterated mapping of the unit interval

LTp41 = fr(wn) = rwn(l - wn)v rC [074]71'0 S [07 1] (29)
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Fig. 9 The even system generates sequeficed)1??0...:n = 0,1,2,...} of Is of even length, i.e. even
parity. There are three stat®8s= {A, B, C}. The stateA with the inscribed circle is the start statg. The
edges are labeledp wheres € A is a measurement symbol apd [0, 1] is a conditional transition probability.
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Fig. 10 The machiné/; reconstructed by parsing in forward presentation order a binary sequence
produced using a generating partition of the Logistic map at a Misiurewicz parameter value.

The control parameter governs the degree of nonlinearity. At a Misiurewicz parameter
value the chaotic behavior is governed by an absolutely continuous invariant measure. The
consequence is that the statistical properties are particularly well-behaved. These parameter
values are determined by the condition that the itergt&s.) of the map’s maximum

z. = 1/2 are asymptotically periodic. The Misiurewicz parameter vafuef interest here

is the first root of f4(x.) = f%(z.) below that atr = 4. Solving numerically yields

r' & 3.9277370017867516. The symbolic dynamics is produced from the measurement
partition I, , = {[0,z], (z.,1]}. Since this partition is generating the resulting binary
sequences completely capture the statistical properties of the map. In other words, there is a
one-to-one mapping between infinite binary sequences and almost all points on the attractor.

Reconstructing the machine from one very long binary sequence in the direction in
which the symbols are produced gives the four state machifie shown in Fig. 10. The
stochastic connection matrix is

0.636  0.364 0.000 0.000
0.724  0.000 0.276 0.000

T = (30)
0.000  0.000 0.000 1.000

0.000 0.521 0.479 0.000
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Fig. 11 The machiné/;T reconstructed by parsing in reverse presentation order a binary sequence produced
using a generating partition of the Logistic map at a Misiurewicz parameter value.

Reconstructing the machine from the same binary sequence in the opposite direction
gives the reverse-time machiné~ shown in Fig. 11. It connection matrix is

0.636 0.364 0.000 0.000
0.000 0.000 0.276 0.724

T = (31)
0.000 0.000 0.000 1.000

0.000 1.000 0.000 0.000

Notice thatM~ has a transient state and three recurrent states compared to the four
recurrent states inl/ ;. This suggests the likelihood of some difference in complexity
convergence. Figure 12 shows that this is the case by plaftjid/".¢) andC, (M7, 1)
for positive and “negative” times, respectively. Not only do the convergence behaviors
differ in type, but also in the asymptotic values of the complexiti€s;(M ") ~ 1.77
bits andC', (M) ~ 1.41 bits. This occurs despite the fact that the entropies must be
and are the same for both machings(M ) = h(M7) ~ 0.82 bits per time unit and
hy(M7) = h,(M7) ~ 0.81 bits per time unit. Although the data stream is equally
unpredictable in both time directions, an observer learns about the process’s state in two
different ways and obtains different amounts of state information. The difference

ACT = Cp(M7) — Cu(M7T) ~ 0.36 bits (32)

is a measure of the computational irreversibility of the process. It indicates the process is not
symmetric in time from the observer’s viewpoint. This example serves to distinguish machine
reconstruction and the derived quantifiers, such as complexity, from the subsequence-based
measures, such as the two-point mutual information and the excess entropy.

4. MEASUREMENT SEMANTICS

Shannon’s communication theory tells one how much information a measurement gives. But
what is the meaning of a particular measurement? Sufficient structure has been developed
up to this point to introduce a quantitative definition of an observation’s meaning. Meaning,



Fig. 12 What the observer sees, on average, in forward and reverse lag time in terms of the
complexity convergencé’,(t) for M7 and M. Data for the latter are plotted on the negative lag
time axis. Note that not only do the convergence characteristics differ between the

two time directions, but the asymptotic complexity values are not equal.

as will be seen, is intimately connected with hierarchical representatidhe following,
though, concerns meaning as it arises when crossing a single change in representation and
not in the entire hierarchy.[11]

A universe consisting of an observer and a thing observed has a natural semantics.
The semantics describes the coupling that occurs during measurement. The attendant
meaning derives from the dual interpretation of the information transferred at that time. As
already emphasized, the measurement is, first, an indirect representation of the underlying
process’s state and, second, information that updates the observer’s knowledge. The semantic
information processing that occurs during a measurement thus turns on the relationship
between two levels of representation of the same event.

The meaning of a message, of course, depends on the context in which its information
is made available. If the context is inappropriate, the observation will have no basis with
which to be understood. It will have no meaning. If appropriate, then the observation will
be “understood”. And if that which is understood — the content of the message — is largely

" The following hopefully adds some specificity to approaches to the symbol grounding problem:
How to physical states of nature take on semantic content?[45]
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unanticipated then the observation will be more significant than a highly likely, “obvious”
message.

In the present framework context is set by the model held by the observer at the time of
a measurement. To take an example, assume that the observer is capable of modeling using
the class of stochastic finite automata. And, in particular, assume the observer has estimated
a stochastic finite automatoand has been following the process sufficiently long to know
the current state with certainty. Then at a given time the observer measures symbal
If that measurement forces a disallowed transition, then it has no meaning other than that
it lies outside of the contexts (morphs) captured in the current model. The observer clearly
does not know what the process is doing. Indeed, formally the response is for the observer
to reset the machine to the initial state of total ignorance. If, however, the measurement is
associated with an allowed transition, i.e. it is anticipated, then the degrgef meaning is

O(s) = ~logp_, (33)

Here — v denotes the machine statec 'V to which the measurement brings the observer’s
knowlsédge of the process’s statg.., is the corresponding morph’s probability which is
given by the associated state’s assymptotic probability. The meaning itself, i.e. the content
of the observation, is the particular morph to which the model’'s updated state corresponds.
In this view a measurement selects a particular pattern from a palette of morphs. The
measurement’s meaning is the selected mbgptul the degree of meaning is determined by
the latter’'s probability.

To clarify these notions, let's consider as an example a source that produces infinite
binary sequences for the regular language[48] described by the expr¢gsion )*. We
assume further that the choice implied by the’“is made with uniform probability. An
observer given an infinite sequence of this type reconstructs the stochastic finite machine
shown in Fig. 9. The observer has discovered three morphs: the $tate§A, B, C}. But
what is the meaning of each morph? First, consider the recurrent Btated C. StateB is
associated with having seen an even number of 1’s following@with having seen an odd
number. The meaning d} is “even” andC is “odd”. Together the pai{B, C} recognize a
type of parity in the data stream. The machine as a whole accepts strings whose substrings
of the form01 ...11...10 have even parity ofs. What is the meaning of state? As long
as the observer’s knowledge of the process’s state remains inAstaéitere has been some
number of 1’s whose parity is unknown, since a 0 must be seen to force the transition to the

*

Assume also that the estimated machine is deterministic in the sense of automata theory: the
transitions from each state are uniquely labeled: = p(v,v',s) = p,p,—.s. This simplifies

the discussion by avoiding the need to define the graph indeterminacy; as a gquantitative measure
of ambiguity.[17] Ambiguity for an observer arises if its model is a stochastic nondeterministic
automaton.

1 simplify here. The best formal representation of meaning at present uses the set-theoretic structure
that the machine induces over the set of observed subsequences. This in turn is formulated via the
lattice theory[46] of machines.[47]



parity stateB. StateA, a transient, serves to synchronize the recurrent states with the data
stream. This indicates for this example the meaning content of an individual measurement
in terms of the state to which it and its predecessors bring the machine.

Before giving a quantitative analysis the time dependence of the state probabilities must
be calculated. Recall that the state probabilities are updated via the stochastic connection
matrix

2 1
5 3 0

pvit+1) =pv()[0 L 2 (34)
0 1 0

wherepy (t) = (pa(t),ps(t), pc(t)) and the initial distribution igv (0) = (1,0,0). Using
the z-transform, the time-dependent state probabilities are found to be

9 t
pa(t) = <§> t=0,1,2,...
9 t
pB(t) = <§> —ol=t 1 =0,1,2,...
N1
pc(t)Z{@) _ol=t 4123, (35)
0, t=0

Any time a disallowed transition is forced the current state is reset to the start state and
pv(t) is reset to the distribution representing total ignorance which is give19).

What then is the quantitative degree of meaning of particular measurements? Let's
consider all of the possibilities: all possible contexts, i.e. current states, and all possible
measurementst steps after a reset, the observer is

1. In the sync state and measures 1: ©% (1) = —log, p_a = t(log, 3 — 1);

sync
2. In the sync state and measures= 0: O ,.(0) = —logyp_.p = —logy pB(t); €.g.
0L ..(0) = log,3 ~ 1.584 bits;

sync
3. In the even state and measures:- 1: 0L, (1) = —logyp_c = —log, pc(t),t > 1;
1
e.g. 02,..(1) = log, 6 ~ 2.584 bits;

even

4. In the even state and measures- 0: O!  (0) = —log, p_p = — log, pp(); €.g.
02,.,(0) = 1 + 2log, 3 — log, 7 ~ 1.372 bits;
5. In the odd state and measures= 1: ©!, (1) = —logszB = —log, pp(t); e.g.

03 ,4(1) = 2+ 3log, 3 — log, 37 ~ 1.545 bits;
6. In the odd state and measures- 0, a disallowed transition. The observer resets the
machine: 0] ,,(0) = —logy p_.a = —logy pa(0) = 0.
0
In this scheme statd3 and C cannot be visited at timé= 0 nor stateC at time¢ = 1.
Assuming no disallowed transitions have been observed, at infiniteime (0, %, 1)
and the degrees of meaning are, if the observer is

1. In the sync state and measures 1. Ogync(l) = —logy p_a = oo;
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Observer’s Semantic Analysis of Parity Source
Observer] Measures | Interprets Meaning Degree of Amount of
in State| Symbol as Meaning I nformation
(bits) (bits)
A 1 Unsynchronized Infinity 0.585
A 0 Synchronize 0.585 1.585
B 1 Odd number of 1s 1.585 1
B 0 Even number of 1s 0.585 1
C 1 Even number of 1s 0.585 0
C 0 Confusion: lose synd, 0 Infinity
reset to start state

Table 2 The observer’'s semantics for measuring the parity process of Fig. 9.

2. In the sync state and measuses 0: Oy, (0) = —log, p_p = log, 3 — 1 &~ 0.584 bits;

3. In the even state and measuges 1: Ogyen (1) = — log, po_,c = log, 3 &~ 1.584 bits;

4. Inthe even state and measuses 0: Ocyen(0) = — log, p_,lB =log, 3 —1 ~ 0.584 bits;

5. In the odd state and measures 1: Oyq4(1) = — log, p_?B =log, 3 — 1 ~ 0.584 bits;

6. In the odd state and measures- 0, a disallowed transition. The observer resets the

machine: ©,q4(0) = —logy p—.a = —log, pa(0) = 0.

Table 2 summarizes this analysis for infinite time. It also includes the amount of
information gained in making the specified measurement. This is given simply by the negative
binary logarithm of the associated transition probability.

Similar definitions of meaning can be developed between any two levels in a reconstruc-
tion hierarchy. The example just given concerns the semantics between the measurement
symbol level and the stochastic finite automaton level.[11] Meaning appears whenever there
is a change in representation of events. And if there is no change, e.g. a measurement is
considered only with respect to the population of other measurements, an important special
case arises.

In this view Shannon information concerns degenerate meaning: that obtained within the
same representation class. Consider the information of events in sorfiec$gtossibilities
whose occurrence is governed by arbitrary probability distributipAs®,...}. Assume
that no further structural qualifications of this representation class are made. Then the
Shannon self-information-log p., p. € P, gives the degree of meaning log, p_.
in the observed event with respect to total ignorance. Similarly, the information gain

I(P;Q) = > pelog, {;— gives the average degree of “meaning” between two distributions.

eel
The two representation levels are degenerate: both are the events themselves. Thus, Shannon
information gives the degree of meaning of an event with respect to thé eeevents and
not with respect to an observer’s internal model; unless, of course, that model is taken to be



the collection of events as in a histogram or look-up table. Although this might seem like
vacuous re-interpretation, it is essential that general meaning have this as a degenerate case.

The main components of meaning, as defined above should be emphasized. First, like
information it can be quantified. Second, conventional uses of Shannon information are a
natural special case. And third, it derives fundamentally from the relatiorzehgss levels
of abstraction. A given message has different connotations depending on an observer’s
model and the most general constraint is the model’s level in a reconstruction hierarchy.
When model reconstruction is considered to be a time-dependent process that moves up a
hierarchy, then the present discussion suggests a concrete approach to investigating adaptive
meaning in evolutionary systems: emergent semantics.

In the parity example above | explicitly said what a state and a measurement “meant”.
Parity, as such, is a human linguistic and mathematical convention, which has a compelling
naturalness due largely to its simplicity. A low level organism, though, need not have such
a literary interpretation of its stimuli. Meaning of (say) its model's states, when the state
sequence is seen as the output of a preprocésseniyves from the functionality given to the
organism, as a whole and as a part of its environment and its evolutionary and developmental
history. Said this way, absolute meaning in nature is quite a complicated and contingent
concept. Absolute meaning derives from the global structure developed over space and
through time. Nonetheless, the analysis given above captures the representation level-to-
level origin of “local” meaning. The tension between global and local entities is not the
least bit new to nonlinear dynamics. Indeed, much of the latter’'s subtlety is a consequence
of their inequivalence. Analogous insights are sure to follow from the semantic analysis of
large hierarchical processes.

5. CONCLUDING REMARKS

By way of summarizing the preceding discussion, there are a few points that can be brought
out concerning what reconstructed machines represent. First, by the definition of future-
equivalent states, they give the minimal information dependency between the morphs. In
this respect, they represent the causality of the morphs considered as events Blfsliatgs

stateA thenA is a cause of3 andB is one effect ofA. Second, the machines capture the
information flow within the given data stream. Machine reconstruction produces minimal
models up to the given approximation level; that is, up to the amount of data available for the
estimation and up to the setting of the parametérs’, ). This minimality guarantees that
there are no other events (morphs) that intervene between successive states, at the given error
level, to renderA andB independent. In this and only this case, can one unambiguously
say that information flows from\ to B, under the chosen parsing direction. The amount

of information that flows is given by the mutual informatiétA; B) = H(B) — H(B|A) of
observing the state-event followed by state-evenB. This criterion for information flow

" This preprocessor is a transducer version of the model that takes the input symbols and outputs
strings in the state alphab¥t.
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also extends to spatial systems. Finally, time is the natural ordering captured by machines. As
noted in the section on knowledge relaxation changing the direction of parsing the data stream
leads to a quantitative measure of a new type of irreversibility. This type of irreversibility is

a consequence of the computational, in fact, semi-group, structure of the underlying process.

Causation appears then as an efficient organization of knowledge. It is a symmetry
in the broadest sense of the word. It allows for the “factoring” of experience into lower
dimensional representations. The conditional independence basis for machine reconstruction
of states implies that-machines are the minimal causal representations of the source, up to
the given approximation level. The hierarchical reconstruction procedure uses a slight, but
significant extension of this in order to address the question of change model classes: An
e-machine for a process is the minimal causal representation reconstructed using the least
powerful computational model class that yields a finite complexity.

At first glance the process of measurement, the elemental act of information acquisition,
would seem to be an antecedent of causality. This impression is, though, a result of
current nonphysical formulations of information theory. The essential physical contact during
measurement calls into play the entire panoply of modeling and semantics laid out above.
Information theory, as an engineering discipline, only considers the amount of information
and rates of its production, loss, and transmission, as measured by various entropies. As
such it ignores, as Shannon said it should, the question posed in the previous Woodward
proceedings when considering the geometric structure of the space of information sources
and the algebra of measurements: “what of the ‘meaning’ of ... information?”[49] The
answer here, simply stated, is that it depends on the current state of knowledge of the
observer. In restricting the class of models to stochastic finitary automata, a concrete
answer was given in terms of the discovered morphs and the observer’'s anticipation of
seeing them. A more general answer, though, lies in clearly delineating the resources,
computational and observational, available to the modeler. Lending this large a context to
a quantitative theory of meaning, though, pushes the boundaries especially of theoretical
computer science, from which we must know how space and time complexities trade-off
against one another. At present, these scalings appear to be largely, if not exclusively,
studied as separate coordinates for the space of computational tasks.[48,50] Future progress
demands a more detailed understanding of the complexity-entropy landscape over the space
of computational tasks. There are some provocative hints from phenomenological studies
that phase transitions organize some aspects of this space.[19,51,52]

What is the role of nonlinearity in all of this? | would claim at this point that it is
much more fundamental than simply providing an additional and more difficult exercise in
building good models and formalizing what is seen. Rather it goes to the very heart of
genuine discovery. Let me emphasize this by way of a contrapositive point.

Linear systems are meaningless in the sense that the question of semantics need not arise
within their universe of discourse. The implementations, artificial or natural, of mechanisms
by which a linear system could be inferred are themselves nonlinear. Said another way there



is no finite linear system that learns stably. Therefore, (finite) linear systems as a class are
not self-describing; the universe is open. This indirect observation suggests that there is an
intimate connection between meaning and nonlinearity, since nontrivial semantics requires
the ability to model.

The utility of complexity, when it is seen as the arbiter of order and randomness, within
nonlinear physics can be illustrated by way of posing some final questions. Consider the
evolution of scientific theories. In particular, focus on the theories of time-dependent physical
processes, viz. Laplacian-Newtonian classical mechanics (LNCM) and Copenhagen quantum
mechanics (CQM). In LNCM (local) determinism implies complete (local) predictability. In
CQM (local) nondeterminism implies complete (local) unpredictability and so only statistical
regularity can be present. Sidinger’s equation is, in fact, the equation of motion governing
that statistical regularity. In light of the preceding discussion of modeling, it is rather curious,
but probably no coincidence, that these two theories come from the two extremes of entropy.

The meaning of physical events is often couched only in terms of these two contenders
via (say) Bohr's notion of complementarity. But what about the intermediate possibility:
complexity? Could these two opposed views be incomplete aspects, or projections, of a
complex nature? A nature too intricate and too detailed to be completely understood at any
one time and with finite knowledge? Whose state is too complex to determine with any
finite measurement?

It seems that such issues will only be given their proper framing when we understand
how physical nature intrinsically computes and how subsystems would spontaneously take
up the task of modeling. Then, of course, there is the nonlinear dynamics of this process.
Could this natural complexity be a state to which a system evolves spontaneously? A true
self-organized complexity?

Hopefully, the preceding made it clear that to ignore the central role of computation is
to miss the point of these questions entirely.

Many thanks to the Santa Fe Institute, where the author was supported by a Robert Maxwell
Foundation Visiting Professorship, for the warm hospitality during the writing of the present
essay. Funds from NASA-Ames University Interchange NCA2-488 and the AFOSR also
contributed to this work.

REFERENCES

1. N. Chomsky, “Three models for the description of languad®E Trans. Info. Th.,
vol. 2, p. 113, 1956.

2. A. O’Hear, An Introduction to the Philosophy of Science. Oxford: Oxford University
Press, 1989.

3. D. M. MacKay, Information, Meaning and Mechanism. Cambridge: MIT Press, 19609.



34

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

S. Omohundro, “Modelling cellular automata with partial differential equatidpisysica,

vol. 10D, p. 128, 1984.

J. P. Crutchfield, “Turing dynamical systems.” unpublished, 1987.

L. Blum, M. Shub, and S. Smale, “On a theory of computation over the real numbers,”
Bull. AMS, vol. 21, p. 1, 1989.

C. Moore, “Unpredictability and undecidability in dynamical systenf®ys. Rev. Lett.,

vol. 64, p. 2354, 1990.

D. C. Dennett,The Intentional Sance. Cambridge: MIT Press, 1987.

J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data sebasyilex
Systems, vol. 1, p. 417, 1987.

J. RissanenSochastic Complexity in Satistical Inquiry. Singapore: World Scientific,
1989.

J. P. Crutchfield, “Reconstructing language hierarchiedyiformation Dynamics (H. A.
Atmanspracher and H. Scheingraber, eds.), (New York), p. 45, Plenum, 1991.

C. E. Shannon and W. Weavéhe Mathematical Theory of Communication. Champaign-
Urbana: University of lllinois Press, 1962.

A. N. Kolmogorov, “A new metric invariant of transient dynamical systems and
automorphisms in Lebesgue spacd3gkl. Akad. Nauk. SSSR, vol. 119, p. 861, 1958.
(Russian) Math. Rev. vol. 21, no. 2035a.

J. P. Crutchfield and N. H. Packard, “Symbolic dynamics of noisy chddsgsica,

vol. 7D, p. 201, 1983.

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry from a time
series,”Phys. Rev. Let., vol. 45, p. 712, 1980.

H. Poinceae; Science and Hypothesis. New York: Dover Publications, 1952.

J. P. Crutchfield and K. Young, “Inferring statistical complexi®tiys. Rev. Let., vol. 63,

p. 105, 1989.

J. PearlProbabilistic Reasoning in Intelligent Systems. New York: Morgan Kaufmann,
1988.

J. P. Crutchfield and K. Young, “Computation at the onset of chaosEninopy,
Complexity, and the Physics of Information (W. Zurek, ed.), vol. VIII of SFI Sudies

in the Sciences of Complexity, (Reading, Massachusetts), p. 223, Addison-Wesley, 1990.
A. Fraser, “Using hidden Markov models to predict chaos.” preprint, 1990.

L. R. Rabiner, “A tutorial on hidden Markov models and selected applicatitBEE
Proc., vol. 77, p. 257, 1989.

J. P. CrutchfieldNoisy Chaos. PhD thesis, University of California, Santa Cruz, 1983.
Published by University Microfilms Intl, Ann Arbor, Michigan.

S. Wolfram, “Computation theory of cellular automat&8mm. Math. Phys., vol. 96,

p. 15, 1984.



24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

P. Grassberger, “Toward a quantitative theory of self-generated complebxitly,J.
Theo. Phys., vol. 25, p. 907, 1986.

K. Lindgren and M. G. Nordahl, “Complexity measures and cellular autom@oeplex
Systems, vol. 2, p. 409, 1988.

J. P. Crutchfield and K. Young¢-machine spectroscopy.” preprint, 1992.

C. H. Bennett, “Dissipation, information, computational complexity, and the definition

of organization,” inEmerging Syntheses in the Sciences (D. Pines, ed.), Redwood City:
Addison-Wesley, 1988.

A. N. Kolmogorov, “Three approaches to the concept of the amount of information,”
Prob. Info. Trans, vol. 1, p. 1, 1965.

J. P. Crutchfield and N. H. Packard, “Noise scaling of symbolic dynamics entropies,” in
Evolution of Order and Chaos (H. Haken, ed.), (Berlin), p. 215, Springer-Verlag, 1982.
N. H. PackardiMeasurements of Chaos in the Presence of Noise. PhD thesis, University

of California, Santa Cruz, 1982.

R. Shaw,The Dripping Faucet as a Model Chaotic System. Santa Cruz, California:
Aerial Press, 1984.

C. P. Bachas and B. A. Huberman, “Complexity and relaxation of hierarchical structures,”
Phys. Rev. Let., vol. 57, p. 1965, 1986.

G. Chaitin, “On the length of programs for computing finite binary sequende&CM,

vol. 13, p. 145, 1966.

A. Lempel and J. Ziv, “On the complexity of individual sequencéBEE Trans. Info.

Th., vol. IT-22, p. 75, 1976.

J. Rissanen, “Stochastic complexity and modelidgyi. Satistics, vol. 14, p. 1080, 1986.

W. H. Zurek, “Thermodynamic cost of computation, algorithmic complexity, and the
information metric.” preprint, 1989.

J. Ziv, “Complexity and coherence of sequencesThalmpact of Processing Techniques

on Communications (J. K. Skwirzynski, ed.), (Dordrecht), p. 35, Nijhoff, 1985.

A. A. Brudno, “Entropy and the complexity of the trajectories of a dynamical system,”
Trans. Moscow Math. Soc., vol. 44, p. 127, 1983.

J. P. Crutchfield, “Inferring the dynamic, quantifying physical complexity Mieasures
of Complexity and Chaos (N. B. Abraham, A. M. Albano, A. Passamante, and P. E.
Rapp, eds.), (New York), p. 327, Plenum Press, 1990.

R. Shaw, “Strange attractors, chaotic behavior, and information fléwiNaturforsh.,
vol. 36a, p. 80, 1981.

J. P. Crutchfield, “Semantics and thermodynamics,” Nonlinear Modeling and
Forecasting (M. Casdagli and S. Eubank, eds.), vol. Xl &inta Fe Institute Sudies in
the Sciences of Complexity, (Reading, Massachusetts), p. 317, Addison-Wesley, 1992.



36

42

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

. R. Rammal, G. Toulouse, and M. A. Virasoro, “Ultrametricity for physiciggev. Mod.

Phys., vol. 58, p. 765, 1986.

B. Marcus, “Sofic systems and encoding datBEE Transactions on Information Theory,

vol. 31, p. 366, 1985.

B. Kitchens and S. Tuncel, “Finitary measures for subshifts of finite type and sofic
systems,”"Memoirs of the AMS vol. 58, p. no. 338, 1985.

S. Harnad, “The symbol grounding problerRfysica, vol. 42D, p. 335, 1990.

G. Birkhoff, Lattice Theory. Providence: American Mathematical Society, third ed., 1967.
J. Hartmanis and R. E. Stearmdgebraic Sructure Theory of Sequential Machines.
Englewood Cliffs: Prentice-Hall, 1966.

J. E. Hopcroft and J. D. Ulimarintroduction to Automata Theory, Languages, and
Computation. Reading: Addison-Wesley, 1979.

J. P. Crutchfield, “Information and its metric,”Nonlinear Sructuresin Physical Systems

- Pattern Formation, Chaos and Waves (L. Lam and H. C. Morris, eds.), (New York),

p. 119, Springer-Verlag, 1990.

M. R. Garey and D. S. Johnsdomputers and Intractability: A Guide to the Theory of
NP-Completeness. New York: W. H. Freeman, 1979.

C. G. Langton, “Computation at the edge of chaos: Phase transitions and emergent
computation,” inEmergent Computation (S. Forrest, ed.), p. 12, Amsterdam: North-
Holland, 1990.

W. Li, N. H. Packard, and C. G. Langton, “Transition phenomena in cellular automata
rule space,”Physica, vol. 45D, p. 77, 1990.



