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To anyone who is uncertain, and who may derive any amount of knowledge, enjoyment, or
encouragement from this work. It is not within my power to resolve your uncertainty, but perhaps

we may begin by quantifying it.
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Abstract

On Infinite Complexity: Quantifying the Randomness and Structure of Hidden

Markov Processes

The world around us is awash with structure and pattern. We observe it in the cycles of the

seasons, the destructive beauty of coherent large-scale atmospheric events, and the petri-dish bound

patterns produced by chemical reactions. In response, we incorporate these patterns into predictive

models that allow us to forecast natural phenomena, giving us the ability to say that a plane will fly

and a certain medical compound will help, instead of harm. This practice is perhaps intrinsic to the

conscious mind, but in the information age these models have become an object of mathematical

curiosity, tamed by the axiomatic frameworks of probability and automata theory.

This dissertation focuses on processes generated by a class of models known as finite-state

hidden Markov models. Despite the relative simplicity of their generators, the information theoretic

properties of these processes are still elusive, eluding our attempts to quantify their structure,

randomness, and complexity. This dissertation introduces methods to accurately calculate the Shan-

non entropy rate (randomness) and statistical complexity dimension (structure) by constructively

determining their minimal (though, infinite) set of predictive features.

To do so, we must reframe the stochastic process in the language of random dynamical systems,

introducing the set of predictive features as the attractor of a chaotic system. This task accomplished,

we turn to the development of a toolset to measure randomness and structure. In the process, we

introduce the ambiguity rate, a new intrinsic complexity measure. This quantity is used to measure

the rate at which the state space of an infinite model must grow to retain optimal prediction.

This quantity is closely related to the fractal dimension of the predictive state set, and we offer a

conjectured correction to the Kaplan-Yorke information dimension formula for this class of processes.
xiii



To highlight the usefulness of these informational quantities, that otherwise appear rather

abstracted from natural systems, we apply these theoretical results to two, rather different, physical

domains. The first is to analyze the origin of randomness and structural complexity engendered by

quantum measurement. The second is to solve a longstanding problem on exactly determining the

thermodynamic functioning of Maxwellian demons, aka information engines. Taken together, we

believe the new approach will find even wider use than in these application areas.
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CHAPTER 1

Introduction and Motivation

In the space of a generation, humanity has found itself in the “Information Age”, an epoch

heralded by the arrival of “information technology”. The most widespread of these technologies is

the one you are likely using to read this dissertation: the computer, a machine capable of storing,

transforming, and processing information. Despite the rapid proliferation of these machines—and

the subsequent economic impact of their widespread adoption—several of the underlying ideas still

lack rigorous, physically-motivated explanation. Indeed, our position is not dissimilar to that of the

early 19th century, when the first steam locomotive was demonstrated before the term “energy” was

first used in its modern scientific sense. The questions that then faced “natural philosophers” of the

day—on the creation, transformation, and utilization of this so-called energy—are now recognized as

the fundamental questions of physics. Two hundred years later, we find ourselves asking these same

questions of information: what is it, and how can it be generated, stored, transformed, and utilized?

Do natural systems process information—or, compute—and how? What role does information and

computation have to play in explaining the emergent structure and complexity we so readily observe

in the world around us?

In 1948, Claude Shannon [1] made the first stride towards answering these questions by

formalizing the mathematical definition of information. He argued that we desire any measure of

informational content to meet several axioms: 1) observation of an event X with a certain outcome

yields no information; 2) the less probable an event, the more information it yields; and 3) additivity

of informational content of independent events. It can be shown that there is a unique function

of probability of an outcome x that meets all of these requirements: the logarithmic function

I(X) = − log(Pr(X = x)). When the log is taken in base two, information is measured in bits, and

the resolution of fair coin flip yields one bit of information. In most cases, we are interested in the

Shannon entropy H(X) = E[I(X)]: the expected value of the information gained by observing X.

Properties of H(X) follow naturally from I(X). When there is only one possible outcome, H(X)
1



goes to zero; when all possible outcomes are equally likely, H(X) is maximized. Thus, we see that

uncertainty—and the resolution of uncertainty—is inextricably linked to any physical interpretation

of information.

Even in Shannon’s time, the idea that uncertainty has a role to play in physics was not a

novel concept. Long before quantum mechanics ushered us into an inherently probabilistic universe,

or even before statistical mechanics formalized thermodynamics via the statistical properties of

ensembles, Henri Poincaré’s failed 1892 attempt to establish the orderliness of planetary motion

showed that both determinism and randomness are essential and unavoidable in the study of physical

systems [2,3,4,5]. He showed that a system of three bodies interacting in a gravitational field

displayed strange mathematical properties—the existence of infinitely many periodic solutions.

In the three-body system, and others like it, intricate structures in the state space allow small

differences in trajectories to amplify over time, resulting in divergent futures, despite deterministic

evolution of the state space [5]. It was not until the 1960s and 1970s that the rise of dynamical

systems theory and the exploration of statistical physics of critical phenomena gave insight into this

phenomenon, which we now know as chaos.

Chaotic systems—by amplifying small differences over time—generate uncertainty. The rate

of this generation can be characterized using information theory: the Shannon entropy rate hµ

is how many bits of information a system generates over time, again recalling the relationship

between uncertainty and information. It has been shown that this measure is not abstract—perhaps

surprisingly, the entropy rate of a system has a deep relationship to its dynamics [6, 7]. For

chaotic systems, the entropy rate is positive, and this informs not only their information generation

capabilities but also the instability of their orbits. We have in hand, then, a well-motivated

description of how much information a system can generate, and a way forward—through studying

the system’s dynamics—towards calculating it for an arbitrary system. However, this leaves open

the most fundamental question we posed above: how a system generates information.

Rather than immediately addressing that question, we will consider for a moment an alternative

view on the entropy rate. If we were to observe a system for eternity, recording every pattern that we

measured, in an attempt to make predictions about future behavior, our efforts would be inescapably

limited by the system’s hµ. The entropy rate is a system’s instrinsic randomness. In other words, it
2



is not possible to reduce uncertainty in the future of system beyond its entropy rate—this being the

mathematical principle that stymied Poincaré’s attempt to predict celestial motion. Despite the

seemingly grim nature of this reality, the existence of this limit does not frustrate our ability to

analyze the natural world, but instead clarifies. The fundamental task of scientific inquiry can be

said to be that of optimal prediction, which may now be well defined: for some system, it is the

construction of a predictive model that reduces uncertainty in the future to the entropy rate. I

wish to argue that the construction of such a model, and the answer to our question of how natural

systems generate information, are one and the same.

Let us first approach this argument by metaphor: imagine a machine attached to a row of

lights, which causes a single light to flash every second. This machine has been running forever,

and will continue running forever. We wish to describe the complexity of the machine, only having

access to the sequence. A common misconception is that the machine’s structure is dictated only

by the entropy of the sequence. However, consider that a maximally random sequence is simple

to implement: if I need to choose randomly amongst N lights, an N -sided die will suffice. But a

completely deterministic sequence—say the first light always flashes, no uncertainty, no variations—

may be implemented just as easily. I use the same die as before, replacing the numbers two through

N with a one, so each roll returns the same value. In both cases, high and low entropy, the die does

not store or process information, because by design, each roll is independent of every previous roll.

On the other hand, say I randomly choose lights one through N except for the 100th time step,

when the light is chosen by summing up the last 99 selections and taking modulo N . In this case, I

must build a machine capable of storing the previous ninety-nine selections (or at least, keeping

a running tally). Due to the interplay between randomness and the correlations1 in the sequence,

I require a machine with memory, or, if that term is too loaded, the ability to store information

over time. Such a machine is more computationally complex than a die, under any reasonable

definition of complexity. However, we must be careful: I could, if I so desired, build for my entirely

random sequence a labrynthine Rube Goldberg machine that, at the very end, rolls a die. Such

a machine could certainly be made to appear, to the human eye, to be more “complex” than a

pocket calculator. To avoid the endless possibility of complexity inflation in this manner, we employ
1The correlations we discuss here are temporal, but spatio- and spatio-temporal correlations are of great interest to
complexity science as well, see [8,9,10,11,12].
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an Occam’s razor argument: if the machine is minimal—its computational resources are exactly

sufficient to reproduce all correlations present in the sequence and no more—the complexity of any

capable system producing the sequence must be at least as complex as the machine. That this

minimal machine—known as the ε-machine—exists, is unique, and is the optimally predictive model

is the fundamental result of the field known as computational mechanics [13].

Now answering the question of how systems generate, process, store, and transform information—

i.e., how they compute—becomes a task of finding and characterizing the ε-machine of the system.

However, as we have already implied, consistently measuring the complexity of a machine is

not trivial. The definition and meaning of structural complexity is a long standing and much

discussed topic [14,15,16,17,18,19,20,21,22,23,24,25]. Perhaps the most well-known and

compelling complexity measure is the Kolmogorov-Chaitin (KC) complexity, length of the minimal

program for a given Universal Turing Machine (UTM) required to reconstruct an individual time

series [26,27,28,29]. This formalizes the “machine in a box” problem outlined above, and represents

both the randomness of the sequence and the complexity of the machine required to construct it

by a single value. Unfortunately, due to the halting problem, the KC complexity is uncomputable,

even if one has in hand a generative model.

Fortunately, there is a broad class of systems for which the growth of the KC complexity of typical

realizations is well characterized: stationary, ergodic processes. They are employed in many fields,

from the study of complex systems [30], to coding theory [31], stochastic processes [32], stochastic

thermodynamics [33], speech recognition [34], computational biology [35,36], epidemiology [37],

and finance [38]. For these systems, KC complexity grows linearly with time series length, with

coefficient equal to hµ and offset equal to the statistical complexity Cµ, a measure of memory

resources [14,30,39]. Both measures are intrinsic to the process, which is to say that they exist

independently of the amount of data observed. Furthermore, they are both computable from the

ε-machine.

The space of stationary, ergodic processes is well organized by the divergence of their infor-

mational quantities into a prediction hierarchy, depicted in figure ?? [40]. At the lowest level are

Markov processes, described by finite ε-machines with finite history dependence (finite Markov order

R); e.g., measure subshifts of finite type [41]. Though very commonly posited as models, they
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inhabit a vanishingly small measure in the space of processes [42]. At the next level of structure

are Sofic processes described by ε-machines with finite Cµ. For processes at this level and below,

computational mechanics has shown how to construct [13], characterize, [43,44,45] and infer [46]

ε-machines. These ε-machines are represented as finite-state predictive hidden Markov models

(HMM), like the two-state example shown in figure 2.1.

Despite this success, the limitation to finite state predictive HMMs is quite restrictive. At the

Generative level are processes that may be finitely generated (generative complexity Cgen <∞ [47])

but have ε-machines with infinite states [48]. Indeed, the state sets are often fractal, or even

continuous. The difficulties of dealing with such systems are well-known; as originally noted by

David Blackwell in 1957 [?], calculating the entropy rate of such processes is difficult, involving an

integral over fractal measures. In addition, the statistical complexity Cµ diverges. Characterizing

the computational architecture of such processes was previously limited to the visual identification

of the ε-machine state sets as fractal-like objects, see figure 3.4 for several examples.

This dissertation addresses this state of affairs by applying dynamical systems theory to

generative processes, recasting the state sets of their ε-machines as the attractors of chaotic systems.

Using this approach, we define the ε-machine as a hidden Markov-driven iterated function system

(DIFSs), easily found given a generative finite state HMM. From this, we may calculate the entropy

rate of finitely-generated hidden Markov processes in general, solving Blackwell’s long-standing

problem [48]. Towards characterizing the computational structure of these models, I introduced

the ambiguity rate ha, the rate at which the ε-machine forgets information [49]. Compare this to

the entropy rate, the rate at which the system generates information: when these two rates are

equivalent, the ε-machine forgets information at the same rate the system generates it, the model

size remains constant over time, and the statistical complexity is finite. In this case, a finite-state

predictive HMM will suffice.

This gives us intuitive description of systems requiring ε-machines with infinite statistical

complexity. When the ambiguity rate is less than the entropy rate, the ε-machine cannot forget

information as quickly as the system generates it, increasing the model size (and therefore, Cµ) over

time. Processes at this level require an ever-growing amount of memory for accurate prediction. The
5



(a)

Pr(1, 0, 0)

Pr(0, 1, 0)

Pr(0, 0, 1)

(b)

Figure 1.1. Figures (a) and (b) plot 105 states of an uncountably-infinite state
ε-machine. Each is constructed for a different hidden Markov process, both
generated with a 3-state HMM.

statistical complexity diverges, and our ε-machine has, typically, an uncountable state set2. To track

the rate of this increase, we introduce the statistical complexity dimension dimµ, the information

dimension of the ε-machines’ state set, which measures the rate at which the statistical complexity

diverges [51]. Traditionally, fractal dimensions like the information dimension are difficult to

calculate. Again, we make use of dynamical systems: the long standing Kaplan-Yorke conjecture

upper bounds the information dimension of an attractor by computing the Lyapunov spectrum

of the generating chaotic system. For ε-machines with non-zero ambiguity rate, we show that the

upper-bound is strict. To solve this problem, the ambiguity rate is proposed as the correction to

the conjecture for hidden Markov-DIFSs, allowing direct calculation of dimµ.

These results include several important theoretical contributions: solving Blackwell’s long-

standing problem of the entropy of general HMPs, and improving the Kaplan-Yorke conjecture

for a broad class of stochastic processes. In addition, we now have a suite of tools to characterize

2It is possible for the statistical complexity to diverge for ε-machines with countable state sets, see [50]. This occurs
when the Minkowski–Bouligand dimension of the state set is strictly an upper bound on the Hausdorff dimension. On
the other hand, if the state set is uncountable, the statistical complexity will diverge.
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Figure 1.2. In a black box, a dynamical system generates hµ bits per time step,
observable via the sequence of lights. We wish to describe the “size” and complexity
of the system in the box. The ε-machine of the system creates information at the
same rate and forgets information ha bits per time step. To characterize the system,
we compute the ε-machine’s size Cµ, rate of growth dimµ, information storage, and
information processing.

complex systems with divergent statistical complexity. Figure 1.2 shows the relationship between the

quantities introduced. To highlight the usefulness of these informational quantities, that otherwise

appear rather abstracted from natural systems, it should be noted that these tools have already

found practical application in two, rather different, physical domains. The first analyzed the origin

of randomness and structural complexity engendered by quantum measurement [52]. We showed

that the ε-machines of measured quantum processes were highly uncountably-infinite state for

almost every angle, but that dimµ—the growth of the predictive model—varied continuously as a

function of measurement angle. Perceived structural complexity of a measured process is then a

complicated product of the measurement mechanism and the underlying “true” process. This has

broad implications not only about our ability to communicate through quantum channels, but also

how measurement of any system may induce apparent complexity. Our investigation of hµ and Cµ’s

dependence on the underlying message versus the measurement channel provides the first steps

towards untangling this induced complexity from the underlying system’s behavior.

The second application involved information engines, Maxwellian demon-like devices designed

to perform useful work by processing information. We solved a longstanding problem on exactly

determining the thermodynamic functioning of engines described by general HMMs [53]. It was

shown that even simple, well-known models require ε-machines with uncountably infinite state sets.
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In particular, we showed that truncating descriptions of the structural complexity of these engines

can result in mischaracterization of their thermodynamic functioning, and even implied violations

of the Second Law. This result showed the practical use for consistent and correct measures of

structural complexity, and perhaps more importantly, the cost of approximating away divergent

complexities. Taken together, we believe these new tools will find even wider use than in these

application areas.
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CHAPTER 2

The Study of Stochastic Processes

The central object of this work is a class of stochastic processes, specifically those that may be

finitely generated by a set of states. These processes are variously called hidden Markov processes

(HMPs), functions of Markov chains, or stochastic finite automata. We will refer to them most

frequently as HMPs. Their generating models—the aformentioned set of states and associated

dynamic—are called hidden Markov models (HMMs). As described in the previous chapter, our

goals are to model, predict, compare, and characterize the computational structure of these processes,

and the natural systems that generate them, in the context of complexity theory.

Functions of Markov chains have been studied since the 1950s [54], when David Blackwell

investigated them as producers of information. Since the 1970s, HMPs have been broadly applied in

a number of fields and the simplicity of their description, flexibility of representation, and academic

success has contributed to their broad popularity. In this chapter we define processes in general,

then turn to HMPs and HMMs, assuming a basic familiarity with probability theory. We discuss

the ε-machine, the minimal, optimally predictive model of an HMP. We then consider how to best

study, characterize, and compare HMPs, introducing several fundamental concepts from information

theory. We discuss the concepts of intrinsic randomness and intrinsic structure, the two axes upon

which we will measure the computational complexity of HMPs.

2.1. Definition of a Process

Before defining a process exactly, we return to the machine described in Chapter 1: a constantly

running mechanism attached to a finite row of lights, such that after certain time interval—say,

every second—a single light flashes. Now, imagine that you lower this mechanism into a black box

and place it on a laboratory bench, such that the lights are visible but the gears are not. You recall

the specifications of the machine, but are no longer able to see how it is oriented. You may choose

to place the mechanism in the box, noting its orientation, and begin recording the sequence of
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lights immediately. Alternatively, you could walk away from the bench and allow the mechanism to

run unobserved for a very long time, only to return and begin recording, having forgotten what

orientation the mechanism was placed into the box with.

A process is the bi-infinite sequence of lights, or more technically, a process is a probability

measure over a bi-infinite chain of random variables. Let X be a random variable, which may take on

values from a finite set A according to a measure—in the following, a probability measure. In general,

we denote random variables with capital letters, and particular realizations with the corresponding

lower case letter x. Sequences of random variables are written . . . Xt−2Xt−1XtXt+1Xt+2 . . ., where

the subscript denotes a time index, t ∈ Z. We define a process in terms of the distribution over

such sequences.

Definition 1. Let A be a countable set. Let Ω = AZ be the set of bi-infinite sequences composed

from A, F the field of cylinder sets of Ω, and P a probability measure. A process P is the probability

space (Ω,F , P ), with random variable ←→X .

We may index into the process: Xi = xi denotes the ith element of the bi-infinite sequence ←→X .

From this we define the shift map τ :←→X →←→X as (τX)i = Xi+1, which describes symbol-to-symbol

dynamics. In practice, we will often work with finite-length words Xt:t′ , where the first index is

inclusive and the second exclusive: Xt:t′ = Xt . . . Xt′−1. We restrict in the following to stationary

processes.

Definition 2. A proccess P is stationary if and only if

Pr(Xt:t+` = x`) = Pr(X0:` = x`)(2.1)

for all t ∈ Z, ` ∈ Z+, and all x` ∈ X`.

In such cases, to characterize the process we only need to consider a process’s length-` word

distributions Pr(X0:`), ` ∈ Z+. We also consider the infinite sequence following time t, −→X =

lim`→∞Xt:t+`. Informally, we refer to this as the future. In parallel, we may consider the infinite

sequence preceding time t as the past, ←−X = lim`→∞Xt−`:t. As before, we may refer to a specific

future −→x or a specific past ←−x using the lower case.
10



σ1 σ2� : 2
3

4 : 1
3

� : 1

Figure 2.1. A hidden Markov model (HMM) with two states, {σ1, σ2} and two
symbols {�,4}. It is unifilar.

A Markov process, or Markov chain, is one for which Pr(Xt|X−∞:t) = Pr(Xt|Xt−1). Con-

sequently, Markov processes are sometimes referred to as “memoryless”, since the probability

distribution over subsequent realizations depends only on the realization at time t. Functions over

Markov processes are called hidden Markov processes (HMP), and are discussed at length below.

2.2. Hidden Markov Models

In general, we prefer not to work with processes directly, as dealing with measures over bi-infinite

strings is cumbersome. For stochastic processes at the generative level and below (see ??) we may

instead use finite-state generative models called hidden Markov models (HMM).

Definition 3. A finite-state edge-labeled hidden Markov model (HMM) consists of:

(1) a finite set of states S = {σ1, ..., σN},

(2) a finite alphabet A of k symbols x ∈ A, and

(3) a set of N by N symbol-labeled transition matrices T (x), x ∈ A: T (x)
ij = Pr(σj , x|σi). The

corresponding overall state-to-state transitions are described by the row-stochastic matrix

T = ∑
x∈A T

(x).

The processes generated by HMMs are called hidden Markov processes (HMPs), so named for

their internal state sequence . . .St−1,St,St+1 . . . , which is Markov. The non-Markovian symbol

sequence . . . Xt−1, Xt, Xt+1 . . . is a function of the underlying state sequence. In general, our

assumption is that the state sequence is not observable, i.e., hidden, while the symbol sequence is

observable.

A given HMP has many possible generative HMMs. To see this, consider that states may be

duplicated with identical transitions without changing the statistics of the generative process. Any

valid generative HMM may be refered to as a presentation of the process. We now introduce a
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structural property of HMMs that has important consequences in characterizing process randomness

and internal state structure.

Definition 4. A unifilar HMM (uHMM) is an HMM such that for each state σi ∈ S and each

symbol x ∈ A there is at most one outgoing edge from state σi labeled with symbol x.

An important consequence of unifilarity is that a uHMM’s states are predictive in the sense

that each is a function of the prior emitted sequence—the past x−∞:t = . . . xt−2xt−1xt. Consider

an infinitely-long past that, in the present, has arrived at state σt. For uHMMs, it is not required

that this infinitely-long past arrive at a unique state, but it is the case that any state arrived at by

this past must have the same past-conditioned distribution of future sequences Pr(X∞:t|x−∞:t). We

call this deterministic relationship between the past and the future a prediction. In comparison, a

nonpredictive generative (nonunifilar) HMM may return a set of states with varying conditional

future distributions upon seeing this infinite past. All that is required for accurate generation is that,

if this were to be repeated many times, averaging over these conditional future distributions returns

the the unique conditional future distribution Pr(X∞:t|x−∞:t) given by the predictive uHMC state.

2.3. The ε-Machine

For a given hidden Markov process P, there exist infinitely many generative and predictive

presentations. We can see this by considering that if there exists one, it is always possible to split a

single state into two without changing the statistics of the generated strings. This frustrates our

ability to use HMM representations of HMPs as a gauge of complexity, since it is always possible

to construct a machine with additional states. However, there is a canonical presentation that is

unique: a process’ ε-machine, the minimal, optimally predictive model of a process. For stationary

HMPs the ε-machine will be itself an HMM [13], the states of which are a defined by an equivalence

class over pasts that lead to the same conditional future.

In other words, the causal states are the range of the ε-function

ε(←−x =←−X ) =
{←−x ′ ∣∣ Pr(−→X |←−X =←−x ) = Pr(−→X |←−X =←−x ′)

}
.(2.2)
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If ε(←−x ) = ε(←−x ′), both pasts ‘belong’ to, or induce, the same causal state. The class of causal states

is denoted by S, and the random variable S = σ.

The causal state dynamic is inherited from the shift map of the process. If ←−x induces the

causal state σi and ←−x ′ =←−x x induces the causal state σj we say that

Pr(σj , x|σi) = Pr ((τX)0 = X1 = x) .

Defining the ε-machine via the ε-function requires finding a partition over the space of pasts
←−
X . There is no prescription on the cardinality of S—it may be finite, it may be infinite, it may be

fractal, it may be continuous. However, if we have in hand a uHMM of the process, we may easily

find the ε-machine by enforcing a simple minimality condition.

Definition 5. An ε-machine is a uHMM with probabilistically distinct states: For each pair

of distinct states σi, σj ∈ S there exists a finite word w = x0:`−1 such that:

Pr(X0:` = w|S0 = σk) 6= Pr(X0:` = w|S0 = σj) .

A process’ ε-machine is its optimal, minimal presentation, in the sense that the set S is minimal

compared to all its other predictive presentations [13].

2.4. Some Information Theory

In order to meaningfully and effectively characterize stochastic processes and their ε-machines,

we must turn for a moment to Shannon’s information theory [1,55]. Information theory is a widely-

used foundational framework that provides tools to describe how stochastic processes generate,

store, and transmit information. We use information theory—as compared to more traditional

statistical methods—to study complex systems as it makes minimal assumptions as to the nature

of correlations between random variables and handles multi-way, nonlinear correlations that are

common in complex processes. Here, we introduce several information theoretic measures that will

be required in the following.
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The most basic measure of Shannon information theory is the Shannon entropy, which measures,

intuitively, the amount of information that one learns when observing (or, from the opposite

perspective, the amount of uncertainty one faces when predicting) a sample of a random variable.

The entropy H[X] of the random variable X is:

H[X] = −
∑
x∈A

Pr(X = x) log2 Pr(X = x) ,(2.3)

taking 0 log2 0 = 0. Entropy, when taken with base 2, is measured in bits of information.

We can probe the relationship between two jointly-distributed random variables, say, X, drawn

from A, and Y , drawn from B. The joint entropy H[X,Y ] is defined

H[X] = −
∑

x∈A,y∈B
Pr(X = x, Y = y) log2 Pr(X = x, Y = y) ,(2.4)

and is interpreted as the total amount of information learned when observingX and Y simultaneously.

Joint entropy may be extended to arbitrarily many random variables, in the obvious way. There is

also the conditional entropy, which gives the amount of information learned from observation of one

random variable given knowledge of another:

H[X|Y ] = H[X,Y ]−H[Y ] .(2.5)

There is a chain rule for multivariable conditional entropies:

H[X1, X2, . . . , XN ] =
N∑
i=1

H[Xi|X1, . . . , Xi−1] .

The fundamental measure of correlation between random variables is the mutual information.

It can be written in terms of Shannon entropies:

I[X;Y ] = H[X,Y ]−H[X|Y ]−H[Y |X] .(2.6)

As should be clear by inspection, the mutual information between two variables is symmetric. When

X and Y are independent, the mutual information between them is zero. As with entropy, we

may condition the mutual information on another random variable, giving the conditional mutual
14



Figure 2.2. A three-variable i-diagram for random variables X, Y and Z, showing
all possible information atoms, including conditional entropies, conditional mutual
informations, and multivariate mutual information.

information:

I[X;Y |Z] = H[X|Z] +H[Y |Z]−H[X,Y |Z] .(2.7)

The conditional mutual information is the amount of information shared by X and Y , given we know

a third Z. Note that X and Y can share mutual information, but be conditionally independent.

Moreover, conditioning on a third variable Z can either increase or decrease mutual information [55].

That is, the two variables can appear more or less dependent, given additional data.

An effective method of representation of information theoretic properties is the i-diagram, a

type of Venn diagram where the area contained within an atom represents its informational content.

Shared information is represented by overlap, and conditioning and mutual informations can be

naturally defined. A three variable example is given in Fig. 2.2, showing all possible information

atoms.
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2.5. Intrinsic Randomness

Now that we have in hand a toolset with which to analyze stochastic processes, we must

define the properties of interest. The first is the instrinic randomness: the amount of uncertainty

remaining in the next observable symbol X0, given complete knowledge of the infinite past. Taken

from the perspective of an observer, this is the average amount of new information learned from

every observation of a process. We call this the Shannon entropy rate [1] of a process.

Definition 6. A process’ entropy rate hµ is the asymptotic average entropy per symbol [43]:

hµ = lim
`→∞

H[X0:`]
`

,(2.8)

where H[X0:`] is the Shannon entropy of block X0:`:

H[X0:`] = −
∑

x0:`∈A`
Pr(x0:`) log2 Pr(x0:`) .(2.9)

We can also describe this quantity using the conditional entropy:

hµ = lim
`→∞

H[X0|X−`:0] .(2.10)

This version of hµ makes the conditional relationship to the past clear, and converges more

rapidly than Eq. (2.8). Still, working with block entropies is difficult, and requires calculation of

combinatorially-growing set of probabilities. Therefore, our preferred manner of calculating hµ is to

make use of an uHMM. Given a finite-state unifilar presentation Mu of a process P , we may directly

calculate the entropy rate from the transition matrices of the machine [1]:

hµ(P) = hµ(Mu)

= −
∑
σ∈S

Pr(σ)
∑
x∈A

T
(x)
σσ′ log2 T

(x)
σσ′ .(2.11)

Here, Pr(σ) is the internal Markov chain’s stationary state distribution, denoted π and determined

by T ’s left eigenvector normalized in probability: π = πT .

However, this equation is only applicable when a finite-state uHMM can be found for the

process. This is not always possible: Blackwell showed that for HMPs in general is no closed-form
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expression for the entropy rate [54]. For a process generated by a nonunifilar HMC M , applying

Eq. (2.11) to M typically overestimates the true entropy rate of the process hµ(P):

hµ(M) ≥ hµ(P) .

Overcoming this limitation is one of our central results.

2.6. Intrinsic Structure

It is common to conflate the intrinsic randomness of a process with its computational complexity,

but as discussed in Chapter 1, the two are not equivalent. We must consider not only the randomness

of a process but also its intrinsic structure. There are many measures of structural complexity, but

we will here use measurements of the ε-machine, arguing for its suitability as a complexity measure

due to its minimality, uniqueness and optimality. Depending on the specific need, we may describe

the ε-machine either in terms of the number of causal states |S| or the amount of historical Shannon

entropy they store—that is, the statistical complexity Cµ.

Definition 7. A process’ statistical complexity is the Shannon entropy stored in its ε-machine’s

causal states:

Cµ = H[Pr(S)]

=−
∑
σ∈S

πσ log2 πσ .(2.12)

A process’ ε-machine is its smallest uHMC presentation, in the sense that both |S| and Cµ are

uniquely minimized by a process’ ε-machine, compared to all other unifilar presentations. Due to

this, the ε-machine’s state entropy H[Pr(S)] is a unique measure of a process’ structural complexity.

A challenge arises similar to that encountered with determining a process’ entropy rate via its

nonunifilar HMC presentations: without a finite-state uHMM, there is no closed-form expression for

the generated process’ Cµ. As we will show, this case is vanishingly small—every finite-state uHMM

may be transformed into a nonunfilar HMM with a ε→ 0 magnitude perturbation of elements of

the transition matrices T (x). In contrast to the entropy rate, which may be at least estimated from
17



data using Eq. (2.10) or Eq. (2.8), this precludes nearly all processes from a consistent measure of

structural complexity.

In the following, we will solve this problem by introducing a method of finding the ε-machine

for any process that may be generated by a finite state HMM. This allows us to calculate the entropy

rate hµ, however, these ε-machines are in general infinite state, and we often will find Cµ → ∞.

Therefore, we develop a new measure of intrinsic structural complexity, the statistical complexity

dimension, which describes the rate at which Cµ diverges as memory resources are added to the

model.
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CHAPTER 3

The Mixed State Presentation: Building Predictive Models

The major mathematical conceit of this dissertation is the expression of the state space of

ε-machines as the attractors of a type of stochastic dynamical system known as iterated function

systems (IFSs). By doing so, we are able to make use of the full power of dynamical systems

theory to analyze the ε-machine. In particular, in Chapter 4 we make use of attractor sampling

techniques and ergodic theory to devise a method of calculating the entropy rate, and in Chapter 5

and Chapter 6 we devise new intrinsic complexity measures in this setting.

This chapter describes the relevant properties of our class of IFSs defined by HMMs, which

we call hidden Markov-driven iterated function systems (DIFSs). In particular, the uniqueness

and invariance of the DIFSs attractor is established, and identified as the states of the ε-machine

machine for the process generated by the DIFSs. A general algorithm for constructing ε-machines

from nonunifilar HMMs is given, with several specific examples.

3.1. Introducing Iterated Function Systems

To begin, we will consider iterated function systems in general. Let (∆N , d) be a compact

metric space with d(·, ·) a distance. This notation anticipates our later application, in which ∆N is

N -simplex of discrete-event probability distributions (see Section 3.2.1). However, the results here

are general.

Let f (x) : ∆N → ∆N for x = 1, . . . , k be a set of Lipschitz functions with:

d
(
f (x)(η), f (x)(ζ)

)
≤ τ (x)d(η, ζ) ,

for all η, ζ ∈ ∆N and where τ (x) is a constant. This notation is chosen to draw an explicit parallel

to the stochastic processes discussed in Section 2.2 and to avoid confusion with the lowercase Latin

characters used for realizations of stochastic processes. In particular, note that the superscript (x)
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(0, 1, 0)

(0, 0, 1) (1, 0, 0)

η

f�(η)

f4(η)

p�(η)

p4(η)

Figure 3.1. How a hidden Markov-driven iterated function system (DIFS)
generates a hidden Markov process: An initial state η—a distribution over three
states: (0, 0, 1), (0, 1, 0), and (1, 0, 0)—in the 2-simplex is associated with a
transition probability distribution over the alphabet A = {�,4}. If the emitted
symbol selected from this distribution is �, the next state is generated according to
the associated mapping function f (�)(η) and the probability distribution is updated
accordingly. The same steps are followed if the symbol is 4 using f (4)(η), resulting
in an emitted process P over symbols A.

here and elsewhere parallels that of the HMM symbol-labeled transition matrices T (x). The reasons

for this will soon become clear.

The Lipschitz constant τ (x) is the contractivity of map f (x). Let p(x) : ∆N → [0, 1] be continuous,

with p(x)(η) ≥ 0 and ∑k
x=1 p

(x)(η) = 1 for all η in M . The triplet {∆N , {p(x)}, {f (x)} : x ∈ A}

defines a place-dependent IFS.

A place-dependent IFS generates a stochastic process over η ∈ ∆N as shown in Fig. 3.1.

Given an initial position η0 ∈ ∆N , the probability distribution {p(x)(η0) : x = 1, . . . , k} is sampled.

According to the sample x, apply f (x) to map η0 to the next position η1 = f (x)(η0). Resample x

from the distribution p(x)(η1) and continue, generating η0, η1, η2, . . ..

If each map f (x) is a contraction—i.e., τ (x) < 1 for all η, ζ ∈ ∆N—it is well known that there

exists a unique nonempty compact set Λ ⊂ ∆N that is invariant under the IFS’s action:

Λ =
k⋂
x=1

f (x)(Λ) .

Λ is the IFS’s attractor.
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Consider the operator V : M(∆N )→M(∆N ) on the space of Borel measures on the N -simplex:

V µ(B) =
k∑
x=1

∫
(f (x))−1(B)

p(x)(η)dµ(η) .(3.1)

A Borel probability measure µ is said to be invariant or stationary if V µ = µ. It is attractive if for

any probability measure ν in M(∆N ):
∫
gd(V nν)→

∫
gµ ,

for all g in the space of bounded continuous functions on ∆N .

Let us recall here a key result concerning the existence of attractive, invariant measures for

place-dependent IFSs.

Theorem 3.1.1. [56, Thm. 2.1] Suppose there exists r < 1 and q > 0 such that:

∑
x∈A

p(x)(η)dq
(
f (x)(η), f (x)(ζ)

)
≤ rqdq (η, ζ) ,

for all η, ζ ∈ ∆N . Assume that the modulus of uniform continuity of each p(x) satisfies Dini’s

condition and that there exists a δ > 0 such that:

∑
x:d(f (x)(η),f (x)(ζ))≤rd(η,ζ)

p(x)(η)p(x)(ζ) ≤ δ2 ,(3.2)

for all η, ζ ∈ ∆N . Then there is an attractive, unique, invariant probability measure for the Markov

process generated by the place-dependent IFS.

In addition, under these same conditions Ref. [57] established an ergodic theorem for IFS orbits.

That is, for any η ∈ ∆N and g : ∆N → ∆N :

1
n+ 1

n∑
k=0

g(wxk ◦ · · · ◦ wx1η)→
∫
gdµ ,(3.3)

so that the statistics of any single finite sequence of mixed states η0, η1, . . . , ηN will approach the

attractor R and the measure µ as N →∞.
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3.2. The Mixed-State Presentation

We now return to stochastic processes and their HMM presentations. When discussing the

Shannon entropy rate in Section 2.5 we noted that nonunifilar HMC presentations lead to difficulties:

(i) the internal Markov-chain {S, T} entropy-rate overestimates the process’ entropy rate and (ii)

there is no closed-form entropy-rate expression. Furthermore, the states of nonunifilar HMCs are

nonpredictive, there is no (known) unique minimal nonunifilar presentation of a given process. This

precludes characterizing, in a unique and minimal way, a process’ structural complexity directly

from a nonunifilar presentation.

To develop the tools needed to resolve these problems, we introduce HMM mixed states and their

dynamic. To motivate our development, consider the problem of observer-process synchronization.

Assume that an observer has a knowledge of a finite HMC M generating a process P. The

observer cannot directly observe M ’s internal states, but wishes to know which internal state M

is in at any given time—to synchronize to the machine. Since the observer does have knowledge

of M ’s transition dynamic, they can improve on their initial guess (Pr(σ1),Pr(σ2), . . . ,Pr(σN )) by

monitoring the output data x0 x1 x2 . . . that M generates.

3.2.1. Mixed States. For a length-` word w generated by M let η(w) = Pr(S|w) be the

observer’s guess as to the process’ current state after observing w:

η(w) ≡ Pr(S`|X0:` = w,S0 ∼ π) ,(3.4)

where the initial guess Pr(S0|·) is π, M ’s stationary state distribution. When observing a N -state

machine, the vector 〈η(w)| lives in the (N-1)-simplex ∆N−1, the set such that:

{η ∈ RN : 〈η |1〉 = 1, 〈η |δi〉 ≥ 0, i = 1, . . . , N} ,

where 〈δi| =
(

0 0 . . . 1 . . . 0
)

and |1〉 =
(

1 1 . . . 1
)
. We use this notation to indicate

components of the belief distribution vector η in order to avoid confusion with temporal indexing.

When a mixed state appears in probability expressions, the notation refers to the random variable η,

not the row vector |η〉, and we drop the bra-ket notation. Bra-ket notation is used in vector-matrix

expressions.
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Figure 3.2. Determining the mixed-state presentation (MSP) of the 2-state
unifilar HMC shown in (A): The invariant state distribution π = (2/3, 1/3). It
becomes the first mixed state η0 used in (B) to calculate the next set of mixed
states. (C) The full set of mixed states seen from all allowed words. In this case, we
recover the unifilar HMC shown in (A) as the MSP’s recurrent states.
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The 0-simplex ∆0 is the single point |η〉 = (1), the 1-simplex ∆1 is the line segment [0, 1] from

|η〉 = (0, 1) to |η〉 = (1, 0), and so on.

The set of belief distributions η(w) that an HMC can visit defines its set R of mixed states:

R = {η(w) : w ∈ A+,Pr(w) > 0} .

Generically, the mixed-state set R for an N -state HMC is infinite, even for finite N [54].

3.2.2. Mixed-State Dynamic. The probability of transitioning from 〈η(w)| to 〈η(wx)| on

observing symbol x follows from Eq. (3.4) immediately:

Pr(η(wx)|η(w)) = Pr(x|S` ∼ η(w)) .

This defines the mixed-state transition dynamic W. Together the mixed states and their dynamic

define an HMC that is unifilar by construction. This is a process’ mixed-state presentation (MSP)

U(P) = {R,W}.

We defined a process’ U abstractly. The U typically has an uncountably infinite set of mixed

states, making it challenging to work with in the form laid out in Section 3.2.1. Usefully, however,

given any HMCM that generates the process, we can explicitly write down the dynamicW . Assume

we have an N + 1-state HMC presentation M with k symbols x ∈ A. The initial condition is the

invariant probability π over the states of M , so that 〈η0| = 〈π|. In the context of the mixed-state

dynamic, mixed-state subscripts denote time.

The probability of generating symbol x when in mixed state η is:

Pr(x|η) = 〈η|T (x) |1〉 ,(3.5)

where T (x) is M ’s symbol-labeled transition matrix associated with the symbol x.

From η0, we calculate the probability 〈η1,x| of seeing each x ∈ A. Upon seeing symbol x, the

current mixed state 〈ηt| is updated according to:

〈ηt+1,x| =
〈ηt|T (x)

〈ηt|T (x) |1〉
.(3.6)
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Figure 3.3. Determining the mixed-state presentation of the 2-state nonunifilar
HMC shown in (A). The invariant distribution π = (1/2, 1/2). It is the first mixed
state η0 used in (B) to calculate the next set of mixed states. (B) plots the mixed
states along the 1-simplex ∆1 = [0, 1]. In (C), we translated the points on the
simplex to the states of an infinite-state, unifilar HMC.
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Thus, given an HMC presentation we can restate Eq. (3.4) as:

〈η(w)| = 〈η0|T (w)

〈η0|T (w) |1〉

= 〈π|T (w)

〈π|T (w) |1〉
.

Equation (3.6) tells us that, by construction, the MSP is unifilar, since each possible output

symbol uniquely determines the next (mixed) state. Taken together, Eqs. (3.5) and (3.6) define the

mixed-state transition dynamic W as:

Pr(ηt+1, x|ηt) = Pr(x|ηt)

= 〈ηt|T (x) |1〉 ,

for all η ∈R, x ∈ A.

To find the MSP U = {R,W} for a given HMC M we apply mixed-state construction:

(1) Set U = {R = ∅,W = ∅}.
(2) Calculate M ’s invariant state distribution: π = πT .
(3) Take η0 to be 〈δπ| and add it to R.
(4) For each current mixed state ηt ∈R, use Eq. (3.5) to calculate Pr(x|ηt) for each x ∈ A.
(5) For ηt ∈R, use Eq. (3.6) to find the updated mixed state ηt+1,x for each x ∈ A.
(6) Add ηt’s transitions to W and each ηt+1,x to R, merging duplicate states.
(7) For each new ηt+1, repeat steps 4-6 until no new mixed states are produced.

Let us walk through these steps with a simple finite-state example. In Fig. 3.2(A) we have a

unifilar HMC, which happens to be an ε-machine. The invariant state distribution of the machine is

π = (2/3, 1/3), so in Fig. 3.2(B) this becomes our initial mixed state η0. Following steps 4 and 5

in the mixed-state construction, we calculate the probabilities of transition for each symbol in the

alphabet {4,�} and their resultant mixed states {η0,4, η0,�}. We then relabel these new mixed

states {η1, η2} and repeat. This process eventually results in Fig. 3.2(C), in which all possible

transitions and mixed states have been found.

In Fig. 3.2(C) the recurrent states of the MSP, {η2, η3}, match exactly with the states of the

original machine {σ0, σ1}. Therefore, the recurrent part of the U(M) is exactly the ε-machine.
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(a) α = 0.6 and
x = 0.025

(b) α = 0.6 and
x = 0.10

Pr(1, 0, 0)

Pr(0, 1, 0)

Pr(0, 0, 1)

(c) α = 0.6 and
x = 0.49

Figure 3.4. Figures (a), (b), and (c) each plot 105 mixed states of the
uncountably-infinite state MSP generated by the parametrized 3-state HMC defined
in Eq. (3.7) at various values of x and α. This HMC is capable of generating MSPs
with a variety of structures, depending on x and α. However, due to rotational
symmetry in the symbol-labeled transition matrices, the attractor is always radially
symmetric around the simplex center.

When starting with the ε-machine, trimming the transient states from the U(ε-machine) in this

way always returns the recurrent-state ε-machine, as in the above case. In general, if U(M) is

finite, we find the ε-machine by minimizing U(M) via merging duplicate states: repeat mixed-state

construction on U(M) and trim transient states once more.

Is the MSP always the same as the ε-machine? When beginning with a finite, unifilar HMC

M generating a process P, the MSP U(M) is a finite, optimally-predictive rival presentation to

P’s ε-machine. Trimming the transient states will always return the recurrent-state ε-machine,

as in the above case. The MSPs of unifilar presentations are interesting and contain additional

information beyond the unifilar presentations. For example, containing transient causal states, they

are employed in calculating many complexity measures that track convergence statistics [58].

However, here we focus on the mixed-state presentations of nonunifilar HMCs, which typically

have an infinite mixed-state set R. Figure 3.3 illustrates applying mixed-state construction to

a finite, nonunifilar HMC. This produces an infinite sequence of states mixed on the 1-simplex,

as depicted in Fig. 3.3(B). In this particular example, the MSP is clearly structured and R is

countably infinite, allowing us to better understand the underlying process P; compared, say, to
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the 2-state nonunifilar HMC in Fig. 3.3(A). This is, indeed, the ε-machine, as is clear from the fact

ηn are probabilistically distinct and predictive. From the causal states, the process’ structure—a

discrete-time renewal process—becomes manifest and the entropy rate may be directly calculated,

adapting Eq. (2.11), as an infinite sum over the states ηn as n→∞.

That said, MSPs of nonunifilar HMCs typically have an uncountably-infinite mixed-state set

R. Consider the following HMC with 3 symbols and 3 states:

T� =


αy βx βx

αx βy βx

αx βx βy

 , T4 =


βy αx βx

βx αy βx

βx αx βy

 , and

T ◦ =


βy βx αx

βx βy αx

βx βx αy

 ,(3.7)

with β = (1−α)/2 and y = 1− 2x. By inspection, we see that α takes on any value from 0 to 1 and

x may range from 0 to 1/2. Figure 3.4 shows three attractors from the this parameterized 3-state

HMC at different points in its parameter space. Our goal then is a set of constructive results for this

class of Us: for a given nonunifilar finite-state HMC, determine whether we are guaranteed to have

(i) a well-defined, unique, mixed-state set R, (ii) an invariant measure over µ(R), (iii) an ergodic

theorem, and (iv) a notion of minimality. With these established, we can use U as a candidate for a

process’ ε-machine.

3.3. The MSP as an IFS

With the mixed-state presentation introduced and the goals outlined, our intentions in reviewing

iterated function systems (IFSs) become explicit. The MSP exactly defines a place-dependent IFS,

where the mapping functions are the set of symbol-labeled mixed-state update functions of Eq. (3.6)

and the set of place-dependent probability functions are given by Eq. (3.5). We then have a mapping

function and associated probability function for each symbol x ∈ A that can be derived from the

symbol-labeled transition matrix T (x).
28



If these probability and mapping functions meet the conditions of Theorem 3.1.1, we identify

the attractor Λ as the set of mixed states R and the invariant measure µ as the invariant distribution

π of the potentially infinite-state U—the original HMC’s Blackwell measure. Since all Lipschitz

continuous functions are Dini continuous, the probability functions meet the conditions by inspection.

We now establish that the maps are contractions. For maps defined by nonnegative, aperiodic,

and irreducible matrices, we appeal to Birkhoff’s 1957 proof that a positive linear map preserving a

convex cone is a contraction under the Hilbert projection metric [59]. This result, which may be

extended to any nonnegative T (x) if there is an N ∈ N+ such that
(
T (x)

)N
is a positive matrix, is

summarized in Appendix C.

Although this covers a broad class of nonunifilar HMCs, we are not guaranteed irreducibility

and aperiodicity for symbol-labeled transition matrices. Indeed, several of the more interesting

examples encountered do not meet this standard. For example, consider the Simple Nonunifilar

Source (SNS), depicted in Fig. 3.3, defined by the symbol-labeled transition matrices:

T (4) =

1− p p

0 1− q

 and T (�) =

0 0

q 0

 .(3.8)

In this case both T (4) and T (�) are reducible. (A quick check for this property is to examine Fig. 3.3

(A) and ask if there is a length-n sequence consisting of only a single symbol that reaches every

state from every other state.) Nonetheless, the HMC has a countable set of mixed states R and an

invariant measure µ.

We can show this with the mapping functions:

f (4)(η) =
[ 〈η |δ1〉 (1− p)

1− (1− 〈η |δ1〉)q
,

〈η |δ1〉 p+ (1− 〈η |δ1〉)(1− q)
1 + (1− 〈η |δ1〉)q

]
and

f (�)(η) = [1, 0] .(3.9)

Recall here that 〈η |δ1〉 is simply the first component of η. From any initial state η0, other than

η0 = σ0 = [1, 0], the probability of seeing a � is positive. Once a � is emitted, the mixed state

is guaranteed to be η = σ0 = [1, 0]. When the mapping function is constant in this way and the
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contractivity is −∞, we call the symbol a synchronizing symbol. From σ0, the set of mixed states

is generated by repeated emissions of 4s, so that R =
{(
f (4)

)n
(σ0) : n = 0, . . . ,∞

}
. This is

visually depicted in Fig. 3.3 for the specific case of p = q = 1/2. For all p and q, the measure can

be determined analytically; see Ref. [60]. This analyticity is due to the HMC’s countable-state

structure, a consequence of the synchronizing symbol.

This example, including the uniqueness of the IFS attractor Λ, helps establish which HMC

class generates ergodic processes: those whose total transition matrix T = ∑
x T

(x) is nonnegative,

irreducible, and aperiodic. Consider an HMC in this class. Define for any word w = x1 . . . x` ∈ A+

the associated mapping function T (w) = T (x1) ◦ · · · ◦ T (x`). Consider word w in a process’ typical set

of realizations (see Appendix B), which approaches measure one as |w| → ∞. Due to ergodicity, it

must be the case that f (w) is either (i) a constant mapping—and, therefore, infinitely contracting—or

(ii) T (w) is irreducible.

As an example of case (i), any composition of the SNS functions Eq. (3.9) is always a constant

function, so long as there is at least one � in the word, the probability of which approaches one as

the word grows in length.

As an example of case (ii), imagine adding to the SNS in Fig. 3.3 (A) a transition on � from

σ0 to σ1. For this new machine, both symbol-labeled transition matrices are still reducible, but the

composite transition matrices for any word including both symbols will be irreducible. By Birkhoff’s

argument, the map associated with that word is contracting. There are only two sequences for

which this does not occur: w = �N and w′ = 4N . However, these sequences are measure zero as

N →∞. Appendix B discusses this argument further.

In short, we extend the result of Theorem 3.1.1 to any HMC with nonnegative substochastic

transition matrices, as long as T = ∑
x T

(x) is nonnegative, irreducible, and aperiodic, regardless of

the properties of the individual maps.

Before moving on, let us highlight the implications of this result. For any process P that may

be generated by a finite-state HMC, we now have a guarantee of a unique, attracting set of mixed

states R, with an invariant, attracting measure µ(R). Furthermore, we appeal to established IFS

results for an ergodic theorem over long words [57]. So, by introducing a check for minimality, as

discussed in Section 3.4, we may identify the MSP U(M) as the infinite-state ε-machine for the
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f (x)
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Figure 3.5. Commuting diagram for probability functions P = {p(x)}, mixed-state
mapping functions f (x), and proposed symbol-distribution mapping functions g(x).

process P generated by M . This gives a constructive way to generate the causal states of a broad

class of processes and determine their intrinsic randomness and complexity. As Fig. 3.4 makes clear,

Us produce highly structured, fractal-like causal-states sets.

3.4. The Mixed-State Presentation and the ε-Machine

The minimality of infinite-state mixed-state presentations U(M) is an open question at present.

Mixed-state presentations are not guaranteed to be minimal. In fact, it is possible to construct

MSPs with an uncountably-infinite number of states for a process that requires only one state to

optimally predict [61].

A proposed solution to this problem is a short and simple check on mergeablility of mixed

states, which here refers to any two distinct mixed states that have the same conditional probability

distribution over future strings; i.e., any two mixed states η0 and ζ0 for which:

Pr(X0:`|η0) = Pr(X0:`|ζ0) ,(3.10)

for all ` ∈ N+.

Although minimality does not impact the entropy-rate calculation, one benefit of the IFS

formalization of the MSP is the ability to directly check for duplicated states and therefore determine

if the MSP is nonminimal. We check this by considering, for an N + 1 state machine M with

alphabet A = {0, 1, . . . , k}, the dynamic not only over mixed states, but probability distributions
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over symbols. Let:

P (η) =
(
p(0)(η), . . . , p(k−1)(η)

)
(3.11)

and consider Fig. 3.5. For each mixed state η ∈ ∆N , Eq. (3.11) gives the corresponding probability

distribution ρ(η) ∈ ∆k over the symbols x ∈ A. Let M emit symbol x, then the dynamic from one

such probability distribution ρ ∈ ∆k to the next is given by:

g(x)(ρt) = P ◦ f (x) ◦ P−1(ρ)

= ρt+1,x .(3.12)

From this, we see that if Eq. (3.12) is invertible, g(x) : ∆k → ∆k is well defined and has the

same functional properties as f (x). In other words, in this case, it is not possible to have two distinct

mixed states η, ζ ∈ ∆N with the same probability distribution over symbols. And, the probability

distributions can only converge under the action of g(x) if the mixed states also converge under the

action of f (x).

3.5. Hidden Markov Driven Iterated Function Systems

With the properties of place dependent IFS defined by an HMM well-established, let us take a

moment to coin some terminology and summarize the mathematical object we have developed.

Definition 8. An N-dimensional hidden Markov-driven iterated function system (DIFS)(
A,V,R, {T (x)}, {p(x)}, {f (x)} : x ∈ A

)
consists of:

(1) a finite alphabet A of k symbols x ∈ A,

(2) a set V of N presentation states,

(3) a set of states R ⊂ ∆(N−1), over N -dimensional presentation-state distributions η ∈R,

(4) a finite set of N by N symbol-labeled substochastic matrices T (x), x ∈ A,

(5) a set of k symbol-labeled probability functions p(x) = 〈η|T (x)1〉, and

(6) a set of k symbol-labeled mapping functions f (x) = 〈η|T (x)1〉/p(x)(η).
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The set of substochastic matrices must sum to the nonnegative, row-stochastic matrix T =∑
x∈A T

(x)—the transition matrix for the presentation-state Markov chain. This ensures that∑
x∈A p

(x)(η) = 1 for all η ∈ ∆(N−1).

DIFS states are predictive in the sense that they are functions of the prior observables. Consider

an infinitely-long past that, in the present, has induced some state η. It is not guaranteed that this

infinitely-long past induce a unique state, but it is the case that any state induced by this past must

have the same conditional future distribution. Indeed, for task of prediction, knowing the previous

state is as good as knowing the infinite past: Pr(X0:`|R0 = η) = Pr(X0:`|X−∞:0) for all ` ∈ N+.

Therefore, the DIFS is a predictive model of the process P it generates. (This is in contrast to

it being merely a generative model.) Borrowing from the language of automata theory, we refer to

the set of states R plus its transition dynamic—Pr(xt|ηt) and Pr(ηt+1|ηt, xt)—as a state machine

or, simply machine that optimally predicts P. When we force each infinitely long past to induce a

unique state, we produce a canonical predictive model that is unique: a process’ ε-machine [30].

A process’ ε-machine is its optimally-predictive, minimal model, in the sense that the set R of

predictive states is minimal compared to all its other predictive models. By capturing a process’

structure and not merely being predictive, an ε-machine’s states are called causal states. Unless

otherwise noted, we assume that all DIFS discussed from this point are ε-machines.
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CHAPTER 4

Intrinsic Randomness, or the Shannon Entropy Rate

In his original study of the Shannon entropy rate, David Blackwell analyzed the entropy of

functions of finite-state Markov chains [54]. With a shift in notation, functions of Markov chains can

be identified as general hidden Markov processes. This is to say, both presentation classes generate

the same class of stochastic processes. The Shannon entropy rate problem for HMPs that can be

predicted with a finite state unifilar hidden Markov model was solved with Shannon’s entropy rate

expression Eq. (2.11). However, as Blackwell noted, there is no analogous closed-form expression for

the entropy rate of an HMP in general. Blackwell proposed an integral solution over a potentially

infinite set of features possessing a fractal measure. We show that this set may be identified as the

state set of the mixed state presentation introduced in Chapter 3 and that therefore, this set and its

associated measure is the attractor of the associated driven iterated function system. This allows us

to solve the Shannon entropy rate problem in for HMPs in general by sampling the attractor of

their associated DIFS.

4.1. Blackwell’s Solution

Blackwell’s main result, retaining his original notation, is transcribed here and adapted by us

to constructively solve the HMP entropy-rate problem.

Theorem 4.1.1. ( [54, Thm. 1].) Let {xn,−∞ < n < ∞} be a stationary ergodic Markov

process with states i = 1, . . . , I and transition matrix M = ‖m(i, j)‖. Let Φ be a function defined on

1, . . . , I with values a = 1, . . . , A and let yn = Φ(xn). The entropy of the {yn} process is given by:

H = −
∫ ∑

a

ra(w) log ra(w)dQ(w) ,(4.1)

where Q is a probability distribution on the Borel sets of the set W of vectors w = (w1, . . . , wI) with

wi ≥ 0, ∑iwi = 1, and ra(w) = ∑I
i=1

∑
j3Φ(j)=awim(i, j). The distribution Q is concentrated on
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the sets W1, . . . ,WA, where Wa consists of all w ∈W with wi = 0 for Φ(i) 6= a and satisfies:

Q(E) =
∑
a

∫
f−1
a E

ra(w)dQ(w) ,(4.2)

where fa mapsW intoWa, with the jth coordinate of fa(w) given by
∑
iwim(i, j)/ra(w) for Φ(j) = a.

We can identify the w vectors in Theorem 4.1.1 as exactly the mixed states of Section 3.2.

Furthermore, it is clear by inspection that ra(w) and fa(w) are the probability and mapping

functions of Eqs. (3.5) and (3.6), respectively, with a playing the role of our observed symbol x.

Therefore, Blackwell’s expression Eq. (4.1) for the HMP entropy rate, in effect, replaces the

average over a finite set S of unifilar states in Shannon’s entropy rate formula Eq. (2.11) with (i)

the mixed states R and (ii) an integral over the Blackwell measure µ. In our notation, we write

Blackwell’s entropy formula as:

hBµ = −
∫

R
dµ(η)

∑
x∈A

p(x)(η) log2 p
(x)(η) .(4.3)

Thus, as with Shannon’s original expression, this too uses unifilar states—now, though, states

from the mixed-state presentation U . This, in turn, maintains the finite-to-one internal (mixed-)

state sequence to observed-sequence mapping. Therefore, one can identify the mixed-state entropy

rate itself as the process’ entropy rate.

4.2. An Updated Solution

As noted in Section 3.1, the contractivity of our substochastic transition matrix mappings

guarantees ergodicity over the words generated by the mixed-state presentation [57]. With this

established in Section 3.3, we can replace Eq. (4.3)’s integral over R with a time average over a

mixed-state trajectory η0, η1, . . . determined by a long allowed word, using Eqs. (3.5) and (3.6).

This gives a new limit expression for the HMP entropy rate:

ĥµ
B = − lim

`→∞

1
`

∑̀
t=0

∑
x∈A

Pr(x|η`) log2 Pr(x|η`) ,(4.4)
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Figure 4.1. Entropy rate for 250, 000 parametrized HMPs generated according to
the definition in Eq. (3.7), over x ∈ [0.0, 0.5] and α ∈ [0.0, 1.0]. Examples of the
MSPs produced are plotted in Fig. 3.4. The entropy rate of each, as estimated by
Eq. (4.4), is plotted, showing the gradual change in entropy rate across the
parameter space.

where η` = η(w0:`) and w0:` is the first ` symbols of an arbitrarily long sequence w0:∞ generated

by the process. Note that w0:` will be a typical trajectory, if ` is sufficiently long. To remove

convergence-slowing contributions from transient mixed states, one can ignore some number of the

initial mixed states. The exact number of transient states that should be ignored is unknown in

general and discussed in Section 4.3. We can say that it depends on the initial mixed state η0, which

is generally taken to be 〈δπ|, and the diameter of the attractor.

Figure 4.1 plots the entropy rate for 250, 000 HMPs. The HMP definition is given in Eq. (3.7)

and parametrized by two variables, x and α. Three examples of the MSPs from this parameter

space displayed in Fig. 3.4. Despite the visual distinction of the MSPs, the entropy rate smoothly

varies across parameters and is often close to log2(3). This is partially due to the radial symmetry

of the mixed-state attractors. The connection between the MSP structure and information measures

will be more fully addressed in Chapter 5.
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4.3. Data Requirements

Although we developed our HMP entropy-rate expression in terms of IFSs, determining a

process’ entropy rate can be recast as Markov chain Monte Carlo (MCMC) estimation. In MCMC,

the mean of a function f(x) of interest over a desired probability distribution π(x) is estimated by

designing a Markov chain with a stationary distribution π. For HMPs the desired distribution is

the Blackwell measure µ, which is the stationary distribution µ over the MSP states R. Then, the

Markov chain is simply the transition dynamic W over R.

With this setting, we estimate the entropy rate ĥµ
B as the mean of the stochastic process

defined by taking the entropy H[Xη] over symbols emitted from state η for a sequence of mixed

states generated byW . In effect, we estimate the entropy rate as the mean of this stochastic process:

ĥµ
B = µH

= 〈H[Xη]〉µ .(4.5)

Mathematically, little has changed. The advantage, though, of this alternative description

is that it invokes the extensive body of results on MCMC estimation. In this, it is well known

that there are two fundamental sources of error in the estimation. First, there is that due to

initialization bias or undesired statistical trends introduced by the initial transient data produced

by the Markov chain before it reaches the desired stationary distribution. Second, there are errors

induced by autocorrelation in equilibrium. That is, the samples produced by the Markov chain are

correlated. And, the consequence is that statistical error cannot be estimated by 1/
√
N , as done for

N independent samples.

To address these two sources of error, we follow common MCMC practice, considering two

“time scales” that arise during estimation. Consider the autocorrelation of the stationary stochastic

process:

Cf (t) = 〈fsfs+t〉 − µ2
f ,
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where µf is f ’s mean. Also, consider the normalized autocorrelation, defined:

ρf (t) = Cf (t)
Cf (0) .

If the autocorrelation decays exponentially with time, we define the exponential autocorrelation

time:

τexp,f = lim
t→∞

sup 1
− log |ρf (t)|

and

τexp = sup
f
τexp,f .

So, τexp upper bounds the rate of convergence from an initial nonequilibrium distribution to the

equilibrium distribution.

For a given observable, we also define the integrated autocorrelation time τinit,f as:

τint,f = 1
2

∞∑
−∞

ρf (t) .(4.6)

This relates the correlated samples selected by the chain to the variance of independent samples for

the particular function f of interest. The variance of f(x)’s sample mean in MCMC is higher by a

factor of 2τint,f . In other words, the errors for a sample of length ` are of order
√
τint,f/N . Thus,

targeting 1% accuracy requires ≈ 104τint,f samples.

In practice, it is difficult to find τexp and τint for a generic Markov chain. There are two

options. The first is to use numerical approximations that estimate the autocorrelation function,

and therefore τ , from data. If we have the nonunifilar model in hand, it is a simple matter of

sweeping through increasingly long strings of generated data until we observe convergence of the

autocorrelation function.

4.4. Estimation Errors for Finite-State Autocorrelation

Alternatively, taking inspiration from previous treatments of nonunifilar models, we make a

finite-state approximation to the MSP by coarse-graining the simplex into boxes of length ε and
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employ a suitable method, such as Ulam’s, to approximate the transition operator. Using methods

previously discussed in Ref. [45], this allows calculating the autocorrelation function directly.

Coarse-graining the mixed-state simplex into a set C of boxes of width ε, we may construct

a finite-state approximation of the infinite-state MSP. It has been shown that given such an

approximation, for any given box c, the bound on the difference in the entropy rate over the symbol

distribution between the coarse-grained approximation and a mixed state within that box is bounded

by [60]:

∣∣H[X0|C = c]−H[X0|η ∈ f ]
∣∣ ≤ Hb

(√
Gε

2

)
,(4.7)

whereHb(·) is the binary entropy function. Our task here is to consider the error in the autocorrelation

in the sequence of mixed states since, if we can show that this is bounded, the error in the

autocorrelation of the branching entropy must also be bounded.

At time zero, the autocorrelation is equal to A(` = 0) = 〈X0X0〉, so for the finite-state

approximation, we have:

AC(` = 0) =
∑
i

πC(i)cici ,

where πC is the stationary distribution over the coarse-grained mixed states, πC(i) is the stationary

probability of cell i, and ci is the center of cell i. For the true process, we have:

A(` = 0) =
∫

R
dµ(η)ηη

=
∑
i

πC(i)
∫
η∈Ci

dµ(η|i)ηη ,

where dµ(η|i) is the distribution over mixed states within cell i. The maximum distance between

any two mixed states in a cell i is bounded by:

‖η − ζ‖1 ≤
√
Gε ,

the length of the longest diagonal in a hypercube of dimension |G|, by construction. Since the

gradient of the L2 norm is simply O‖x‖2 = x/‖x‖2, we have a bound on the difference in the
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autocorrelation at time zero:

|AC(` = 0)−A(` = 0)| ≤ N
√
|G|ε .

With increasing length we have:

AC(`) =
∑
i

πC(i)ci
∑
w∈A`

f (w)(ci)p(w)(ci)

and:

A(`) =
∫

R
dµ(η)η

∑
w∈A`

f (w)(η)p(w)(η)

=
∑
i

πC(i)
∫
η∈Ci

dµ(η|i)η
∑
w∈A`

f (w)(η)p(w)(η) .

Let η = ci + δ for some mixed state in cell i. Then we can write:

∣∣AC(`)−A(`)
∣∣ ≤ ∑

i

πC(i)

ci ∑
w∈A`

f (w)(ci)p(w)(ci)− (ci + δ)
∑
w∈A`

f (w)(ci + δ)p(w)(ci + δ)

 .

Now, note that:

p(w)(ci + δ) ≈ p(w)(ci) + Op(w)(ci) · δ

and:

f (w)(ci + δ) ≈ f (w)(ci) + eλ
x
δ

where λw is the leading Lyapunov exponent of the mapping function. Substituting this and

eliminating terms of order δ2 gives us:

∣∣AC(`)−A(`)
∣∣ ≤ ∑

i

πC(i)

ci ∑
w∈A`

(
f (w)(ci)Op(w) · δ + eλ

w
δp(w)(ci)

)
+ δ

∑
w∈A`

f (w)(ci)p(w)(ci)

 .

These terms identify three sources of approximation error: (i) that due to a difference in the

probability distribution over symbols, (ii) that in the mapping functions, and (iii) that from

approximating the points at the center of their cells.
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For the first, we note that total variation in the probability distribution over symbols is bounded

by the distance between the mixed states at which the distributions are computed. So, for any two

mixed states in the same cell, ‖Pr(X = x|η)− Pr(X = x|ζ)‖TV ≤
√
Gε. Then, the first term is the

error due to the difference in the expectation value of the next state, given that we have calculated

the probability distribution at ci + δ, rather than ci. Using Hölder’s inequality, for two distributions

over P (X) and Q(X), we may say:

E[f ]Q − E[f ]P =
∑
x

f(x)(P (x)−Q(x))

∑
x

f(x)(P (x)−Q(x)) ≤
∑
x

f(x)|P (x)−Q(x)|

∑
x

f(x)|P (x)−Q(x)| ≤ ‖f‖p‖P −Q‖q ,

where 1/p+ 1/q = 1. Setting q = 1:

E[f ]Q − E[f ]P ≤ ‖f‖∞‖P −Q‖TV .

So, after taking the product with the cell centers ci, we have that the first error is bounded by

N
√
Gε at all lengths.

For the second, we note that since the maps are contractions, λ < 0, and the distance between

fx(η) and fx(ζ), where η and ζ are in the same cell i, is bounded by
√
Gε. As the length of a word

w grows, λw → −∞ and the distance fw(η)− fw(ζ)→ 0. At large `, this term vanishes, at a rate

equal to the average maximal Lyapunov exponent of the IFS.

The final error is that in the autocorrelation in the cell approximation which is, likewise,

bounded by the cell size—this is the same error from A(0), viz. N
√
Gε.

And so, in combination with the bound on the entropy, we may say, loosely speaking, that

the error in the autocorrelation vanishes as ε→ 0. Therefore, to find τ and estimate the error in

Eq. (4.5) as a function of sample size, we take finer coarse-grained approximations until convergence

in the autocorrelation curve is observed, and then calculate τ directly.
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4.5. Computational Advantages and Disadvantages

This completes our development of the procedure to determine the HMP entropy rate. We now

consider the computational advantages and disadvantages of using the MSP and Eq. (4.4) to find

the entropy rate, in comparison to existing methods, as well as the practical issues of the resources

needed for accurate estimation.

One impetus driving our development is a recurring need for an entropy estimation method

that is both fast and general—one that applies to extensive surveys of HMPs that may have varying

structural elements and transition probabilities. This challenge is broadly encountered. In point

of fact, these structural tools and the entropy-rate method introduced here have already been

put to practical use in two prior works. One diagnosed the origin of randomness and structural

complexity in quantum measurement [52]. The other exactly determined the thermodynamic

functioning of Maxwellian information engines [53], when there had been no previous method for

this. Both applications relied critically on analyzing parametrized HMPs and required reliable and

fast calculation of entropy rates and other information measures across a variety of HMP topologies.

HMP Shannon entropy rate has been studied in terms of upper and lower bounds [55,62],

with exact expressions [1,63,64], and as the solution to an integral equation [54]. Naturally, exact

expressions are preferable where applicable and needed. Unfortunately, though, they are available

only for restricted subsets of HMP topologies, such as unifilar or countable HMPs.

A well-known result is that the upper and lower finite-length conditional entropy estimates [55]:

H(X0|X1, . . . , X`, σ`+1) ≤ hµ ≤ H(X0|X1, . . . , X`)

converge exponentially in word length ` to the entropy rate for path mergeable HMPs, a property

that is straightforwardly checked [62]. This being said, while testing for the path mergeability

condition is feasible, the algorithm to do so runs in polynomial time in the number of states and

symbols, making testing impractical for a large-scale survey of HMPs with many states and/or

symbols. Furthermore, while the conditional entropy estimates of hµ converge in exponentially

in `, calculating conditional entropies is nontrivial. This is particularly so when the exponential

convergence rate α is arbitrarily close to 0. Thus, for accuracy within a desired bound the required
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` may become arbitrarily large. Finally, while H(X`|X1, . . . , X`−1) may be calculated exactly for

all `, given knowledge of the HMP, at large ` this requires calculation of the full distribution over

|A|` `-length words. Needless to say, for applications involving many states, large alphabets, and/or

many HMPs, bounding the entropy rate in this way becomes computationally impractical.

The new method largely obviates these problems. When mixed-state construction returns a

countable-state HMP, we directly apply Shannon’s entropy rate formula Eq. (2.11) and find the

entropy rate exactly. When the MSP is uncountable we apply Eq. (4.4). It runs in O(N) where N

is the number of mixed states generated, with no direct dependence on number of HMP states or

alphabet size. Section 4.3 and Section 4.4 give a full discussion of the data-length requirements and

error of the mixed-state method, respectively.

The net result is that, being cognizant of the data requirements, entropy rate estimation is well

behaved, convergent, and accurate. One concludes that the most effective manner of calculating of

entropy rate for large-scale surveys will likely employ a combination of our methodology and the

other techniques just mentioned, with deployment of exact expressions where possible. Furthermore,

we note that the development of the MSP as the ε-machine, and the constructive method of

producing the causal state set R, is of interest beyond computational advantages in characterizing

the complexity of the underlying system beyond the entropy rate.
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CHAPTER 5

Intrinsic Structure, or the Statistical Complexity Dimension

We have now thoroughly explored how to use the mixed-state presentation to determine a

process’ intrinsic randomness. Now we must complement the measure of randomness with a measure

of structure. The naive approach of measuring the structure with statistical complexity Cµ introduces

a problem: the statistical complexity diverges for an HMC with an uncountably-infinite state set

R. In general, MSPs of HMCs are uncountably-infinite state, precluding distinguishing them via

Cµ. This being said, it is clear visually from figures like Fig. 3.4 and Fig. 5.1 that HMCs with

uncountably-infinite state spaces still have distinct structures. We wish to find a way to measure

and distinguish such structure. For this, we take inspiration from Shannon’s dimension rate [1] and

call on a familiar tool.

Fractal dimension measures the rate at which a chosen size metric of a set diverges with the

scale at which the set is observed [6,65,66,67,68]. Fractal dimension is also useful to probe the

“size” of objects when cardinality is not informative. For example, the mixed-state presentation,

generically, has an uncountable infinity of causal states. That observation is far too coarse, though,

to distinguish the clearly distinct mixed-state sets R in Fig. 5.1. Each is uncountably infinite,

but the R’s geometries differ. Determining their fractal and other dimensions will allow us to

distinguish them and allow us to introduce additional insights into the original process’ intrinsic

information processing.

5.1. Defining the Statistical Complexity Dimension

Consider the mixed-state set R on the simplex for an N -state HMC M that generates a process

P . We consider two types of dimension for R: the Minkowski-Bouligand or box-counting dimension,

often simply called the fractal dimension, and the information dimension.

To calculate the first, coarse-grain the N -simplex with evenly spaced subsimplex cells of side

length ε. Let F(ε) be the set of cells that encompass at least one mixed state. Then R’s box-counting
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Pr(1, 0, 0)

Pr(0, 1, 0)

Pr(0, 0, 1)

(a) Mixed state
attractor for 3-state
“alpha” machine.

Pr(1, 0, 0)

Pr(0, 1, 0)

Pr(0, 0, 1)

(b) Mixed state
attractor for 3-state
machine from
Eq. (3.7), with
α = 0.6 and x = 0.1.

Pr(1, 0, 0)

Pr(0, 1, 0)

Pr(0, 0, 1)

(c) Mixed state
attractor for 3-state
“beta” machine.

Figure 5.1. Simple HMCs generate MSPs with a wide variety of structures, many
fractal in nature. Each subplot displays 104 mixed states of a different,
highly-nonunifilar 3-state hidden Markov chain. The HMCs themselves are specified
in Appendix A.

dimension is:

d0(R) = − lim
ε→0

log |F(ε)|
log ε ,(5.1)

where |C| is the size of set C.

The information dimension tracks how the Blackwell measure µB(R) scales with ε. Let each

cell in F(ε) be a state and approximate the dynamic over U(M) by grouping all transitions to and

from states encompassed by the same cell. This results in a finite-state Markov chain that generates

an approximation of the original mixed-state process and has a stationary distribution µ(F(ε)).

Then µB(R)’s information dimension is:

d1(µB(R)) = lim
ε→0

Hµ[F(ε)]
log ε ,(5.2)

where Hµ[F(ε)] = −∑Ci∈F(ε) µ(Ci) logµ(Ci) is the Shannon entropy over the set F(ε) of cells that

cover attractor R with respect to µ.

These dimensions give two complementary resource-scaling laws for HMC-generated processes.

Rearranging Eq. (5.1), we see that the number of mixed states in our finite-state approximation to
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U(M) scales algebraically with R’s box-counting dimension:

|F(ε)| ∼ ε−d0(R) .(5.3)

In other words, for an uncountably infinite MSP, the exponential growth rate of mixed states is

d0(R).

Similarly, the entropy of the Blackwell measure scales with the information dimension. Rear-

ranging Eq. (5.2) shows that the state entropy of the finite-state approximation to U(M) scales

logarithmically with R’s information dimension with respect to the Blackwell measure:

Hµ[F ] ∼ d1(µB) · log ε .(5.4)

As ε→ 0, |F| and Hµ(F) diverge and d0 and d1 are the divergence rates, respectively. The remainder

focuses on d1 as applied to the ε-machine, for which it describes the rate of divergence of statistical

complexity Cµ.

We refer to the information dimension d1(µ) of the ε-machine the statistical complexity dimension

dµ. Applying d1 to the Blackwell measure µB(R) gives the rate of divergence of Cµ as one constructs

increasingly better finite-state approximations to the infinite-state ε-machine. In this way, dµ
describes the divergence of memory resources when attempting to optimally predict a process

that requires an uncountably-infinite number of predictive features. This is a unique, minimal

description of the process’ structural complexity. This solves the challenge posed in the introduction:

quantifying structure for a broad class of truly complex systems.

When a process may be optimally predicted with a finite number of predictive features, the

statistical complexity dimension vanishes. In this case, the more relevant complexity measure

is the original ε-machine statistical complexity Cµ, which is is finite. When a process requires

uncountably-infinite causal states, but may be generated with a minimal N -state (nonunifilar) HMC,

the statistical complexity is less than or equal to N − 1. This is the associated IFS’s embedding

dimension, since the mixed states lie in a space of dimension N − 1.

Unfortunately, directly calculating the information dimension using Eq. (5.2)—and therefore

calculating the statistical complexity dimension dµ—is nontrivial, as it requires estimating a fractal
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measure. Fortunately, to calculate the dµ of the mixed state attractor R, we can leverage the

associated generating dynamical system (see Section 3.3).

5.2. Dimension from Dynamical (In)Stabilities

We can link the information dimension of an MSP’s mixed state set R to the stability

properties of the associated IFS. This starts with determining the local time-average stability and

instability of orbits within an attractor via the spectrum of Lyapunov characteristic exponents

Γ = {λ1, . . . , λN : λi ≥ λi+1} [69,70]. Individual LCEs λi measure the average local growth or

decay rate of orbit perturbations. The net result is a list of quantities that indicate long-term orbit

instability (λi > 0) and orbit stability (λi < 0) in complementary directions. Usefully, their sum

gives the net state-space divergence—volume loss for dissipative systems. The sum of the positive

LCEs is the dynamical system’s entropy rate [6,69,71,72,73]—the net information generation.

To motivate our present use of the Lyapunov spectrum, it will help to develop a simple intuition

for how the LCEs relate to dimension. Both of our previously defined dimensional quantities—

Eq. (5.2) and Eq. (5.1)—depended on the growth rate of cells needed to cover the attractor as we

take the side length of the cells to zero. First, imagine the attractor of a two-dimensional map with

LCEs λ1 > 0 > λ2 and whose state space is covered with equally spaced squares of side length ε.

After iterating the map q times, for ε small enough, the local action of the map is approximately

linear. From the LCE definition, this means it takes the initial square cells to rectangles of average

length (eλ1q)ε and average width (eλ2q)ε. Now, consider covering the attractor with a new set of

squares of side length (eλ2q)ε. We can see by inspection that this requires roughly e(λ1/λ2)q squares

per rectangle. In this way, the Lyapunov exponents relate to the scalings measured by dimension

quantities [74].

Indeed, this relationship has resulted in the definition of a Lyapunov dimension dΓ in terms of

the spectrum Γ [75]:

dΓ =


k + Λ(k)
|λk+1|

, Λ(N) < 0

N , Λ(N) ≥ 0
,(5.5)
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Figure 5.2. Overlap problem on the 1-simplex ∆1: Two distinct IFSs are
considered, each with two mapping functions. The images of the mapping functions
over the entire simplex are depicted in red and blue. (A) Images of the mapping
functions f (0) and f (1) do not overlap—every mixed state ηt ∈R has a unique
pre-image. (B) Images of the mapping functions overlap (purple Overlapping
Region)—there exist η1, η2 ∈R such that f ′(0)(η1) = f

′(1)(η2) = η3. This case is an
overlapping IFS.

where we introduce the Lyapunov spectrum partial sum Λ(m) = ∑m
i=1 λi and k = 0, 1, 2, . . . , N is

the largest index for which Λ(k) > 0. If λ1 < 0, we take Λ(0) = 0 and dΓ = 0. Its name helps

distinguish the conditions under which the relationships between the various dimensions actually

hold. (There are many conditions and system classes that this summary necessarily leaves out.)

It has been shown that for any ergodic, invariant probability measure µ:

d1(µ) ≤ dΓ ,

with equality when µ is a Sinai-Bowen-Ruelle (SBR) measure [7]. Furthermore, it was conjectured

that for “typical dynamical systems”, the Lyapunov dimension dΓ equals the information dimension

d1 [75]. This remarkable relationship directly relates a system’s dynamics to the geometry and

natural measure of its attractor. Additionally, and usefully, Eq. (5.5) gives us a tractable method to

find the information dimension of an attractor generated by a dynamical system when the equality

holds and an upper bound when it does not.

5.3. Calculating Statistical Complexity Dimension

We now have in hand two important pieces. First, the definition of statistical complexity

dimension dµ as the information dimension of an ε-machine. Second, we have a bound on the
48



information dimension of an attractor, given knowledge of the generating system’s dynamics. To

complete our picture, we now address the final puzzle piece.

As Section 5.2 discussed, there is a direct relationship between the information dimension of

a chaotic attractor and the dynamics of the system to which the attractor belongs. Furthermore,

as discussed in Section 3.3, every HMC has an associated random dynamical system—the iterated

function system (IFS)—which has the HMC’s set of mixed states R as its unique attractor.

Combining these two facts allows us to exactly calculate dµ in many cases of interest.

An advantage of working with IFSs defined by HMCs is a clean division exhibited by their

Lyapunov spectrum. It has been shown that the entropy rate of the generated process is equivalent

to the largest Lyapunov exponent [76,77]; conceptually, this appends hµ to the Lyapunov spectrum

as λ0. Calculating hµ was the main topic of the prequel to the present work [48]. Furthermore, due

to the contractivity of the IFS mapping functions, all other Lyapunov exponents (λi, i = 1, 2, . . . , N)

will necessarily be negative. For a review of calculating the Lyapunov exponents for IFSs, see

Appendix F.

Therefore, the Lyapunov dimension of an IFS is:

d̃Γ =


k + Λ(k) + hµ

|λk+1|
, −Λ(N) > hµ

N , −Λ(N) ≤ hµ
,(5.6)

where k = 0, 1, 2, . . . , N is now the largest index for which −Λ(k) < hµ. In contrast to Eq. (5.5),

in this case Λ(m) < 0 for all m = 1, 2, . . . , N . We still take Λ(0) = 0, but the dimension does

not necessarily go to zero: d̃Γ > 0 when hµ > 0. Readers familiar with the Lyapunov dimension

should take care as this expression effectively re-indexes the traditional presentation of dΓ as given

in Eq. (5.5).

Under specific technical conditions to be discussed shortly, the IFS dΓ is exactly equal to the

information dimension of the IFS’s attractor and, therefore, is dµ [78]. In general, relaxing those

conditions, d̃Γ upper bounds the statistical complexity dimension:

d̃Γ ≥ dµ .(5.7)
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Assembling these pieces together determines the basic algorithm to calculate (or bound) the

statistical complexity dimension:

(1) For an N -state HMCM with |A| = k, write down the associated IFS with k symbol-labeled

mapping functions f (x) and probability functions p(x).
(2) Calculate the entropy rate hµ using the Blackwell limit (see [48]).
(3) Calculate the negative Lyapunov exponents {λ1, . . . , λN−1} (see Appendix F).
(4) Compute the Lyapunov dimension dΓ using Eq. (5.6).

As mentioned, in specific cases, the Lyapunov dimension is exactly equal to the statistical complexity

dimension, and our task is complete. However, there are major technical concerns with when we

have only the bound in Eq. (5.7) and with its tightness then.

5.4. The Overlap Problem

A subtle disadvantage of working with IFSs is a direct result of the stochastic nature of them

as random dynamical systems. We must consider the overlap problem, which concerns the ranges of

the symbol-labeled mapping functions f (x), illustrated in Fig. 5.2. Specifically, the problem means

that we must distinguish between IFSs that meet the open set condition [79,80] and those that do

not.

Definition 9. An iterated function system with mapping functions f (x) : ∆→ ∆ satisfies the

open set condition (OSC) if there exists an nonempty open set U ∈ ∆ such that for all x, x′ ∈ A:

f (x)(U) ∩ f (x′)(U) = ∅, x 6= x′ .

IFSs that meet the OSC are nonoverlapping IFSs.

When the images of the symbol-labeled mappings overlap the inequality in Eq. (5.7) is strict.

To briefly outline the consequences, for an overlapping IFS the entropy rate hµ does not accurately

capture state-space expansion. And, this causes the IFS dΓ (Eq. (5.6)) to overestimate the information

dimension. As a rule of thumb, the degree to which the mappings overlap determines the magnitude

of the bound’s error. The impact of overlaps is significant. It is explored both in Section 5.6, where
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we calculate the statistical complexity dimension for HMCs with and without overlap, as well as in

the sequel, which diagnoses the problem’s origins and provides an algorithmic solution.

For now, to give a workable approach, we simply introduce two extra steps to the dµ algorithm

from the previous section:

(5) Determine if the Open Set Condition is met using the mapping functions f (x).
(6) If the OSC is not met, estimate the degree of overlap to determine the closeness of the

bound on dµ.

5.5. Two-State Hidden Markov Models

Finally, we analyze two-state HMCs, for which Eq. (5.6) simplifies significantly. When there is

no overlap in the maps, we have exact results for dµ.

For two-state nonunifilar HMCs, the mixed-state set lives on the 1-simplex ∆1—the unit

interval from η = (0, 1) to η = (1, 0). Mixed states η ∈ R and the dynamic on them exist in a

one-dimensional space and, thus, there is a single negative Lyapunov exponent λ1 < 0.

In this case, the calculation of the negative Lyapunov exponent is particularly direct, since

the maps are all one-dimensional. The negative Lyapunov exponent for a one-dimensional map

ηn+1 = f(ηn) is:

λ(η0) = lim
N→∞

1
N

N−1∑
i=0

log
∣∣∣∣df(ηi)
dη

∣∣∣∣
for an orbit starting at η0. For an IFS with a set of of mapping functions {f (x)}, we find λ as the

weighted average of the Lyapunov exponents of each map:

λµ =
∫ ∑

x

p(x)(η) log
∣∣∣∣∣df (x)(η)

dη

∣∣∣∣∣ dµ ,
where µ is the IFS’s Blackwell measure. We can apply ergodicity to transform this into a summation

over time for ease of calculation.

If a two-state HMC has an MSP with an uncountable infinity of mixed states and its correspond-

ing IFS satisfies the OSC, there is a simple relationship between the entropy rate, the Lyapunov
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a = 0.01, x = 0.01 a = 0.01, x = 0.11 a = 0.01, x = 0.21 a = 0.01, x = 0.30 a = 0.01, x = 0.40 a = 0.01, x = 0.50

a = 0.21, x = 0.01 a = 0.21, x = 0.11 a = 0.21, x = 0.21 a = 0.21, x = 0.30 a = 0.21, x = 0.40 a = 0.21, x = 0.50

a = 0.40, x = 0.01 a = 0.40, x = 0.11 a = 0.40, x = 0.21 a = 0.40, x = 0.30 a = 0.40, x = 0.40 a = 0.40, x = 0.50

a = 0.60, x = 0.01 a = 0.60, x = 0.11 a = 0.60, x = 0.21 a = 0.60, x = 0.30 a = 0.60, x = 0.40 a = 0.60, x = 0.50

a = 0.79, x = 0.01 a = 0.79, x = 0.11 a = 0.79, x = 0.21 a = 0.79, x = 0.30 a = 0.79, x = 0.40 a = 0.79, x = 0.50

a = 0.99, x = 0.01 a = 0.99, x = 0.11 a = 0.99, x = 0.21 a = 0.99, x = 0.30 a = 0.99, x = 0.40 a = 0.99, x = 0.50

Figure 5.3. Mixed-state attractors generated by a 3-state HMC parametrized over
α ∈ [0, 1] and x ∈ [0, 0.5]. The HMC itself is given in Eq. (3.7). 105 mixed states are
plotted for each attractor, with the initial 5× 104 states thrown away as transients.
The ranges of the symbol-labeled maps are color shaded, revealing regions of their
image overlap on the attractor. Comparing to Eq. (3.7), the red, blue, and green
regions represent the images of the mapping functions defined by T�, T4, and T ◦,
respectively.
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exponent, and the statistical complexity dimension. This is given by:

dµ(µ) = −hµ
λµ

,(5.8)

recalling that hµ > 0, so that the dimension is always positive. Failing OSC, this ratio is an upper

bound on the dimension of the measure µ [81]. For a discussion of the intuition behind this formula,

see Appendix D.

5.6. Many-state Hidden Markov Models

Notably, the Lyapunov dimension Eq. (5.8) for more-than-two-state HMCs is easily shown to

be correct when the maps are similitudes and the probability functions are constant. The latter is

seen, for example, with the Sierpinski triangle, as discussed in Appendix E.

However, we are generally interested in multi-state HMCs that do not produce perfectly self-

similar fractals. Furthermore, we are often interested in considering physical systems described

by parametrized HMCs, such as those that arose in the two prequels on quantum measurement

processes and information engine functionality [52,53]. In such cases, an HMC determined by an

application may meet the OSC in some regions of parameter space and fail to do so in others. Let’s

consider an HMC that spans the breadth of these possible behaviors, from zero overlap to complete

overlap. This will demonstrate the range of applicability of our statistical complexity dimension

algorithm.

Consider the HMC with 3 symbols and 3 states defined in Eq. (3.7). Figure 5.3 shows how

the MSP attractors change across the (α, x) parameter space. Each black dot is a generated mixed

state, while the colored regions show the range of each symbol-labeled map.

For example, on one hand, in the top left corner with α = 0.01 and x = 0.01, we find an

attractor that fills the simplex, with moderate amounts of overlap. On the other, α = 0.79 and

x = 0.11 produces an attractor with no overlap, and clearly defined regions.

Moreover, for any α, choosing x = 1/3 leads the MSP attractor to collapse to a finite 3-state

HMC, since the symbol-labeled mapping functions become constant functions. In this case, there is

no overlap, as each symbol-labeled map takes on a different constant value.
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(a) Mixed-state attractor area estimated across α
and x. The area is minimized along lines of α = 1/3
and x = 1/3, where the attractor becomes point-like.

(b) Mixed-state attractor Lyapunov dimension does
not detect the collapse to zero dimension along
α = 1/3, which is due to overlaps.

(c) Percentage of attractor area in which there is
overlap.

(d) Overlap in the attractor area. Comparing with
(c), for much of this area, the overlap is very small.

Figure 5.4. Attractor area, overlap regions, and Lyapunov dimension of the
mixed-state attractors shown in Fig. 5.3, parametrized by α = [0, 1] and x = [0, 0.5].
The HMC itself is given in Section 5.6. See Appendix F and Appendix G for a
detailed discussion of the production of these plots.

However, when α = β = 1/3, all symbol-labeled mapping functions are identical. Therefore, the

attractor is the single fixed-point shared by all three maps—a single-state HMC. This is a case of

maximal possible overlap. Along both lines in parameter space the MSP collapses to a finite-state
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HMC, so dµ = 0, by definition. However, these different mechanisms of state-collapse are relevant in

calculation of dΓ via Eq. (5.6).

First, consider Fig. 5.4a, which illustrates the estimated area on the simplex taken up by

the attractor across parameter space. For a discussion of how attractor area was estimated, see

Appendix G. This figure matches the grid in Fig. 5.3: lower values of x produce larger attractors,

excepting the region near α = 1/3, where the area drops to zero.

Now, the area taken up by an attractor is not a good proxy for dimension—we may have very

small-in-size attractors with large dimension. Indeed, this is the case for most values of α near

1/3, where the attractors are very small but whose dµ → 2. However, we know from analyzing the

attractor grid that for HMCs lying exactly on this line, the attractor is instantaneously finite state.

And so, the statistical complexity dimension dµ must discontinuously drop to zero. However, this is

not accurately reflected by dΓ, as seen in Fig. 5.4b.

That said, dΓ clearly smoothly approaches zero as x → 1/3. Along the vertical line, dΓ is

correctly exactly zero. This is the other line in parameter space where the MSP is finite state and

dµ is analytically known to be zero. The disparity, in both correctness and continuity, is due to the

different mechanisms driving the collapse noted above.

As x → 1/3, the slopes of the symbol-labeled mapping functions approach zero. When

x = 1/3, the symbol-labeled mapping functions become constant values, as reflected in the Lyapunov

exponents and consequently in dΓ. The constant functions have negative Lyapunov exponents of

negative infinity, sending Eq. (5.6) to zero.

In contrast, along the α = 1/3 line, the contraction in the state space is a result of the maps

instantaneously sharing a fixed point. For α = 1/3± ε, the attractor is not finite. In this region of

parameter space, symbol-labeled maps are not infinitely contracting, so dΓ badly overestimates dµ
along the α = 1/3 line. This illustrates the importance of the OSC on the bound.

This poses the question, which regions in HMC parameter space exhibit overlap IFS maps?

Figure 5.4d depicts parameter space regions in terms of overlap or no overlap. Figure 5.4c shows this

as a percentage of the total attractor area. For a discussion of how overlap was determined, please

see Appendix G. Comparing the two, we see that there is a significant region over which overlap

does exist for x < 0.15 and a smaller region where x > 0.48. However, for much of that region the
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attractor’s overlap area is relatively small. As a rule of thumb, the gap between dΓ and dµ for the

mixed-state set is determined by the percentage of the attractor that is affected by overlap. If the

overlap region is relatively small, in comparison to the size of the attractor, dΓ may be very close to

dµ.

However, if the overlap is very large, dΓ may be a dramatic overestimation of dµ. This occurs

when α = 1/3 and x < 0.15. The statistical complexity dimension dµ vanishes, yet the Lyapunov

dimension saturates at dΓ = 2.0.

We also note that the mechanism driving the collapse of the MSP attractor at α = 1/3 is a

discontinuity in the parameter space, as compared to x = 1/3. This is because state space collapse

due to overlap requires the maps to be identical, and even minute differences in the symbol-labeled

transition matrices will produce an uncountably-infinite MSP, potentially with dµ = 2.0. This

encourages us to consider not just the statistical complexity dimension, but also the area of the

attractor and the nearby regions in parameter space for a clearer understanding of the underlying

HMC. In this, the tools developed here, by allowing (computationally-efficient) surveys of large

regions of parameter space, are particularly useful.
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CHAPTER 6

Introducing the Ambiguity Rate

The ε-machine performs all relevant aspects of scientific modeling—prediction, generation, and

pattern recognition. It captures a system’s generation, storage, and transmission of information.

We may, at various times, imagine it as distinct from the system, a predictor of its behavior, or

as representative of the system itself, generating data that is statistically indistinguishable from

observation. We may also consider the ε-machine as a memoryful channel, mapping pasts to futures.

Consider a channel interacting with a system via a time-series of discrete observations, at each time

step updating its configuration represent the current optimal prediction of the system. Then the

possible configurations of the channel are the causal states, and channel has Cµ bits of memory.

The student of information theory will recall that Shannon, in his analysis of information

transmission through channels, introduced two mechanisms: equivocation, in which the same input

may lead to distinct outputs, and ambiguity, in which two different inputs may lead to the same

output; see Fig. 6.1. When our channel is taken to be the ε-machine, the equivocation rate of the

channel is the entropy rate hµ of the underlying system—the rate at which the system generates

future information. This is guaranteed by the predictive optimality of the ε-machine—the only noise

in the channel is due to the intrinsic randomness of our complex system.

In this chapter, we introduce the parallel quantity, the ambiguity rate ha. The ambiguity rate

tracks the rate at which the system discards past information by introducing uncertainty over the

infinite past. Explicitly, if a process can be optimally modeled with a finite set of predictive features,

its ε-machine must forget information at the same rate at which the system generates it, so as to not

grow the size of the model over time: hµ = ha. However, this is atypical, as we have already shown.

In Chapter 5, accurate calculation of dµ was contingent on the DIFS meeting restrictive technical

conditions, outlined in Section 5.4. Introducing ambiguity rate ha reframes these constraints

information-theoretically, effectively lifting them. The result is a new method to accurately calculate
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(a) (b)

Figure 6.1. (a) Equivocation: Same input sequence leads to different outputs. (b)
Ambiguity: Two different inputs lead to same output. The strategy underlying
Shannon’s proof of his second coding theorem is to find channel inputs that are least
ambiguous given the channel’s distortion properties.

dµ for a broad class of complex processes. More abstractly, we propose ha as a new intrinsic

complexity measure of a stochastic process—the growth rate of the information stored in a process’

optimally predictive features. When hµ = ha, this growth rate vanishes and the associated

ε-machine’s internal causal-state process is stationary. However, when hµ > ha, the latter process is

nonstationary and any optimal predictor must accumulate new information over time to sustain

accurate predictions.

6.1. What is the Ambiguity Rate?

As discussed in Chapter 5, the overlap problem is a long-standing concern for iterated function

systems that arises from the overlap of the ranges of the symbol-labeled mapping functions f (x).

Figure 6.2 illustrates the issue. Specifically, to quantitatively count system orbits we must properly

monitor orbit divergence and convergence. This then requires distinguishing between iterated

function systems that meet the open set condition (OSC) and those that do not.

When the OSC is not met, the inequality in the dµ bound Eq. (5.7) becomes strict. This is a

consequence of using hµ as our measure of state space expansion in Eq. (5.6). The Shannon entropy

rate tracks the uncertainty in the next symbol x given our current causal state ηt, averaged over the

Blackwell measure. From a dynamical systems point of view, we identify this as the typical growth

rate of orbits (words) in symbol space.

When the OSC is met, the Shannon entropy rate also measures the typical growth rate of

orbits in the (N − 1)-simplex. Observing x, current state ηt transitions to the next state ηt+1 via

application of the mapping function ηt+1 = f (x)(ηt). Because the images of the map do not overlap,
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(a) (b)

Figure 6.2. Overlap problem on the 2-simplex ∆2: Two distinct DIFSs (given in
Appendix A) are considered, each with three mapping functions. Images of the
mapping functions over the entire simplex are depicted as regions in red, blue, and
green. (a) Images of the mapping functions f (4),f (�) and f (◦) do not
overlap—every possible state has a unique pre-image. (b) Images of the mapping
functions overlap: there exist η1, η2 ∈ ∆2 such that f ′(4)(η1) = f

′(�)(η2) = η3. This
case is an overlapping DIFS.

this is guaranteed to be a distinct new state—thus state sequences grow at the same rate as words

do. Then, we may use hµ to measure expansion of the state space.

However, when the OSC is not met, it is possible for two distinct states ηt, ζt ∈ ∆ to map to

the same next state on different symbols, by occupying the “overlapping region”, as depicted in

Fig. 5.2. In this case, ηt+1 = ζt+1 has no unique pre-image. This introduces ambiguity about the

past, given knowledge of the current state. As a consequence, using the Shannon entropy rate as a

proxy for the state expansion rate implies a more rapid expansion in state space than is actually

occurring. This indicates the need adjust our use of hµ when determining dµ.

We propose the ambiguity rate as the correction to d̃Γ’s overcounting of orbits. Since the

problem at hand is an overestimation in uncertainty in our state space, we must identify and quantify

mechanisms of state uncertainty reduction when the OSC is not met. Consider that when the OSC

is met, every state ηt has a unique pre-image ηt−1 that can only be reached via a single, specific
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Figure 6.3. Sources of ambiguity rate depicted in state machines: (A)
H[X0|R0,R1] > 0—Previous state R0 is mapped to the next state R1 by two
distinct symbols. This occurs when two symbols have identical mapping functions.
(B) I[X0;R0|R1] > 0—Two distinct previous states R0 map to the same next state
by distinct symbols, due to overlapping mapping functions. (C)
H[R0|X0,R1] > 0—Two distinct previous states R0 map to the same next state by
the same symbol. This occurs when a mapping function is noninvertible.

observed symbol. When the OSC is not met, for a subset of η ∈R there is uncertainty about the

previous state, the previous symbol, or both. Quantifying this ambiguity about the past is the goal

in constructing the ambiguity rate ha.

Intuitively, it would seem that generating uncertainty in reverse time is equivalent to reduction

of uncertainty in forward time. The following shows that this is the case and that the ambiguity

rate is the necessary correction to the DIFS dimension formula Eq. (5.6).

6.2. Sources of State Uncertainty Reduction

For ε-machines represented as DIFSs, there are three distinct mechanisms that contribute to

the ambiguity rate, as depicted in Fig. 6.3.

The first is identical mapping functions, depicted in Fig. 6.3 (a). When for x, x′ ∈ A, f (x)(η) =

f (x′)(η) for all η ∈ R, we say that x and x′ have identical mapping functions. In this case, the

distinction between x and x′ is not reflected in state sequences and produces ambiguity in the

symbol sequence. We quantify this as the Shannon entropy in our current symbol, conditioned on

the previous state and the next state: H[Xt|Rt,Rt+1].

The second is overlapping mapping functions, which motivated this investigation and already

have been defined. Their impact on the state machine is shown in Fig. 6.3 (b). In this case, two

distinct symbols x, x′ ∈ A map two distinct states η, ζ ∈R to the same next state. Although the
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previous state affects the probability distribution over the observed symbol, the next state “forgets”

that distinction. This is quantified by the mutual information shared by the current symbol and the

previous state, conditioned on the next state: I[Xt;Rt|Rt+1].

Finally, there is noninvertibility in the mapping functions. If a single mapping function maps

distinct states η, ζ ∈ R to the same next state, the pasts that led to η and ζ can no longer be

distinguished. Figure 6.3 (c) shows this in general. However, it may also be observed in f (�) from

Fig. 3.3, which maps every state to η0 = (1, 0). Numerically, the reduction via this mechanism is

measured by the Shannon entropy in the previous state, given our next state and current symbol:

H[Rt|Xt,Rt+1].

Combining these three sources of uncertainty reduction defines the ambiguity rate:

ha =H[Xt|Rt,Rt+1] + I[Xt;Rt|Rt+1]

+H[Rt|Xt,Rt+1]

=H[Xt,Rt|Rt+1] .(6.1)

This can be rewritten as a integral over R:

ha = −
∫
η∈R

dµB(η)
∑
x∈A,

ζ∈(f (x))−1(η)

Pr(x, ζ|η) log2 Pr(x, ζ|η).(6.2)

In this, we must be careful about the pre-images of η, due to the possibility of noninvertible mapping

functions. The probability distribution inside the summation is given by the relationship:

Pr(X0 = x,R0 = ζ|R1 = η) =

µB(R0 = ζ)
µB(R1 = η) × Pr(X0 = x|R0 = ζ) .(6.3)

Calculating this distribution requires calculating or estimating the Blackwell measure, which may

be nontrivial. Section 6.5 and Section 6.6 discuss this in greater depth.
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6.3. A Conjecture About the Kaplan-Yorke Conjecture

The information-theoretic decomposition of ambiguity rate facilitates combining ha and hµ.

Recall that for prediction, the states of a predictive model are equivalent to knowledge of the infinite

past. Due to this, the Shannon entropy rate may be written H[Xt|Rt]. Combining this with the

ambiguity rate gives:

hµ − ha = H[Xt|Rt]−H[Xt,Rt|Rt+1]

= H[Rt+1|Rt, Xt] +H[Rt+1]−H[Rt]

= ∆H[Rt] .

Moving to the third line called on the fact that the symbol and state transitions are defined by

functions. So, the difference between the Shannon entropy rate and the ambiguity rate gives the

rate of growth of our causal state set R.

Recall that the information dimension, as defined in Eq. (5.2), compares the average growth of

occupied cells F—taking into account the measure over those cells—as the cell size ε shrinks. To

adhere to the main development, here we will not walk through the heuristic for how a dimensional

quantity is determined from the Γ. Nonetheless, we will show how the relationship between d1,

hµ − ha, and Γ is intuitive for DIFSs in one dimension.

When the DIFS states lie in the 1-simplex, Γ consists of only one exponent λ1 < 0, which is

the weighted average of the Lyapunov exponents of each map:

λ1 =
∫ ∑

x

p(x)(η) log
∣∣∣∣∣df (x)(η)

dη

∣∣∣∣∣ dµ ,
where µ is the Blackwell measure.

Now, consider a line segment in ∆1 of length ε. Mapping this line forward k times by the DIFS

produces, averaging over several iterations of this action, 2(hµ−ha)k new lines of length εeλ1k < ε.

(Note that the use of base-two for Shannon entropy rather than base e follows convention; retained

here for familiarity. In numerical calculation of dµ, we recommend a consistent base be chosen for

hµ, ha, and the Γ.) The logarithmic ratio of the growth rate of lines (as averaged over the Blackwell
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measure) compared to the shrinking of these lines is the simple ratio:

dµ = −hµ − ha
λ1

.

This, of course, is exactly the definition of the information dimension Eq. (5.2) and is, assuming the

DIFS is an ε-machine, the statistical complexity dimension dµ.

For higher-dimensional DIFSs, we conjecture that the ambiguity rate is the adjustment to the

IFS Lyapunov dimension formula that gives the information dimension:

d̃µ =


k + Λ(k) + hµ − ha

|λk+1|
, −Λ(N) > hµ − ha

N , −Λ(N) ≤ hµ − ha
,(6.4)

where as in Eq. (5.6), Λ(m) is the Lyapunov spectrum partial sum Λ(m) = ∑m
i=1 λi and k =

0, 1, 2, . . . , N − 1 is the largest index for which −Λ(k) < hµ − ha.

6.4. Interpretations of the Ambiguity Rate

Up to this point, we motivated ambiguity rate as correcting over counting in the DIFS statistical

complexity dimension dµ. It is worth discussing the quantity in more depth.

On the one hand, note that when hµ − ha = 0, the causal-state process is stationary and

Cµ time-independent: ∆H[Rt] = 0. This occurs for finite-state DIFSs, as well as many with

countably-infinite states; see Section 6.5. When this occurs, applying Eq. (6.4) returns a vanishing

statistical complexity dimension dµ = 0, as expected.

On the other hand, when ambiguity rate vanishes, Cµ grows at the Shannon entropy rate:

∆H[Rt] = hµ. This occurs when there are no identical maps, no overlap, and no noninvertibility in

the mapping functions. In short, ha = 0 when the process is “perfectly self-similar” and every new

observed symbol produces a new, distinct state.

With this in mind, we can use the ambiguity rate, and specifically hµ − ha, to describe the

stationarity of the model’s internal state process. The state set is time independent. When ha > 0,

however, to optimally predict the process P requires a nonstationary model (temporally-growing

state set R), even though P is itself stationary. This is a consequence of modeling “out of class”.
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Figure 6.4. The entropy rate hµ, which in this case is equivalent to the ambiguity
rate ha, is plotted for the DIFS defined by Eq. (3.9) for p, q,∈ (0, 1).

That is, predicting a perfectly self-similar P requires differentiating every possible infinite past. This

is only possible with a DIFS by storing new states at the rate new pasts are being created. (Moving

to a more powerful model class by, say, imbuing our states with counters or stacks, may make it

possible to model P with a stationary model.)

This perspective naturally leads to another that probes the efficacy of the causal-state mapping.

Considering the space of all possible infinite pasts ←−X , the causal-state mapping fε(
←−
X ) � R is

defined such that:

fε(
←−
X =←−x ) = fε(

←−
X =

←−
x′ ) = ηi ,

if Pr(X0:`|
←−
X = ←−x ) = Pr(X0:`|

←−
X =

←−
x′ ) for all ` ∈ N+. When the process is perfectly self-similar,

the causal-state mapping is one-to-one and ha = 0. In this case, storing the causal states is no

better for prediction than simply tracking the space of all pasts. (Although the causal-state set

R is still informative in characterizing how we might approximate the process with a finite state

machine [60].) The number of pasts each state “contains” is stationary and given by 2ha = 1.

In general, for a stationary process P , the average number of pasts contained by a given causal

state grows at the rate 2ha . When the process has a stationary state set, the number of pasts each

state contains must necessarily grow at the rate new pasts are being generated, and so 2hµ = 2ha .
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Finally, let’s close with a short historical perspective. The development of dµ was partially

inspired by Shannon’s definition in the 1940s of dimension rate [1]:

λ = lim
δ→0

lim
ε→0

lim
T→∞

N(ε, δ, T )
T log ε ,

where N(ε, δ, T ) is the smallest number of elements that may be chosen such that all elements of a

trajectory ensemble generated over time T , apart from a set of measure δ, are within the distance ε

of at least one chosen trajectory. This is the minimal “number of dimensions” required to specify a

member of a trajectory (or message) ensemble. Unfortunately, Shannon devotes barely a paragraph

to the concept, leaving it largely unmotivated and uninterpreted.

Therefore, it appears the first modern discussion of a dimensional quantity of this nature for

stochastic processes motivated the development using resource theory [60], noting that the d1 of

the causal-state set Eq. (5.2) characterizes the distortion rate when coarse-graining an uncountably-

infinite state set. Starting from the dimensional quantity, the relationship to statistical complexity

was then forged.

In this light, developing ambiguity rate and calling out its easy mathematical connection to

∆H[Rt] flips this motivation. The quantity hµ − ha can be defined purely in terms of P and

has an intuitive relationship to the causal-state mapping. The dimensional quantity dµ naturally

falls out when we compare this rate of model-state growth to the dynamics of the causal states

in the mixed-state simplex. Therefore, we may motivate dµ not as only a resource-theoretic tool

for finitizing infinitely-complex state machines, but also as an intrinsic measurement of a process’

structural complexity.

We now consider two examples. The first is a parametrized discrete-time renewal process

that has a countably-infinite state space for all parameters. This allows us to explicitly write

down the Blackwell measure and calculate ambiguity rate exactly using Eq. (6.2). The second is a

parametrized machine with three maps, which has an uncountably-infinite state space for nearly all

parameters. Calculating the ambiguity rate in this case requires us to approximate the Blackwell

measure using Ulam’s method.
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Figure 6.5. One-dimensional attractor for DIFS given in Eq. (6.5) with x = 0.25
and horizontally varying α ∈ (0, 1). State set η ∈R plotted (red, blue green) on top
of the images of the mapping functions

{
f (4), f (�), f (◦)

}
applied to R. For

α ∈ (0.07, 0.78), there is overlap in the images of the maps.

6.5. Example: Discrete-Time Renewal Process

Recall the previously-discussed DIFS depicted in Fig. 3.3, which depicts the stages of producing

the MSP for the substochastic matrices given in Eq. (3.9) when where p = q = 1
2 . For the general

case where p, q ∈ (0, 1) are left unspecified, we have the probability function set:

p(4)(η) = 1− 〈η|δ2〉p ,

p(�)(η) = 〈η|δ2〉p ,

and the mapping function set:

f (4)(η) =
(〈η|δ1〉(1− q)

1− 〈η|δ2〉p
,
〈η|δ1〉q + 〈η|δ2〉(1− p)

1− 〈η|δ2〉p

)
,

f (�)(η) = (1, 0) .

Since R is countable, we may write down the state set R as a sequence:

ηn =
[ (p− q)(1− q)n
p(1− q)n − q(1− p)n ,

q(1− q)n − q(1− p)n
p(1− q)n − q(1− p)n

]
,
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where n is the number of 4s seen since the last � and p 6= q. This simple structure allows us to

give the Blackwell measure explicitly:

µB(n) = p(1− q)n − q(1− p)n
p− q

× pq

p+ q
,

where µB(n) is the asymptotic invariant measure over the state induced after seeing n 4s since the

last �.

With the Blackwell measure in hand, the entropy rate can be explicitly calculated as the infinite

sum:

hµ =
∞∑
n=1

µnH[Xn|Rn = ηn]

= −
∞∑
n=1

µn
(
p(4)(ηn) log2 p

(4)(ηn)

+ p(�)(ηn) log2 p
(�)(ηn)

)
.

Figure 6.4 plots hµ for p, q ∈ (0, 1). In calculating hµ, there is a contribution from every state except

the first—η0—since the first state transitions to the second with probability one and there is no

branching uncertainty. Every other state transitions on a coin flip of a determined bias between

(4,�), generating uncertainty with each transition.

In contrast to how hµ averages over all mixed states, ambiguity rate accumulates in only one

state—η0. From Fig. 3.3, we see that H[xn, ηn|ηn+1] = 0 for all n other than n = 0. That is, each

state ηn is only accessed via the prior state ηn−1, except for η0, which may be accessed from every

other state. So, ambiguity in the past can only be introduced by visiting η0. Since these transitions

only occur on a �, we must find the probability distribution Pr(X0 = �,R0 = ηn|R1 = η0).

Applying Eq. (6.2) and Eq. (6.3), we explicitly write down the ambiguity rate as:

ha = µ0

∞∑
n=1

(
µn
µ0
p(�)(ηn)

)
log2

(
µn
µ0
p(�)(ηn)

)
.

Both hµ and ha are infinite summations, but when calculating the ambiguity rate, the sum refers

to calculating a single Shannon entropy over the infinite, discrete distribution representing the

probability distribution over prior states when arriving in η0.
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Figure 6.6. Numerical calculation of entropies and dimension quantities for the
DIFS given in Eq. (6.5), α ∈ (0, 1), and x = 0.25: (Top) The entropy rate hµ, the
ambiguity rate ha, and hµ − ha. (Bottom) Comparison of hµλ1

to dµ = hµ−ha
λ1

. The
latter smoothly departs from the former and is approximately 1 for much of the
overlap region, except where it discontinuously jumps to zero at α = 1/3.

Since the state space does not grow—∆H[Rt] = 0—the entropy rate hµ = ha as n → ∞.

Therefore, dµ vanishes for all values of p and q. This will always be the case for finite-state DIFSs

and, in general, for those with countable state spaces.

6.6. Example: Ambiguity Rate in One Dimension

Now, let’s turn to the more general case, those DIFSs with uncountably-infinite state spaces.

For the moment we restrict to one-dimensional DIFSs, so that the states lie in the 1-simplex.

Consider a DIFS with the alphabet A = {4,�, ◦} and the associated substochastic matrices:

T4 =

αy βx

αx βy

 , T� =

βy βx

βx βy

 , and

T ◦ =

βy αx

βx αy

 ,(6.5)

with α = 1− 2β, α ∈ (0, 1) and x = 1− y, x ∈ (0, 1).
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Figure 6.5 depicts all of the DIFSs for the slice of the parameter space where x = 0.25.

The vertical axis is the 1-simplex and each vertical slice plots the state space R(α) at the ap-

propriate value of α, given on the horizontal axis. Additionally, the images of the functions{
f (4)(R), f (�)(R), f (◦)(R)

}
are shaded in red, blue, and green, respectively.

At α = 1/3, the mixed state set R contracts to a finite set, and hµ must equal to ha,

making dµ = 0. At this point in parameter space, the state set consists of only one state;

R(α = 1/3) = {(1/2, 1/2)}. At every other value of α, ha < hµ. There is overlap in the images of

the maps for, approximately, α ∈ (0.07, 0.78). In this regime, ha > 0.

To calculate the ambiguity rate and therefore the statistical complexity dimension dµ we use a

modified Ulam’s method to approximate the Blackwell measure and then approximate the integral

equation Eq. (6.2). This method is not the only way to find the ambiguity rate, but does have

several advantages, including speed and the ability to control the accuracy of our approximation.

This method is discussed in depth in Section 6.7.

The top plot in Fig. 6.6 gives the entropy rate, ambiguity rate, and hµ − ha for the DIFSs

pictured in Fig. 6.5. As α is increased, ha smoothly increases from zero as overlap begins to occur.

It approaches ≈ 0.6 around α = 1/3, but is discontinuously equal to hµ at this point. The reason

for this is an instantaneous equality in the fixed points of the mapping functions, causing the state

space to collapse. As α increases to 1, ha smoothly decreases back to zero. The roughness seen in

the plot is due to numerical precision.

For a large portion of the overlap region, dΓ saturates at 1.0. The bottom plot in Fig. 6.6

instead depicts hµ
λ1

to show how this quantity smoothly changes across parameter space, maxing out

at around 1.6. In comparison, dµ = hµ−ha
λ1

smoothly departs from the Lyapunov dimension when

overlap begins and instead hugs the underside of the dim = 1.0 line for much of the overlap region.

Again, at α = 1/3 there is the discontinuous drop to dµ = 0, followed by dµ smoothly rejoining with

the Lyapunov dimension as the overlap region ends.

Unsurprisingly, calculating the ambiguity rate in higher dimensions is more challenging. Al-

though, in principle, Ulam’s method still applies and we may in principle follow the algorithm laid

out in Section 6.7, higher-dimensional mapping functions introduce additional error sources in the
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Figure 6.7. DIFS for x = 0.25 and α = 0.5: (Top) Blackwell Measure µB
approximated by Ulam’s method with k = 400. The two overlapping regions are
overlaid and may be compared with Fig. 6.5. (Middle) Probability of each prior map
is plotted. In nonoverlapping regions, only one prior map is possible. In the
overlapping regions, there are complicated, fractal-like distributions over multiple
prior maps. (Bottom) Shannon entropy over the prior map: Nonzero only in the
overlapping regions.

approximation. Developing an algorithm to efficiently and accurately calculate the ambiguity rate

in higher dimensions is of great interest.

6.7. An Algorithm for the Numerical Approximation of Ambiguity Rate

To numerically approximate the ambiguity rate for a DIFSlying in the 1-simplex, we may use

Ulam’s method to approximate the Blackwell measure, then compute Eq. (6.2). Given a partition

{A1, . . . Ak} of the simplex, define:

P
(x)
ij = m(f (x)(Ai) ∩Aj)

m(f (x)(Ai))
× p(x)

(
Ai
)
,
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where m is the Lebesgue measure over ∆ and Ai is the center of a partition element. Let P = ∑
P (x)

and find the left eigenvalue p = pP . Then, the invariant-measure approximation is:

µn(A) =
∑
i

pi
m(A ∩Ai)
m(Ai)

.

For this example, let’s walk through estimating the ambiguity rate for one DIFS–setting x = 0.25

and α = 0.5. The partition {A1, . . . Ak} is created by dividing the 1-simplex into k boxes of equal

length. The approximated Blackwell measure µ̂B for the DIFS, using k = 400, is shown in the top

plot of Fig. 6.7. The overlay indicates the region (green) of the state space that exhibits overlap.

Compare the two regions depicted in Fig. 6.7 to the overlap shown in Fig. 6.5, for the vertical slice

at α = 0.5.

Note that the partition may be defined as desired. We have found that defining the partition

by calculating the set of fixed points of the mapping functions
{
px : f (x)(px) = px

}
. Then, as

many times as is desired, find all possible iterates of each fixed point, constructing a new set{
f (w)(px) : x ∈ A, w ∈ ⋃Nn=0An

}
, where N ∈ Z+. Removing duplicates and ordering the set gives a

list of endpoints for a partition of the 1-simplex. Increasing N produces increasingly fine partitions.

This method of defining partitions has advantages when calculating ha across parameter space as we

have in Section 6.6, since the position of the fixed point iterates in the simplex are smooth functions

of α.

Regardless, once the partition is selected and µ̂B is determined, we again use the partition. For

each cell Ai, we find the probability distribution over the maps that could have transitioned into Ai:

by applying Eq. (6.3) and assuming invertibility of the mapping functions:

Pr(X0 = x|R ∈ Ai) =
µ̂B

((
f (x)

)−1
(Ai)

)
µ̂B(Ai)

× px
((
f (x))−1 (Ai)

)
.

For our example DIFS, the probability of the previous map given current location in the simplex

is plotted in the middle figure of Fig. 6.7. For parts of the simplex outside the overlapping regions,

only one prior map is possible and it has probability one. Within the overlapping regions, the

distribution over the possible prior maps may be very complicated. The Shannon entropy over
71



the prior map distribution H [X0 = x|R ∈ Ai] is shown in the third plot of Fig. 6.7. Once these

entropies are calculated, the final step is to approximate the integral equation Eq. (6.2) with a

summation over cells in the partition:

ha =
∑
i

µ̂B(Ai)
∑
x∈A

H [X0 = x|R ∈ Ai] .

In our example, the ambiguity rate is found to be ha = 0.4499. Since the DIFS entropy rate is

hµ = 1.5596, this gives an adjusted state space expansion rate of hµ − ha = 1.1098. Calculating the

DIFS’s Γ and applying Eq. (6.4) results in a statistical complexity dimension of dµ = 0.9815.

The advantage of Ulam’s method is its relative ease and speed. Additionally, it is deterministic

given the partition. We may may increase the accuracy of our approximation simply by tuning our

partition, although increasingly fine partitions increase computation time. Additionally, when the

set becomes highly rarified, noisiness will be observed in the calculation of ha. This can be seenin

our example DIFS on either end of the overlap region, although it is worst when α ∈ (0.6, 0.78).

This may be understood when comparing Fig. 6.5 to Fig. 6.6— from α ∈ (0.6, 0.78) are bands of

high density in the overlapping region that increas in probability as the overlapping region itself is

shrinking. Calculating the ha accurately in this region requires increasingly fine partitioning. An

immediate improvement may be made by adapting the method to use adaptive partitioning as it

sweeps parameter space, taking into account the structure of the state set. The method may be

applied to any DIFS in the 1-simplex with overlaps.
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CHAPTER 7

Application: Measurement Induced Randomness and Structure in

Qubit Sources

We now will turn from our theoretical development to a specific application of our newly

developed tools. The first topic we tackle is the impact of measurement on apparent randomness

and structure: in particular, classical measurement of qubit sources.

7.1. Experimental Motivation

Temporal sequences of controlled quantum states are key to fundamental physics and its

engineering deployment. Quantum entanglement [82] between emitted qubits, such as photons [83],

is central to Bell probes [84] of inconsistencies between quantum mechanics and local hidden

variable theories [85]. Complementing their scientific role, entangled qubits are now recognized

as basic resources for quantum technologies—quantum key distribution [86], teleportation [87],

metrology [88], and computing [89]. The quest there is for qubit sources that allow on-demand

generation: at a certain time a source should emit one and only one pair of entangled photons.

Qubit sources should also be efficient: qubits emitted and collected with a high success rate. And,

individual qubits should have specified properties. In EPR experiments photons in emitted pairs

should be identical from trial to trial. And, in communication systems polarization states should

manipulable at the highest possible rates [90].

Much experimental effort has been invested to develop qubit sources that, for example, extract

entangled photons from trapped atoms [91, 92], spontaneous parametric down-conversion [93],

quantum dots [94], and related CQED systems [95]. To date, though, there is still no single-qubit

source that exactly meets the performance desiderata. The on-demand criterion has been particularly

vexing [96]. Addressing these challenges leads rather directly to a common question, one that touches

on both fundamental physics and quantum engineering: How to characterize the statistical and
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Figure 7.1. (Top) A general controlled qubit source (CQS) as a discrete-time
quantum dynamical system that generates a time series of qubits ρt−2ρt−1ρt . . ..
(Bottom) A cCQS generates a qubit process |0〉 〈0| , |+〉 〈+| . . .. Measuring each
qubit, an observer sees a classical stochastic process: (Top) . . . x1x2x3x4x5,
(Bottom) . . . 011100.

structural properties of qubit time series? The underlying challenge is that a systematic description

of quantum processes with memory in terms of experimental measurements has yet to be given [97].

Complementing this, techniques developed within quantum process tomography and process

reconstruction [98,99,100,101,102,103,104] achieve partial or total reconstruction of channels

and system evolution. This task is of particular importance with the advent of physically realizing

processing in multi-qubit systems; notably, some are now available as open cloud services [105,106].

This progress only heightens the need to fully characterize quantum process information and

statistics. In the domain of classical stochastic processes, these properties determine simulation

capabilities, memory requirements, and predictability, and they quantify a process’ randomness and

structure [17,30].

To address these challenges we concern ourselves with a source that generates a single qubit at a

time. We imagine that the on-demand source is used repeatedly, producing an arbitrarily-long time

series, which we call a qubit process. A simple example arises when monitoring sequential emissions

from a blinking quantum dot [107,108]. We refer to their generators as controlled qubit sources

(CQSs). We wish to determine how random and structured they appear to be to an experimentalist.

We can now state our main result: Even with a finite-state HMM control, generically a CQS

produces a measured qubit process whose minimal optimal predictor requires an infinite number of

causal states. 1 Prediction resources (Cµ) diverge; though at a quantifiable rate. We establish the

1Genericity here refers to any HMM that is ergodic, aperiodic, and nonnegative.
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result constructively, by determining hµ and exploring Cµ’s divergence for qubit processes and by

identifying the driving mechanism as measurement-induced nonunifilarity.

7.2. Quantum Formalism

We introduce qubit information sources observed through quantum measurement, as depicted

in Fig. 7.1. Noting that their outputs—what an experimentalist sees—are classical stochastic

processes, we note that the classical measures of complexity discussed at length in this dissertation

are appropriate to this kind of qubit process, and for identifying the mechanism in quantum

measurement that generates the observed complexity. We concern ourselves with qubit sources that

generate single qubits at a time, putting aside entangled pairs for now, and we ask the source to

determine which qubit property, out of a finite set, is generated at each time. We imagine that the

on-demand source is used repeatedly, producing an arbitrarily-long time series, which we call a qubit

process.

The quantum evolution of a qubit is typically considered to occur in the Hilbert space H2 which

contains the one-parameter (time) family of states ρ(t). While this representation is appropriate

for many problems, it does not accurately describe the time series of qubits that concern us. In

our time series, a different qubit is emitted at each time step t. The time parameter t is discrete

and labels the qubit state ρt emitted at time t. A different Hilbert space Ht
2 contains the state of

each distinct qubit—the state of the qubit emitted at time t belongs to the Hilbert space: ρt ∈ Ht
2.

The state of the entire bi-infinite time series lies in the Hilbert space is H = lim`→∞
⊗+`

t=−`H
t
2.

And, when considering a finite part of the time series of length `, the Hilbert space of interest is a

truncation of H denoted Ht:t+l = ⊗t+l−1
k=t Hk

2 .

In our setting, a classically controlled qubit source (cCQS) emits a qubit at each time step. The

cCQS also determines state ρt of each output qubit. The latter is taken to be a pure state and it

remains constant until measured. The qubit chain’s state then is . . . ρt−1 ⊗ ρt ⊗ ρt+1 ⊗ . . .. These

restrictions guarantee that there is no temporal entanglement and that one can apply a single-qubit

projective measurement E to each output qubit without affecting the states of the other qubits in

the time series.
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Figure 7.2. A controlled qubit source emits a discrete-time stochastic process of
qubits in pure states ρt. Applying measurement E to the qubit emitted at time t in
state ρt yields outcome xt. Measuring each qubit at each time step yields a classical
stochastic process.

Generating the qubits in a time series is governed by a cCQS that, without loss of generality,

we take to be an ε-machine for which the symbols emitted during state-to-state transitions consist

of qubit-states. This choice ensures that the source’s internal complexity used in generating the

qubit process can be quantified. Both the entropy rate hgµ and the statistical complexity Cgµ of the

controller can be exactly computed from the cCQS. We restrict the emitted qubits to be pure-state

density matrices; that is, ρ2 = ρ. This limits the type of correlations that can be present across

the qubit time series to classical correlations and leaves time series with temporal entanglement for

future exploration. Since each qubit ρt is in a pure state, the quantum state of the random variable

chain that forms the time series can be regarded as the tensor product of the individual qubits:

. . . ρt−2 ⊗ ρt−1 ⊗ ρt . . ..

The states of the qubits output by a cCQS form a stochastic process; two examples of the latter

are shown in Figs. 7.3 (a) and (b). The cCQS in (a) generates a qubit time series of orthogonal

pure states |0〉 〈0| and |1〉 〈1|. The cCQS in (b) generates a qubit time series of nonorthogonal pure

states |0〉 〈0| and |+〉 〈+|, where |+〉 = 1√
2(|0〉+ |1〉).

7.3. Measured Qubit Processes

The observer interacts with such processes by applying to each qubit a projective measurement

as depicted in Fig. 7.2, consisting of the set of orthonormal measurement operators {E0, E1} with

measurement basis E0 = |ψ0〉 〈ψ0| and E1 = |ψ1〉 〈ψ1| parametrized by the Bloch angles θ and φ via:
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|ψ0〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉 and(7.1a)

|ψ1〉 = sin θ2 |0〉 − e
iφ cos θ2 |1〉 .(7.1b)

The outcome of each measurement can then be labeled 0 or 1, respectively, resulting in a binary

classical stochastic process.

Knowledge of the controller and the measurement basis allows us to directly construct an HMM

that generates the measured qubit process itself. We call this the measured cCQS, it has the same

states and stationary distribution π as the original cCQS. Its labeled transition matrices {T (x)}

with x ∈ A are:

T (x) =
∑
ρj

Tρj Pr(x|ρj) ,(7.2)

where Pr(x|ρj) = tr(ExρjE†x) and the cCQS labeled transition matrices Tρj are defined in Sec.

2. A key step is that one can determine the HMM of the measured process by composing the

measurement operator with the the qubit controller HMM that governs the cCQS.

See the HMM in Fig. 7.3 (c). It generates the classical process resulting from measuring the

qubit process generated by Fig. 7.3 (b) with angles φ = 0 and θ = π/2. Note that the measured

cCQS is particularly convenient as we no longer have to simulate the original CQS to generate

qubit sequences and then apply measurement operators some, presumably large, number of times to

each qubit to produce a large ensemble of output sequences. That is, the measured cCQS directly

generates the classical output process.

7.4. Uncountable Predictive Features

This simple setup raises several natural questions about characterizing qubit processes generated

by CQSs. How random is the qubit process? How much memory does the source use to generate

the qubit series? Can we identify the internal control mechanism from the qubit time series alone?

One would hope that, since here we know the measured cCQS, as shown in Fig.7.3(c) for the

example there, and it generates the measured qubit process, we could apply Eqs. (2.12)-(2.11) to
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1Figure 7.3. (a) Three-state classically-controlled qubit source (cCQS) that
generates a process consisting of qubits in orthogonal states. (i) controller states
S = {A,B,C}; (ii) orthogonal qubit alphabet AQ = {ρ0 = |0〉 〈0| , ρ1 = |1〉 〈1|}; (iii)
labeled transition matrices Tρ0 and Tρ1 , whose state-transition probability
components (Tρk)ij can be read from the diagram; and (iv) stationary state
distribution π =

(
1/2 1/4 1/4

)
. If the controller is in state A it has equal

probabilities of staying in that state or transitioning to state B. If it transitions to
state B, then the system emits a qubit in pure state |0〉 〈0|. In the next time step
the machine must transition to state C and emits another |0〉 〈0| qubit. Then, in
state C it transitions back to state A, emitting either pure state |0〉 〈0| or |1〉 〈1| with
equal probability. As the cCQS runs, a time series of orthogonal qubits is generated.
(b) Nonorthogonal-qubit cCQS: Three-state HMM that outputs nonorthogonal pure
states |0〉 〈0| and |+〉 〈+|, where |+〉 = (|0〉+ |1〉)/

√
2. (c) HMM presentation for the

classical stochastic process resulting from measurement (θ = π/2) of the quantum
process generated by (b). (d) Mixed states for the stochastic process generated by
(c) in that HMM’s state distribution simplex. Each mixed state is a point of the
form (pA, pB, pC) with probabilities of being in state A, B, or C of (c). The color
scale shows the logarithm of the probability of the mixed states.

calculate our measures of randomness and memory directly from that model. Unfortunately, a

problem arises. The measured cCQS is not an ε-machine since the generated measurement sequences

are not in one-to-one correspondence with the internal state sequences. This is the problem of

measured-cCQS nonunifilarity and it stymies any attempt to directly calculate the randomness

and memory of the measured quantum process. In fact, and this is the first part of our result,

nonunifilarity is generic to measured cCQSs, since randomly sampled HMMs are nonunifilar.

Though Fig. 7.3(c)’s HMM generates the observed qubit process, we cannot use it to directly

determine even the most basic process properties. Fortunately, this measured cCQS can be converted

to an ε-machine by calculating the cCQS’s MSP, as discussed in Chapter 3.
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Measurement-induced nonunifilarity results in the number of causal states diverging. That

is, despite the controller having only a finite number of states and the controlling cCQS being

unifilar, measurement means that predicting the observed process requires an uncountable number

of causal states. In turn, to calculate the entropy rate hµ we must make use of the tools developed

in Chapter 4. To characterize the structural complexity of the measured process, we calculate the

statistical complexity dimension.

Figure 7.4. Measurement-induced randomness and structure: (Top) Mixed state
sets when measuring the qubit process of Fig. 7.3(b) as a function of measurement
angle θ ∈ [0, π]. (Bottom) Entropy rate ĥBµ (blue curve) as a function of angle.
Horizontal line (red) is the entropy rate of the (unmeasured) qubit sequences:
hgµ = 3/4 bit per output qubit. (Insets) Mixed states three measurement angles: (a)
θa = 0.628 (purple), (b) θb = 1.634 (orange), and (c) θc = 2.701 (green). The
measured process entropy rates hµ and statistical complexity dimensions dµ given
there. Both mixed states and complexity measures computed with ` = 106 iterates.
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7.5. Measurement Dependence

Equations (7.1) and (7.2) indicate that the choice of measurement basis alters the observed

process. This, in turn, implies that the process entropy rate and statistical complexity dimension

also depend on measurement. To explore this with an example, we calculate the dependence of the

above complexity measures as a function of measurement angle θ, with fixed φ for Fig. 7.3(b)’s

cCQS, determining the measured cCQS at each measurement setting.

Figure 7.4 (top) shows the results. The cCQS is measured in 500 different bases, holding

φ = 0 fixed and varying θ ∈ [0, π] uniformly. For each measured cCQS the MSP is computed and

the resulting series of mixed-state sets is plotted. Figure 7.4 (bottom) plots ĥBµ (θ) and highlights

three particular measurement angles {θa, θb, θc}, showing the unique attractor found in latter’s

mixed-state simplices. MSP entropy rate and the statistical complexity dimension are estimated

using Eqs. (4.4) and (5.6), respectively.

Common characteristics are apparent, such as a smooth behavior of hµ(θ) with well-defined

maxima and minima and the systematic change in the MSP structure as a function of θ which

is consistent with the quoted dimensions dµ. Angles θ = 0 and θ = π give particularly simple

behaviors with finite statistical complexity and dµ = 0, in accord with the countable MSPs there.

The measured machines at these two values of θ are identical, aside from a symbol swap—all 0’s

become 1’s and vice versa. They both have Cµ = 0.6813 bits.

Figure 7.4 (top) exhibits a case of interest at θ = π/4. The mixed states converge to a single

point: a single-state machine that represents a biased coin. This occurs since the underlying cCQS

has a binary quantum alphabet AQ = {ρ0, ρ+} and the measurement basis corresponding to φ = 0

and θ = π
4 with basis vectors |ψ0〉 and |ψ1〉 is such that Pr(0|ρ0) = Pr(0|ρ+) and Pr(1|ρ0) = Pr(1|ρ+).

This basis is equidistant from both quantum states in AQ. Therefore, applying the measurement

to one state or the other yields the same probability distribution over outcomes. One loses all

information about the underlying structure and the measured cCQS generates an independent

identically distributed process.

To compare the randomness and organization of the underlying generator process, the horizontal

line in the ĥBµ (θ) plot gives the entropy rate of the (unmeasured) qubit process: hgµ = 3/4 bit per
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output qubit. Its statistical complexity is Cgµ = H[π] = 1.5 bits. The differences between these

constant values and those of the measured cCQS values makes it clear that quantum measurement

can both add or remove randomness and structure. A measurement close to θ = π
4 , on the one hand,

rarely distinguishes between the measured quantum states (|0〉 〈0| or |+〉 〈+|) and has a greater

number of measured 0s, making the measured process less random than the generating process. On

the other hand, a measurement close to θ = 3π/4 results in a more even distribution of measurement

outcomes, introducing randomness to the measured process.

7.6. Implications and Future Directions

That randomness and complexity arise when observing qubit processes can be too facilely

appreciated. Indeed, quantum measurement often comes steeped in mystery. We dispelled some of

that mystery by showing that (i) an infinite number of predictive features are required to describe

measured qubit time series and (ii) measurement can both introduce and subtract information and

correlation. These characters of measurement greatly complicate learning about the informational

and dynamical organization of quantum systems. However, at least now, we can appreciate more

fully what the task is, what mechanism drives it (nonunifilarity), and why it is challenging.

Unexpectedly, analyzing the quantum physics necessitated novel theory and efficient algorithms

for quantifying the randomness and complexity of ergodic, stationary processes generated by

nonunifilar hidden Markov models. Mathematically, these gave a constructive answer to the

longstanding information-theoretic problem of characterizing functions of Markov chains—a problem

that until now had only been formally, not constructively, solved [54].

Solving the problem of measurement-induced complexity is a first step to fully describing

quantum systems in terms of measurements. The results shed light on the fundamental ways in

which the measurement act influences the observed complexity of quantum systems. With the

newly-introduced tools, on the one hand, the next steps to reduce observed complexity easily

come to mind: using POVMs, implementing multi-qubit measurements, and developing adaptive

measurement schemes. On the other hand, introducing quantum controllers will bring results that

bear directly on contemporary experimental systems, such as single-photon sources.
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The developments here complement recent progress on representing classical processes via

quantum channels, which showed that quantum representations can be markedly smaller than

classical [109, 110, 111] and that classical and quantum physics are at odds when it comes to

measures of organization [112,113]. In a similar, complementary way, we hope that our results aid

in developing a systematic description of memoryful quantum processes built on experimentally

accessible quantities [97].

Future directions are best appreciated in light of the work’s intentions. Though ostensibly

about the complexity of quantum dynamics, the development here actually served three purposes.

First, most directly it answered questions about measured quantum-state time series, demonstrating

that measurement renders them more or less random and more or less structured than the internal

controller dynamics. It identified the nonunifilarity mechanism that gives rise to those behaviors.

Second, it announced innovations from dynamical systems and ergodic theory and introduced

algorithms for processes generated by general HMMs. Specifically, it showed how to employ

mixed state presentations to define entropy rate and statistical complexity dimension for processes

admitting nonunifilar presentations. Third, it introduced a relatively simple setting that forms the

basis for analyzing a family of increasingly more sophisticated and physically-realistic qubit-process

generators.

The contributions immediately suggest several relatively straightforward pathways to future

explorations—explorations that will have even broader impact. The first relates back to the task

of reconstructing the hidden qubit controller from the observed process. Clearly, the results on

randomness and structure say this is a challenging problem. A second avenue is to employ the

full analytic power afforded by spectral decompositions arising from the meromorphic functional

calculus [114]. Likely, this will be necessary for quantally-controlled CQSs. These tools were simply

not engaged here. Nor, despite noting that statistical complexity is a memory resource, we did not

engage resource theory fully. This is a third avenue for further exploration. A fourth is to explore

the novel correlations and structure in temporally entangled qubit processes. For example, can the

internal controller remember enough of its past and operate on it so that the generated qubit time

series is entangled?
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In addition, there is a need to shift the setting towards more physical realism and experimental

relevance. The first task along these lines, just alluded to, would extend the current setting to

quantally controlled qubit sources (qCQSs)—a fully quantum mechanical qubit generator—and to

the quantum communication channel setting in which qubits are input, quantally processed, then

output. Advances here will more directly impact information processing and computing performed

by quantum dynamical systems. A second extension is to address qubit source timing issues, moving

away from the admittedly simple use of discrete time here. Fortunately, the cCQS model can easily

be extended to discrete-event continuous-time hidden semi-Markov models [115]. This immediately

will give measures of randomness and structure, paralleling the development here. Finally, the

projective measurements used here should be replaced with positive-operator valued measurements

(POVM). Results on continuous-time, quantum-generated process measured via POVMs will have

broad applications. And, these results will naturally complement recent progress on representing

classical processes via quantum channels, which showed that quantum representations can be

markedly smaller than classical [109,110,111] and that classical and quantum physics are at odds

when it comes to measures of organization [112].,

83



CHAPTER 8

Application: Functional Thermodynamics of Maxwellian Ratchets

In 1867, James Clerk Maxwell introduced a thought experiment designed to challenge the

Second Law of Thermodynamics [116,117]; what Lord Kelvin later came to call “Maxwell’s Demon”.

Exploiting the fact that the Second Law holds only on average—i.e., the thermodynamic entropy 〈S〉

cannot decrease over repeated transformations—the experiment conjured an imaginary, intelligent

being capable of detecting and then harvesting negative entropy fluctuations to do work. The

paradox that Maxwell put forward is that by using its “intelligence” this being apparently violates

the Second Law of Thermodynamics. Maxwell’s challenge was the first indication that the Second

Law must take into account information processing.

The puzzle’s solution came from recognizing that the “very observant” and “neat-fingered”

Demon must manipulate memory to perform its detection and control task and, critically, that

such information processing comes at a cost [118, 119]. To operate, the Demon’s intelligence

has thermodynamic consequences. This is summarized by Landauer’s Principle: “any logically

irreversible manipulation of information ... must be accompanied by a corresponding entropy

increase in non-information-bearing degrees of freedom of the information-processing apparatus

or its environment” [120]. This recasts the Demon as a type of engine—an information engine

that uses correlations in an information reservoir to leverage thermodynamic fluctuations in a

heat reservoir to do useful work.This class of information engines—Maxwellian demons and their

generalized ratchets—has been subject to extensive study [121,122,123,124]. However, previous

determinations of their thermodynamic functionality were stymied by the difficulty of accurately

calculating the entropic change in what Landauer identified as the system’s “information-bearing

degrees of freedom”.
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8.1. Motivation

Consider a Maxwellian ratchet designed to read an infinite input tape, perform a computation

and thermodynamic transformation, and write to an infinite output tape, as depicted in Fig. 8.1.

The relevant entropic change then is quantified by the difference in the Kolmogorov-Sinai entropies

of the inputs to the ratchet (hµ) and of the outputs to the information reservoir (h′µ) [122].

However, this calculation ranges from very difficult to intractable when the processes generating the

input and output information have temporal correlations. And, more troubling, this problem is

generic—when driving a ratchet with uncorrelated input, even simple finite-state memoryful ratchets

produce output processes with temporal correlations. Fundamental progress was halted since

determining thermodynamic functionality in the most general case—temporally correlated input

driving a memoryful ratchet—was intractable. Attempts to circumvent these problems either heavily

restricted thermodynamic-controller architecture [122], invoked approximations that misclassified

thermodynamic functioning, or flatly violated the Second Law [121]. It appears that—and this is

one practical consequence of the results reported in the following—a number of recent analyses of

information-engine efficiency and functioning must be revisited and corrected. Our contribution is

that the latter is now possible.

Re-examining a well-known information ratchet, we apply newly discovered techniques to

accurately measure the Kolmogorov-Sinai-Shannon entropy of temporally correlated processes in

general [48, 51]. We show that, via the Information Processing Second Law [122], this allows

accurate determination of the functional thermodynamics of arbitrary finite-state ratchets. The

net result is a shift in perspective. To guarantee that the output information could be studied

analytically, previous successful efforts designed ratchet structure—the states and transitions—in

accord with a given input’s correlational structure [123]. One consequence is that follow-on efforts

adopted a fixed input-output-centric view of information engines. Here, following the example of

the earliest discussions of information ratchets [121], the new methods shift the focus back to the

engine itself, setting its design and then exploring all possible input-dependent thermodynamic

functionalities.
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Figure 8.1. Information engine as a finite-state ratchet (controller) connected to a
thermal reservoir, a work reservoir, and an information reservoir (depicted as tape
whose storage cells may be read or written).

8.2. Information Engines

The information engines of interest consist of a finite-state stochastic controller or ratchet

that interacts with a thermal reservoir, a work reservoir, and an information reservoir. These are

connected as shown in Fig. 8.1 and are embedded in a thermal environment at constant temperature

T . The information reservoir takes the form of an input tape, which stores a binary-symbol string.

Its state is described by the random variable X0:∞ = X0X1 . . . . We restrict to binary input and

output alphabets, so that each XN realizes an element xn ∈ X = {0, 1}. The ratchet operates in

continuous time; the controller state at time t = Nτ is represented by the random variable RN ,

which realizes an element r ∈ R—the ratchet’s discrete, finite state space.

At each step, XN couples to the ratchet controller for an interaction of duration τ . During this

time, thermal fluctuations continuously drive transitions in the coupled state space R×X of the

ratchet and the current tape symbol. After the interaction interval, the ratchet is in a potentially

different state RN+1, and the symbol XN has been transduced into an output symbol X ′N = x′N ∈ X ,

which is written to the tape. The strings of possible output symbols are expressed by the random

variable X ′0:∞ = X ′0X
′
1 . . . . The tape moves forward, and the next input symbol XN+1 begins its

86



interaction with the ratchet, which now starts in state RN+1. The joint transitions between states

of the ratchet and symbol have energetic consequences, capturing energy flows between the thermal

and work reservoirs.

8.2.1. Energetics. These information engines are autonomous and transitions in the coupled

ratchet-symbol system are driven by fluctuations in the thermal reservoir. Recently, Ref. [123]

introduced a general formalism for determining the energetics of such information engines. Under

detailed balance, transitions over the joint ratchet-symbol state space R× X are described by a

Markov chain M , where every transition with positive probability—denoted:

MrN⊗xN→rN+1⊗x′N =

Pr(RN+1 = rN+1, X
′
N = x′N |RN = rN , XN = xN )

—must have a reverse transition with positive probability. Energy changes associated with an

internal-state transition are then determined by the forward-reverse transition probability ratio:

∆ErN⊗xN→rN+1⊗x′N = kBT ln
MrN+1⊗x′N→rN⊗xN
MrN⊗xN→rN+1⊗x′N

.

Assuming that all energy exchanges with the heat reservoir occur during the ratchet-symbol

interaction interval τ and that all energy exchanges with the work reservoir occur between interaction

intervals, the average asymptotic work is:

〈W 〉 =
∑

r,r′∈R,x,x′∈X
πr⊗xMr⊗x→r′⊗x′∆Er⊗x→r′⊗x′ ,(8.1)

where πr⊗x is the asymptotic distribution over the joint state of the ratchet-symbol system at the

beginning of an interaction interval.

8.2.2. Structure. To discuss the computational structure of information engines, we first cast

the input and output strings in terms of the hidden Markov Models (HMMs) that read and generate

them. This representation allows us to consider the internal states S of the input machine as well

as the internal states S ′ of the output machine. The latter are the joint states of the input process

and the ratchet: S ′ = S ×R.
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When the string of inputs or outputs can be generated by an HMM with only a single internal

state, they are memoryless, since they can store no information from the past. The random variables

generated by the associated HMM are independent and identically distributed (IID). When there is

more than a single state, in contrast, the associated process is memoryful and the random variables

generated may be correlated in time.

Similarly, we cast the ratchet controller as a transducer that maps from input sequences to

distributions over output sequences.

Definition 10. A finite-state edge-labeled transducer consists of:

(1) A finite set of states R = {R1, ..., RN ′},

(2) A finite input alphabet A of k symbols x ∈ A,

(3) A finite output alphabet A′ of k′ symbols x′ ∈ A′, and,

(4) A set of N ′ by N ′ input-output symbol-labeled transition matrices T (x,x′), x, x′ ∈ A×A′:

T
(x,x′)
ij = Pr(rj , x′|ri, x) .

The transducer formulation allows us to calculate the output HMM in terms of the ratchet and

the input machine. The exact method is given in Appendix H.0.1. As with the input machine, a

ratchet is memoryless when it possesses only one internal state, and memoryful otherwise. A key

feature of a ratchet we focus on here is its ability to alter temporal correlations by altering the

structure of an input process. If memoryless (IID) input is fed to a memoryful ratchet, generally

the output will be memoryful, since this guarantees the state space dimension of the output

|R′| = |S × R| > 1. Figure 8.2 graphically illustrates the composition of various input process

HMMs with the ratchet transducer we analyze in detail shortly.

8.2.3. Informatics. Following Landauer, extensions of the Second Law of Thermodynamics

were proposed to bound the thermodynamic costs of information processing by an information

engine. Reference [121] employed a bound that compares the Shannon entropy of single input and

single output symbols. Comparing the single-symbol Shannon entropy in the input string to that in

the output string quantifies how the ratchet transforms randomness in individual symbols. This
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For each transition:
Pr(X ′ = x′, X = x) = f(X,X ′, RN , RN+1, ε, τ) > 0

Figure 8.2. Composing the Mandal-Jarzynski transducer (center, yellow) with a
Hidden Markov model (left, green) that describes the process on the input tape
gives an output Hidden Markov model (right, purple) that describes the process
written to the output tape. Hidden Markov model (HMM) states R are depicted as
circles. Directed edges between states represent possible transitions on an observed
symbol x. HMM edges are labeled x : Pr(x′, RN+1|RN ). Transducers are similarly
depicted by circular states with directed edges representing possible transitions on
pairs of input symbols x and output symbols x′. Transducer transitions are specified
by x′|x : Pr(x′, RN+1|x′, RN ). Left: Input HMMs discussed here, from top to
bottom, a (memoryless) Biased Coin, a Period-2 Process, and the Golden Mean
Process. Center: The Mandal-Jarzynski ratchet, represented by a three-state
transducer. Probabilities are not shown on edge labels for conciseness, but are
nonzero for all transitions and all combinations of input-output symbol pairs (x, x′).
Each edge probability is a function—denoted by f(. . .)—of the previous state RN ,
the next state RN+1, the input symbol x, and the output symbol x′. See Section 8.3
and Appendix H for further details. Right: Output HMMs resulting in the
Mandal-Jarzynski transducer composed with the corresponding input HMM on left.
Edge labels are left off for conciseness, but each transition label represents a positive
probability of observing a 0 or a 1.

difference captures one aspect of the ratchet’s information processing. And, it was proposed as an

upper bound on the asymptotic work done 〈W 〉 [121]:

〈W 〉
?
≤ kBT∆H1 ,(8.2)
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where H1 = H1[X] is the entropy averaged over the input tape, H ′1 = H1[X ′] is that averaged over

the output, and ∆H1 = H ′1 − H1 is the change in the single-symbol statistics produced by the

ratchet’s operation.

Note, however, that while the H1s track the average information in any single instance of Xt or

X ′t, they do not account for temporal correlations within input sequences or within output sequences.

This is key, as information ratchets change more than the statistical bias in an individual symbol,

they alter temporal correlations in symbol strings. These altered correlations are related to the fact

that the ratchet induces structural change in its input. Recognizing this is central to bounding the

thermodynamic costs of the ratchet’s interaction with the input process.

To properly address how correlations affect costs, we calculate a process’ intrinsic randomness

when all temporal correlations are taken into account, as measured by the entropy rate. Replacing

the input and output Shannon entropies in Eq. (8.2) with their respective entropy rates gives the

Information Processing Second Law (IPSL) [122]:

〈W 〉 ≤ kBT ln 2
(
h′µ − hµ

)
= kBT ln 2 ∆hµ .(8.3)

The IPSL correctly expresses the upper bound on work, taking into account the presence of temporal

correlations in input and output processes.

The importance of Eq. (8.3) cannot be overstated—any memoryful ratchet induces temporal

correlations in its output, even for IID input. Using Eq. (8.2) in the IID case typically overestimates

the upper limit on available work. Additionally, temporal correlations in the input are known to be

a thermodynamic resource [125]. In fact, suitably designed ratchets can leverage such correlations

to do useful work. Thus, inappropriately applying Eq. (8.2) in these cases often results in claims

that violate the Second Law. In short, Eq. (8.3) generalizes Landauer’s Principle to the case of

correlated environments and finite-state memoryful ratchets that generate correlated outputs.

8.3. Mandal-Jarzynski Information Ratchet

To demonstrate the descriptive power of these dynamical-thermodynamic results on ratchet

entropy, dimension, mixed states, and function, we apply them to a well-known example of an
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Figure 8.3. Ratchet schematic adapted from the original Mandal-Jarzynski
construction, showing how the dial-and-symbol system is transformed into a three
state transducer upon selection of a specific ε—determining the energetics of flipping
a bit—and τ—determining the interaction interval. For almost every value of ε and
τ every state-to-state transition has positive probability for every input-output
symbol combination.

information engine—the Mandal-Jarzynski ratchet [121]; hereafter, the ratchet. Although initially

introduced without reference to HMMs and transducers, following Ref. [122] we translate the

original ratchet model into the HMM-transducer formalism outlined in Section 8.2. In these terms,

the ratchet is a three-state, fully connected transducer, designed such that only transitions that flip

an incoming symbol are energetically consequential. As shown in Fig. 8.3, the ratchet’s transition

probabilities are parametrized by τ ∈ [0,∞)—duration of the ratchet-symbol interaction—and

ε ∈ (−1, 1)—the weight parameter. For a given τ and ε, the Mandal-Jarzynski model may be written

down as the three-state transducer shown in the center column Fig. 8.2. See Appendix H for how to

calculate the transducer, which is based on a rate-transition matrix, and Appendix H.0.1 for the

input-transducer composition method.

Any interaction interval in which the input symbol is unchanged is energetically neutral.

Therefore, we measure the average work done by the ratchet by the difference in the probability of

reading a 1 on the input tape cell versus writing a 1 to the output tape cell:

〈W 〉 = kBT w
(
Pr(X ′ = 1)− Pr(X = 1)

)
,

where w(ε) = log((1 + ε)/(1− ε)). When ε = 0, flips 0→ 1 and 1→ 0 are both energetically neutral;

when ε→ ±1, symbol flips in one direction are energetically favored over the other. Note that this

computation finds the same asymptotic work production as Eq. (8.1); recalled here as an aid to

intuition.
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Figure 8.4. Mixed states η ∈R of the output process generated by the ratchet
driven with memoryless input (Fig. 8.2(top row)) plotted on the 2-simplex. Corner
labels give the mixed-state probability distributions
η = (Pr(A⊗D),Pr(B ⊗D),Pr(C ⊗D)). Mixed states at the simplex corners
correspond to the HMM being in exactly one of its states, while mixed states in the
simplex interior are mixtures of the possible HMM states, with η =

(
1
3 ,

1
3 ,

1
3

)
lying

at the center. (Left) Ratchet parameters δ = −0.98, ε = 0.01, and τ = 0.1. (Right)
Ratchet parameters δ = 0.4, ε = 0.5, and τ = 0.1. Insets: Detail of the mixed-state
sets, magnified by amount indicated in upper right corner.

Reference [121]’s initial analysis considered only uncorrelated inputs. That is, their input

machine was a single-state HMM—a biased coin, with bias δ = Pr(0) − Pr(1). To identify their

ratchet’s thermodynamic functionality, the work bound was approximated via Eq. (8.2)—that is,

assuming tape symbols were statistically independent. However, the ratchet is memoryful (due

to its three internal states) and, therefore, in general induces correlations in its output, even for

uncorrelated inputs. Since the single-symbol entropy only upper-bounds the true Shannon entropy

rate—hµ ≤ H1—Eq. (8.2) is suspect when used to identify actual thermodynamic functioning. Using

new results here, the following shows that, while approximately correct for uncorrelated input, the

single-symbol entropy bound is violated for correlated input. Its incorrect use mischaracterizes

thermodynamic functioning and can lead to violations of the Second Law.

In addition, our new methods give insight into how the ratchet processes structural information.

Due to its inherent nonunifilarity, even when driven by a finite-state ε-machine, the ratchet produces
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nonunifilar output machines that generate processes with an uncountably-infinite set of mixed states,

as Fig. 8.4 shows. Moreover, the figure also demonstrates that as ratchet parameters vary the

mixed-state sets have strikingly different structure.

Previous interpretations of ratchet thermodynamic functioning were limited to considering only

transformations of randomness; i.e., for given ratchet parameters and input, what is the sign and

magnitude of kBT ln 2 ∆hµ and how does this affect 〈W 〉? Such questions ignore the key second

dimension of information processing illustrated so vividly by Fig. 8.4. That is, given the same

ratchet, parameters, and input, what is the sign and magnitude of ∆Cµ and ∆dµ? Does the ratchet

construct new patterns in its output (∆Cµ > 0 or ∆dµ > 0) or deconstruct patterns passed to

it from the input (∆Cµ < 0 or ∆dµ < 0)? How do these then affect 〈W 〉? Answering structural

questions requires a more thorough taxonomy of thermodynamic functionality than the original

engine/dud/eraser categories.

8.4. Randomizing and Derandomizing Behaviors

The ratchet’s previously-identified thermodynamic functions engine, eraser, and dud were

identified by comparing the sign and magnitude of kBT ln 2 ∆hµ to the asymptotic work production.

As such, there are three physically possible orderings:

• Engine: 0 < 〈W 〉 ≤ kBT ln 2 ∆hµ;
• Eraser: 〈W 〉 ≤ kBT ln 2 ∆hµ < 0; and
• Dud: 〈W 〉 ≤ 0 ≤ kBT ln 2 ∆hµ.

A ratchet randomizing inputs (∆hµ > 0) can operate as an engine, if it is leveraging the change

in entropy rate to do useful work. It may also act as a dud, if the randomization produces no

useful work or, worse, if the ratchet is using work. A ratchet derandomizing inputs (∆hµ < 0) is

termed an “eraser” and can only derandomize up to 〈W 〉/kBT ln 2 bits using 〈W 〉 joules of work.

The ordering kBT ln 2 ∆hµ < 〈W 〉 < 0 would imply that the ratchet is derandomizing beyond the

physical limitations of Landauer’s principle.

As noted already, Ref. [121] originally identified these functionalities using the entropy-change

approximation ∆H1 rather than the exact change ∆hµ introduced by Ref. [122]. As previously

shown, driving a memoryful ratchet with a memoryful input violates Eq. (8.2) [125]. In all other
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cases, Eq. (8.2) is valid, but may mischaracterize the functional thermodynamic regimes. A natural

question, therefore, is how much difference does using the correct entropy rate make in identifying

function? To see this, we now compare ∆hµ and ∆H1.

There are three possibilities. First, ∆H(1) = ∆hµ. In this case, a ratchet does not change the

presence of temporal correlations. This occurs when a memoryless ratchet is driven by memoryless

input.

Second, ∆H(1) > ∆hµ. Here, a ratchet reduces the presence of temporal correlations, which

occurs when a memoryless ratchet has been driven by memoryful input. In this regime, the difference

in single-symbol entropy is a tighter bound on the correlation change than the difference in entropy

rate. Critical to this case, though, recall that our goal is not a tight bound, but rather an accurate

measurement of the gap between information processing and asymptotic work. The upshot is that

using Eq. (8.2) in this case may mischaracterize thermodynamic functionality.

Finally, ∆H(1) < ∆hµ, which occurs when a memoryful ratchet is driven by memoryless input.

In this case, the ratchet increases temporal correlations in the output, so that the difference in

entropy rates is a tighter bound on the asymptotic work production. This is the scenario in the first

treatment of the Mandel-Jarzynski ratchet [121]. Note that when a memoryful ratchet is driven

with memoryful input, the most generic case, all orderings of ∆hµ and ∆H(1) are possible.

Let’s now turn to consider in detail how the ratchet operates in three distinct environments:

Memoryless, periodic, and memoryful inputs. This gives more direct insight into the ratchet’s

transformational capabilities.

8.4.1. Memoryless Input. When the ratchet is driven with a memoryless input, as in the

original analysis, Eq. (8.2) is valid, but IPSL always offers a tighter or equal bound on work

production than the single-symbol entropy approximation. This holds since the input is memoryless,

while the three-state output machine is memoryful and nonunifilar for almost every parameter

setting. As such, one cannot calculate the entropy rate h′µ in closed form. However, the new

techniques above can determine the mixed-state presentations of the output HMMs and this gives

accurate numerical calculation of both the single-symbol and the IPSL work bounds.
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Figure 8.5. Asymptotic work production 〈W 〉, single-symbol ∆H1 bound, and
Kolmogorov-Sinai-Shannon ∆hµ bound when ratchet is driven by period-2
memoryful input. Since the input has no parameters, the parameter sweeps only
over ε with τ = 10.

This all being said, for most parameter values of the Mandal-Jarzynski ratchet, in practice we

find that ∆hµ ≈ ∆H1. In other words, when driven with a memoryless input, the ratchet’s functional

thermodynamic regions are not significantly changed when identified via the single-symbol entropy—

a minor quantitative difference without a functional distinction. (See Fig. H.1 for a comparison

of the functional thermodynamic regions found by each bound.) Exploring output-machine MSPs

shows this arises from the ratchet’s transition topology. As shown in the middle column of Fig. 8.2,

the ratchet’s transducer is fully connected, and all transitions to any other state on any combination

of symbols are possible. Therefore, it is impossible to be certain about which state the ratchet is

in; or, indeed, to even be sure which states the ratchet is not in. Graphically, this is represented

by the fact that the output-machine mixed states η always lie deep in the simplex R’s interior, as

illustrated in Fig. 8.4 (Right).

Mixed states lying at R’s center correspond to an equal belief in each of the output HMM’s

three states: A ⊗ D, B ⊗ D, and C ⊗ D. While those on R’s border indicate certainty of not

being in at least one state. Since the probability distribution over the next symbol is a continuous

function over the mixed states, the diameter of the mixed-state set is a rough measure of the

presence of temporal correlations in the ratchet’s behavior. To explicitly illustrate this, the mixed

states for two example output processes generated by the ratchet are shown in Fig. 8.4. On the left,

the mixed states are spread out, indicating that at the selected parameters, the ratchet induces

stronger temporal correlations than in the next example (right). There, all mixed states lie very
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close together and very near the simplex center. The mixed-state set has very small diameter. For

most parameter values, one finds that the mixed states of the memoryless-driven ratchet’s output

process cluster closely in the middle of the simplex. (See Fig. 8.8 for a broader survey of ratchet

MSPs for memoryless input.) So, by giving insight into the mixed states of the output process, our

new techniques rather directly explain why ∆hµ ≈ ∆H1 for this particular ratchet.

8.4.2. Periodic Input. Now, consider driving the ratchet with a periodic input. The Period-2

Process, shown in the middle row of Fig. 8.2, is memoryful, with two internal states. So, it now is

possible that Eq. (8.2) is violated. Since H1 = 1 and hµ = 0, the presence of temporal correlations in

the input is maximized. Noting this, and the near-memoryless behavior of the ratchet as discussed

in Section 8.4.1, we can see that for almost all parameters, the ratchet decreases the presence of

temporal correlations in transforming the input process to the output. The periodically-driven

ratchet output HMMs have six states and are nonunifilar for nearly all parameter values; see Fig. 8.2

(middle, last column). And so, we must calculate these machine’s mixed-state presentations to

estimate h′µ. Comparing Eq. (8.2) and Eq. (8.3) in Fig. 8.5 to the asymptotic work production shows

that Eq. (8.2) is not violated. As predicted above, it is a tighter bound on 〈W 〉 than Eq. (8.3).

Although it may seem desirable to use the tighter bound, the single-symbol and entropy rate

bounds identify the ratchet’s thermodynamic functioning differently: Since 〈W 〉 ≤ kBT ln 2 ∆H1 ≤ 0

for all values of ε, the single-symbol entropy bound classifies the ratchet as an eraser, dissipating work

to reduce the randomness in the input. However, when considering temporal correlations, we see that

the ratchet is in plain fact a dud—∆hµ > 0. That is, the ratchet dissipates work while increasing

the tape’s intrinsic randomness. This marked mischaracterization of thermodynamic function by

the single-symbol entropy highlights an important lesson: Bounding the asymptotic work production

as tightly as possible is not the same as correctly identifying the functional thermodynamics. As

Ref. [126] recently showed, rather than merely a bound, Eq. (8.3) is meaningful only when comparing

kBT ln 2 ∆hµ to 〈W 〉. The difference in the two quantifies the amount of work the ratchet can

do, if it were an optimal, globally-integrated information processor. This shows that even when

it may appear to outperform Eq. (8.3), in general Eq. (8.2) cannot serve as a reliable bound on

asymptotic work production. We return to this in our final example, where applying Eq. (8.2)

implies a violation the Second Law.
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Figure 8.6. Functional thermodynamic regions of the ratchet driven with the
Golden Mean Process as a function of parameters ε ∈ [−1, 1] and s ∈ [−1, 1] with
τ = 1. (Left) Purported functionality identified via by single-symbol entropy bound
Eq. (8.2). (Right) Correct functionality identified via the entropy-rate bound IPSL
Eq. (8.3).

8.4.3. Memoryful Input. Finally, let’s drive the ratchet with a mixed-complexity memoryful

process—partly regular, partly stochastic—the Golden Mean Process. As depicted in Fig. 8.2

(bottom row), this two-state HMM generates a family of processes parametrized by s ∈ [0, 1]. When

s = 1, the process is period-2. Decreasing s lets the process emit multiple 1s in a row. This increases

in probability until at s = 0, where the process emits only 1s. The driven ratchet’s output HMMs

have six states and are nonunifilar for nearly all parameter values; see Fig. 8.2(bottom, last column).

So, again, we must calculate mixed-state presentations to get h′µ and identify functionality.

In Fig. 8.6, we apply both Eq. (8.2) and Eq. (8.3) for the same set of ratchet parameters. For

both, we find asymmetry in the functional thermodynamic regions with respect to ε, in contrast to

the highly symmetric regions found for memoryless input, shown in Fig. H.1. This is due to the

asymmetry in input. In fact, it is not possible for the Golden Mean Process to produce strings

biased towards 0. Thermodynamically, for ε > 0, the ratchet is not able to extract work. When

applying the single-symbol bound, as shown on the left in Fig. 8.6, the bound reports large regions

of eraser behavior. And, most importantly, between the engine and lower eraser region lies a region
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where we see that Eq. (8.2) implies

〈W 〉 > kBT ln 2 ∆H1 ,(8.4)

a violation of the Second Law!

Of course, when we apply Eq. (8.3) in Fig. 8.6 (Right), the violation region disappears, to be

correctly identified as duds. Additionally, the large region of eraser functionality in Fig. 8.6 (Left)

shrinks significantly in Fig. 8.6 (Right). Figure 8.6 (Left)’s regions have been mischaracterized

similar to the case discussed in Section 8.4.2. It is more subtle here, though, since hµ > 0. However,

the fundamental problem is the same—by considering only the single-symbol entropy, it appears

that the ratchet performs work to make the input less random, since ∆H1 < 0. In fact, the output is

more intrinsically random than the input, and the ratchet dissipates work uselessly. In the violation

region on the left, the ratchet is identified as not dissipating sufficient work to reduce the randomness

as much as ∆H1 implies it must be. This leads to the Second Law violation. This contradiction is

resolved when we take into account that the input’s intrinsic randomness was actually much lower

than its single-symbol entropy. And so, the apparent decrease in randomness was in fact an increase.

It is already known that Eq. (8.2) may be violated in cases of a memoryful ratchet driven by

memoryful input. However, the Mandal-Jarzynski ratchet was not designed to find such a violation,

as has been done previously [123]. Rather, we find that driving a simple transition-rate based

ratchet with a mixed-complexity process creates regions of violation when applying Eq. (8.2). Since

such ratchets are common in application, and any such ratchet will be highly stochastic by nature,

for reasons further discussed in Appendix H, we conclude that Eq. (8.2) is not suitable to be broadly

applied. On the positive side, we see that the dynamical-systems techniques introduced here apply

broadly, giving consistent and accurate characterizations stochastic-control information engines.

8.5. Constructing and Deconstructing Patterns

Up to this point, we monitored how the ratchet changed the amount of intrinsic randomness

present in a symbol sequence and leveraged this to do useful work. When information ratchets are

memoryful, they can alter not only the statistical bias of a symbol sequence, but also the presence of

temporal correlations. This has thermodynamic consequences, as discussed above. Now, we turn to
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Figure 8.7. After passing through the information engine, the input process,
which has some initial hµ and dµ, is transformed into an output process with a
potentially different h′µ and d′µ. By carefully selecting input, an information engine
can be induced to act as a randomizer (∆hµ > 0) or derandomizer (∆hµ < 0) and a
pattern constructor (∆dµ > 0) or deconstructor (∆dµ < 0). We show here that all
four regions of the ∆hµ–∆dµ plane are accessible to the Mandal-Jarzynski ratchet
by carefully selecting parameters and input. The two insets on the left show the
uncountable set of mixed states of an input process that the ratchet transduces to
an IID output. The insets on the right show two uncountably-infinite-state output
processes produced by running the Mandal-Jarzynski ratchet on a biased coin. The
parameters, clockwise from top right: δinput = −0.98, ε = 0.01, τ = 0.1;
δinput = 0.3, ε = 0.5, τ = 0.1; δoutput = 0.8, ε = −0.96, τ = 0.75;
δoutput = 0.0, ε = 0.9, τ = 0.9.

consider by what mechanisms an information ratchet changes the presence of temporal correlations,

which manifests in changes in sequence structure and organization.

By structure and organization, we refer to the internal states of the HMM that generates the

input symbol sequence, the ratchet states and transitions, and the output sequence. As depicted
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in Fig. 8.2, the input and the ratchet each have their own set of internal states. Since the output

machine is the composition of the ratchet transducer and input HMM, its states are the Cartesian

product of the set of input states and set of output states.

In the simplest case, when a memoryless ratchet is driven by memoryless input, there is only

ever one state, and no temporal correlations are present at any stage. The only possible action of

the ratchet then is to change the statistical bias of individual input symbols and transform this

change in Shannon entropy to a change in thermodynamic entropy.

When one or both of the input and ratchet are memoryful, the internal structure of the output

will be, in general, memoryful. That is, the ratchet has induced a structural change in processing the

input to generate the output. Consider two basic structural-change operating modes [126]: pattern

construction, where the output is more structured than the input, and pattern deconstruction, the

output is less structured. As before, these modalities are input-dependent—the same ratchet may

exhibit either. Note that structural change to the symbol sequence does not uniquely determine

the thermodynamic functionality associated with changes in randomness. It is possible for an

information engine to act as an engine, eraser, or dud while constructing patterns. The same is

true of deconstruction. Rather, transformations of randomness and structure are orthogonal, and a

ratchet’s information processing capabilities may lie anywhere in the ∆hµ—∆dµ plane sketched in

Fig. 8.7.

8.5.1. Pattern Construction. Ideal pattern construction occurs when a ratchet takes struc-

tureless input—an IID process—to structured output. Therefore, when the ratchet is driven with

a biased coin input, it is operating as an ideal pattern constructor. As discussed in Section 8.4.1,

driving the ratchet with memoryless input results in an uncountably-infinite set of states in the

output HMM for most parameter values. The exception occurs along the line δ = ε in parameter

space, where the ratchet returns the input unchanged, implying ∆Cµ = 0. At every other point

in ratchet parameter space ∆Cµ = +∞ and the ratchet acts as a pattern constructor. As can be

seen from Appendix H.0.2’s Fig. H.1, this type of structural change can be associated with any

thermodynamic behavior.

The resulting divergence of Cµ is a direct consequence of the nonunifilarity induced by the

ratchet. The structure generated by any ratchet driven by an IID process is the set of mixed
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states of the ratchet, given knowledge of the outputs. Due to the ratchet’s topology, there is an

uncountable infinity of such mixed states. In this circumstance one uses the statistical complexity

dimension of the set of output mixed states to monitor the rate of the memory-resource divergence.

∆dµ distinguishes between output machines with an uncountable infinity of states, and so is able to

compare the structural information processing of the ratchet across parameter space.

Figure 8.7 places two examples of ideal pattern construction on the right side of the ∆hµ–∆dµ
plane with the associated input and output machines, the latter plotted on the 2-simplex. Although it

may appear that the more entropic ratchet in the upper half of the plane constructs a more “complex”

pattern, this is not so. Refer back to Fig. 8.4 and compare the dimension of the two sets of mixed

states to see the opposite is true. The ratchet operating in the −∆hµ half of the plane produces a

much denser set of states, resulting in a larger ∆dµ. In addition to the structural transformation,

the ratchet in the +∆hµ plane randomizes inputs as a dud, while the other derandomizes inputs as

an eraser.

8.5.2. Pattern Deconstruction. In a complementary fashion, the ratchet can deconstruct

patterns. In ideal pattern deconstruction, a ratchet transforms a memoryful input sequence, with

Cµ > 0, to memoryless, IID output, with Cµ = 0. When taking a ratchet-focused view, as we do

here, ideal pattern deconstruction is a more involved task than ideal pattern construction, since we

must carefully design inputs that a ratchet will transform into a biased coin. Any correlations in

the input must be recognizable by the ratchet so that the ratchet can map them to randomness.

Similar to the previous discussion, we consider the induced ratchet mixed states, but now we have

knowledge of the inputs. The algorithm to design the required input process, given knowledge of

the ratchet, is discussed in Section 8.7.

Critically, pattern deconstruction is not possible for all ratchet parameters and desired output.

That said, the Mandal-Jarzynski ratchet can perform as an engine, eraser, or dud while deconstructing

patterns, as can be seen in Section 8.7’s Fig. 8.9. As τ increases, the parameter-space region in

which the ratchet can extract patterns shrinks. At τ →∞ pattern extraction may only occur along

the line δ = ε. In a mirror of pattern construction, generating the input processes requires reference

to the uncountably infinite set of mixed states of the ratchet. In general, this implies that an input

process which maps to a memoryless output process also has an uncountably-infinite set of states and
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∆Cµ → −∞. In other words, to properly ensure the output symbols are temporally uncorrelated,

the input process must remember its infinite past. Once again, the associated statistical complexity

dimension dµ—now of the set of input mixed states—quantifies the rate of the memory-resource

divergence.

Two examples of ideal pattern deconstruction are placed on the left side of the ∆hµ–∆dµ plane

in Fig. 8.7, with the ratchet mixed states—on the 2-simplex—and the output machine. ∆dµ is

approximate, based on the dimension of the ratchet mixed states, which are conjectured to have the

same dimension as the input mixed states.

8.5.3. Thermodynamic Taxonomy of Construction and Deconstruction. From its

highly stochastic nature and from parameter sweeps like the one shown in Section 8.6’s Fig. 8.8,

we conclude that for almost all parameters, the Mandal-Jarzynski ratchet is only able to construct

patterns with infinite sets of predictive features (mixed states). We conjecture that likewise, it

is only able to perfectly deconstruct infinite patterns. An interesting note is that the input and

output mixed-state sets and their dimensions are asymmetric. We can visually see the asymmetry

in Fig. 8.7, which sketches the ∆hµ–∆dµ plane and shows an example of the Mandal-Jarzynski

ratchet operating in all four quadrants. Infinite state output constructed by the ratchet may span

the simplex, but the mixed states of the ratchet, while acting as a deconstructor, always lie along a

line in the simplex. This implies that while the ratchet may construct patterns up to ∆dµ = 2.0,

it is only able to deconstruct patterns up to ∆dµ = −1.0. The difference in ∆dµ in these two

modalities points to a difference in memory-resource divergence for pattern construction versus

pattern deconstruction.

This asymmetry is not necessarily surprising. Recall the asymmetry in the ratchet’s ability to

randomize and derandomize behavior. The combined area of dud and engine regions in Fig. 8.6

comprise the ratchet’s randomizing regime, while the derandomizing regime is the comparatively

small eraser region. One interpretation of this asymmetry comes from the thermodynamic limitations

on the ordering of ∆hµ and 〈W 〉: While an increase in ∆hµ is thermodynamically unbounded, ∆hµ
is constrained by the Second Law to only drop as low as the minimum asymptotic work. This

strongly suggests that there is a thermodynamic taxonomy of structural transformation—one that

parallels our existing thermodynamic taxonomy of randomness transformation. We must leave
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Figure 8.8. Mixed-state attractors of the output HMMs of the Mandal-Jarzynski
ratchet driven by a Biased Coin as a function of ε and input bias δ, given above
each square; (ε, δ) ∈ [0, 1]× [−1, 1]. Each plot shows 1, 000 mixed states from the
attractor at the magnification noted in the lower right corner. The attractors may
be compared with Fig. H.1 to determine thermodynamic functionality.

finding such a taxonomy and the analysis of more general ratchets with input-dependent structural

behavior to the future.
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8.6. Information Ratchet Mixed-State Attractor Survey

To emphasize how exploring a ratchet’s mixed states elucidates the underlying physics, Fig. 8.8

presents the attractors of the Mandal-Jarzynski ratchet driven by the Biased Coin, as a function of

ε and b, in analogy with Fig. H.1. Each square in the grid shows the mixed-state attractor for the

output HMM produced by the composition of the Mandal-Jarzynski ratchet at the given ε with a

Biased Coin at the given bias δ. The grid is laid out identically to the functional thermodynamic

plots above, with ε varying on the y-axis and the input bias b varying on the x-axis. Note that the

squares are not at the same scale: each is magnified to show the structure of the attractor; the

magnification factor is given in the lower right corner. Compare to Fig. 8.4 to see the mixed-state

attractors in further detail. Additionally, the attractors are color coded to show thermodynamic

functionality: red for engines, blue for erasers, and black for duds.

The symmetry of the Mandal-Jarzynski ratchet around ε = 0 is revealed by how structure

of the output HMM attractors is reflected and reversed over the ε = δ line. Along this diagonal,

we see that the mixed-state attractor collapses to a single state—a single point. This reflects the

fact that at any ε = δ the output HMM is the input Biased Coin, so 〈W 〉 = ∆H = ∆hµ = 0.

Furthermore, we see that the structure of the mixed-state attractor does not have a strong effect on

the thermodynamic functionality—very similar attractors act as duds and as erasers on each side of

the ε = 0 line. This is as expected since, although thermodynamic functionality appears to change

suddenly, the grids in Figs. 8.6, 8.8 and H.1 actually sweep over output machines with smoothly

changing transition probabilities. And, changes in functionality represented by the boundaries of

thermodynamic regions are actually due to small, smooth changes in the comparative magnitude of

〈W 〉 and ∆hµ. Figure 8.8 illustrates this clearly, as the mixed-state attractor changes smoothly

under the parameter sweep.

Note that the construction of Fig. 8.8 was only possible due to the new dynamical-systems

techniques outlined in this thesis. The recently developed guarantee of ergodicity and quick

generation of mixed states allows us to easily plot and investigate the mixed-state attractors

of arbitrary HMMs. And, this allows for parameter sweeps of attractors of HMM families and

rapid calculation of their entropy rates. The latter was required to determine the thermodynamic

functionality color coding in Fig. 8.8.
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Figure 8.9. Functional thermodynamic regions of a ratchet pattern deconstructor
with an interaction interval of τ = 0.75. The x-axis sweeps over the output bias δout,
while the y-axis sweeps over ε. As indicated, there are two parameter regimes where
the ratchet is unable to act as a pattern deconstructor. In these regions, the desired
output bias is not reachable by the machine at the given ε. As τ →∞, this region
grows, until it encompasses every parameter combination other than ε = δout, which
is always reachable with an input Biased Coin with bias δin = δout = ε.

8.7. Pattern Deconstruction and Thermodynamic Functionality

While it is relatively simple to run the Mandal-Jarzynski ratchet as an ideal pattern constructor,

forcing the ratchet to perfectly deconstruct patterns is a more challenging task. As previously

discussed in Ref. [126], to deconstruct patterns, the input and ratchet must remain synchronized.

However, the Mandel-Jarzynski ratchet, being highly stochastic, resists synchronization. Since the

input process cannot stay synced to the states of the Mandal-Jarzynski ratchet, it must synchronize

to the mixed states instead. To design an input sequence that the ratchet transduces to an IID

output process with bias δ we calculate as follows:

(1) Pick a ratchet mixed state;
(2) Determine the input-output probability distribution;
(3) Calculate the input probability distribution such that Pr(X ′ = 0)− Pr(X ′ = 1) = δ.
(4) Step forward, record the input.
(5) Use the input to update the ratchet mixed state; and
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(6) Repeat the procedure starting at Step (1), using the new mixed state.

Note that one must ensure that the output probability distribution remains constant at each time

step.

As might be suspected from the algorithm, this is not possible at all parameters. For example, the

ratchet may be so heavily biased to flip 0→ 1 that emitting a sequence of mainly 1s is mathematically

impossible. This is expressed in the algorithm by finding a required input probability distribution

with a negative component. This is illustrated in Fig. 8.9, where the functional thermodynamic

regions associated with the Mandal-Jarzynski ratchet acting as a pattern deconstructor are shown.

There are two inaccessible regions, where the desired output is not possible for the ratchet at the

given value of ε. As τ →∞ these regions grow in size, until at large τ the only parameter region

capable of pattern deconstruction is δ = ε. This is where the ratchet becomes memoryless, so it is

trivially a pattern deconstructor along this line.

8.8. Related Efforts

We can now place the preceding methods and new results in the context of prior efforts to

identify the thermodynamic functioning of information engines. In short, though, having revealed

the challenge of exact entropy calculations and the inherent divergence in structural complexity, the

new methods appear to call for a substantial re-evaluation of previous claims. We start noting a

definitional difference and then turn to more consequential comparisons.

The framework of information reservoirs discussed here differs from alternative approaches to

the thermodynamics of information processing, which include: (i) active feedback control by external

means, where the thermodynamic account of the Demon’s activities tracks the mutual information

between measurement outcomes and system state [127,128,129,130,131,132,133,134,135,136,

137,138,139]; (ii) the multipartite framework where, for a set of interacting, stochastic subsystems,

the Second Law is expressed via their intrinsic entropy production, correlations among them, and

transfer entropy [140,141,142,143]; and (iii) steady-state models that invoke time-scale separation

to identify a portion of the overall entropy production as an information current [144,145]. A

unified approach to these perspectives was attempted in Refs. [146,147,148].
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These differences being called out, Maxwellian demon-like models designed to explore plausible

automated mechanisms that do useful work by decreasing the physical entropy, at the expense

of positive change in reservoir Shannon information, have been broadly discussed elsewhere [121,

144,149,150,151,152,153]. However, these too neglect correlations in the information-bearing

components and, in particular, the mechanisms by which those correlations develop over time. In

effect, they account for thermodynamic information-processing by replacing the Shannon information

of the components as a whole by the sum of the components’ individual Shannon informations. Since

the latter is larger than the former [55], using it can lead to either stricter or looser bounds than the

correct bound derived from differences in total configurational entropies. Of more concern, though,

bounds that ignore correlations can simply be violated. Finally, and just as critically, the bounds

refer to configurational entropies, not the intrinsic dynamical entropy over system trajectories—the

Kolmogorov-Sinai entropy. A more realistic model was suggested in Ref. [154]. Issues aside, these

designs have been extended to enzymatic dynamics [155], stochastic feedback control [156], and

quantum information processing [157,158].

In comparison, our approach expands on Ref. [122] that considers a Demon in which all

correlations among the system components are addressed and accounted for. As shown above, this

has significant impact on the analysis of Demon thermodynamic functionality. To properly account

for correlations, we developed a new suite of tools that allow quickly and efficiently analyzing

nonunifilar HMMs and related stochastic controllers, which removes the mathematical intractability

of analyzing correlations for arbitrary demons. We note that our approach and results are consistent

with the analyses that consider the entropy of the system as a whole, therefore treating correlations

in the system implicitly, an approach epitomized by Ref. [159]. Since correlations are not ignored,

this approach is fully consistent with our treatment. This being said, insofar as that work does not

address specific partitioning of the system, it does not offer an explicit accounting of the system’s

internal correlations, as is done here. As previously discussed, one may derive information ratchet-

type results from that approach by considering an explicit partitioning [125,126,160]. While the

results are consistent, leaving the role of correlations implicit does not allow for investigating how to

best leverage them. It also does not give a way to analyze internal computational structure. These

remarks highlight the importance of explicitly considering information engine-style partitioning.
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The dynamical-systems methods additionally allowed us to consider a Demon’s internal structure,

which had only previously been investigated for unifilar ratchets in Ref. [126]. From engineering and

cybernetics to biology and now physics, questions of structure and how an agent, here understood

as the ratchet, interacts with and leverages its environment—i.e., input—is a topic of broad

interest [161,162]. General principles for how an agent’s structure must match that of its environment

will become essential tools for understanding how to take thermodynamic advantage of correlations in

structured environments, whether the correlations are temporal or spatial. Ashby’s Law of Requisite

Variety—a controller must have at least the same variety as its input so that the whole system can

adapt to and compensate that variety and achieve homeostasis [161]—was an early attempt at such

a general principle of regulation and control. For information engines, a controller’s variety should

match that of its environment [125]. Above, paralleling this, but somewhat surprisingly, we showed

that for the Mandal-Jarzynski ratchet to extract patterns from its environment, the input must

have an uncountably infinite set of memory states synchronized to the ratchet’s current mixed state.

One cannot but wonder how such requirements manifest physically in adaptive thermodynamic

nanoscale devices and biological agents.
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CHAPTER 9

Conclusion and Future Directions

This dissertation opened by considering the role that information has to play in our under-

standing of physical systems. We argued that like energy before it, information is a measurable,

fundamental quantity of physical importance. We further argued that simply quantifying information

content is not enough to fully understand the role that it has to play in the natural world—we

must understand how information can be generated, stored, transformed, and utilized. To make a

project of this scope tractable, we narrowed our focus to a specific class of stochastic processes that

has been used broadly to model natural systems. This class is known as hidden Markov processes,

which may be generated by hidden Markov models.

A central challenge in studying this class of processes has been quantifying randomness, patterns,

and structure and doing so in a mathematically-consistent but calculable manner. For well over a

half a century Shannon entropy rate has stood as the standard by which to quantify randomness in

a time series. Until now, however, calculating it for processes generated by nonunifilar HMMs has

been difficult and inaccurate, at best.

We began our analysis of this problem by recalling that, in general, hidden Markov models

that are not unifilar have no closed-form expression for the Shannon entropy rate of the processes

they generate. Despite this, these HMMs can be unifilarized by calculating the mixed states. The

resulting mixed-state presentations are themselves HMMs that generate the process. However,

adopting a unifilar presentation comes at a heavy cost: Generically, these presentations have

uncountably-infinite state sets and so Shannon’s expression cannot be used. Nonetheless, we showed

how to work constructively with these mixed-state presentations.

In particular, we showed that they fall into a common class of dynamical system known as

place-dependent iterated function systems. Analyzing the IFS dynamics associated with a finite-state

nonunfilar HMM allows one to extract useful properties of the original process. For instance, we
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can easily find the entropy rate of the generated process from long orbits of the IFS. That is, one

may select any arbitrary starting point in the mixed-state simplex and calculate the entropy over

the IFS’s place-dependent probability distribution. We evolve the mixed state according to the IFS

and sequentially sample the entropy of the place-dependent probability distribution at each step.

Using an arbitrarily long word and taking the mean of these entropies, the method converges on the

process’ entropy rate.

Although the IFS-HMC connection has been considered previously [163,164], our development

complements this by expanding it to address the role of mixed-state presentations in calculating

the entropy rate and to connect it to existing approaches to randomness and structure in complex

processes. In particular, while our results focused on quantifying and calculating a process’ random-

ness, we left open questions of pattern and structure. Towards this, we showed how the attractor of

the IFS defined by an HMC is, assuming uniqueness of the mixed states as discussed in Section 3.4,

the set of causal states R of the process generated by that HMC. Practically, this gives a method

to construct the causal states of a process P, so long as it can be finitely generated. For instance,

Fig. 3.2 demonstrated how the highly structured nature of the Simple Nonunifilar Source is made

topologically explicit through calculating its mixed-state presentation—which is also its ε-machine.

In point of fact, many information-theoretic properties of the underlying process may be directly

extracted from its mixed-state presentation. These sets are often fractal in nature and quite visually

striking. See Fig. 3.4 for several examples. We established that the information dimension of the

mixed-state attractor is exactly the divergence rate of the statistical complexity [17]—a measure of a

process’ structural complexity that tracks memory. Thus, processes in this class effectively increase

their use of memory, “creating” mixed or causal states, on the fly. Furthermore, we introduced a

method to calculate the information dimension of the mixed-state attractor from the Lyapunov

spectrum of the mixed-state IFS. In this way, we demonstrated that coarse-graining the mixed-state

simplex—the previous method for studying the structure of infinite-state processes [60]—can be

avoided altogether. This greatly improves accuracy and computational speed and deepens our

understanding of the origins of complexity in stochastic processes.

That was not the end of the story, since calculating dµ is difficult due to long-standing problems

in the field of IFS dimension theory. In particular, the overlapping problem posed a significant
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hurdle—restricting the preceding results to only nonoverlapping IFSs. This restricted us to the class

of stochastic processes with a one-to-one past-to-causal state mapping. In a sense, these processes

are the most complex but with structure that is the least interesting. That is, for DIFSs we simply

store every past to build an optimally-predictive model.

This state of affairs led directly to the present development and to introducing the ambiguity

rate. The latter allows smoothly varying between ε-machines with countable state spaces (ha = hµ

and ∆H[R] = 0) and those with perfectly self-similar state spaces (ha = 0 and ∆H[R] = hµ),

including all those lying in between, with hµ > ha > 0 and ∆H[R] = hµ − ha. This model class is

much more general, generating an exponentially larger family of stochastic processes. As such, we

anticipate that this class will be of great interest and likely to lead to significant further progress in

analyzing the randomness and structure generated by hidden Markov processes.

In the introduction, we noted the ubiquity of multi-scale systems with several levels of si-

multaneous mechanism. We noted that our ultimate goal is to describe behavior at all levels of

these system, and measure information flow up and down levels of structure. To briefly expand

on what is meant by “information flow”, we note here that the ambiguity rate ha is the first step

towards an information anatomy of models. Taking inspiration from decompositions of information

and information flow in processes [165,166,167,168], I wish to better characterize the role of

information in the ε-machine itself. As an example, Cµ, while vital to characterizing computational

complexity, is static in the sense that it gives the quantity of memory resources available to the

model at one moment in time. On the other hand, hµ − ha describes the rate at which the memory

resources in the model is increasing (see again figure 1.2) and can described as the information

flux of the model. By decomposing this flux further based on how information retains or loses

temporal correlations as it flows through the model, we can build out the informational “anatomy of

a machine”. This brings to mind classic work in computation theory aimed at uncovering mechanism

through computational structure [169] and will be necessary to fully understand how multi-scale

and hierarchical systems transform, store, and process information.

Despite the run away successes of the Information Age, it is well known that our ability to

predict complex systems have been balanced out by our inability to “see under the hood”, so to

speak, of the black-box techniques so widely used today. As physicists, we must be unsatisfied
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with this partial success, desiring models of natural system that combine predictive power with

mechanistic explication. This goal, by no means to be underestimated, underlies my long-term

academic goals and research program. As has become inescapably clear in the last century, deepening

our understanding of the natural world points us towards ever more complex, structured, hierarchical

systems, replete with interacting subsystems and complicated modes of information flow. Our ability

to model and predict these systems is tantamount to the goals of science itself.
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APPENDIX A

Hidden Markov Model Examples

We reproduce here the HMCs used to create the various examples of MSPs present in the text.

First, the “alpha” HMC, from Fig. 5.1a, is given by:

T� =


2.734× 10−2 0.392 1.924× 10−2

0.475 2.176× 10−2 2.766× 10−4

0.224 2.711× 10−3 0.236

 ,

T4 =


1.845× 10−3 0.133 0.259

3.913× 10−2 0.315 2.789× 10−2

0.467 1.015× 10−2 4.699× 10−3

 ,

T ◦ =


9.782× 10−2 3.374× 10−2 3.644× 10−2

5.422× 10−2 6.503× 10−2 2.090× 10−3

5.328× 10−2 1.278× 10−3 8.778× 10−4

 .
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Fig. 5.1b is given by Eq. (3.7), at α = 0.6 and x = 0.1. The “beta” HMC, in Fig. 5.1c, is given

by:

T� =


5.001× 10−2 0.388 4.251× 10−2

0.464 4.484× 10−2 2.495× 10−2

0.232 2.720× 10−2 0.243

 ,

T4 =


1.708× 10−3 0.123 0.240

3.623× 10−2 0.292 2.583× 10−2

0.432 9.397× 10−3 4.351× 10−3

 ,

T ◦ =


9.0576× 10−2 3.124× 10−2 3.374× 10−2

5.020× 10−2 6.021× 10−2 1.935× 10−3

4.933× 10−2 1.183× 10−3 8.127× 10−4

 .

The mapping images shown in Fig. 5.2 are produced by the three symbol DIFSdefined in

Eq. (3.7), with α = 0.63, x = 0.2 for the overlapping example in Fig. 6.2a and α = 0.6, x = 0.15 for

the nonoverlapping example in Fig. 6.2b.

Due to finite numerical accuracy, reproduction of the attractors using these specifications may

differ slightly from Fig. 5.1.
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APPENDIX B

Asymptotic Equipartition and Typical Set Contraction

The asymptotic equipartition property (AEP) states that for a discrete-time, ergodic, stationary

process X:

−1
`

log2 Pr(X1, X2, . . . , X`)→ hµ(X) ,(B.1)

as `→∞ [55]. This effectively partitions the set of sequences in two: the typical set—sequences for

which the AEP holds—and the atypical set, for which it does not. As a consequence of the AEP, it

must be the case that the typical set is measure one in the space of all allowed realizations and all

sequences in the atypical set approach measure zero as `→∞.

We argue that while our IFS class includes reducible maps, any composition of maps correspond-

ing to a word in the typical set will be irreducible. This can be seen intuitively by considering the SNS,

shown in Fig. 3.2, and adding an additional transition on a � from σ0 to σ1. This produces an HMC

with two reducible symbol-labeled transition matrices, but an irreducible total transition matrix.

However, as |w| → ∞, the only words such that T (w) remains reducible are �` and 4`. We can see

that these words cannot possibly be in the typical set, since −1
` log2 Pr(�`) = − log2 Pr(�) 6= hµ(X).

The entropy rate hµ is by definition the branching entropy averaged over the mixed states. And so,

any word that visits only a restricted subset of the mixed states—i.e., a word with a reducible tran-

sition matrix—cannot approach hµ, regardless of length. Therefore, only words with an irreducible

mapping will be in the typical set, implying that there exists an integer word length |w| > 0 for

which words without a contractive mapping are measure zero.
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APPENDIX C

Birkhoff’s Contraction Coefficient

First, we define the relevant metric.

Definition C.0.1. Given an integer N ≥ 2, let CN be the nonnegative cone in RN , so that

CN consists of all vectors z = (z1, z2, . . . , zN ) satisfying z 6= 0 and zi ≥ 0 for all i. The projective

distance d : CN × CN → [0,∞) is defined:

d(z, y) :=

max
{∣∣∣∣log

(
zr
zs

ys
yr

)∣∣∣∣ : r, s = 1, . . . , N ; r 6= s

}
(C.1)

for z, y ∈ CN , where d(z, z) = 0. If one of the points is on the cone boundary, the distance is taken

to be +∞.

If T (x) is an N × N positive matrix, we have d(zT (x), yT (x)) < dN (z, y) for every z, y ∈ CN

such that d(y, z) > 0. We define the projective contractivity τ (x) associated with T (x) as:

τx := sup
{z,y∈CN :d(z,y)>0}

d(zT (x), yT (x))
d(z, y) ,

so that τ (x) satisfies τ (x) ≤ 1. As the theorem below indicates, this inequality is strict.

Theorem C.0.1. ( [170, Thm. 1].) Let the integers m,n ≥ 2 be arbitrary. For each matrix

T (x) =
[
t
(x)
ij

]
of order m×n with positive components, τ (x) is given by the following Birkhoff formula:

τ (x) =
1−

(
φ(x)

)1/2

1 +
(
φ(x))1/2 ,

where:

φ(H) := min
r,s,j,k

t
(x)
rj t

(x)
sk

t
(x)
sj t

(x)
rk

.
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By inspection we see that φ(H) > 0 and τ < 1. As Ref. [171] notes, not only does the projective

metric turn all positive linear transformations into contraction mappings, it is the only metric that

does so.

The Birkhoff result extends to any nonnegative matrix T (x) for which there exists an ` ∈ N+ such

that
(
T (x)

)`
is a positive matrix. Then there will be a τ (x) < 1 such that d

(
η
(
T (x)

)`
, ζ
(
T (x)

)`)
<

d(η, ζ).
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APPENDIX D

Correspondence with Baker’s Map

The simple dimension formula in Eq. (5.8) may not seem easily motivated. Especially, considering

that, in general, both positive and negative Lyapunov exponents are required to have a nontrivial

attractor. However, for iterated function systems, all Lyapunov exponents are negative and the

expansive role played by positive Lyapunov exponents is instead played by an IFS’s stochastic map

selection, as measured by the entropy rate hµ.

This is more intuitively appreciated by comparing the two-state IFS with the Baker’s map.

Consider the Baker’s map:

xn+1 =


xn
s0

, y < p

xn + s1 − 1
s1

, y ≥ p
and

yn+1 =


yn
p
, y < p

yn − p
p− 1 , y ≥ p

It has LCE spectrum Λ = {λ1, λ2}, where:

λ1 = p log(p) + (1− p) log(1− p)

λ2 = p log(1/s0) + (1− p) log(1/s1) .

Note that λ1 > 0 and λ2 < 0. Then, the Lyapunov dimension is:

dΓ = 1− λ1
λ2

.
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To compare this to an IFS, take:

{f(x)} =
{
xn
s0
,
xn + s1 − 1

s1

}
and

{p(x)} = {p, 1− p} .

Thus, we identify the y coordinate as controlling the stochastic map choice. The dynamic over

position in the y direction exactly determines the IFS entropy rate. Since the Baker’s map is volume

preserving in y, the extra dimension always contributes a plus one in the dimension formula. In

other words, the dimension along a slice of constant y equals the IFS dimension.
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APPENDIX E

Sierpinski’s Triangle

Figure E.1. Attractor of the 3-state, 3-symbol machine specified in Eq. (E.1), with
s = 2 and a = 1

6 .
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The Sierpinski triangle is a canonical Cantor set in two dimensions. An HMC that generates a

MSP attractor that is the Sierpinski triangle is:

T (0) =


a 0 a(s− 1)

0 a a(s− 1)

0 0 as

 , T (1) =


1−as

2 0 0
(1−as)(s−1)

2s
1−as

2s 0
(1−as)(s−1)

2s 0 1−as
2s

 , and(E.1)

T (2) =


1−as

2s
(1−as)(s−1)

2s 0

0 1−as
2 0

0 (1−as)(s−1)
2s

(1−as)(s−1)
2s

 ,

(E.2)

where s controls the contraction coefficient and a controls the probability of selecting the maps.

This HMC produces constant probability functions:

p(0) = as , p(1) = 1− as
2 , and p(2) = 1− as

2 .

and, therefore, linear mappings, since f (0) = 〈η|T (i)/p(i)(η). The constant probability functions

make the entropy rate trivial to calculate. And, the linearity of the mappings does the same for the

Lyapunov exponents.

Setting s = 2 and a = 1/6, results in equal probability for all maps and gives the standard

Sierpinski triangle shown in Fig. E.1. In this case, the entropy rate is hµ = log2 3 and the Lyapunov

exponents are both − log2 2. Plugging this into Eq. (5.6) returns the well-known fractal dimension

of the Sierpinski triangle: log2 3/ log2 2 ≈ 1.585.
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APPENDIX F

Lyapunov Exponents

A Lyapunov characteristic exponent for a dynamical system measures the exponential rate

of separation of trajectories that begin infinitesimally close. Since, typically, the separation rate

depends on the direction of the initial separation, we use a spectrum of Lyapunov exponents, with

one exponent for each state-space dimension. In a chaotic dynamical system, at least one Lyapunov

exponent is positive. In general, the Lyapunov exponent spectrum for an N -dimensional dynamical

system with mapping xn+1 = F (xn) depends on the initial condition x0. However, here we consider

ergodic systems, for which the spectrum does not.

Consider the map’s Jacobian matrix:

J = ∂F

∂x

and the evolution of vectors in the tangent space, controlled by:

Ẏ = Y J ,

where Y (0) = IN and Y (t) describes how an infinitesimal change in x(0) has propagated to x(t).

Let {y1, . . . , yN} be the eigenvalues of the matrix Y (t)Y (t)ᵀ. Then, the Lyapunov exponents are:

λi = lim
t→∞

1
2t log yi .

The Lyapunov numbers were introduced and proven to exist by Oseledets [172]. The Lyapunov

exponents are merely the logarithms of Lyapunov numbers.

The most common way of calculating an IFS’s Lyapunov spectrum, employed to produce the

results in Fig. 5.4, is the pull-back method. The basic idea is that for an IFS in the N − 1 simplex,

defined by an N -state HMC, there will be N − 1 independent directions of contraction. These

directions are represented by a coordinate frame of N − 1 vectors that are kept orthogonal and
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normalized. This coordinate frame is carried along a long orbit of the IFS. At each time step, the

Jacobian is used to evolve the frame. We track the contraction rate of each vector, and this becomes

the estimation of the Lyapunov exponents.

In contrast to applying this approach to deterministic dynamical systems, as is more familiar,

an IFS’s stochastic nature introduces additional error. Since the Jacobian varies not just across

the simplex, but also for the selected maps, the orbit must be long enough to sample from the IFS

attractor’s distribution accurately for each possible mapping function. This being said, it has been

established that the pull-back method works for IFS spectra, given a sufficiently long orbit [57].

The prequel, on estimating the entropy rate of HMC processes, made use of error-bounding

techniques from Markov chain Monte Carlo (MCMC) [48]. Since here we are estimating Lyapunov

exponents by sampling from the Blackwell distribution, similar error-bounding techniques apply. In

this analysis, there are two fundamental sources of estimation error. First, that due to initialization

bias or undesired statistical trends introduced by the initial transient data produced by the Markov

chain before it reaches the desired stationary distribution. Second, there are errors induced by

autocorrelation in equilibrium. That is, the samples produced by the Markov chain are correlated.

And, the consequence is that statistical error cannot be estimated by 1/
√
N , as done for N

independent samples.

Bounding these error sources requires estimating the autocorrelation function, which can be

done from long sequences of samples. If we have the nonunifilar model in hand, it is a simple matter

of sweeping through increasingly long sequences of generated samples until we observe convergence

of the autocorrelation function. An alternative method of approximating the infinite-state HMC

with a finite-state approximation is discussed in detail in our previous work [48]. The upshot is

that the method here generally efficiently leads to accurate estimates of the LCE spectrum.

For completeness, we note that there are alternative methods to calculate Lyapunov exponents;

see, e.g., Refs. [173,174]. These methods may be more appropriate in specific applications. That

said, the accuracy and applicability of Lyapunov exponent estimation is not the focus here.
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APPENDIX G

Overlap Estimation

To estimate the size of a mixed-state attractor and overlap of mapping functions in Fig. 5.4, a

combination of techniques were used. We will briefly summarize the method here.

First, 250, 000 different HMCs were generated using a 500× 500 parameter grid over α = [0, 1]

and x = [0, 0.5]. Each HMC was defined by plugging the appropriate parameter values into the

symbol-labeled transition matrices in Eq. (3.7). From this HMC, the mapping and probability

functions were defined (see Eqs. (3.5) and (3.6)), producing a place-dependent IFS.

For each IFS and associated HMC, 10, 000 mixed states were generated from an initial ran-

domized state, throwing away the first 5, 000 as transients. Using a spatial algorithm from the

SciPy Python package, a convex hull was drawn around this set of points, with a small buffer. This

convex hull (the attractor “outline”) was converted into a polygon. This polygon was then evolved

independently by each symbol-labeled mapping function, producing three polygons, each associated

with a symbol. This may be visualized by referencing Fig. 5.3, where the evolved polygons are

depicted on top of the mixed-state attractor, each with a different color. We can see that the

combination of these polygons must necessarily cover the attractor.

These three symbol-labeled polygons were then combined into a single polygon or multipolygon

(a polygon with “holes” that are themselves polygons) using the geometry-processing module

Shapely [175]. This produces a more accurate outline of the attractor than the convex hull. This

process may then be repeated with the new outline for as many iterations as desired, until a polygon

or multipolygon that covers the mixed state attractor with the desired level of accuracy is produced.

The same result could be achieved by beginning with the entire simplex as the initial outline, without

any production of mixed-states. However, the step of estimating the convex hull sharply reduces

the number of required iterations and, more importantly, makes the required number more equal

across parameter space. To see this, consider that attractors taking up less of the simplex require
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several iterations to converge to the small size of the attractor. By initializing with the convex hull,

the process of converging to the attractor’s basic shape is skipped, and the iterations are merely

refinements.

In producing Fig. 5.4, we found that we could determine good outlines across parameter space

by evolving the convex hull three times. To produce Fig. 5.4a, the area of the resultant polygon

or multipolygon was found using Shapely. To produce Fig. 5.4d and Fig. 5.4d, the outline was

evolved one more time by each map, and the resultant polygons and/or multipolygons were checked

for intersection. For the binary overlap/no-overlap plot in Fig. 5.4d, only the existence of overlap

somewhere on the attractor was considered. For the percentage overlap in Fig. 5.4c, the area of

the total outline that was comprised of overlapping polygons—whether only two or all three—was

compared to the total area. The subtlety of whether an overlap region included two or three maps

was largely ignored here, but will be analyzed in future explorations of the overlap problem.
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APPENDIX H

Mandal-Jarzynski Ratchet

To work with the Mandal-Jarzynski ratchet, we reformulated it in computational mechanics

terms, which is explained in Section 8.2. In its original conception, the model was imagined as a

single symbol (“bit”) interacting with a dial that may smoothly transition between three positions,

as shown on the left in Fig. 8.3. This results in six possible states of the joint dial-symbol system,

{A ⊗ 0, A ⊗ 1, B ⊗ 0, B ⊗ 1, C ⊗ 0, C ⊗ 1}. The transitions among these six states are modeled

as a Poisson process, where Rij is the infinitesimal transition probability from state j to state i,

with i; j ∈ {A× 0, . . . , C × 1} [121]. The weight parameter ε, so named because it is intended to

model the effect of attaching a mass to the side of the dial, impacts the probability of transitions

among the six states by making 0→ 1 transitions energetically distinct from 1→ 0 transitions. This

creates a preferred “rotational direction”, since bit flips in one direction will be more energetically

beneficial than the other. This is what allows the ratchet to do useful work.

Explicitly, the transition rate matrix R is:

R =



−1 1 0 0 0 0

1 −2 1 0 0 0

0 1 −2 + ε 1 + ε 0 0

0 0 1− ε −2− ε 1 0

0 0 0 1 −2 1

0 0 0 0 1 −1


.(H.1)

To express the ratchet’s evolution over a single interaction interval of length τ , we calculate

T (τ, ε) =
(
eR(ε)τ

)ᵀ
, the transition matrix of the six-state Markov model representing the Mandal-

Jarzynski model. In turn, this six-state model with the states {A⊗0, A⊗1, B⊗0, B⊗1, C⊗0, C⊗1}

may be transformed into a three-state transducer, with states {A,B,C} and input and output
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symbols in {0, 1}. To do this, we define the projection matrices:

P0 =

I3

03

 and P1 =

03

I3

 .

Then, the transducer input-output matrices K in,out(τ, ε) for a given T (τ, ε) are given by:

K in,out(τ, ε) = (Pin)ᵀ T (τ, ε)Pout .

For all ε ∈ (0, 1) and τ ∈ (0,∞], all four K in,out(τ, ε) are positive definite matrices. This is what

is meant by “fully-connected, highly stochastic” controller—all transitions on all combinations of

symbols have positive probability. Explicitly, the probability function f(. . .) referenced in both

Fig. 8.2 and Fig. 8.3 is given by:

Pr(X ′ = x′, X = x,RN = r,RN+1 = r′)

= f(x, x′, r, r′, ε, τ)

= (Px)ᵀ TR,R′(τ, ε)Px′ .(H.2)

H.0.1. Composing a Ratchet with an Input Process’ Machine. Given an input process

generated by an HMM with transition matrices T (x), such that x ∈ {0, 1}, we may exactly calculate

the transition matrices T ′(x′) of the output process’ HMM:

T
′(x′)
RN×SN ,RN+1×SN+1

=
∑
x

Kx,x′

RN ,RN+1
T

(x)
SN ,SN+1

,

noting that the state space of the output HMM is the Cartesian product of the state space of the

transducer R and the state space of the input machine S. Although presenting this in the setting of

the Mandal-Jarzynski ratchet specifically, this method applies for any input machine and transducer,

given that the transducer is able to recognize the input [176]

That said, there are several interesting points specific to the Mandal-Jarzynski ratchet we

should highlight. As noted in the previous section, the Mandal-Jarzynski transducer matrices are

positive definite, guaranteeing that the output machine will be nonunifilar, although disallowed

state transitions in input machines are preserved in the output. (Composing the Mandal-Jarzynski
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Figure H.1. MJ ratchet functional thermodynamic regions over ε ∈ [1,−1] and
b ∈ [0, 10] with τ = 1. (Left) Purported functionality identified via by single-symbol
entropy bound Eq. (8.2). (Right) Correct functionality identified via the
entropy-rate bound IPSL Eq. (8.3).

ratchet with the Golden Mean Process in Fig. 8.3 illustrates this effect.) This is characteristic of

any transducer defined via the rate transition matrix method outlined above. The conclusion is

that the techniques required to analyze nonunifilar HMMs are required in general.

H.0.2. Biased Coin Parameter Sweep. As Section 8.4.1 discusses, we recreated the results

from Mandal and Jarzynski’s original ratchet [121] using the techniques outlined in this section

and in Chapter 8. There, the ratchet is driven by a memoryless Biased Coin and the functional

thermodynamic regions are identified via Eq. (8.2) [121]. These results are shown in Fig. H.1, on

the left, and demonstrate close agreement with the original results. As previously noted, calculating

the thermodynamic regions via Eq. (8.3) did not significantly change the identified regions, as can

be seen by comparison to the figure on the right. Although not shown here, we also recreated the

results at τ = 10, which again show strong agreement with results reported in Ref. [121].
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