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Abstract

How much information do natural systems store and process? In this work we attempt to answer this

question in multiple ways. We �rst establish a mathematical framework where natural systems are repre-

sented by a canonical form of edge-labeled hidden Markov models called ε-machines. Then, utilizing this

framework, a variety of measures are de�ned and algorithms for computing them from an ε-machine are

described.

The �rst two measures de�ned are related to the length of time a system remembers. The �rst, the

Markov order, is a well-known measure of the time one must observe a system in order to make accu-

rate predictions. Despite its statistical nature, it is shown to be a topological property of the process’s

ε-machine. The second, the recently de�ned cryptic order, quanti�es the ability to retrodict a system’s

internal dynamics. It is also shown to be a topological property of the ε-machine, and e�cient algorithms

for computing both quantities are given.

The second batch of metrics quantify information generation and storage in a system by partitioning

the observations. By considering the role of both the past and the future behavior of a system, a semantic

understanding of information generation emerges, labeling some information generation as ephemeral,

having no lasting e�ects on the system, and the rest as bound, playing a role temporal structure. Following

through with this decomposition, other quantities of less straight-forward interpretation are also de�ned.

This is followed by a thorough discussion of these quantities and other derived quantities.

Lastly the decomposition of the entropy rate into ephemeral and bound components is applied to

several standard chaotic systems through a duality between the entropy rate and the Lyapunov exponent.

This exposes new structural behaviors hitherto unknown in these systems. These revolutions hint at a

method for tuning natural or engineered systems so as to maximize the ability to harness their intrinsic

computing abilities.
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Chapter 1

Background

The premise of this work is that many natural systems can be viewed as processes: a mathematical ab-

straction of temporal behavior which makes use of, among other �elds, symbolic dynamics, stochastic

dynamical systems, information theory, and statistical mechanics. Given this common vantage a vast va-

riety of systems can be directly compared despite their myriad of physical di�erences.

The underpinning philosophy implicit in this abstraction is that many aspects of natural systems can

be understood in terms of information. In particular, the ways and amounts by which a system stores and

processes this information. Utilizing information as the common dimension for each system enables the

direct comparisons desired.

1.1 Processes
A process is a bi-in�nite sequence of random variables:

P = . . . , X−2, X−1, X0, X1, X2, . . . (1.1)

where each random variable Xt is drawn from an alphabet A which, while often �nite, can be countable

or uncountable. An arbitrary variable is chosen to ground the indexing: X0.

A process is also a subshift endowed with a shift-invariant metric:

P = (X, µ) (1.2)

X ⊆ AZ ∧ P = σ (P)

where X is a subshift, µ is a metric, and σ is the standard shift operator.

To ground notation, we denote a contiguous string of contiguous random variables starting at time t

and extending a length ` by Xt:t+`. Note that the interval notation used is closed on the left and open on

the right. This copies the interval notation of several popular programming languages including Python
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and Ruby. A particular realization of that string is xt:t+`. For simplicity, we denote the in�nite string

X−∞:t as X:t and the in�nite string Xt:∞ as Xt:. This implies that an entire process can be denoted X:.

We call a process stationary if Xt:t+` = Xt′:t′+` for all t, t′.

There exist a variety of ways to construct a process from a natural system. Perhaps the simplest way to

do so is to simply measure some property of the system at regular intervals. For example, one can measure

the voltage in an axon every nanosecond. Signals can also be processed in many ways, most notably by

discretizing them. Building o� the prior example, rather than the process being the actual voltage reading

every nanosecond, it can be a 0 if there was no spike within the past nanosecond, and a 1 if there was.

Throughout this work, we will be working with discretized processes, where A is �nite in size.

1.2 Information Theory
Continuing our trend of system agnostic tools, we �nd our analysis in the form of information theory.

Information theory, developed by Claude Shannon in 1948, posits two properties of information which

have had vast implications in areas from engineering to philosophy: �rst that information is quantitative

and can therefore be measured, and second that it is divorced from semantics. Part of this work addresses

the second property by providing meaning to some measures in the process framework. Furthermore, this

second property is what can make information-theoretic analysis a di�cult task. Interpreting exactly what

a measure quanti�es can be very nuanced and problematic.

We will now provide a terse introduction to some of the most common measures used in information

theory. There are many other useful measures, some of which are will be de�ned and utilized in the

remainder of this work. Others still are particularly niche and nuanced and require a signi�cant amount

of work to de�ne and interpret. It is an ongoing goal to unify and address all these measures in a single

document.

1.2.1 Entropy
The fundamental measure of the information contained in a random variable X is the entropy:

H[X] = −
∑
x∈X

px log2 px (1.3)

where each x is an event fromX and px is the probability of that event. It is useful to note that the entropy

is maximized when each event in X is equally likely, and in such a case H[X] = log2 |X|.

2



The entropy is considered the information content of a random variable due to Shannon’s source

coding theorem. This theorem states that a given random variable X — for example the words contained

in this dissertation — can be losslessly compressed down to a total of H[X] bits. This is independent of

compression scheme.

1.2.2 Conditional Entropy
It is sometimes of interest to ask how much information a particular random variable has given knowledge

of a second variable. This quantity is the conditional entropy:

H[X|Y ] =
∑
y∈Y

py H[X|Y = y] (1.4)

=
∑

x∈X,y∈Y
pxy log2 px|y (1.5)

where H[X|Y = y] is the entropy of the conditional distribution of X given that Y = y.

The conditional entropy is often interpreted as the amount of information in one random variable that

is not in another. This leads to a method of partitioning information sources, which can be particularly

useful when attempting to interpret how information is stored and processed.

1.2.3 Mutual Information
The mutual information is the canonical measure of shared information. It quanti�es the amount of in-

formation a random variable X contains about a second random variable Y . This is also the amount of

information that Y contains about X , and so this measure is symmetric. It is given by a variety of forms:

I[X : Y ] = H[X]−H[X|Y ] (1.6)

= H[Y ]−H[Y |X] (1.7)

= H[X,Y ]−H[X|Y ]−H[Y |X] (1.8)

=
∑

x∈X,y∈Y
pxy log2

pxy
pxpy

(1.9)

1.2.4 I-Diagrams
Taken together, these measures form a cohesive framework directly analogous to set theory. The entropy

is similar to set cardinality. Conditional entropy is similar to set di�erence. Mutual information is similar

3



H[X ] H[Y ]

H[X|Y ] H[Y |X]I[X : Y ]

Figure 1.1: A generic I-diagram for two variables, X and Y . The entropy of each variable is represented
by a circle — blue for X and red for Y . The information they share, I[X : Y ], is the area where the two
circles overlap. Information contained in the variable X but not in the variable Y , H[X|Y ], is repre-
sented by the blue crescent on the left. Similarly, information in Y but not in X is the red crescent on
the right representing H[Y |X]. Jointly, the entire diagram represents the information H[X,Y ], the joint
entropy.

to set intersection. It is furthermore accurate to visualize these measures graphically similar to Venn

diagrams. These are known as I-diagrams and an example can be seen in Fig. 1.1.

Although the diagram in Fig. 1.1 is fairly simple and straight forward, when faced with joint distribu-

tions of three, four and more variables the diagram can provided valuable insight as the the relationships

and dynamics between variables. Within the context of this work, i-diagrams are most used in chapter 3.

1.3 ε-Machines
Perhaps the most outstanding issue with applying information theory to processes is that processes are

in�nite. The standard method for overcoming this is to encapsulate the process’s behavior into an au-

tomata. These automata are a special type of probabilistic automata with a recurrent component that

consists entirely of accepting states. This class of model is also known as a hidden Markov model.
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There are an in�nite number of hidden Markov models which accurately represent any given process.

It is therefore useful to have a canonical model to associate with each process. Taking a cue from formal

language theory, we consider the smallest uni�lar1 model and refer to this form as the ε-machine.

The ε-machine has many advantageous properties beyond being the smallest of its class. Its states, S ,

correspond to the minimal su�cient statistic of the past about the future:

I[S : X0:] = I[X:0 : X0:] (1.10)

∀R s.t. I[R : X0:] = I[X:0 : X0:] : H[R] ≥ H[S] (1.11)

It is also possible to compute many useful quantities in closed form from the ε-machine; including the

entropy rate, the excess entropy, the statistical complexity, the Markov and cryptic orders, the bound and

ephemeral information rates, and the synchronization information.

To develop some intuition for processes and their associated ε-machine, let us look at a few common

examples. First consider the trivial independent, identically distributed (IID) process of �ipping an unbi-

ased coin with faces 0 and 1. The ε-machine for this process can be seen in Fig. 1.2a. There is a single

state, A, and two transitions, A
1
2
|0→ A and A

1
2
|1→ A. Each edge is labeled p|s where p is the probability of

following that edge given being in the originating state, and s is the symbol emitted by the system upon

taking that transition. Each time a coin is �ipped, it is equally likely to emit a 0 or a 1, and this is re�ected

in the single state of the ε-machine.

Our second example is that of a periodic process, in�nitely repeating . . . 01010101 . . ., and its ε-machine

is seen in Fig. 1.2b. In contrast to the unbiased coin example this process has no stochasticity: from each

state there is only a single allowed transition and therefore that transition occurs with probability 1. This

process, however, consists of two states. One state corresponds to the next symbol being a 0 and the other

to the next symbol being a 1. The states thus keep track of the phase of the process.

The third example is the golden mean process. This process has roots in one-dimensional chaotic

maps and symbolic dynamics. It consists of all possible arrangements of 0s and 1s such that there are no

consecutive 1s. Its ε-machine can be seen in Fig. 1.2c. The golden mean process is an example of a special

class of process, a Markov chain. The easiest way to see this is that all edges leading into a state are labeled

with the same unique symbol, here all edges entering state A are labeled with a 0 and all edges entering
1known as determinism in automata theory, we avoid that word due to the stochastic nature of our models and the confusion

that may arise from the phrases such as ”deterministic stochastic model”.
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stateB are labeled with a 1. Being a Markov chain means that the behavior of the golden mean process can

be accurately predicted after observing just a single symbol. This process is also the �rst example where

the stochasticity is structurally important — state A stochastically transitions to either itself or state B,

and the subsequent behavior depends upon which of these two states it went to.

The next example is structurally very similar to that of the golden mean, and is known as the even

process. The even process consists of even-length blocks of 1s punctuated by arbitrarily long blocks of

0s. Its ε-machine is represented in Fig. 1.2d. The even process is in many ways the opposite of the golden

mean process. Most notably, the even process is non-Markovian, meaning that perfect prediction requires

an arbitrarily long sequence of observations. Other di�erences between this and the golden mean process

will be discussed in chapters 2, which discusses the Markov and cryptic orders, and 3, which discusses

how they generate information.

Finally we have the noisy random phase-slip (NRPS) process. Viewing its structure in Fig. 1.2e pro-

vides us with some intuition as to why it is named this. First, there is ”noise” between states D and E

— either a 0 or a 1 can be emitted and this does not a�ect future behavior. Second, the state visitation

sequence is cyclic other that at state A, where the system can ”slip” and state in that phase of the state

visitation. As it turns out, the NRPS process is exceedingly generic and is therefore useful to illustrate a

variety of information measures.

6



A1
2 |0 1

2 |1

(a) Fair coin

A B

1|0

1|1
(b) Period 2

A B1
2 |0

1
2 |1

1|0
(c) Golden mean

A B1
2 |0

1
2 |1

1|1
(d) Even

C

B

A

E

D

1
2 |0

1
2 |1

1|0

1|1

1
2 |0

1
2 |1

1|0

(e) Noisy Random Phase-Slip

Figure 1.2: A variety of ε-machines. This sample displays a wide variety of behaviors and are represen-
tative of typical small ε-machines. The states of the system are represented by circles with an inscribed
capital letter. The system transitions from one state to another with a particular probability p and emits
a symbol s. Each edge notates this by being labeled p|s.
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Chapter 2

Many Roads to Synchrony

2.1 Introduction
Stochastic processes are often described by the spatial and temporal length scales over which correlations

exist. In physics, the range of correlations is a structural property, giving the range over which signi�cant

energetic coupling exists between the system’s degrees of freedom. In time series analysis, knowing the

length scale of correlations is key to successful forecasting. In biosequence analysis, the decay of correla-

tions along DNA base pairs determines in some measure the di�culty faced by a replicating enzyme as it

“decides” to begin copying a gene. The common element in these is that the correlation scale determines

how quickly the observer (analyzer, forecaster, or enzyme) comes to synchronize to the process—that is,

comes to know a relevant structure of the stochastic process.

We recently showed that there are a number of distinct, though related, length scales associated

with synchronizing to presentations of stationary stochastic processes [Cru10]. Here, we show that these

length scales are topological, depending only upon the underlying graph topology of a canonical model of

the stochastic process. This reveals deep ties between the structure of the minimal su�cient statistic of

a process with its observable synchronization. We will also touch upon another class of synchronization

length scales introduced in Ref. [Jam11].

Speci�cally, we investigate measures of synchronization and their associated lengths scales for hid-

den Markov models (HMMs)—a particular class of processes that have an internal (hidden) Markovian

dynamic that produces an observed data sequence. We focus on two such measures — the Markov order

and the cryptic order — and show through a series of conceptual advances how they can be e�ciently and

accurately computed from the minimal su�cient statistic of the process, known as the ε-machine.

The development proceeds as follows. We begin by introducing the two primary measures of interest

in Sec. 2.3 and demonstrate their calculation via naive methods in Sec. 2.4. Utilizing a surprising �nding

8



in Sec. 2.5, we then show to how alleviate some of the issues with the naive approach in Sec. 2.6. We

then close up the last of the issues by utilizing relevant data structures from the study of formal language

theory in Sec. 2.7. These steps provide an algorithm for us. Building from this understanding of the

�rst measure, we show how to compute the second one through similar means in Sec. 2.8. We then brie�y

touch upon other orders and their bounds in Sec. 2.9. Building o� these computational advances, we survey

the Markov and cryptic orders among ε-machinesin Sec. 2.10 and demonstrate that in�nite correlation is

a dominate property in the space of �xed-size processes and it is therefore generically hard to exactly

synchronize [Tra11] to stationary processes. We next provide an example showing how these measure

relate to one dimensional spin systems in Sec. 2.11. Finally, we conclude by discussing how these measure

relate to other measure of interest and by suggesting applications where these algorithms will prove useful.

2.2 Background
We assume the reader has an introductory knowledge of information theory and �nite-state machines,

such as that found in the �rst few chapters of Ref. [Cov06] and Ref. [Hop01], respectively. Furthermore,

we make use of ε-machines, a particular representation of a process that makes many properties directly

and easily computable; see Ref. [Sha01]. A cursory understanding of symbolic dynamics, such as that

found in the �rst few chapters of Ref. [Lin99] is useful for several of the results.

2.2.1 Processes
We denote subsequences in a time series as Xa:b, where a < b, to refer to the random variable sequence

XaXa+1Xa+2 · · ·Xb−1, which has length b− a. We will drop an index when it is in�nite, for example the

past, X−∞:0, will be denotedX:0 and the future, X0:∞, will be denotedX0:. We generally use w to refer to

a word—a sequence of symbols drawn from an alphabetA. We place two words, u and v, adjacent to each

other to mean concatenation: w = uv. We de�ne a process to be a joint probability distribution Pr(X:)

over X: = X:0X0:.

A presentation of a given process is any state-based representation that generates the process. A pro-

cess’s ε-machine is its unique, minimal uni�lar presentation 1. The recurrent states of a process’s ε-machine

are known as the causal states, and are denoted S . The causal states are the minimal su�cient statistic of

X:0 about X0:. For a thorough treatment on presentations, please see Ref. [Cru10].
1Uni�lar is known as “deterministic” in �nite automata literature. Here, we avoid that term so that confusion does not arise

due to the stochastic nature of the models being used.
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2.3 Problem Statement
When confronted with a process, one of the most natural questions to ask is how much memory does it

have. Is it like a coin or a die, with no memory? Does it alternate between two values, requiring that

the process remember its phase? Does it express patterns that are arbitrarily long, requiring an equally

arbitrarily long memory? This type of memory is quanti�ed by the Markov order:

R ≡ argmin
`
{Pr(X0|X−`:0) = Pr(X0|X0:)} (2.1)

To put it colloquially, how many prior observations must you remember to predict as well as if you

remembered the in�nite past? Markov chains haveR = 1 by their very de�nition. Hidden Markov models,

though their internal dynamics are Markovian (R = 1), their expressed, observed behavior can range from

memoryless (R = 0) to arbitrary (R =∞). A major topic of this paper will be to show how to compute a

process’s R e�ciently and accurately given its ε-machine. In this vein it is prudent to recast Eq. 2.1 into a

di�erent form:

Pr(X0|X−R:0) = Pr(X0|X:0)

=⇒ X:0∼εX−R:0

=⇒ H[S0|X−R:0] = 0

=⇒ R = argmin
`
{H[S0|X−`:0] = 0}

= argmin
`
{H[S`|X0:`] = 0} (2.2)

In essence this means that, because the past R observations predict just as well as the in�nite past, the

causal states are a function of length-R pasts.

The second primary length scale we will discuss is the cryptic order, kχ [Mah09]. Its de�nition builds

from Eq. 2.2:

kχ ≡ argmin
`
{H[S`|X0:] = 0} (2.3)

The di�erence between the two being that the cryptic order is conditioned on the in�nite future, as opposed
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to a �nite one. This provides our interpretation of the cryptic order: it is the number of causal states which

can not be retrodicted. That is, no matter how long we observe a process, the �rst kχ internal states the

process was in can not be inferred.

2.4 Naive Approach
To illustrate a direct method of observing the Markov and cryptic orders for a process, we appeal to yet

another form of their de�nitions [Cru10]:

R = argmin
`
{H[X0:`] = E + `hµ} (2.4)

kχ = argmin
`
{H[X0:`,S`] = E + `hµ} (2.5)

where E = I[X:0, X0:] is known as the excess entropy and hµ = H[X0|X:0] is known as the entropy rate.

The intuition for these is identical to those above: once we have reached the Markov (cryptic) order, we

predict as accurately as possible. It is worth noting that these de�nitions only hold for �nitary processes.

These de�nitions lead to a simple way of determining the Markov and cryptic orders of a system. To

compute the Markov order, we calculate the entropy of longer and longer blocks of contiguous observations

until the entropy grows linearly. We call this function the block entropy curve. The �rst length at which it

is growth is linear is the Markov order. To compute the cryptic order, we perform a similar feat, but rather

than calculating the entropy of blocks of observations alone, we calculate the entropy of those blocks as

well as the causal states that could be induced by those observations. We call this function the block-state

entropy curve. The length at which the block-state entropy curve is behaving asymptotically is the cryptic

order. This approach can be seen in Fig. 2.1. The data for this plot comes from 4-state, 2-symbol machine

#12810 (henceforth known simply as process #12810) shown in Fig. 2.2.

It is now important to point out the weaknesses of this approach, which are fourfold:

• Must know hµ exactly

• Must know E exactly

• Must be able to di�erentiate exactly on the asymptote from less than machine precision away from

the asymptote
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• Must be able to “guess” when R or kχ were in�nite, else we’d be computing block entropies inde�-

nitely

Two of these weaknesses are not too crippling. The entropy rate can be computed exactly from any uni�lar

model of the process, and so its calculation can be done fairly easily [Sha01]. Similarly, the excess entropy

can be computed if the joint distribution over both a uni�lar, gauge-free model of the process and a uni�lar,

gauge-free model of the reverse of the process is on hand [Ell09].

The later two weaknesses do not have such an easy solution. How are we to know if our calculation

of the entropy at length ` is exactly equal to E + `hµ, or if they are just so close that our �nite precision

calculations can not di�erentiate them? Further, if H[X0:`] has not equaledE+`hµ after ` = 1, 000, 000 we

can not assume that it never will; perhaps the process is Markov order one billion. These are, in particular,

the two weaknesses that we must overcome.

2.5 Topological
Our �rst step forward in solving this problem is to take a step back. Rather than considering the particular

process generated by the machine in Fig. 2.2, let us consider the family of processes that exist when the

probabilities are adjusted, but the structure remains the same. This family can be summarized by the

machine in Fig. 2.3. If we then compute block and block-state entropy curves from a random ensemble

of processes from this family, and plot the derivative of those curves and subtract out their asymptotic

behavior, we arrive at Fig. 2.4.

As Figure 2.4 dramatically demonstrates, the Markov and cryptic orders are, surprisingly, independent

of the transition probabilities in the structure. This means that any pattern relevant for prediction is

encoded by the ε-machine’s topology.

2.6 Synchronizing Words
On careful analysis of Eq. 2.2 it is actually not surprising that the Markov order is topological. A conditional

entropy H[X|Y ] is only zero if X is a deterministic function of Y . In this particular case, H[SR|X0:R] = 0

means that each word of length R determines a unique state of our model. That is, each word of length

R is synchronizing. If one were to begin observing a process having no inkling as to what state it was in,

after observing R symbols the exact state would be known.
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3
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E

Cµ

Rkχ

E + `hµ
H[X0:`]

H[X0:`, S`]

Figure 2.1: Block entropy and block state entropy. The block entropy curve has reached its asymptotic
behavior at ` = 3 and is therefor Markov order 3. The block-state entropy curve reaches the same
asymptote at ` = 2 and so the process is cryptic order 2.
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A B

CD

1
2 |1

1
2 |0

1
2 |1

1
2 |0

1|0

1|1

Figure 2.2: 4-state, 2-symbol process #12810. Edges are labeled p|s where p is the probability of this edge
being followed and s is the symbol emitted upon that edge being traversed.

A B

CD

1− p|1

p|0

1− q|1

q|0

1|0

1|1

Figure 2.3: Process #12810 again, but the transition probabilities have been generalized.
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kχ R

block length `

0

∆H[X0:`]− hµ
∆H[X0:`,S`]− hµ

Figure 2.4: Entropy convergence curves versus block length ` for the family of processes seen in Fig. 2.3,
with random values for p and q. The linear asymptotic behavior has been subtracted out of each curve
(see inset). The Markov and cryptic orders (the lengths at which the blue (dark) and green (lighter) lines,
respectively, become �at) are independent of the selected probabilities.
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This provides us with an improved method of determining the Markov order. Lexicographically enu-

merate words until they have synchronized to a single state. The longest such word will be the Markov

order, because by that point any word will have synchronized, and therefore the causal states will be de-

termined uniquely by words of that length. This process has been done for process #12810 in Fig. 2.5. It

can be veri�ed that at lengths 0, 1, and 2 it is possible to still have ambiguity as to what state the system

is in, for example if the two symbols observed are 10. In such a situation it is possible that the system is

in either state C or state D. One more observation is required to determine which it was. Therefore, as

observed previously, the Markov order for this process is 3.

This method has improved our situation somewhat. Now neither E nor hµ are needed at all, nor do

we need to concern ourselves with the details of comparing nearly equal �oating point values. We have

not, however, alleviated the issue of in�nities: it is quite possible for a process to have an in�nite number

of these su�x-free synchronizing words, and therefore it is not feasible to enumerate them and identify

the longest. To �x this problem, we will turn to a formal language theory.

2.7 Subset Construction
The remaining problem is how to �nd the longest su�x-free synchronizing word without having to enu-

merate them all. This can be accomplished with a very standard algorithm from the study of �nite au-

tomata. We will construct an object known as the power automata (PA), named such because its states are

elements of the power set of the states from another automata.

Begin constructing the power automata with a single state: the set of all states from the ε-machine,

this will be called the start state. Next, recursively, for each state in the PA consider which states of the

ε-machine are successors to those in the state of the PA on each symbol, and add a new state to the PA

consisting of those successors and an edge connecting the two with that symbol. Once the successors to

each state in the PA have been computed there will be a subgraph of the automata which is isomorphic to

that of the ε-machine. This subgraph is the recurrent component. It is also the largest strongly connected

component of the graph with no outgoing edges. The rest of the graph is transient.

Each path in the power automata originating from the start state and traversing only edges in the

transient part of the graph, and ending in a recurrent state of the PA, are synchronizing. To �nd the longest

synchronizing word, weight each edge in the transient part of the PA −1 and each edge of the recurrent

part 0. The Bellman-Ford algorithm (or Floyd-Warshall, see Ref. [Cor09] for details regarding both) can
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Figure 2.5: All observable words of length 3 for process #12810. Each word has been annotated with the
paths through which that word invokes synchrony. It is not until the observation of three symbols that
in all cases there is only a single possible state. There are, however, some words which induce synchrony
more quickly.
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then be employed to discover the path of least weight from the start state to any recurrent state. By the

construction of the weights, the path of least weight will be the longest. The Bellman-Ford algorithm was

chosen for two reason: �rst, it works on graphs with negative weight, and second it can detect negative

weight cycles. A negative weight cycle implies that the longest path is arbitrary (in�nite) in length.

We now have a complete method for computing the Markov order e�ciently and accurately. First,

construct the power automata. Then weight the edges according to their status as transient or recurrent.

Lastly, �nd the path of least weight from the start to a recurrent. This algorithm runs in O(A22N ) time,

which is exponential but �nite, and depends only on integer calculations, and has thus alleviated all the

computational di�culties of the naive approach.

2.7.1 Examples
A variety of qualitatively di�erent behaviors can be exhibited by processes under the Markov order algo-

rithm. Acting on process #12810, the algorithm produces a fairly simple transient structure consisting of

three nodes, ABCD, AB, and CD, seen in Fig. 2.6. There are two longest paths starting from ABCD

and ending in a recurrent node: ABCD 1→ AB
0→ CD

1→ A which is traversed with the word 101, and

ABCD
1→ AB

0→ CD
0→ D traversed with the word 100. This means that the longest synchronizing

words are 101 and 100, both of length three, and therefore the Markov order is 3.

The second example we will look at is shown in Fig. 2.7. This process has a slightly more complicated

transient structure than that of process #12810. Of particular note is the loop on state AB: this is because

statesA andB transition to each other upon production of a 0, and we can not determine which is actually

the state of the system until a 1 is produced. This inability to synchronize on some words results in a non-

Markovian process; that is, R =∞.

The Nemo process, Fig. 2.8, is our third and �nal example of the Markov order algorithm. Its transient

structure is particularly simple: a single state representing all the recurrent states. Since the recurrent

states simply permute upon emitting a zero, the word 0000. . .will never allow one to determine what state

the system is in. This once again means that the process is non-Markovian, R =∞.

2.8 Cryptic Order
We now turn our attention to the calculation of the cryptic order. Consider Eq. 2.3, and note that it con-

ditions on the in�nite future. With probability 1, each in�nite future synchronizes [Tra11]. We can then
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Figure 2.6: The power automata for process #12810. The longest path beginning from state ABCD,
traversing transient (red) edges, and ending in a recurrent (black) node is of length 3: ABCD 1→ AB

0→
CD

1→ A(or 0→ D).
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AC AB
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01
0

1

0

0

1
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1

Figure 2.7: This process is a typical example of non-Markovian behavior. The signature of this is a loop
in the transient structure, here the loop AB 0→ AB. This means there is the possibility of an arbitrarily
long series of observations which never reveal which state the system is truly in. It is exactly this which
causes the Markov order to be in�nite.
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Figure 2.8: The Nemo process is, like the process in Fig. 2.7, non-Markovian. It is perhaps more clear
here, however, as the recurrent states permute each other upon production of a 0. The transient struc-
ture makes that clear: ABC maps back to itself on a zero.
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consider the problem of calculating kχ to be that of determining as much of a state history as possible,

given a synchronizing word and the state it synchronizes to. The maximum number of states we can not

“retrodict” will be the cryptic order. Figure 2.9 depicts this process. The synchronizing paths from Fig. 2.5

are reproduced, but those paths which can not actually be traversed upon production of that word have

been removed. What remains are the paths which can actually occur for the given word. From this we

consider how many symbols into each word we must go before it is unambiguous as to which state the

system is in. The maximum of this lengths is the cryptic order.

We are again faced with the issue that there may be an in�nite number of these synchronizing words.

As with the Markov order algorithm, a better method is possible. As before, we begin by constructing

the power automata. We now consider the veracity of each transient edge. Take as an example the edge

ABC
1→ A in Fig. 2.8: it states that upon producing a 1 from the superposition of states A, B, and C ,

the system will transition to state A. Upon inspection however, the system could only have been in either

stateA or state C if it were to emit a 1. The core of the cryptic order algorithm is to address each transient

edge in the power automata and adapt to honestly re�ect the dynamics of the system. In this instance it

would create a state AC which transitions to state A instead of ABC .

After the creation of a state, the automata must be made consistent. To do this the subset construction

should be run on any newly added states. This will generally create new edges as well, and those too must

be analyzed by the cryptic order algorithm. Once every edge has been processed by the algorithm, some

transient structure will remain. Once again the longest path is the key, and the same edge weighting

method with Bellman-Ford is employed.

2.8.1 Examples
The ways in which the cryptic order algorithm can modify the power automata are broad. Each example

from Section 3.8 provides a di�erent perspective into its behavior. First we consider the behavior of the

algorithm on process #12810, the result of which can be seen in Fig. 2.10. The edge CD 0→ D can be

removed: to get to D on a 0, one must come from states A or C . However, due to that particular path of

synchronization, we know that the system must be in either state C or D. The intersection of those two,

state C , is therefore the only possible state the system could have been in, and the edge can be removed.

This is not all, however – we must maintain the provenance, and so the edgesABCD 0→ C andAB 0→ C

need to be added, since those are the edges that would have been traversed immediately prior toCD 0→ D.
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Figure 2.9: Here we see Fig. 2.5 again, except from the annotation we have removed paths which did not
survive to the end of the word. It is these surviving paths which give us the cryptic order. They have
each arrived at a single state by ` = 2, and therefor kχ = 2.
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In the end we see that the longest path from a start state to the recurrents is 2, and therefore kχ = 2, one

less than the Markov order.

We next consider the example from Fig. 2.7. The output of the cryptic order algorithm on this process

can be seen in Fig. 2.11. The power automata for this process consists of two major branches: one with a

maximum depth of 2, and the other with containing a loop. By application of the cryptic order algorithm

it is discovered that the branch with a loop is completely retrodictable. AB 1→ C is actually B 1→ C ,

and this creates edges AB 0→ B and ABC 0→ B, again to maintain provenance. The �rst of these newly

added edges is also retrodictable: AB 0→ B can only actually be A 0→ B. The second, ABC 0→ B, is in

reality AC 0→ B. Along this branch of the transient structure, we are thus only unable to retrodict the

word 01, of which the 1 can be retrodicted, leaving us with simply AC 0→ B. The other branch is more

easily processed, and leaves us withBC 1→ AC
0→ B, the later part of which was already in our structure

from the other branch. This leaves us with a longest path of length 2, making kχ = 2. This process is an

example of one with an in�nite Markov order, but �nite cryptic order.

The last example that will be considered is the Nemo process. Recall that it is in�nite Markov, as

observed in Fig. 2.8. Applying the cryptic order algorithm results in the structure shown in Fig. 2.12. In

this particular example, the transient structure actually grows under the algorithm. The edge connecting

the transient to the recurrent structure in the power automata, ABC 1→ A, is modi�ed in the algorithm

because B can not transition to A on a 1; The state AC is created, connected to A. Completing the

power automata structure from this state results in states AB and BC being added, forming the cycle

AC
0→ AB

0→ BC
0→ AC . . .. This cycle is also accurate as far as the cryptic order is concerned: each of

those states can actually be transitioned to by the recurrent states in the prior state. This cycle results in

an arbitrarily long path, and therefore kχ =∞.

2.9 Other Orders
Drawing upon the interpretation of the Markov and cryptic orders as the block length at which an in-

formation measure reaches its asymptotic behavior, we introduce �ve new orders associated with the

information measures discussed in James et al. [Jam11]. The �rst order is kI , the length at which the mul-

tivariate mutual information reaches its asymptotic behavior. Unfortunately no bounds are known for this

order.
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Figure 2.10: The result of the cryptic order algorithm applied to process #12810. The power automata,
seen in Fig. 2.6, suggests that the word 11 could originate in any of A, B, C , or D, but a careful analysis
of the recurrent structure shows that C could not be the originator of the word 11, whereas the other
three states could. The cryptic order algorithm takes such constraints into account. The longest path
from a transient state to a recurrent state is ACD 1→ AB

1→ B, and therefore kχ = 2.
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Figure 2.11: The result of the cryptic order algorithm when applied to the process seen in Fig. 2.7. The
branch of the transient structure, ABC 0→ (AB

0→ AB)∗ 1→ C , which witnessed the arbitrarily long
synchronizing word 00∗1, can be perfectly retrodicted. Further, only a fragment of the left branch of the
transient structure remains. This fragment has a length of 2, and so kχ = 2.
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Figure 2.12: The Nemo process provides a particularly illustrative example of the cryptic order algo-
rithm. The power automata contains the edge ABC 1→ A. However, upon inspection of the automata
only states A and C can transition to A on a 1. This causes the creation of an AC state. Upon the pro-
duction of a 0, AC becomes AB, and upon a second 0 that becomes BC . A third 0 completes the cycle.
These edges are legitimate: the states that truly lead to AC on a 0 are BC , and those that lead to BC are
AB, etc. There is a cycle in the cryptic order algorithm’s transient structure, and therefore we conclude
that kχ =∞.
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The others, kR, kB , kQ, and kW , are the lengths at which the residual entropy, the binding infor-

mation, the enigmatic information, and the local exogenous information all reach their respective asymp-

totes [Jam11]. Further, these four orders are equal due to the linear interdependence of their respective

measures. Here we provide lower and upper bounds for these with respect to the Markov order. Consider

Figure 8 from Ref. [Jam11]: by de�nition H[X:0] can be replaced with H[X−R:0] and, if the process is sta-

tionary, H[X1:] with H[X1:R+1]. It is therefore reasonable that it requires at least R symbols and most 2R

symbols to accurate dissect H[X0]. Indeed, numerical surveys agree with these limits.

While we have de�ned these orders, and provided bounds for some of them, it remains to be seen if

there exists an e�cient method to compute them, let alone a topological interpretation.

2.10 Survey
We illustrate applying the above results and algorithms by empirically answering several simple questions.

How typical are in�nite Markov order and in�nite cryptic order presentations in the space of �nite-state

processes?

Restricting ourselves to ε-machines, we enumerate all binary processes with a given number of states

to which one can exactly synchronize [Joh10]. Using these ε-machines one can compute, as we just

showed, their Markov and cryptic orders. The result for all of the 1, 132, 613 six-state ε-machines is shown

in Fig. 2.13.

The number of ε-machines that share a (R, kχ) pair is illustrated by the size of the circle at that (R, kχ).

It is easily seen that the vast majority of processes—in fact, 98%—are non-Markovian at this state-size (6).

Furthermore, most (85% to be exact) of those non-Markovian processes are also∞-cryptic. One concludes

that, in the space of �nite-state processes, in�nite-range correlation and in�nitely di�use internal state

information are the overwhelming rule. As a consequence, it is generically di�cult to synchronize.

Also of interest are the “forbidden” (R, kχ) pairs within the space of 6-state ε-machines. For example,

ε-machines with kχ = 4, 5, 8, 10, 11 do not occur with R = 13. In addition, in the case of in�nite Markov

order, but �nite cryptic order, the latter appears to be bounded above by kχ = 11 despite the fact that

larger �nite cryptic orders exist for �nite Markov order processes.
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Figure 2.13: The distribution of Markov order R and cryptic order kχ for all 1, 132, 613 six-state,
binary-alphabet, exactly-synchronizing ε-machines. The marker size is proportional to the number
of ε-machines within this class at the same (R, kχ) value.

29



2.11 Spin Systems
To draw a direct connection to physics, we now discuss how the Markov order is related to one dimensional

spin chains. It has been shown by Feldman [Fel98] that the Markov order,R, of an ε-machine representing

a spin system is equal to the range of interaction in the system’s Hamiltonian.

To illustrate, consider �rst the ferromagnetic, one-dimensional, nearest-neighbor Ising model. The

ε-machines for this system can be seen in Figure 2.14. As put forth above, since the system is nearest-

neighbor the Markov order should therefore be 1. This is straightforward to see from the �rst ε-machine,

that for a generic T . Without an observation there are two possible states the system could be in: ↑ or ↓.

Once a single spin has been observed, however, the state is known exactly. The story changes somewhat

at the temperature limits. At T = 0, the system will be in a ground state of either all up spins or all down

spins, but without an external �eld to break this symmetry an observation must be made to determine

which ground state the system is in and so the Markov order is still 1. If, however, there is an external �eld

there will only be a single ground state — that which is aligned with the �eld — and no observation would

be required to know which state the system is in (R = 0). At T =∞ the system collapses to a single state

where the next spin is entirely determined by thermal �uctuation, and so the Markov order is 0.

The anti-ferromagnetic, one-dimensional, nearest-neighbor Ising model is similar, and seen in Fig. 2.15.

The generic temperature and high temperature limit are identical to that of the ferromagnetic case, but

the low temperature is di�erent. At T = 0 the spin system forms a perfect crystal of alternating spins.

One must take a single observation to know what phase the crystal is in, and then the entire structure is

known and so the Markov order is one. The is not a broken symmetry like ferromagnetic case, though:

even with a non-zero external �eld an observation is still required to know which causal state the system

is in.

Given the con�guration of an unknown spin system, no dynamic, no ensemble, just a single typical

instance from the ensemble of possible con�gurations, how much can be inferred about the Hamiltonian?

While the technique described here does not provide coupling strengths or the like, it will give the maxi-

mum range of interactions. A variety of methods exist for inferring hidden Markov models from a sample,

and any HMM can be converted to an ε-machine, and from there the Markov order can be directly com-

puted.
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0 < T <∞
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2 |↑ 1

2 |↓

Figure 2.14: The ε-machines for a one dimensional ferromagnetic Ising model, where p =
1
2 (1 + tanhβ), the external �eld B = 0, and J = kB = 1.
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0 < T <∞
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Figure 2.15: The ε-machines for a one dimensional anti-ferromagnetic Ising model, where p =
1
2 (1 + tanhβ), the external �eld B = 0, and J = kB = 1.
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2.12 Conclusion
We began by de�ning two di�erent measures of memory in complex systems. The �rst, the Markov order,

is the length of time a system need to be observed in order for accurate predictions of its behavior to

be made. The second, the cryptic order, quanti�es the ability to retrodict a systems internal dynamics.

Having de�ned these quantities, we showed that despite their statistical nature they are properties of the

synchronizing words of the process’s ε-machine. From this relationship we are able to construct e�cient

algorithms for their calculation.

Armed with these algorithms we survey their occurrence among all the ε-machineswith six states

over a binary alphabet. This survey revealed a variety of interesting properties and has left a number

of open questions. We have also demonstrated the behavior of the Markov order in a class of simple spin

systems. From this we proposed its usage when confronted with a spin system of an unknown Hamiltonian.

Although these measures are not currently widely used, we hope the advent of these algorithms encourages

researchers to discover their usefulness in scienti�c research.
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Chapter 3

Anatomy of a Bit:

Information in a Time Series Observation

3.1 Summary
Appealing to several multivariate information measures—some familiar, some new here—we analyze the

information embedded in discrete-valued stochastic time series. We dissect the uncertainty of a single

observation to demonstrate how the measures’ asymptotic behavior sheds structural and semantic light

on the generating process’s internal information dynamics. The measures scale with the length of time

window, which captures both intensive (rates of growth) and subextensive components. We provide in-

terpretations for the components, developing explicit relationships between them. We also identify the

informational component shared between the past and the future that is not contained in a single obser-

vation. The existence of this component directly motivates the notion of a process’s e�ective (internal)

states and indicates why one must build

A single measurement, when considered in the context of the past and the future, contains a wealth

of information, including distinct kinds of information. Can the present measurement be predicted from

the past? From the future? Or, only from them together? Or not at all? How much of the measurement

value is due to randomness? Does that randomness have consequences for the future or it is simply lost?

We answer all of these questions and more, giving a complete dissection of a measured bit of information.

3.2 Introduction
In a time series of observations, what can we learn from just a single observation? If the series is a sequence

of coin �ips, a single observation tells us nothing of the past nor of the future. It gives a single bit of

information about the present—one bit out of the in�nite amount the time series contains. However, if

the time series is periodic—say, alternating 0s and 1s—then with a single measurement in hand, the entire
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observation series need not be stored; it can be substantially compressed. In fact, a single observation tells

us the oscillation’s phase. And, with this single bit of information, we have learned everything—the full bit

that the time series contains. Most systems fall somewhere between these two extremes. Here, we develop

an analysis of the information contained in a single measurement that applies across this spectrum.

Starting from the most basic considerations, we deconstruct what a measurement is, using this to

directly step through and preview the main results. With that framing laid out, we reset, introducing

and reviewing the relevant tools available from multivariate information theory including several that

have been recently proposed. At that point, we give a synthesis employing information measures and

the graphical equivalent of the information diagram. The result is a systematic delineation of the kinds

of information that the distribution of single measurements can contain and their required contexts of

interpretation. We conclude by indicating what is missing in previous answers to the measurement ques-

tion above, identifying what they do and do not contribute, and why alternative state-centric analyses are

ultimately more comprehensive.

3.3 A Measurement: A Synopsis
For our purposes an instrument is simply an interface between an observer and the system to which it

attends. All the observer sees is the instrument’s output—here, we take this to be one of k discrete values.

And, from a series of these outputs, the observer’s goal is to infer and to understand as much about the

system as possible—how predictable it is, what are the active degrees of freedom, what resources are

implicated in generating its behavior, and the like.

The �rst step in reaching the goal is that the observer must store at least one measurement. How many

decimal digits must its storage device have? To specify which one of k instrument outputs occurred the

device must use log10 k decimal digits. If the device stores binary values, then it must provide log2 k bits

of storage. This is the maximum for a one-time measurement. If we perform a series of n measurements,

then the observer’s storage device must have a capacity of n log2 k bits.

Imagine, however, that over this series of measurements it happens that output 1 occurs n1 times, 2

occurs n2 times, and so on, with k occurring nk times. It turns out that the storage device can have much

less capacity; using less, sometimes substantially less, than n log2 k bits.

To see this, recall that the number M of possible sequences of n measurements with n1, n2, . . . , nk
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counts is given by the multinomial coe�cient:

M =

(
n

n1 n2 · · · nk

)
=

n!

n1! · · ·nk!
.

So, to specify which sequence occurred we need no more than:

k log2 n+ log2M + log2 n+ · · ·

The �rst term is the maximum number of bits to store the count ni of each of the k output values. The

second term is the number of bits needed to specify the particular observed sequence within the class of

sequences that have counts n1, n2, . . . , nk. The third term is the number b of bits to specify the number

of bits in n itself. Finally, the ellipsis indicates that we have to specify the number of bits to specify b

(log2 log2 n) and so on, until there is less than one bit.

We can make sense of this and so develop a helpful comparison to the original storage estimate of

n log2 k bits, if we apply Stirling’s approximation: n! ≈
√

2πn (n/e)n. For a su�ciently long measurement

series, a little algebra gives:

log2M ≈ −n
k∑
i=1

ni
n

log2

ni
n

= nH[n1/n, n2/n, . . . , nk/n] .

bits forn observations. Here, the functionH[P ] is Shannon’s entropy of the distributionP = (n1/n, n2/n, . . . , nk/n).

As a shorthand, when discussing the information in a random variable X that is distributed according to

P , we also write H[X]. Thus, to the extent that H[X] ≤ log2 k, as the series length n grows the observer

can e�ectively compress the original series of observations and so use less storage than n log2 k.

The relationship between the raw measurement (log2 k) and the average-case view (H[X]), that we

just laid out explicitly, is illustrated in the contrast between Figs. 3.1(a) and 3.1(b). The di�erence R1 =

log2 k−H[X] is the amount of redundant information in the raw measurements. As such, the magnitude

of R1 indicates how much they can be compressed.

Information storage can be reduced further, since using H[X] as the amount of information in a mea-

surement implicitly assumed the instrument’s outputs were statistically independent. And this, as it turns

out, leads to H[X] being an overestimate as to the amount of information in X . For general information
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(a)

H[X]

R1
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hµ

R∞

(c)

Figure 3.1: Dissecting information in a single measurement X being one of k values.

sources, there are correlations and restrictions between successive measurements that violate this inde-

pendence assumption and, helpfully, we can use these to further compress sequences of measurements—

X1, X2, . . . , X`. Concretely, information theory tells us that the irreducible information per observation

is given by the Shannon entropy rate:

hµ = lim
`→∞

H(`)

`
, (3.1)

where H(`) = −∑{x`} Pr(x`) log2 Pr(x`) is the block entropy—the Shannon entropy of the length-`word

distribution Pr(x`).

The improved view of the information in a measurement is given in Fig. 3.1(c). Speci�cally, since

hµ ≤ H[X], we can compress even more; indeed, by an amount R∞ = log2 k − hµ.

These comments are no more than a review of basic information theory [Cov06] that used a little

algebra. They do, however, set the stage for a parallel, but more detailed, analysis of the information in an

observation. In focusing on a single measurement, the following complements recent, more sophisticated

analyses of information sources that focused on a process’s hidden states [Cru10, and references therein].

In the sense that the latter is a state-centric informational analysis of a process, the following takes the

complementary measurement-centric view.
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Figure 3.2: Systematic dissection of H[X].

Partly as preview and partly to orient ourselves on the path to be followed, we illustrate the main

results in a pictorial fashion similar to that just given; see Fig. 3.2 which further dissects the information

in X .

As a �rst cut, the information H[X] provided by each observation (Fig. 3.2(a)) can be broken into two

pieces: one part is information ρµ that could be anticipated from prior observations and the other hµ —

the random component — is that which could not be anticipated. (See Fig. 3.2(b).) Each of these pieces can

be further decomposed into two parts. The random component hµ breaks into two kinds of randomness:

a part bµ relevant for predicting the future, while the remaining part rµ is ephemeral, existing only for the

moment.

The redundant portion ρµ of H[X] in turn splits into two pieces. The �rst part—also bµ when the

process is stationary—is shared between the past and the current observation, but its relevance stops there.

The second piece qµ is anticipated by the past, is present currently, and also plays a role in future behavior.

Notably, this informational piece can be negative. (See Fig. 3.2(c).)

We can further combine all elements of H[X] that participate in structure — whether it be past, future,

or both — into a single element wµ. This decomposition of H[X] provides a very di�erent decomposition
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than hµ and ρµ. It partitions H[X] into a piece wµ that is structural and a piece rµ that, as mentioned

above, is ephemeral. (See Fig. 3.2(d).)

With the basic informational components contained in a single measurement laid out, we now derive

them from �rst principles. The next step is to address information in collections of random variables,

helpful in a broad array of problems. We then specialize to time series; viz., one-dimensional chains of

random variables.

3.4 Information Measures
Shannon’s information theory [Cov06] is a widely used mathematical framework with many advantages

in the study of complex, nonlinear systems. Most importantly, it provides a uni�ed quantitative way

to analyze systems with broadly dissimilar physical substrates. It further makes no assumptions as to the

types of correlation between variables, picking up multi-way nonlinear interactions just as easily as simple

pairwise linear correlations.

The workhorse of information theory is the Shannon entropy of a random variable, just introduced.

The entropy measures what would commonly be considered the amount of information learned, on aver-

age, from observing a sample from that random variable. The entropy H[X] of a random variableX taking

on values x ∈ A = {1, . . . , k} with distribution Pr(X = x) has the following functional form:

H[X] = −
∑
x∈A

Pr(x) log2 Pr(x) . (3.2)

The entropy is de�ned in the same manner over joint random variables—say, X and Y—where the above

distribution is replaced by the joint probability Pr(X,Y ).

When considering more than a single random variable, it is quite reasonable to ask how much uncer-

tainty remains in one variable given knowledge of the other. The average entropy in one variableX given

the outcome of another variable Y is the conditional entropy:

H[X|Y ] = H[X,Y ]−H[Y ] . (3.3)

That is, it is the entropy of the joint random variable (X,Y ) with the marginal entropy H[Y ] of Y sub-

tracted from it.

The fundamental measure of correlation between random variables is the mutual information. As

stated before, it can be adapted to measure all kinds of interaction between two variables. It can be written
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in several forms, including:

I[X;Y ] = H[X] + H[Y ]−H[X,Y ] (3.4)

= H[X,Y ]−H[X|Y ]−H[Y |X] . (3.5)

Two variables are generally considered independent if their mutual information is zero.

Like the entropy, the mutual information can also be conditioned on another variable, sayZ , resulting

in the conditional mutual information. Its de�nition is a straightforward modi�cation of Eq. (3.4):

I[X;Y |Z] = H[X|Z] + H[Y |Z]−H[X,Y |Z] . (3.6)

For example, consider two random variables X and Y that take the values 0 or 1 independently

and uniformly, and a third Z = X XOR Y , the exclusive-or of the two. There is a total of two bits of

information among the three variables: H[X,Y, Z] = 2 bits. Furthermore, the variables X and Y share a

single bit of information with Z , their parity. Thus, I[X,Y ;Z] = 1 bit. Interestingly, although X and Y

are independent, I[X;Y ] = 0, they are not conditionally independent: I[X;Y |Z] = 1.

3.5 Multivariate Information Measures
We now turn to a di�cult problem: How does one quantify interactions among an arbitrary set of vari-

ables? As just noted, the mutual information provides a very general, widely applicable method of measur-

ing dependence between two, possibly composite, random variables. The challenge comes in the fact that

there exist several distinct methods for measuring dependence between more than two random variables.

In the following, we will use the word information to name measures which involve only subsets of

entropy which are shared by multiple variables, and the word entropy for those measures which do not.

The distinction is made visually clear in Fig. 3.7. Further, although we are aware of the arbitrariness of the

names of these measures and the connotations the names may or may not carry, we do not wish the reader

to dwell on them. Rather, we would like to stress that it is the quantities themselves we are interested

in, and that the I-diagrams of Sec. 3.7.1 provide an unbiased and unencumbered method of understanding

them.

Consider a �nite setA and random variablesXi taking on values xi ∈ A for all i ∈ Z. The vector ofN

random variables X0:N = {X0, X1, . . . , XN−1} takes on values in AN . A straightforward generalization
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of Eq. (3.2) yields the joint entropy:

H[X0:N ] = −
∑
{x0:N}

Pr(x0:N ) log2 Pr(x0:N ) , (3.7)

which measures the total amount of information contained in the joint distribution. By this we mean that

if we wanted to convey the particular realization this random variable took, we would need to transmit

H[X0:N ] bits. From here onward, we suppress notating the set {x0:N} of realizations over which the sums

are taken.

In generalizing the mutual information to arbitrary sets of variables, we make use of power sets. We

let ΩN = {0, 1, . . . , N − 1} denote the universal set over the variable indices and de�ne P (N) = P
(
ΩN

)
as the power set over ΩN . Then, for any set A ∈ P (N), its complement is denoted Ā = ΩN \ A and its

cardinality is denoted |A|. Finally, we use a shorthand to refer to the set of random variables corresponding

to index set A:

XA ≡ {Xi : i ∈ A} . (3.8)

There are at least three extensions of the two-variable mutual information, each based on a di�erent

interpretation of what its original de�nition intended. The �rst is the multivariate mutual information or

co-information [Bel03]: I[X0;X1; . . . ;XN−1]. Denoted I[X0:N ], it is the amount of mutual information to

which all variables contribute:

I[X0:N ] = −
∑

Pr(x0:N ) log2

 ∏
A∈P (N)

Pr(xA)−1|A|


= −

∑
A∈P (N)

(−1)|A|H[XA] (3.9)

= H[X0:N ]−
∑

A∈P (N)
0<|A|<N

I[XA|XĀ] , (3.10)

where, e.g., I[X{1,3,4}|X{0,2}] = I[X1;X3;X4|X0, X2] and I[X{1}|X{0,2}] = H[X1|X0, X2]. It can be

veri�ed that Eq. (3.9) is a generalization of Eq. (3.4), adding and subtracting all possible entropies according

to the number of random variables they include. We will now demonstrate the usage of our notation by

way of an example, �rst using Eq. 3.9:
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I[X0;X1;X2] = H[X0] + H[X1] + H[X2]

−H[X0, X1]−H[X0, X2]−H[X1, X2]

+ H[X0, X1, X2]

and using Eq. 3.10:

I[X0;X1;X2] = H[X0, X1, X2]−H[X0|X1, X2]

−H[X1|X0, X2]−H[X2|X0, X1]

− I[X0;X1|X2]− I[X0;X2|X1]

− I[X1;X2|X0]

The multivariate mutual information has several interesting properties. First, it can be negative,

though a consistent interpretation of what this means is still lacking in the literature. Second, this measure

vanishes if any two variables in the set are completely independent. (That is, they are independent and

also conditionally independent with respect to all subsets of the other variables.) This is true regardless of

interdependencies among the other variables. The multivariate mutual information has been used in the

study of gene-environment interactions [Cha07].

In the second interpretation, the mutual information is seen as the relative entropy between a joint

distribution and the product of its marginals. Speci�cally, the starting point is:

I[X;Y ] =
∑

Pr(x, y) log2

Pr(x, y)

Pr(x) Pr(y)
, (3.11)

which is simply a rewriting of Eq. (3.4). When generalized from this form, we obtain the total correla-

tion [Wat60]:

T[X0:N ] =
∑

Pr(x0:N ) log2

(
Pr(x0:N )

Pr(x0) . . .Pr(xN )

)
=
∑

A∈P (N)
|A|=1

H[XA]−H[X0:N ] . (3.12)

The total correlation is sometimes referred to as the “multi-information” or the “integration”, though

we refrain from using these ambiguous terms. It di�ers from the prior measure in many fundamental

ways. To begin with, it is nonnegative. It also di�ers in that if X0 is independent of the others, then
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T [X0:N ] = T [X1:N ]. Finally, it compares only the individual variables to the entire set. This leads it to

include redundant correlations in the set, giving a possibly misleading representation of the dependencies

contained in the system. Indeed, this is a common problem. The total correlation and the net measure

miss, or at best con�ate unique (n > 2)-way interactions. The total correlation has been used to analyze

frequency data [Han80].

The last extension stems from the view that mutual information is the joint entropy minus all (single-

variable) unshared information—that is, we start from Eq. (3.5). When interpreted this way, the general-

ization is called the binding information [Abd12]:

B[X0:N ] = H[X0:N ]−
∑

A∈P (N)
|A|=1

H[XA|XĀ] . (3.13)

Like the total correlation, the binding information is nonnegative and independent random variables do

not change its value. Note that B[X0:N ] is a �rst approximation to the multivariate information of Eq. (3.9)

when the setsA are restricted to singleton sets. Binding information was derived in the process of de�ning

a possible measure of musical “interestingness” [Abd10].

We next de�ne three additional multivariate information measures that have not been studied pre-

viously, but appear following a similar strategy. First, we have the amount of information in individual

variables that is not shared in any way. This is the residual entropy:

R[X0:N ] = H[X0:N ]− B[X0:N ]

=
∑

A∈P (N)
|A|=1

H[XA|XĀ] . (3.14)

In a sense, it is an anti-mutual information: It measures the total amount of randomness localized to an

individual variable and so not correlated to that in its peers.

Second, we can sum the total correlation and the binding information. Then we have the local exoge-
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nous information:

W[X0:N ] = B[X0:N ] + T[X0:N ] (3.15)

=
∑

A∈P (N)
|A|=1

(H[XA]−H[XA|XĀ]) (3.16)

=
∑

A∈P (N)
|A|=1

I[XA;XĀ] . (3.17)

It is the amount of information in each variable that comes from its peers. It is a “very mutual” informa-

tion, one that discounts for the randomness produced locally—that randomness inherent in each variable

individually.

W[X0:N ] is close to the binding information, except that it uses the sum of marginals not the joint

entropy. As such, it seems to more consistently capture the role of single variables within a set than

B[X0:N ], which compares the set’s joint entropy to individual residual uncertainties.

Third and �nally, there is a measure which, for lack of a better name, we call the enigmatic information:

Q[X0:N ] = T[X0:N ]− B[X0:N ] . (3.18)

Like the multivariate mutual information—which it equals whenN = 3—it can be negative. Its operational

meaning will become clear on further discussion.

3.6 Time Series
We now adapt the general multivariate measures to analyze discrete-valued, discrete-time series generated

by a stationary process. That is, rather than analyzing sets of random variables, we specialize to a one-

dimensional chain of them. In this setting, the measures are most appropriately applied to successively

longer blocks of consecutive observations. This allows us to study the asymptotic block-length behavior of

each, mimicking the approach of Ref. [Cru03, Cru10]. For the class of processes known as �nitary (de�ned

shortly), each of these measures tend to a linear asymptote characterized by a subextensive component

and an extensive component controlled by an asymptotic growth rate.

Let’s �rst state more precisely and introduce the notation for the class of processes that are the object

of study. We consider a bi-in�nite chain . . . X−1X0X1 . . . of random variables. Each Xt, t ∈ Z, takes on

a �nite set of values xt ∈ A. We denote contiguous subsets of the time series with XA:B where the left
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· · · X−3 X−2 X−1 X0 X1 X2 X3 · · ·

X:0 X0 X1:

Figure 3.3: A process’s time series: Time indices less than zero refer to the past X:0; index 0 to the
present X0; and times after 0 to the future X1:.

index is inclusive and the right is exclusive. By leaving one of the indices o� the subset is partially in�nite

in that direction. We divide this bi-in�nite chain into three segments. First we single out the present X0.

All the symbols prior to the present are the past X:0. The symbols following the present are the future

X1:. Figure 3.3 illustrates the setting.

Our focus is on the `-blocks Xt:t+` = XtXt+1 · · ·Xt+`−1. The associated process is speci�ed by the

set of length-` word distributions: {Pr(Xt:t+`) : t ∈ Z, ` ∈ N}. We consider only stationary processes

for which Pr(Xt:t+`) = Pr(X0:`). And so, we drop the absolute-time index t. More precisely, the word

probabilities derive from an underlying time-shift invariant, ergodic measure µ on the space of bi-in�nite

sequences.

In the following, an information measure F applied to to the process’s length-` words is denoted

F [X0:`] or, as a shorthand, F(`).

3.6.1 Block Entropy versus Total Correlation
We begin with the long-studied block entropy information measure H(`) [Cru83, Eri87]. (For a review

and background to the following see Ref. [Cru03].) The block entropy curve de�nes two primary features.

First, its growth rate limits to the entropy rate hµ. Second, its subextensive component is the excess entropy

E:

E = I[X:0;X0:] , (3.19)

which expresses the totality of information shared between the past and future.

The entropy rate and excess entropy, and the way in which they are approached with increasing

block length, are commonly used quanti�ers for complexity in many �elds. They are complementary in

the sense that, for �nitary processes, the block entropy for su�ciently long blocks takes the form:

H(`) ∼ E + `hµ . (3.20)
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Recall that H(0) = 0 and that H(`) is monotone increasing and concave down. The �nitary processes,

mentioned above, are those with �nite E.

Next, we turn to a less well studied measure for time series—the block total correlation T(`). Adapting

Eq. (3.12) to a stationary process gives its de�nition:

T(`) = `H[X0]−H(`) . (3.21)

Note that T(0) = 0 and T(1) = 0. E�ectively, it compares a process’s block entropy to the case of

independent, identically distributed random variables. In many ways, the block total correlation is the

reverse side of an information-theoretic coin for which the block entropy is the obverse. For �nitary

processes, its growth rate limits to a constant ρµ and its subextensive part is a constant that turns out to

be −E:

T(`) ∼ −E + `ρµ . (3.22)

That is, ρµ = lim`→∞T(`)/`. Finally, T(`) is monotone increasing, but concave up. All of this is derived

directly from Eqs. (3.20) and (3.21), by using well known properties of the block entropy.

The block entropy and block total correlation are plotted in Fig. 3.4. Both measures are 0 at ` = 0

and from there approach their asymptotic behavior, denoted by the dashed lines. Though their asymptotic

slopes appear to be the same, they in fact di�er. Numerical data for the asymptotic values can be found in

Tables 3.1 and 3.2 under the heading NRPS (de�ned later).

There is a persistent confusion in the neuroscience, complex systems, and information theory lit-

eratures concerning the relationship between block entropy and block total correlation 1. This can be

alleviated by explicitly demonstrating a partial symmetry between the two in the time series setting and

by highlighting a weakness of the total correlation.

We begin by showing how, for stationary processes, the block entropy and the block total correlation

contain much the same information. From Eqs. (3.7) and (3.12) we immediately see that:

H(`) + T(`) = `H(1) . (3.23)

Furthermore, by substituting Eqs. (3.20) and (3.22) in Eq. (3.23) we note that the righthand side has no

subextensive component. This gives further proof that the subextensive components of Eqs. (3.20) and
1For example, see the con�ated usage of I for both the total correlation (here, T) and its rate (here, ρµ) in [Erb04]
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Figure 3.4: Block entropy H(`) and block total correlation T(`) illustrating their behaviors for the NRPS
Process.

(3.22) must be equal and opposite, as claimed. Moreover, by equating individual `-terms we �nd:

hµ + ρµ = H(1) . (3.24)

And, this is the decomposition given in Fig. 3.2(b): the lefthand side provides two pieces comprising the

single-observation entropy H(1).

Continuing, either information measure can be used to obtain the excess entropy. In addition, since

the block entropy provides hµ as well as intrinsically containing H(1), ρµ can be directly obtained from

the block entropy function by taking H(1)− hµ, yielding ρµ. The same is not true, however, for the total

correlation. Though ρµ can be computed, one cannot obtain hµ from T(`) alone—H(1) is required, but not

available from T(`), since it is subtracted out.

There are further parallels between the two quantities that can be drawn. First, following Ref. [Cru03],

we de�ne discrete derivatives of the block measures at length `:

h` = H(`)−H(`− 1) (3.25)

ρ` = T(`)− T(`− 1) . (3.26)
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These approach hµ and ρµ, respectively. From them we can determine the subextensive components by

discrete integration, while subtracting out the asymptotic behavior. We �nd that:

E =
∞∑
`=1

(h` − hµ) (3.27)

and also that

E = −
∞∑
`=1

(ρ` − ρµ) . (3.28)

Second, these sums are equal term by term.

The �rst sum, however, indirectly brings us back to Eq. (3.24). Since h1 = H(1), we have:

E = ρµ +

∞∑
`=2

(h` − hµ) . (3.29)

Finally, it has been said that the total correlation (“multi-information”) is the �rst term in E [Erb04].

This has perhaps given the impression that the total correlation is only useful as a crude approximation.

Equation (3.29) shows that it is actually the total correlation rate ρµ that is E’s �rst term. As we just

showed, the total correlation is more useful than being a �rst term in an expansion. Its utility is ultimately

limited, though, since its properties are redundant with that of the block entropy which, in addition, gives

the process’s entropy rate hµ.

3.6.2 A Finer Decomposition
We now show how, in the time series setting, the binding information, local exogenous information, enig-

matic information, and residual entropy constitute a re�nement of the single-measurement decomposition

provided by the block entropy and the total correlation [Abd12, Abd10]. To begin, their block equivalents

are, respectively:

B(`) = H(`)− R(`) (3.30)

Q(`) = T(`)− B(`) (3.31)

W(`) = B(`) + T(`) , (3.32)
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where R(`) does not have an analogously simple form. Their asymptotic behaviors are, respectively:

R(`) ∼ ER + `rµ (3.33)

B(`) ∼ EB + `bµ (3.34)

Q(`) ∼ EQ + `qµ (3.35)

W(`) ∼ EW + `wµ . (3.36)

Their associated rates break the prior two components (hµ and ρµ) into �ner pieces. Substituting their

de�nitions into Eqs. (3.7) and (3.21) we have:

H(`) = B(`) + R(`) (3.37)

= (EB + ER) + `(bµ + rµ) (3.38)

T(`) = B(`) + Q(`) (3.39)

= (EB + EQ) + `(bµ + qµ) . (3.40)

The rates in Eqs. (3.38) and (3.40) corresponding to hµ and ρµ, respectively, give the decomposition laid

out in Fig. 3.2(c) above. Two of these components (bµ and rµ) were de�ned in Ref. [Abd12] and the third

(qµ) is a direct extension. We defer interpreting them to Sec. 3.7.2 which provides greater understanding

by appealing to the semantics a�orded by the process information diagram developed there.

The local exogenous information, rather than re�ning the decomposition provided by the block en-

tropy and the total correlation, provides a di�erent decomposition:

W(`) = B(`) + T(`) (3.41)

=(EB −E) + `(bµ + ρµ) . (3.42)

So, wµ = hµ + ρµ, as mentioned in Fig. 3.2(d).

Similar to Eq. (3.23), we can take the local exogenous information together with the residual entropy

and �nd:

R(`) + W(`) = `H(1) . (3.43)

This implies that ER = −EW and that rµ and wµ are yet another partitioning of H[X], as shown earlier

in Fig. 3.2(d).

Figure 3.5 illustrates these four block measures for a generic process. Each of the four measures
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Figure 3.5: Block equivalents of the residual entropy R(`), binding information B(`), enigmatic informa-
tion Q(`), and local exogenous information W(`) for a generic process (same as previous �gure).

reaches asymptotic linear behavior at a length of ` = 9 symbols. Once there, we see that they each possess

a slope that we just showed to be a decomposition of the slopes from the measures in Fig. 3.4. Further-

more, each has a subextensive component that is found as the y-intercept of the linear asymptote. These

subextensive parts provide a decomposition of the excess entropy, discussed further below in Sec. 3.7.2.

3.6.3 Multivariate Mutual Information
Lastly, we come to the block equivalent of the multivariate mutual information I[X0:N ]:

I(`) = H(`)−
∑

A∈P (`)
0<|A|<`

I[XA|XĀ] . (3.44)

Super�cially, it scales similarly to the other measures:

I(`) ∼ I + `iµ , (3.45)

with an asymptotic growth rate iµ and a constant subextensive component I. Yet, it has di�ering impli-

cations regarding what it captures in the process. This is drawn out by the following propositions, whose

proofs appear elsewhere.

The �rst concerns the subextensive part of I(`).
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Proposition 1. For all �nite-state processes:

hµ > 0 ⇒ lim
`→∞

I(`) = 0 . (3.46)

The intuition behind this is fairly straightforward. For I(`) to be nonzero, no two observations can

be independent. Finite-state processes with positive hµ are stochastic, however. So, observations become

(conditionally) decoupled exponentially fast. Thus, for arbitrarily long blocks, the �rst and the last obser-

vations tend toward independence exponentially and so I(`) limits to 0.

The second proposition regards the growth rate iµ.

Proposition 2. For all �nite-state processes:

iµ = 0 . (3.47)

The intuition behind this follows from the �rst proposition. If hµ > 0, then it is clear that since I(`)

tends toward 0, then the slope must also tend toward 0. What remains are those processes that are �nite

state but for which hµ = 0. These are the periodic processes. For them, iµ also vanishes since, although

I(`) may be nonzero, there is a �nite amount of information contained in a bi-in�nite periodic sequence.

Once all this information has been accounted for at a particular block length, then for all blocks larger

than this there is no additional information to gain. And so, iµ decays to 0.

The �nal result concerns the subextensive component I.

Proposition 3. For all �nite-state processes with hµ > 0:

I = 0 . (3.48)

This follows directly from the previous two propositions.

Thus, the block multivariate mutual information is qualitatively di�erent from the other block mea-

sures. It appears to be most interesting for in�nitary processes with in�nite excess entropy.

Figure 3.6 demonstrates the general behavior of I(`), illustrating the three propositions. The dashed

line highlights the asymptotic behavior of I(`): both I and iµ vanish. We further see that I(`) is not
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Figure 3.6: Block multivariate mutual information I(`) for the same example process as before.

restricted to positive values. It oscillates about 0 until length ` = 11 where it �nally vanishes.

3.7 Information Diagrams
Information diagrams [Yeu91] provide a graphical and intuitive way to interpret the information-theoretic

relationships among variables. In construction and concept, they are very similar to Venn diagrams. The

key di�erence is that the measure used is a Shannon entropy rather than a set size. Additionally, an

overlap is not set intersection but rather a mutual information. The irreducible intersections are, in fact,

elementary atoms of a sigma-algebra over the random-variable event space. An atom’s size re�ects the

magnitude of one or another Shannon information measure—marginal, joint, or conditional entropy or

mutual information.

3.7.1 Four-Variable Information Diagrams
Using information diagrams we can deepen our understanding of the multivariate informations de�ned

in Sec. 3.5. Fig. 3.7 illustrates them for four random variables—X1, X2, X3, X4. There, an atom’s shade

of gray denotes how much weight it carries in the overall value of its measure. Consider for example the

total correlation I-diagram in Fig. 3.7(c). From the de�nition of the total correlation, Eq. (3.12), we see that
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each variable provides one count to each of its atoms and then a count is removed from each atom. Thus,

the atom associated with four-way intersectionX1∩X2∩X3∩X4 contained in each of the four variables

carries a total weight I[X1;X2;X3;X4] = 4 − 1 = 3. Those atoms contained in three variables carry a

weight of 2, those shared among only two variables a weight of 1, and information solely contained in one

variable is not counted at all.

Utilizing the I-diagrams in Fig. 3.7, we can easily visualize and intuit how these various information

measures relate to each other and the distributions they represent. In Fig. 3.7(a), we �nd the joint entropy.

Since it represents all information contained in the distribution with no bias to any sort of interaction, we

see that it counts each and every atom once. The residual entropy, Fig. 3.7(e), is equally easy to interpret:

it counts each atom which is not shared by two or more variables.

The distinctions in the menagerie of measures attempting to capture interactions among N variables

can also be easily seen. The multivariate mutual information, Fig. 3.7(b), stands out in that it is isolated

to a single atom, that contained in all variables. This makes it clear why the independence of any two of

the variables leads to a zero value for this measure. The total correlation, Fig. 3.7(c), contains all atoms

contained in at least two variables and gives higher weight to those contained in more variables. The local

exogenous information, Fig. 3.7(f), is similar. It counts the same atoms as the total correlation does, but

it gives them higher weight. Lastly, the binding information, Fig. 3.7(d), also counts the same atoms, but

only weights each of them once regardless of how many variables they participate in.

The lone enigmatic information, Fig. 3.7(g), counts only those variables that participate in at least

three variables and, similar to the total correlation, it counts those that participate in more variables more

heavily.

3.7.2 Process Information Diagrams
Following Ref. [Cru09] we adapt the multivariate I-diagrams just laid out to tracking information in �ni-

tary stationary processes. In particular, we develop process I-diagrams to explain the information in a

single observation, as described before in Fig. 3.2. The resulting process I-diagram is displayed in Fig. 4.1.

As we will see, exploring the diagram gives a greater, semantic understanding of the relationships among

the process variables and, as we will emphasize, of the internal structure of the process itself.

For all measures, except the multivariate mutual information, the extensive rate corresponds to one

or more atoms in the decomposition of H[X0]. To begin, we allow H[X0] to be split in two by the past.
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Figure 3.7: Four-variable information diagrams for the multivariate information measures of Sec. 3.5.
Darker shades of gray denote heavier weighting in the corresponding informational sum. For exam-
ple, the atoms to which all four variables contribute are added thrice to the total correlation and so the
central atom’s weight I[X1;X2;X3;X4] = 3.
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This exposes two pieces: hµ, the part exterior to the past, and ρµ, the part interior. This partitioning has

been well studied in information theory due to how it naturally arises as one observes a sequence. This

decomposition is displayed in Fig. 3.9(a).

Taking a step back and including the future in the diagram, we obtain a more detailed understanding of

how information is transmitted in a process. The past and the future together divide H[X0] into four parts;

see Fig. 3.9(b). We will discuss each part shortly. First, however, we draw out a di�erent decomposition—

that into rµ and wµ as seen in Fig. 3.9(c). From this diagram it is easy to see the semantic meaning behind

the decomposition: rµ being divorced from any temporal structure, while wµ is steeped in it.

We �nally turn to the partitioning shown in Fig. 3.9(b). The process I-diagram makes it rather trans-

parent in which sense rµ is an amount of ephemeral information: its atom lies outside both the past and

future sets and so it exists only in the present moment, having no repercussions for the future and being

no consequence of the past. It is the amount of information in the present observation neither communi-

cated to the future nor from the past. Ref. [Abd12] referred to this as the residual entropy rate, as it is the

amount of uncertainty that remains in the present even after accounting for every other variable in the

time series.

Ref. [Abd12] also proposed to use bµ as a measure of structural complexity [Abd12], and we tend

to agree. The argument for this is intuitive: bµ is an amount of information that is present now, is not

explained by the past, but has repercussions in the future. That is, it is the portion of the entropy rate hµ

that has consequences. In some contexts one may prefer to employ the ratio bµ/hµ when bµ is interpreted

an indicator of complex behavior since, for a �xed bµ, larger hµ values imply less temporal structure in

the time series.

Due to stationarity, the mutual information I[X0;X1:|X:0] between the present X0 and the future

X1: conditioned on the past X:0 is the same as the mutual information I[X0;X:0|X1:] between X0 and

the past X:0 conditioned on the future X1:. Moreover, both are bµ. This lends a symmetry to the process

I-diagram that does not exist for nonstationary processes. Thus, bµ atoms in Fig. 4.1 are the same size.

There are two atoms remaining in the process I-diagram that have not been discussed in literature.

Both merit attention. The �rst is qµ—the information shared by the past, the present, and the future.

Notably, its value can be negative and we discuss this further below in Sec. 3.7.2. The other piece, denoted

σµ, is a component of information shared between the past and the future that does not exist in the present

observation. This piece is vital evidence that attempting to understand a process without using a model
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Figure 3.8: I-diagram anatomy of H[X0] in the full context of time: The past X:0 partitions H[X0] into
two pieces: hµ and ρµ. The future X0: then partitions those further into rµ, two bµs, and qµ. This leaves
a component σµ, shared by the past and the future, that is not in the present X0.

for its generating mechanism is ultimately incomplete. We discuss this point further in Sec. 3.7.2 below.

Negativity of qµ
The sign of qµ holds valuable information. To see what this is we apply the partial information decompo-

sition [Wil10] to further analyze wµ = I[X0;X:0, X1:]—that portion of the present shared with the past

and future. By decomposing wµ into four pieces—three of which are unique—we gain greater insight into

the value of qµ and also draw out potential asymmetries between the past and the future.

The partial information lattice provides us with a method to isolate (i) the contributions Π{X:0}{X1:}

to wµ that both the past and the future provide redundantly, (ii) parts Π{X:0} and Π{X1:} that are uniquely

provided by the past and the future, respectively, and (iii) a part Π{X:0,X1:} that is synergistically provided

by both the past and the future. Note that, due to stationarity, Π{X:0} = Π{X1:}. We refer to this as the

uniquity and denote it ι.

Using Ref. [Wil10] we see that qµ is equal to the redundancy minus the synergy of the past and the

future, when determining the present. Thus, if qµ > 0, the past and future predominantly contribute

information to the present. When qµ < 0, however, considering the past and the future separately in

determining the present misses essential correlations. The latter can be teased out if the past and future
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Figure 3.9: Four decompositions of H[X] from Fig. 3.2, each corresponding to di�erent interpretations of
a process.
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I[X0;X:0, X1:]

I[X0;X:0] I[X0;X1:]

ρµ − ιι ι

bµ − ι

Figure 3.10: Partial information decomposition of wµ = I[X0;X:0, X1:]. The multivariate mutual infor-
mation qµ is given by the redundancy Π{X:0}{X1:} minus the synergy Π{X:0,X1:}. wµ = ρµ + bµ is the
sum of all atoms in this diagram.

are considered together.

The process I-diagram (Fig. 4.1) showed that the mutual information between the present and either

the past or the future is ρµ. One might suspect from this that the past and the future provide the same

information to the present, but this would be incorrect. Though they provide the same quantity of infor-

mation to the present, what that information conveys can di�er. This is evidence of a process’s structural

irreversibility; cf. Refs. [Cru09, Ell09]. In this light, the redundancy Π{X:0}{X1:} between the past and

future when considering the present is ρµ − ι. Furthermore, the synergy Π{X:0,X1:} provided by the past

and the future is equal to bµ − ι.

Taking this all together, we �nd what we already knew: that qµ = ρµ − bµ, The journey to this

conclusion, however, provided us with deeper insight into what negative qµ means and into the structure

of wµ and the process as a whole.

Consequence of σµ: Why we model

Notably, the �nal piece of the process I-diagram is not part of H[X0]—not a component of the information

in a single observation. This is σµ, which represents information that is transmitted from the past to the

future, but does not go through the currently observed symbol X0. This is readily understood and leads

to an important conclusion.
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If one believes that the process under study is generated according to the laws of physics, then the

process’s internal physical con�guration must store all the information from the past that is relevant for

generating future behavior. Only when the observed process is order-1 Markov is it su�cient to keep

track of just the current observable. For the plethora of processes that are not order-1 or that are non-

Markovian altogether, we are faced with the fact that information relevant for future behavior must be

stored somehow. And, this fact is re�ected in the existence of σµ. When σµ > 0, a complete description of

the process requires accounting for this internal con�gurational or, simply, state information. This is why

we build models and cannot rely on only collecting observation sequences.

The amount of information shared between X:0 and X1:, but ignoring X0, was previously discussed

in Ref. [Bal10]. We now see that the meaning of this information quantity — there denoted I1 — is easily

gleaned from its components: I1 = qµ + σµ.

Furthermore, in Refs. [Abd12], [Abd10], and [Bal10], e�cient computation of bµ and I1 were not

provided and the brute force estimates are inaccurate and very compute intensive. Fortunately, by a direct

extension of the methods developed in Ref. [Ell09] on bidirectional machines, we can easily compute both

rµ = H[X0|S+
0 ,S−1 ] and I1 = I[S+

0 ,S−1 ]. This is done by constructing joint probabilities of forward-time

and reverse-time causal states — {S+} and {S−}, respectively — at di�erent time indices employing the

dynamic of the bidirectional machine. This gives closed-form, exact methods of calculating these two

measures, provided one constructs the process’s forward and reverse ε-machines. bµ follows directly in

this case since it is the di�erence of hµ and rµ; the former is also directly calculated from the ε-machine.

Decompositions of E

Using the process I-diagram and the tools provided above, three unique decompositions of the excess

entropy, Eq. (3.19), can be given. Each provides a di�erent interpretation of how information is transmitted

from the past to the future.

The �rst is provided by Eqs. (3.37)-(3.40). The subextensive parts of the block entropy and total cor-
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relation there determine the excess entropy decomposition. We have:

E =EB + ER (3.49)

=−EB −EQ (3.50)

=
1

2
(ER −EQ) (3.51)

=− 1

2
(EW + EQ) . (3.52)

We leave the meaning behind these decompositions as an open problem, but do note that they are distinct

from those discussed next.

The second and third decompositions both derive directly from the process I-diagram of Fig. 4.1.

Without further work, one can easily see that the excess entropy breaks into three pieces, all previously

discussed:

E = bµ + qµ + σµ . (3.53)

And, �nally, one can perform the partial information decomposition on the mutual information I[X:0;X0, X1:].

The result gives an improved understanding of (i) how much information is uniquely shared with the ei-

ther the immediate or the more distant future and (ii) how much is redundantly or synergistically with

both.

The decompositions provided by the atoms of the process I-diagram and those provided by the subex-

tensive rates of block-information curves are conceptually quite di�erent. It has been shown [Cru03] that

the subextensive part of the block entropy and the mutual information between the past and the future,

though equal for one dimensional processes, di�er in two dimensions. We believe the semantic di�erences

shown here are evidence that the degeneracy of alternate E-decompositions breaks in higher dimensions.

3.8 Examples
We now make the preceding concrete by calculating these quantities for three di�erent processes, selected

to illustrate a variety of informational properties. Figure 3.11 gives each process via it’s ε-machine [Sha01]:

the Even Process, the Golden Mean Process, and the Noisy Random Phase-Slip (NRPS) Process. A process’s

ε-machine consists of its causal states—a partitioning of in�nite pasts into sets that give rise to the same

predictions about future behavior. The state transitions are labeled p|swhere s is the observed symbol and

p is the conditional probability of observing that symbol given the state the process is in. The ε-machine
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representation for a process is its minimal uni�lar presentation.

Table 3.1 begins by showing the single-observation entropy H[1] followed by hµ and ρµ. Note that

the Even and the Golden Mean Processes cannot be di�erentiated using these measures alone. The table

then follows with the �ner decomposition. We now see that the processes can be di�erentiated. We can

understand fairly easily that the Even Process, being in�nite-order Markovian, and consisting of blocks

of 1s of even length separated by one or more 0s, exhibits more structure than the Golden Mean Process.

(This is rather intuitive if one recalls that the Golden Mean Process has only a single restriction: it cannot

generate sequences with consecutive 0s.) We see that, for the Even Process, rµ is 0. This can be understood

by considering a bi-in�nite sample from the Even Process with a single gap in it. The structure of this

process is such that we can always and immediately identify what that missing symbol must be.

These two processes are further di�erentiated by qµ, where it is negative for the Even Process and

positive for the Golden Mean Process. On the one hand, this implies that there is a larger amount of

synergy than redundancy in the Even Process. Indeed, it is often the case, when appealing only to the

past or the future, that one cannot determine the value of X0, but when taken together the possibilities

are limited to a single symbol. On the other hand, since qµ is positive for the Golden Mean Process we

can determine that its behavior is dominated by redundant contributions. That wµ is larger for the Even

Process than the Golden Mean Process is consonant with the impression that the former is, overall, more

structured.

The next value in the table is σµ, the amount of state information not contained in the current observ-

able. This vanishes for the Golden Mean Process, as it is order-1 Markovian. The Even Process, however,

has a signi�cant amount of information stored that is not observable in the present.

Last in the table is a partial information decomposition of I[X0;X:0, X1:]. qµ is given by Π{X:0}{X1:}−

Π{X:0,X1:}. Of note here is that the NRPS process’s nonzero uniquity ι = 0.02437. For the Even and Golden

Mean Processes it vanishes. That is, in the NRPS Process information is uniquely communicated to the

present from the past and an equivalent in magnitude, but di�erent, information is communicated to the

future. Thus, the NRPS Process illustrates a subtle asymmetry in statistical structure.

Table 3.2 then provides an alternate breakdown of E for each prototype process. We use this here to

only highlight how much the processes di�er in character from one another. The consequences of the �rst

decomposition of excess entropy—E = bµ + qµ + σµ—follow directly from the previous table’s discussion.

The second and third decompositions into ER + EB and −EB −EQ vary from one another signi�cantly.
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Figure 3.11: ε-Machine presentations for the three example processes.
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Even Golden Mean NRPS
H[1] 0.91830 0.91830 0.97987
hµ 0.66667 0.66667 0.50000
ρµ 0.25163 0.25163 0.47987
rµ 0.00000 0.45915 0.16667
bµ 0.66667 0.20752 0.33333
qµ -0.41504 0.04411 0.14654
wµ 0.91830 0.45915 0.81320
σµ 0.66667 0.00000 1.09407
Π{X:0}{X1:} 0.25163 0.25163 0.45550
ι : Π{X:0},Π{X1:} 0.00000 0.00000 0.02437
Π{X:0,X1:} 0.66667 0.20752 0.30896

Table 3.1: Information measure analysis of three processes.

Even Golden Mean NRPS
E 0.91830 0.25163 1.57393
bµ 0.66667 0.20752 0.33333
qµ -0.41504 0.04411 0.14654
σµ 0.66667 0.00000 1.09407
ER 4.48470 0.41504 1.55445
EB -3.56640 -0.16341 0.01948
EQ 2.64810 -0.08822 -1.59342
EW -4.48470 -0.41504 -1.55445
Π{X0}{X1:} 0.25163 0.04411 0.47987
Π{X0} 0.00000 0.20752 0.00000
Π{X1:} 0.00000 0.00000 0.76073
Π{X0,X1:} 0.66667 0.00000 0.33333

Table 3.2: Alternative decompositions of excess entropy E for the three prototype processes.

The Even Process has much larger values for these pieces than the total E, whereas the NRPS process has

two values nearly equal to E and one very small. The Golden Mean Process falls somewhere between

these two.

The �nal excess entropy breakdown is provided by the partial information decomposition of I[X:0;X0, X1:].

Here, we again see di�ering properties among the three processes. The Even Process consists only of re-

dundancy Π{X:0}{X1:} and synergy Π{X:0,X1:}. The Golden Mean Process contains no synergy, a small

amount of redundancy, and most of its information sharing is with the present uniquely. The NRPS Pro-

cess possesses both synergy and redundancy, but also a signi�cant amount of information shared solely

with the more distant future.

And, �nally, Fig. 3.12 plots how hµ partitions into rµ and bµ for the Golden Mean family of processes.
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Figure 3.12: The breakdown of hµ for the Golden Mean Process. The self-loop probability was varied
from 0 to 1, adjusting the other edge’s probability accordingly.

This family consists of all processes with ε-machine structure given in Fig. 3.11(b), but where the outgoing

transition probabilities from state A are parametrized. We can easily see that for small self-loop transition

probabilities, the majority of hµ is consumed by bµ. This should be intuitive since, when the self-loop

probability is small, the process is nearly periodic and rµ should be nearly zero. On the other end of the

spectrum, when the self-loop probability is large, hµ is mostly consumed by rµ. This is again intuitive

since observations from that process are dominated by 1s and the occasional 0—which provides all the

entropy for hµ—has no e�ect on structure.

3.9 Concluding Remarks
We began by outlining a conceptual decomposition of a single observation in a time series: a single ob-

servation contains a hierarchy of informational components. We then made the decomposition concrete

using a variety of multivariate information measures. Adapting them to time series, we showed that their

asymptotic growth rates are identi�ed with the hierarchical decomposition. To unify the various com-

peting views, we provided the measurement-centric process I-diagram, demonstrating that it concisely

reveals the semantic meaning behind each component in the hierarchy.
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Once the measurement-centric process I-diagram was available, we isolated two components, analyz-

ing in detail their meaning. We utilized the partial information lattice [Wil10] to re�ne our understanding

of when the past and the future redundantly and synergistically inform the present. This allowed us to

explain a subtle statistical asymmetry—the directionality in the di�erence between ρµ and Π{X:0}{X1:}.

The other atom we singled out in the process I-diagram was σµ. It is the most compelling evidence that

analyzing a process from its measurements alone, without constructing a state-based model, is ultimately

limited. We also quickly stated how a model of the type studied in computational mechanics can be used

to give closed-form expressions for many of the quantities discussed which allow for exact calculation of

their values.

Next, we discussed how the di�erent methods and measures relate to one of the most widely used

complexity measures—the past-future mutual information or excess entropy. In particular, we showed

how they yield four distinct decompositions and, in some cases, give useful interpretations of what these

decompositions mean operationally.

Then, we calculated all the measures for three di�erent prototype processes, each highlighting par-

ticular features of the information-theoretic decompositions. We gave interpretations of negative mutual

informations, as seen in qµ. The interpretations were consistent, understandable, and insightful. In light

of the partial information decomposition, there is nothing untoward about negative informations.

By adapting it to the time series setting, we highlighted a key weakness of the total correlation (or

multi-information). This undoubtedly explains the lack of interest in using it in the time series setting,

though the weakness still holds when it is used to analyze any group of random variables. The weakness

has led to persistent over-interpretations of what it describes. It also may have eclipsed the importance of

its more complete analog, such as the block entropy, in the settings of networked random variables.

We believe that the decompositions detailed here provide useful tools for information-theoretic time

series analysis, and that rµ and bµ potentially have many interesting uses due to their data-centric nature.

For example, it is possible that bµ is useful in constructing error-correcting codes since a time series with

small rµ
hµ

has a high recovery rate from single-site deletions. This is because if there is no entropy in the

value of a site given its neighbors (the past and the future), there is only one value that could have been

in that site while still respecting the correlations present. This can be seen clearly with the Even process.

In closing, we take a longer view. There is an exponential number of possible atoms for N -way

information measures. In addition, there is a similarly large number possible partial information decom-
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positions for N variables. This diversity presents the possibility of a large number of independent e�orts

to de�ne and uniquely motivate why one or the other information measure is the best. Indeed, many

of these yet-to-be-explored measures may be useful. In this light, there is a bright future for developing

information measures adapted to a wide range of nonlinear, complex systems. And, helpfully, a unifying

framework appears to be emerging.
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Chapter 4

Forgetting and Remembering in Chaotic Dynami-

cal Systems: A Novel Measure of Information Pro-

cessing in Chaos

4.1 Summary
One of the most fundamental measures of a chaotic dynamical system is its Lyapunov exponent. Utilizing

Pesin’s relation and a recently introduced measure of stochastic complexity, we show that the Lyapunov

exponent can be naturally decomposed in to two semantically meaningful components and so is not as

fundamental as it may seem. Of the information generation in a chaotic system, we show that some

of it is “forgotten” and some is “remembered”. We associate the remembered component with intrinsic

computation. This framework is then applied to the logistic, tent, and Lozi maps demonstrating hitherto

unknown features.

4.2 Introduction
Many systems generate information. Ants form intricate, structured nests. Magnets form complex domain

structures. Music compositions weaves theme and structure with surprise and innovation. The population

dynamics of species can be chaotic. Here we focus on one- and two-dimensional discrete time chaotic

maps which can model many real-world systems.

While many systems generate information via stochasticity — thermal �uctuations, for example —

deterministic chaotic dynamical systems generate information via the stretching and folding of their phase

space leading to their signature sensitivity to initial conditions. However, this information generation has

long eluded a more rigorous understanding as to its quality.

To ground what we mean by this, consider two systems. The �rst, a coin: each �ip independent

of the others leading to simple, uncorrelated randomness. The second system, a stock: while its price
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may �uctuate, the direction and magnitude of those �uctuations tell us much of the systems following

behavior. Here we make this distinction rigorous, dividing the entropy generation of a chaotic map into a

component that is relevant to temporal structure and a component which is divorced from it. We believe

the �rst component — the part that is structurally relevant — is the observation of the systems internal

information processing, and therefore is of practical interest to those wishing to harness such systems for

useful means (See [Dit10], for example).

The organization of this paper is as follows: in section 4.3 we de�ne and provide intuition for the

information measures. Then in section 4.4 we dive directing into their calculation for a selection of discrete

time maps: the logistic map, the tent map, and the Lozi map. Finally in section 4.5 we summarize our

�ndings and speculate about their implications and future applications.

4.3 Anatomy
In an e�ort to remain as general as possible we analyze systems as processes, bi-in�nite sequences of ran-

dom variables with shift-invariant statistics: . . . , X−2, X−1, X0, X1, X2, . . .. Speci�cally for our domain

of chaotic dynamical systems, a standard generating partition will produce a process. We denote a con-

tiguous block of observations beginning at index t and extending for a length ` by Xt:t+`. Note that this

notation is closed on the left and open on the right. To denote semi-in�nite blocks we will leave one index

blank, for exampleX:t is all symbols up to but excluding t. Similarly,Xt: is all observations from t onward.

This implies that the process itself can be denoted X:.

Here we wish to segment our bi-in�nite sequence into three components. We �rst isolate a single

observation, for simplicity X0, and refer to it as the present. Everything prior to this, X:0, is therefore the

past, and everything after, X0:, is the future. The information-theoretic relationships between these three

random variables are expressed in Fig. 4.1, known as an I-diagram [Cov06].

The rate of information generation in a process is the amount of new information in an observation

given all the information in prior observations [Cov06]:

hµ = H[X0|X:0] (4.1)

This quantity arises in many contexts and goes by many names: the Shannon entropy rate, the Kolmogorov-

Sinai entropy, and the metric entropy, for example. The dual of the entropy rate is the predicted informa-
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H[X:0] H[X1:]

H[X0]

σµ

H[X0]

Figure 4.1: The I-Diagram of the past, present and future. There exist seven distinct ways that informa-
tion can be partitioned among the three temporal variables. Here we focus on the four regions contained
in the present, X0, represented as a blue circle here.

tion:

ρµ = I[X:0 : X0] (4.2)

It is the information in present that can be predicted from prior observations.

Although counter-intuitive, by simple application of a chain rule it can be shown that:

H[X0|X:0] = I[X0 : X0:|X:0] + H[X0|X:0, X0:] (4.3)

hµ = bµ + rµ (4.4)

That is, the entropy rate is equal to the information shared by the present and the future given the past,

plus the information in the present given both the past and the future.

This decomposition was at least partially studied �rst by Verdú and Weissman[Ver08] where they

de�ned the erasure entropy (there denoted H−, here rµ) for the analysis of erasure channels. Here we

refer to this quantity as the ephemeral information, as it is information that exists only in a single moment.

The other component of the decomposition, predictive information rate bµ, here referred to as the bound
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ρµ

hµ

bµ

rµ

Figure 4.2: Decomposition of the present, X0, into rµ, bµ, and ρµ. ρµ, the component which overlaps
with the past, X:0, and represents redundant information, which could be predicted. rµ is the component
which is outside both the past, X:0, and the future, X0:, and represents ephemeral information, which
does not contribute to temporal structure. The remaining component, bµ, is the component in the future
but not in the past, which represents new, structural information — we refer to this as bound.

information1, was �rst studied as a measure of interestingness in computational musicology by Abdallah

and Plumbley[Abd12], where they also suggested its use as a general measure of complexity. For a more

complete analysis of this decomposition as well as methods of computation and related measures, see

James et al[Jam11].

Isolating the information contained in the present, H[X0], from Fig. 4.1 and labeling the decomposi-

tion, we get Fig. 4.2. This gives us a particularly intuitive way of thinking about the information contained

in an observation. Some of the behavior can be predicted, ρµ, the rest can not be predicted (hµ). Of that

which can not be predicted, some plays a role in the future behavior, bµ, and some does not, rµ. This is a

natural decomposition provided by the time series resulting in a semantic understanding of the entropy

rate.

By way of example, let us consider a few simple processes and how they decompose into these three
1We refer to it as the bound information due to criticisms of the term predictive information which are beyond the scope of

this paper.
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values. A periodic process of alternating 0s and 1s has H[X0] = 1 since 0s and 1s occur equally often. Given

a prior observation, one can accurately predict exactly which symbol will occur next, and so H[X0] = ρµ =

1. On the other extreme is a coin �ip. Again each outcome is equally likely and so H[X0] = 1. In this case,

however, each �ip is independent of all others and so H[X0] = rµ = 1.

In between lie the interesting processes: those with stochastic structure. These typically will have all

three components of the decomposition non-zero. These patterns are what separate meaning from noise.

Not being purely predictable nor independently random, these patterns are captured by bµ. The more

intricate the pattern, the larger bµ. The generation of these patterns requires computation, and so we

propose the use of bµ as a simple method of discovering intrinsic computation: where there are intricate

patterns, there is sophisticated processing.

4.4 Maps
We now turn our attention to discrete time chaotic dynamical systems. To enable us to analyze these

systems we call upon Pesin’s theorem[Pes77] which states that the entropy rate of a system is equal to

the sum of its positive Lyapunov exponents. Since the maps considered here have but a single positive

Lyapunov exponent, that alone is equal to the entropy rate. Since we know how to decompose the entropy

rate into these semantically meaningful, we can therefore decompose the Lyapunov exponent.

For each of these example systems we utilize the standard generating partition of:

xn =


0 if sn < 1

2

1 if sn ≥ 1
2

(4.5)

and generate an extremely long sample (≈ 1010). From this long sequence, we use a sliding window

technique with a window size appropriate for the given Lyapunov exponent (e.g. when the system has a

low Lyapunov exponent we use a much longer window size than when the system is fully chaotic), with

a minimum window size of 31. From these windows we partition them into a past, present, and future.

From this partition we approximate both rµ and bµ. The minimum window size and scaling of the window

size were chosen such that the numerical values obtained vary by less than 0.01% when the window size

is incremented.

The logistic map is perhaps the most studied chaotic system. It is de�ned by the following mapping:

xn+1 = rxn(1− xn) (4.6)
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Figure 4.3: The anatomy decomposition applied to the logistic map. The map’s bifurcation diagram is in
the background for reference. The lower component, green in color, is bµ, the portion of hµ that is bound
and structurally relevant. The upper component, blue in color, is rµ, the portion of hµ that is ephemeral
and structurally irrelevant.
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Figure 4.4: The anatomy decomposition applied to the tent map. The map’s bifurcation diagram is in the
background for reference. The lower component, green in color, is bµ, the portion of hµ that is bound
and structurally relevant. The upper component, blue in color, is rµ, the portion of hµ that is ephemeral
and structurally irrelevant. Note that although the sum of both rµ and bµ, hµ, is a smooth function of a,
their decomposition is not.

where r is a control parameter between 0 and 4, and xn is drawn from the unit interval. The results of our

analysis can be seen in Fig. 4.3, where a number of interesting features need to be pointed out.

Firstly, the information generation of a chaotic system is, in fact, a mixture of ephemeral and bound,

consequential information at nearly all parameter values. For the most part, the division into these two

components varies in non-trivial ways as a function of r. The boundary between the two seems to be non-

di�erentiable, but this in and of itself should not be surprising given that hµ (= λ) is non-di�erentiable.

Furthermore, where band-merging occurs are the only non-trivial parameter values where bµ is zero.

To discover if the rµ - bµ boundary is complex and non-di�erentiable due to the nature of these

measures, or if it is simply a consequence of the fact that the Lyapunov exponent has these properties,
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Figure 4.5: The anatomy decomposition of the Lozi map. On the left is hµ, the positive Lyapunov expo-
nent of the map, and on the right is bµ (di�erent color scales). The areas of parameter space where bµ is
maximized are on the upper-right and lower-right edges of the attractor region.

we turn to the tent map. The tent map is a (mostly) linearized variant of the logistic map de�ned by the

mapping:

xn+1 = a

(
1− 2

∣∣∣∣xn − 1

2

∣∣∣∣) (4.7)

where a is a control parameter between 0 and 2. The Lyapunov exponent for the tent map is simply

λ = log2 a, and so if the decomposition into rµ and bµ were a simple function of λ, we’d see a simple

division between them in the tent map.

Figure 4.4, however, demonstrates that this can not be true. We see here that, despite the simplicity

of hµ, rµ and bµ are again non-di�erentiable. This fairly de�nitively implies that these quantities are

extracting something both quantitatively and qualitatively new from the system. Once again we �nd that

hµ = rµ at parameter values that correspond to band mergings in the bifurcation diagram.

These analysis can be extended into two dimensions by considering the Lozi map. The Lozi map is a
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two-dimensional extension of the tent map de�ned by the following mappings:

xn+1 = 1− a |xn|+ yn (4.8)

yn+1 = bxn

Note that when b = 0 the system is isomorphic to the tent map. The map has a vaguely diamond-shaped

attractor region in the region 1.0 < a < 2.0 and −0.9 < b < 0.9.

It is this region we focus on in Fig. 4.5. The entropy rate, hµ, varies smoothly over the attractor region,

whereas bµ varies greatly. There are swaths of low bµ that correspond to “fuzzy” band mergings in the

bifurcation diagram. It is also interesting to note that the regions of maximal bµ are o� the b = 0, which

is where maximal hµ exists.

4.5 Conclusion
We have shown that the entropy rate of a process can be decomposed via a chain rule into two semantically

meaningful components. These components, the ephemeral rµ and the bound bµ, provided a new insight

into the behavior of a system without any modeling or other domain-speci�c knowledge. We also argue

that bµ is a strong though indirect measurement of internal computation. Due to Pesin’s relation, we can

import this decomposition into chaotic dynamical systems and break the Lyapunov exponent into those

two components.

Applying this decomposition logistic, tent, and Lozi maps details the topography of their internal-

computation landscape. We propose that the analysis and usage of this landscape can lead to improved

engineering of natural systems such as Chaogates [Dit10], DNA computing, and the like. While a simple

geometric interpretation, such as that which exists of the Lyapunov exponent, has thus far eluded us for

rµ and bµ, we strongly believe that such an interpretation exists do to the natural and straightforward

de�nition and interpretation of these quantities.

4.A Computing bµ Analytically
Due to the large amount of data required for an accurate calculation of bµ, it is advantageous to have a

method for computing it analytically so as to verify the accuracy of the numerical approximations. This

is possible if one can construct a model of the discretized dynamics in both the forward and backwards
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directions. From these models bµ can be computed via:

bµ = I[X0 : S+
0 |S−1 ] (4.9)

where S+
0 is the forward model’s state distribution at time 0 and S−1 is the backwards model’s state distri-

bution at time 1.

We will now explicitly do this calculation for one parameter value of the tent map. In particular,

consider the Misiurewicz point where f4(1
2) = f5(1

2). Solving this gives us:

a =
3

√√
19

27
+ 1 +

2

3 3

√√
19
27 + 1

(4.10)

= 1.76929235 . . .

At this parameter value the tent map admits a Markov partition as seen in Figure. 4.6

As noted in Eq. 4.9, we require a particular form of model to be able to compute bµ, and so we must

transform the model in Fig. 4.7 into one that is uni�lar, and in particular to the ε-machine. The result can

be seen in Fig. 4.8

Lastly, we construct the bidirectional model of the process, seen in Fig. 4.9. From this model we

construct Pr(S+
0 ,S−0 , X0,S+

1 ,S−1 ) which allows for the calculation of H[X0|S+
0 ,S−1 ] and I[X0 : S−1 |S+

0 ]

which are rµ and bµ respectively. Utilizing this structure we �nd that, for the tent map at a:

hµ = log2 a = log2

(
3
√

9 +
√

57 +
3
√

9−
√

57

3
2
3

)
= 0.823172 . . . (4.11)

rµ =
1

4

(
3− 2

a+ 1
− 4

a+ 2
+

9

2a+ 3

)
(4.12)

=
1

9

 3
√

207
√

57− 1349

192/3
− 32

3

√
19
(
207
√

57− 1349
) + 7

 = 0.648258 . . . (4.13)

bµ = hµ − rµ = 0.174915 . . . (4.14)
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Figure 4.6: The tent map’s invariant distribution at parameter a as de�ned in Eq. 4.10. It consists of three
contiguous uniform parts, each colored di�erently for clarity. Those same colors are superimposed on
the map itself along with guides to show that these uniform parts do indeed form a Markov partition.
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a
2(a+1)
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xn+1 = 1− a |xn|+ yn yn+1 = bxn

Figure 4.7: On the left is the Markov chain induced by the Markov partition. Once the standard gener-
ating partition has been applied the edges become labeled resulting in the hidden Markov model on the
right.

A

B

C D

1
a+2

|0

a+2
2a+2

|0

a2+2a
2a2+4a+2

|0

1|1 a
2a+2

|1
a+1
a+2

|1

a2+2a+2
2a2+4a+2

|1

xn+1 = 1− a |xn|+ yn yn+1 = bxnxn+1 = 1− a |xn|+ yn yn+1 = bxn
xn+1 = 1− a |xn|+ yn yn+1 = bxn

Figure 4.8: The ε-machine form of the hidden Markov model seen in Fig. 4.7. Note that for each state,
there is at most a single outgoing edge with each symbol. This makes the states a function of X:0, and
allows for the calculation we need.
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Figure 4.9: The bidirectional model of the process generated by the tent map at the parameter a. The
states of this model are pairs S+

0 ,S−0 . This model will allow us to compute H[X0|S+
0 ,S−1 ] and thus rµ

and bµ.
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Chapter 5

Conclusions

Perhaps the single most important thing I have learned while studying complex systems is that the inter-

pretation of measures is a very subtle and precarious thing. I have made a supreme e�ort throughout my

work thus far to be reserved in the claims I make regarding the meaning and importance of the measures

I work with. Unfortunately due to the somewhat sterile de�nitions, interpretation is necessary.

By way of example, consider I[X:0 : X0:]. It is reasonable to call this the information shared between

the past and the future of a system. This, however, is not a particularly useful interpretation. We would

like a more operational description. One common name for this quantity is predictive information. This

title is fraught with peril. While it is true that this is the amount of information about the future that can be

predicted from the past, this is not, however, the amount of information required to make this prediction.

Why this discrepancy? The simple, though non-intuitive answer, is that the mutual information

between two random variables is not itself the entropy of a “shared” random variable. Therefore if one

wishes to make the best predictions possible, you must �nd a random variable which contains I[X:0 : X0:]

as a portion of its entropy. The entropy of the smallest such random variable is known as the generative

complexity[Loh09], and can be arbitrarily larger than I[X:0 : X0:].

The story does not end there, however. The generative complexity is the smallest entropy of any

random variable that captures I[X:0 : X0:]. Operationally though, one can not in general construct this

random variable. What is needed is a random variable that is a function of the observables thus far, X:0.

The entropy of the smallest random variable that is a function ofX:0 is known as the statistical complexity.

Again, this can be arbitrarily larger than not only I[X:0 : X0:], but also than the generative complexity.

This narrative is unfortunately just a small sample of the subtleties that arise when using, interpret-

ing, and de�ning complexity measures. It is my sincerest hope that I have not added to this collective

uncertainty and frustration. The Markov and cryptic orders are, luckily, di�cult to misinterpret. The

ephemeral and bound information are unfortunately ripe for interpretational di�culties.
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As my tenure as a graduate student comes to a close I �nd myself continuing to be drawn toward

information theory with interpretational di�culties, namely the issue of negative information. This has

been a relatively hot topic in the �eld of late, sparked by the work of Williams and Beer[Wil10]. This

work, though groundbreaking, is considered lacking by many. Although a number of solutions have been

proposed, none have been commonly accepted. This is one direction I wish to head in.

The other direction of primary interest to me is applications of rµ and bµ. These measures are of

broad appeal and applicability, providing insight into nearly any system where the entropy rate is stud-

ied. Possibilities include the analysis of DNA, the study of pseudorandom number generators, analysis of

written text, cryptography and cyphertexts, just to name a few. In time I suspect that researchers will be

less interested in how much information a system generates (hµ), but rather how much relevant, or bound,

information it generates (bµ).
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