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SUMMARY

Through its formalization of inductive inference, computational learning theory pro-
vides a foundation for the inverse problem of chaotic data analysis: inferring the deter-
ministic equations of motion underlying observed random behavior in physical systems.
Integrating the geometric and statistical techniques of dynamical systems with leaming the-
ory provides a framework for consistently, although not absolutely, distinguishing between
deterministic chaos and extrinsic fluctuations at a given level of computational resources.
Two approaches to the inverse problem, estimating symbolic equations of motion and
reconstructing minimal automata from chaotic data series, are reviewed from this point
of view. With an inferred model dynamic the dynamical entropies and dimensions can
be estimated. More interestingly, its structural properties give a measure of the intrinsic
computational complexity of the underlying process.

INTRODUCTION

During the last decade or so a number of mechanisms have been investigated by
which physical processes can generate complex behavior. The most widely studied of
these, deterministic chaos, while globally stable to perturbations produces noisy behavior
by exponential local amplification of microscopic fluctuations.! The central problem in
applying the theory of dynamical systems to the sciences is identifying the deterministic,
and possibly chaotic, component in a set of observations and distinguishing it from behavior
due to ever-present measurement uncertainty, extrinsic noise, and uncontrolled degrees of
freedom. This is the inverse problem in nonlinear dynamics: inferring the deterministic
equations of mouon, if any, underlying observed random behavior in physical systems.

Over a similar historical interval, computational learning theory has formalized a range
of learning paradigms for inductive inference. In this it provides a language and a collection
of complexity theoretic methods appropriate to the inverse problem. When integrated
with the geometric and statistical techniques of dynamical systems theory, the result is

* Portions of this essay were distributed as “Learning the Dynamic”, an extended abstract submited 15 April 1989 1o
the Conference on Computational Learning Theory o be held 31 July - 2 August 1989, University of California, Santa
Cruz. This work was supported by ONR contract NOOO14-86-K-0154.



a framework for consistently distinguishing between deterministic chaotic behavior and
extrinsic information sources to which it is coupled.

This essay gives a brief overview of two complementary approaches to the inverse
problem. The first estimates symbolic equations of motion using Bayesian statistical
inference? and the second uses techniques from stochastic grammatical inference to re-
construct minimal computational models of chaotic behavior.>*% They have two common
goals. The first is to quantify the observed complexity in a data stream. The second is to
capture the underlying dynamics in a form that can be related to first principles and used in
forecasting and numerical modeling of the behavior. The following discussion emphases
their similarities as problems in learning theory. It concludes by indicating where learning
theory can contribute to a number of existing problems and remarks on the limitations of
existing proposals for quantifying physical complexity. The hope is not only that dynami-
cal systems will benefit from this synthesis but that with real world, quantitative problems
computational learning theory will be made more generally accessible.

INDUCTIVE INFERENCE FORMALISM

Given the inverse problem of chaotic data analysis just outlined, this section reviews
the appropriate tools from inductive inference and attempts to justify the choices made
along the way from a scientific and dynamical systems viewpoint.

The types of problems of interest to physicists include the onset and structure of
various forms of fluid turbulence and the occurrence of noise in superconducting Josephson
junctions and other nonlinear solid state devices; just to mention a very few out of
hundreds of applications in physics, chemistry, and biology. These systems generate
very complex behavior and no one expects to exactly describe their detailed behavior.
Nonlinear dynamicists are (or should be) satisfied with with a theory that systematically
approximates some phenomenon. This means that with a given level of experimental
limitations I+ and fixed data reduction (computational) resources C, observations can be
explained quantitatively to within an error level §. Furthermore, the error must vanish
exponentially fast with increasing [ and C.

This is a form of identification in the limit® with the additional requirement of estimating
the rare of convergence of the inference method on an ensemble of data sets. Here, the
inductive process continues indefinitely and its asymptotic behavior is used as the success
criterion. The identification error is to decrease on larger and more accurate example sets.

The inverse problem can be considered also as a sequence inference problem since the
example presentations are ordered by time. Typically, there are two problems in sequence
inference. The first is to infer a model, such as the graph of the dynamic: this is the
identification problem. The second is to forecast future observations knowing past ones
from the sequence; this is the prediction problem. The formal restrictions that distinguish
these subproblems in general sequence inference are not appropriate here. For the inverse
problem identification and prediction are the same; the identified model can be used for
forecasting.

To specify the inverse problem as a problem in inductive inference several components
need to be defined. An inference method M is a computable process implemented (say) on
a Turing machine. The latter is augmented to read in example data and output hypothesized
models. To formalize this we must specify a success criterion C and a data representation
D for the examples. The space of inference methods is then the set of all triplets (M,

T Specified in terms of sampling resolution and frequency as a information acquisition rate,
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C, D). The basic components of this inductive inference problem are a rule space, an
hypothesis space, an example set, an inference method, and its success criterion. These
are defined as follows.

1. The rule space: This is the set of all mappings F : M — M from the state space
M into itself.

2. The hypothesis space: This is the space H = {D: D= (1-_'", P, M)} of noisy
discrete time dynamical systems

fn_H - fffu} + *f-;l

where F is a real vector-valued function, the dynamic; £, is a realization of the real
vector-valued random process P; and 7, € M, the manifold of states or state space.

3. The example ser: The data with which the inference method works is obtained from
a single realization {7, : n=0,1,2,...,N — 1} or orbit of the noisy dynamical
system by way of a measurement partition P, = {e; : ¢; C M}. By coarse graining
the state space into size e cells, the partition maps the sequence of states along
an orbit into a sequence of symbols, s € A in the measurement alphabet A =
{i:i=0,...,k=1; k= f(e')}. These symbols label the partition elements in
which the orbit is found at the time of measurement. The measurement sequence
obtained this way will be referred to as the measurement language Lp p.. A set of
length n subsequences is derived from a sliding window of length n onto the single
long sequence. The length n measurement sequences s = {sp+:-8,-1: s € A}
are called n-cylinders in reference to the bundle of orbits that lead to the same set
of n measurements.” The examples will be restricted to only those measurement
sequences that are observed. That is, the inference method will use only positive
presentations. An admissible presentation P of the rule, then, will be a set P =
PP i =010 N —n} of n-cylinders that are observed and that are ordered by
time. The latter is guaranteed by the sliding window construction of the individual
cylinders from the single long measurement sequence. In fact, we could have taken
for a presentation a sequence of examples derived from orbits with different initial
conditions rather than a sequence from a single orbit. In any case, the initial conditions
T might contain transients. In the following, though, the orbit is assumed to be a
rypical orbit governed by the asymptotic probability measure on the attractor.

4. The class of inference methods: An inference method M takes an admissible presen-
tation I of the measurement language and produces a model D of a noisy dynamical
system: D = M(P).

5. The success criterion: The most appropriate criterion is that developed by Wharton®
for approximate language identification. This requires a measure of goodness of fit
of the inferred models to the measurement language. For this, we need a metric on
the space L of measurement languages. The weight w(s™) of an n-cylinder is the
number of occurrences of that particular sequence in the presentation. The weights
are effectively normalized 3" w(s") = ||P|| = N — n. The distance between two

ne
languages L), L: € L is g'i’vcn by the metric on L
d(Ly,L)= ) w(s)
seli &l

where Ly A L, is the symmetric difference of the two languages. Using this metric, an
inference method M é-identifies a measurement language L if and only if M converges
to a grammar G associated with the hypothesized D such that

d(L(G),L)< 6 N
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It is an encouraging result that if one tolerates finite error (6 > 0) then the class of all
languages is é-identifiable in the limit from positive presentations by a method that
infers only grammars for finite languages.®? Requiring that the error vanish in the limit

leads to a more restricted form of identification. Convergent identification in the limit
occurs if

lim d(L"(G),L") =0

where G is the grammar associated with the inferred D, L™ is the measurement
language of observed n-cylinders, and L™ (G) is the set of n-cylinders generated by
G. This is the identification criterion of interest in the following.

There are a number of other contexts in which this type of identification is problematic.
For example, with the further constraint, central to deductions concerning properties of the
underlying noisy dynamical system, that the inferred grammar be minimal the resulting
computational problem is NP-Hard.>!? As will be discussed shortly, numerical results
indicate that convergent identification often works, but proofs for the general case are
not available. This is to be expected due to the very complex behavior arbitrary noisy
dynamical systems are capable of producing. Nonconvergence can even be taken as a
useful measure of the effective computational structure of the system, as noted later on. For
the case of interest here there are, thus, several open problems concerning the identifiability
of noisy dynamical systems. In this brief overview we can only hope to sketch the basic
problem and encourage further investigation.

SYMBOLIC EQUATIONS OF MOTION

With this introduction to inductive inference for noisy dynamical systems, this section
outlines the inverse problem of estimating symbolic equations of motion. This approach
to modeling is closest to conventional statistical time series analysis. The basic statistical
assumption for learning a dynamical system from data is that the observed time series is
the result of a deterministic system in contact with a fluctuation source. The equations of
motion for a continuous time process, for example, are given by a stochastic differential
equation

V=F (@) +£@), ¥(0)e M

where the second term is a random driving force.

Using a fine measurement partition P, (e < 1),'! the goal of estimating equations of
motion is to produce a symbolic representation of the dynamic F and an estimate of the
extrinsic noise level due to the fluctuating force. If the deterministic behavior is stably
periodic then this problem essentially reduces to conventional linear prediction theory, as
Dnglnalcd by Wiener and Kolmogorov. The case of general interest comes in not restricting
F 1o periodic behavior and considering the possibility that the deterministic dynamic itself
produces complex behavior. The general question is then, given a noisy data stream ¥ (¢)

or a function of it, how to infer that some portion of the noise is due to the fluctuating
force and how much is due to the deterministic chaos.
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Figure | Estimating symbolic equations of motion: The first step is to reconstruct from a time series an effective
state space in which to represent the behavior.? In this step the continuous time series is discretely sampled in
time and in value. The dynamic is the mapping F that takes the state space into itself; or equivalently, takes a
single state al one time into its successor, This is the object of auwention for the second step: a statistical

fit then produces the coefficients of some expansion of I using a chosen function basis.

The procedure for estimating the symbolic form of the dynamic applies Bayesian
statistical inference to estimate nonlinear models from reconstructed chaotic data series.?
(Figure 1 illustrates the overall procedure.) When approached from this point of view,
the inverse problem reduces to statistical quadrature: estimating the symbolic equations
of motion reduces to curve fitting in a space of dimension twice that of the reconstructed
state space. An ad hoc choice of a function basis (e.g. polynomial or Fourier functions, or
local splines) is made at this point. An unsupervised learning procedure then searches the
space of consistent models using an optimality criterion that trades off forecasting error
against model complexity. The residual fit error then yields an estimate of the extrinsic
noise level. Once a model has been estimated it can be used in an interactive simulation
interpreter to reproduce behavior in the same chaotic class as the data.

The choice of a finite function basis is a coordinatization of the hypothesis space H:
the coordinates are fit parameters. The finite-dimensional reduction of H this affords
determines the model space M. The observed data is a realization of some “mrue”
distribution p» on H. A model D is a good estimate then if the differences between
pp, the distribution specified by D, and pp« is minimized. One natural measure of the
minimization is the model entropy

D= [ dm log 22(m)
1(D,D’) Hf pp (m) B ()

While formally appropriate to the task at hand, there are two problems with this. First,
the integral is over the infinite-dimensional function space H. Second, we do not know
the “true” distribution pp:. Both of these problems can be addressed by pulling back the
reconstructed data distribution on H to the finite-dimensional model space M. In this we
identify errors in the fit parameter estimation with the reconstructed distribution in H of
fluctuation-induced deviations from the “true” dynamic. (This is an approximation and is
not to say these are necessarily the same thing.) Both this error and the dimension of the
model space play a role in finding an optimal model. By trading off these two components
of the model entropy, we would like to maximize the information in the presentation P
that is captured or “explained” by the estimated model. In the model space, then, we
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approximate pp by the probability pas (m|P) conditioned on the presentaton. The model
entropy is then

I1(D,D") =~ fdm P (m|P) log pag (m|P)
M

Using Bayes's theorem, though,

pPm (Plm) pas (m)
pm (P)

where ppg (P) = [ dm pag (P|m) paq (m) is @ normalizing constant that can be dropped

pm(m|P) =

M
without affecting the minimization. pa4 (m) is the probability of a particular model m € M
and pag (P|m) the probability that m has produced the data P. Putting this all together,
gives the following two-term approximation

I(D,D') j’dm pm (P|m) log paq (P|m) + ]ffm pm (m) log paq (m)
M M

The first term on the right-hand side is a measure of the amount of information in the
observations not explained by the model. In the case of Gaussian error distribution, this
can be again approximated by the fit error — log &, where « is the one-step prediction error
variance and the data range has been normalized. The second term is an informational
measure of the complexity of the consistent models. This term is dominated by the
number of model parameters k. With these further, somewhat extreme approximations,
the Bayesian version of Akaike’s model identification criterion is recovered

klog N
N

I(D, DF) x —logo +

where IV is the number of examples in the presentation.!?

There are two broad classes of equations of motion inference methods: global and atlas.
The latter uses coordinate charts on M over which splines are fit to the graph of the dynamic.
The former uses a function basis that is applied over the entire state space manifold M. The
class of dynamics that can be learned with global equations of motion is clearly a subset
of those inferable using atlas equations of motion. The latter, unfortunately, indicates
very little about any underlying functional simplicity of the dynamic. The identification of
new laws requires the use of both methods and so a generalized success criterion favoring
global equations of motion when they are the most compact representation.

There are two problems with estimating symbolic equations of motion. The first
concerns the identification of generalized stares in the data stream. Presumably the most
parsimonious use of the given data and the simplest model require detecting patterns
that contain the most information and that are optimal for forecasting. This is indirectly
addressed in the above procedure during the state space reconstruction step; which was
given short shrift. The second problem derives from the lack of an absolute measure
of a model’s complexity. Here, as in all statistical curve fitting, the size of a model is
measured relative to an ad hoc function basis. There is no general method to compare
model complexities across function bases. This is essential to the search for the smallest
representation for reasons of efficiency and for inferring that a given structure in the
estimated model is a property of the original physical process.



STATISTICAL MECHANICS OF ¢-MACHINES

Both of these problems are addressed by the second approach to the inverse problem
which seeks to quantify the intrinsic computation performed by a physical process.” The
goal is to reconstruct a minimal and unique automaton or grammar that recognizes the
measurement language to within some approximation. The automata are referred to as
e-machines, with e indicating a generic level of approximation. A reconstructed machine
in principle could be based on any computation model. The Chomsky hierarchy provides a
graded set useful for systematically distinguishing more from less powerful computational
models. In practice an e-machine is either a deterministic finite automaton (DFA) or,
if a finite DFA is inconsistent, a minimal pushdown automaton (PDA). Reconstructing
approximations of higher level machines from data is understandably fraught with difficulty.
The computational approach reduces the inverse problem to the learning problem of
stochastic grammatical inference.

Probabilistic structure in the measurement language is taken into account via a statis-
tical mechanical formalism. One result of this is a connection between the structure of
the inferred machine and traditional dynamical systems measures of the unpredictability.
Additionally, this leads to a new invariant, the complexiry, for dynamical systems based
on the Rényi entropy that measures the amount of information contained in the inferred
machine states. This quantity reflects the computational difficulty inherent in modeling
nonlinear dynamical systems. Both repetitive and very unpredictable behavior have simple
descriptions and so low complexity.??

An e-machine is described by a labeled, directed graph, or /-digraph, that consists of
a set of vertices V and a set of edges E connecting them. Its statistical structure is given
by a parametrized probabilistic connection matrix

Tﬂ_ —] {‘tu} — ZT\I_EA

IEA

that is the sum over each symbol of the state transition matrices

) = {12, tisie = p(vilvj; 5)

for the vertices V = {v;}. The entries are the conditional probabilities of making a
transition from state { to state j on symbol s.

For the topological case (o = 0) the unique and minimal 1-digraph and the associated
connection matrix can be reconstructed from a data stream using a variant of standard
grammatical inference applied to a prefix tree of unique measurement sequences.>># For
arbitrary o, probabilistic structure of the data is translated into estimates of the transition
probabilities. The resulting machine in this case is only an approximation at each window
length. The inferred |-digraph states, called morphs, represent historical templates that are
optimal for forecasting.

The «-order total Rényi entropy, or free information, of a reconstructed e-machine is
given by

Hy(n)=(1-0)"" log Zs (n)
where the partition function is

Zaln)= Y enlosnte)

SHE{SH}
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with the probabilities p(s™) defined on the observed n-cylinders {s"}. The parameter «
has two interpretations, both of interest in the present context. From the physical point of
view, it plays the role of an inverse temperature in statistical mechanics which emphasizes
different invariant subsets in orbit space. From the point of view of Bayesian inference
o is a Lagrange multiplier specifying a maximum entropy distribution consistent with the
observed cylinder probabilities.

The Rényi specific entropy, i.e. entropy per unit time, is approximated for n-cylinders
by

ha (n) = n~"H, (n)

The metric entropy, a measure of predictability from dynamical systems theory, is then
i = nlz_r'lgn hy (n)
The «-order graph complexity is defined as
Co=(1—-a)"log 3 p°
reEY

where the probabilities p, are defined on the machine states. It measures an e-machine’s
information capacity in terms of the amount of information stored in the morphs. The
entropies and complexities are dual in the sense that the former is determined by the
maximum eigenvalue A\, of T,,

ha: = IUE‘I }'-n:r

and the latter by the associated (left) eigenvector p, = {p?: v € V} that gives the
asymptotic vertex probabilities. The specific entropy is also given directly in terms of
the transition probabilities

ha = Z lp—ﬂa log z b

reY v'EY
A

A complexity based on the asymptotic edge probabilities p, = {p. : ¢ € E} can also be

defined
Ci=(-a)'log) p?
ecE

Mot much is gained, however, since
Cf = C:[ + h 1

and so there are only two independent quantities for a finite e-machine.

The graph complexity is also a measure of the informational fluctuations in the data.
These fluctuations are most readily quantified by the total excess (a-)entropy for L-
cylindcrsui'ﬁ

L
Fo(L)=Ha(L)— Lha = Y _[Ha(n) — Hy(n—1) = hy]
n=1

This measures the deviation of finite cylinder statistics from asymptotic. It can also be
interpreted as the mutual information between the future L-cylinders and the infinite past.
In the thermodynamic limit

Ca 18 Fa (L)
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Loosely speaking, the graph complexity measures the amount of mathematical work
necessary to produce a deviation from uniform statistics. From this limit, it is seen to
be the mutual information between the infinite past and the infinite future.

A measure of convergent identification in the limit can now be defined. Since the
complexity is a measure of the size of the current hypothesized (DFA) model at the
given level of approximation, it can be used as a diagnostic of convergence. Holding
the measurement partition P, fixed, that is assuming it produces adequately representative
symbols, identification with longer L-cylinders is the primary concern. The identification
method then converges with increasing cylinder length if the rate of change of the
complexity vanishes. That is, if

Ec:l{L-]

=
vanishes then the noisy dynamical system has been identified. If this is not the case,
then c,, a measure of the rate of divergence of the model size, is yet another measure of
complexity, but at a higher level of computation.

e-machines have been reconstructed from hundreds of data sets from prototype chaotic
systems. The implementation is relatively fast and has been used to infer machines with
several hundred states. This constructive approach to complexity has proved itself useful
in elucidating the phase transition structure at the onset of chaos in systems with a control
parameter.’ Although developed in the context of reconstruction from a data series, the
underlying theory provides an analytic approach to calculating entropies and complexities
for a number of dynamical systems.* One noteworthy result is a universal description of
period-doubling cascade transitions to chaos that depends only on the intrinsic computation
and information processing capacity of the dynamical systems in the bifurcation sequence,
and is independent of explicit nonlinearity controls.

Another application, that relies heavily on the inductive inference formalism, is a
method for inferring the direction of time in a data stream and for measuring quantitatively
the degree of irreversibility.!” With this, computational leaming theory sheds new light
on the long-standing paradox of irreversible macroscopic processes that are described
microscopically by reversible dynamics.

Finally, we note that e-machine reconstruction provides a data compression technique
that gives an efficient method for encoding a chaotic data stream, transmitting the com-
pressed form, and uniquely decoding it.'® Technically, this is referred to as data com-
paction; data compression allows for some error in encoding so that exact reconstruction
of the original sequence is not always possible. (The chaotic data compaction method
can be modified to allow for compression at a specified fidelity.) The compaction ratio
r, defined as the ratio of the number output bits from the encoder to the number input,
is given by

r=CF — 05

where log base the number of symbols is used to give a normalized ratio. This form
of the data compaction ratio makes clear the dependence on branching structure in the
reconstructed machine. To the extent that there is branching in the machine state transitions,
bits must be passed to the output from the input. To the extent there is determinism in

the transitions, the machine captures it and there is no need to output symbols on those
transitions.

1 That is, assuming it is a generating partition.”



The goal of estimating optimal models, as reflected in minimizing (say) the model
entropy for selecting symbolic equations of motion, is most generally expressed by
Rissanen’s minimum description length (MDL) criterion.'® This is easily explained for
e-machine reconstruction by recalling the preceding comments on chaotic data compaction.
Briefly, the MDL criterion says to choose that computational model m that reduces the
size of the model m and the length [ (P|m) of the data P encoded with that model. That
is, the description length

[(P)=Co(m)+1(P|m)

should be minimized. Since the reconstruction method produces the minimal and unique
e-machine for a complete presentation, a search procedure and so the MDL criterion are
unnecessary.

CONCLUDING REMARKS

The last decade has seen tremendous progress in modeling complex natural phenomena.
This has largely been accomplished through the solution of isolated problems within
dynamical systems theory and its applications. These include

1. Exwensive studies of nonlinear phenomenology: chaotic attractors, complex basin
structures, phase transition description of the onset of chaos;

2. Data analysis techniques: reconstruction of state space from single time series, optimal
coordinates, estimating equations of motion;

3. Statistical characterizations of noisy behavior: estimating the embedding and attractor
dimensions as well as information production rates, a thermodynamic description of
invariant measures on attractors and their orbits; and

4. Estimation of the intrinsic computational information processing within physical pro-
cesses governed by noisy dynamical systems.

While some of this is unified within abstract dynamical systems theory, the practical
application has been plagued by inconsistencies and unsystematic development that has
produced a patchwork of theories garnered from engineering, statistics, and physics.

It is not unreasonable to explain the distance between theory and practice and the
latter’s difficulties as stemming from a lack of formalizing the overall goal of the enterprise:
detecting and modeling deterministic structure in noisy data. This is exactly where
learning theory can contribute since one of its mandates is to formalize learning paradigms.
The preceding discussion has attempted to outline, however schematically, the learning
paradigms appropriate to chaotic data analysis. A number of existing problems can be
more clearly articulated in this context. There is much to be gained by the application of
learning theory to dynamical systems.

This is all well and good for dynamical systems and the sciences it serves, but what
about learning theory itself? It seems likely that it too will benefit by access to and the
appreciation of the well-defined and wide-ranging class of learning problems provided
by dynamical systems. One example to look forward to is a quantitative investigation
of learning a parametrized class of dynamical systems that go from periodic to chaotic
behavior in which the basic computational problem goes from P to NP. This is already
implicit in the tension between the typical polynomial speed of machine reconstruction and
the complexity theoretic results that minimal consistent DFA inference is NP-complete.

The observation is that it is only noisy dynamical systems at complexity phase transitions
which are hard to learn.
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More generally, the type of learning problems found in dynamical systems, only some
of which have been presented above, are of a different character than the symbolic Al
problem traditional in leamning theory. They are more akin to problems in computational
geometry and in neural networks with the additional feature that dynamical systems
generate a probability measure on the orbits which singles out atypical (measure zero)
behavior. It is particularly important to the application of learning theory that the practical
problems of approximation be taken in account from the start. In contrast, complexity
theoretic approaches tend to emphasize worst case behavior in order to obtain hardness
results. If these apply only to measure zero orbits or to nongeneric dynamical systems,
then they might be of little practical value.

If it has not become sufficiently clear at this point let me mention before closing the
underlying motivation for a computational learning theory of dynamical systems. The goal
is artificial science. Within the limited domain of nonlinear dynamical systems subject to
extrinsic fluctuations, this is the complete automation of inferring deterministic dynamics
from noisy data. To the extent that this is possible, implementations will greatly accelerate
experimental science and presumably scientific discovery generally. To the extent that it is
not feasible, we will have an understanding of yet another limitation of scientific method.

The foregoing has briefly reviewed several approaches to consistently modeling noisy
dynamical systems. It has turned on the intimate connection between complex dynamics,
modeling theory, statistics, and computation. The role of modeling was emphasized,
although there is an equally important scientific, rather than engineering, motivation. That
is the definition of a measure of complexity that is appropriate to and implementable
for physical processes. The framework outlined above for reconstructing e-machines and
for their statistical mechanical description unifies a number of proposed definitions of
physical complexity, that range from the use of entropy convergence critical exponents to
the relaxation rates for diffusion on hierarchical barriers,207-21.2223.24.1625 Nt only does
the current framework indicate how these are related, but also how they fail to capture
important structural properties of complex systems. This structure is given explicitly by
the e-machines.

The exclusive use of information theoretic analysis§ restricts one to the lowest level in
Chomsky’s hierarchy. Indeed, conventional statistical mechanics is similarly limited due
to its reliance on correlation functions, that is, on & = 2 information statistics. Such a
restriction misses higher level computation that dominates at phase transitions. The general
conclusion is that only systems at phase transitions, to be understood broadly as being in a
“critical” state, perform computation at levels beyond information transmission and storage.
Being in a critical state is a first and a minimal requirement for nontrivial computation.
This is as true of ferromagnets at the Curie temperature as it is of digital or analog
computers considered as physical systems and of evolving biological organisms. These
systems trade their ability to store information in certain quasi-static degrees of freedom
against the underlying nonlinear dynamics necessary for innovation and reliable information
transmission. These needs are balanced at the borders of chaos. Computationally critical
states form the substrate supporting nontrivial information processing and, presumably, are
prerequisite for evolutionary development. The question remains: Why would a bowl of
primordial soup spontaneously take up a computationally critical state?

§ I have in mind especially the recent resurgence of mutual information.
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