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Abstract

Particle-like objects are observed to propagate and interact in many spatially extended dynamical systems. For one of the
simplest classes of such systems, one-dimensional cellular automata, we establish a rigorous upper bound on the number
of distinct products that these interactions can generate. The upper bound is controlled by the structural complexity of the
interacting particles — a quantity which is defined here and which measures the amount of spatio-temporal information that a
particle stores. Along the way we establish a number of properties of domains and particles that follow from the computational
mechanics analysis of cellular automata; thereby elucidating why that approach is of general utility. The upper bound is tested
against several relatively complex domain-particle cellular automata and found to be tight. © 2001 Published by Elsevier
Science B.V.
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1. Introduction

Persistent, localized, propagating structures —
particles — have long been observed and constructed
in cellular automata (CA) [1–22]. A review of the
literature suggests that particles are widely felt
to be some of the more interesting phenomena
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displayed by those systems [23]. They are anal-
ogous to the “defects” or “coherent structures”
of pattern formation processes in condensed mat-
ter physics [4,5,8,9,16,18]. In fact, in cellular au-
tomata used to model pattern formation processes,
the particles model defects and vice versa [24–27].
A different analogy to condensed matter physics
(specifically, hydrodynamics [28]) gives them the
name “solitons” [8,9]. They are also known as
gliders, glider-like objects, or spaceships partic-
ularly, but not exclusively, in the context of the
Game of Life two-dimensional CA [2,29]. The name
“particle”, while inspired by an analogy to field
theory in physics, is used here merely for the sake

0167-2789/01/$ – see front matter © 2001 Published by Elsevier Science B.V.
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of uniform terminology and neutrality of associa-
tions. 1

CA particles, like their physical counterparts, in-
teract via collision, and these interactions are well
known to play a crucial role in the dynamics of their
underlying cellular automaton. The construction of
computational devices in CAs, for instance, is almost
always accomplished through engineering the proper
interactions among particles [1,12,13,33–41]. Indeed,
it was even at one time conjectured by Wolfram [42]
that the presence of particles in a CA was tantamount
to its being computation-universal. It is, therefore,
of considerable interest to know what interactions a
CA’s particles may have. Acquiring that knowledge
is significantly simplified if we can place a bound on
the number of different interactions between any pair
of particles. The first successful attempt to do so was
an expression given in [9] for particles interacting on
a completely uniform, quiescent background. It has
been appreciated for some time, however, that many
CAs display patterned or textured backgrounds —
sometimes called “domains”. Here we substantially
generalize the original formula to accommodate a
large class of domains and prove the generalization
using elementary automata and number theory.

The outline of the paper is as follows. First, we
fix basic notation relating to cellular automata, reg-
ular languages, and finite-state transducers. We then
define domains, in particular periodic domains, and
prove some basic results about them. We next define
particles as a particular kind of interface between do-
mains, and define interactions between particles. After
establishing some auxiliary number-theoretic results,
we prove the upper bound formula that generalizes the
main theorem of [9] to arbitrary periodic domains. Re-
sult in hand, we show how it applies to the analysis of
several CAs encountered in applications, and how it
simplifies the analysis of their particle dynamics. We
close with a summary of the results and a list of open

1 To avoid confusion, we should say that a “particle” in our sense
is not the same as a particle in the sense of interacting particle
systems (IPSs) [30,31] or lattice gases [32]. The particles of an
IPS or the coherent structures that emerge in lattice gases may be
particles in our sense; we hope to explore these and related issues
elsewhere.

questions. An appendix gives the details of the proof
of an auxiliary result on domains.

The present work is motivated by and bears on sev-
eral larger issues. Of particular relevance is the notion
of an “object” or “coherent structure” that sponta-
neously emerges in the space–time behavior of a pro-
cess [43,44]. The particles analyzed here are arguably
one of the simplest kinds of such emergent structures.
Despite this interest, we do not define “particle” from
first principles. Like our predecessors we take the
existence of particles as a given and assume we know
how to recognize them in the space–time behavior.
Nonetheless, the results and their proofs do elucidate
some of the component concepts that we feel will be
useful in a theory of emergent structures in spatial
processes. 2

2. Cellular automata, formal languages, and
transducers

A CA is a discrete dynamical system consisting
of a regular lattice of identical cells. At each time
step t , each of these cells is in one of a number k of
states Σ . The state of cell i at time t is denoted by
sit ∈ Σ ≡ {0, 1, . . . , k − 1}. The global state st of a
one-dimensional CA at time t is the configuration of
the entire lattice; i.e., st = (s0

t , s
1
t , . . . , s

N−1
t ) ∈ ΣN ,

where N is the lattice size. One often sees CA phe-
nomenology studied where Σ = {0, 1} and with
periodic boundary conditions: sN+i

t = sit . The main
results reported below do not depend on these restric-
tions, however.

At each next time step t + 1, the cells in the lat-
tice update their states simultaneously according to a
local update rule φ. This update rule φ takes as in-
put the current local neighborhood configuration ηit =
(si−rt , . . . , sit , . . . , s

i+r
t ) of cell i and returns the next

state sit+1; r is the CA’s radius. Thus, the CA equa-
tions of motion are given by

sit+1 = φ(ηit ). (1)

2 For two approaches to the automatic discovery of particles, see
[45,46].
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The global update rule Φ : ΣN → ΣN applies φ in
parallel (simultaneously) to all cells in the CA lattice;
i.e.,

st+1 = Φ(st ), (2)

st+1 = (φ(η0
t ), φ(η

1
t ), . . . , φ(η

N−1
t )). (3)

Binary (k = 2) local state, r = 1 CAs are referred to
as elementary CAs (ECAs) [47].

An ensemble operator��� can be defined [20,48] that
operates on sets of lattice configurations Ωt = {st }:
Ωt+1 =���Ωt, (4)

such that

Ωt+1 = {st+1 : st+1 = Φ(st ), st ∈ Ωt }. (5)

It is often informative to describe CA configurations
as one or another type of formal language. A formal
language L over the alphabet Σ is a subset of Σ∗ —
the set of all possible words, or strings, made up of
symbols from Σ . A regular language is a formal lan-
guage whose words can be generated or recognized by
a device with finite memory; sometimes called a finite
automaton. Regular languages are the simplest class
of formal languages in a hierarchy (the Chomsky hi-
erarchy) of language classes of increasing complexity
[49].

A deterministic finite automaton (DFA) M is de-
fined as a 5-tuple:

M = {Q,Σ, δ, q0, F }, (6)

where Q is a finite set of states, Σ is an alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is a set of final
states, and δ : Q × Σ → Q is a transition function:
δ(q, a) = q ′, where q, q ′ ∈ Q and a ∈ Σ .

A DFA can be used to read, or scan, words w =
w1, . . . , wL over the alphabetΣ . Starting in the initial
state q0, the DFA reads the first symbol w1 of the
word w. It then makes a transition to another state
q ′ = δ(q0, w1). The DFA then reads the next symbol
w2 and makes a transition to q ′′ = δ(q ′, w2), and so
on until all symbols in w have been read or until an
undefined transition is encountered. If, after reading
w, the DFA ends in a final state q ∈ F , M accepts w;
otherwise M rejects it.

A regular languageL is a formal language for which
there exists a DFA that accepts all words in L and
rejects all words not in L. If there is one such DFA,
there are generally many of them, but there is a unique
minimal DFA for L, which we writeM(L). Similarly,
for every DFA M there is a corresponding regular
language L(M) consisting of all and only the words
that are accepted byM . The regular process languages
are a subset of the regular languages: those containing
all subwords of words in the language. All states of the
corresponding DFA — the process graph — are both
initial and accepting states [20].

Finally, a finite-state transducer (FST) is a finite
automaton with two kinds of symbol associated with
each transition: inputs and outputs. Formally, an FST
R is defined as a 7-tuple:

R = {Q,Σin,Σout, δ, λ, q0, F }, (7)

where Q, δ, q0, and F are as in a DFA, Σin is the in-
put alphabet, Σout is the output alphabet, and λ : Q×
Σin → Σout is the observation function: λ(q, a) =
b, where q ∈ Q, a ∈ Σin, and b ∈ Σout. An FST
effectively implements a mapping fR from one lan-
guage overΣin to another language overΣout. In other
words, it reads a wordw ∈ Σ∗

in and transforms it to an-
other word w′ ∈ Σ∗

out by mapping each symbol wi ∈
Σin to a symbol w′

i ∈ Σout such that w′
i = λ(q,wi),

where q ∈ Q is the current state ofR when readingwi .
In formal language theory, languages and automata

play the role of sets and transducers the role of func-
tions.

3. Domains

We are now ready to review the computational
mechanics analysis of emergent structures in CAs
[20,50].

A regular domain Λ of a CA Φ is a process lan-
guage, representing a set of spatial lattice configura-
tions, with the following properties:

1. Temporal invariance (or periodicity). Λ is mapped
onto itself by the CA dynamic; i.e., ���pΛ = Λ for
some finite p. (Recall that Φ takes sets of lattice
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configurations into sets of configurations and that
a formal language, such as Λ, is a set of configu-
rations.)

2. Spatial homogeneity. The process graph of each
temporal iterate of Λ is strongly connected. That
is, there is a path between every pair of states in
M(ΦlΛ) for all l. (Recall thatM(L) is the minimal
DFA which recognizes the language L.)

The set of all domains of a CA Φ is denoted by    =
{Λ0,Λ1, . . . , Λm−1}, where m = |   |.

According to the first property — temporal invari-
ance or periodicity — a particular domain Λi consists
of p temporal phases for some p ≥ 1; i.e., Λi =
{Λi0,Λi1, . . . , Λip−1}, such that ���lΛij = Λi(j+l)mod p.

Here p is the temporal periodicity of the domain Λi ;
which we denote by T (Λi).

Each of the temporal phases Λij of a domain Λi

is represented by a process graph M(Λij ) which, ac-
cording to the second property (spatial homogeneity),
is strongly connected. Each of these process graphs
consists of a finite number of states. We denote the
kth state of the j th phase of Λi by Λij,k , intention-
ally suppressing the M(·) notation for conciseness.
We write the number of states in a given phase as
S(Λij ).

The process graphs of all temporal phases Λij of

all domains Λi can be connected together and trans-
formed into a finite-state transducer, called the domain
transducer, that reads in a spatial configuration and
outputs various kinds of information about the sites.
(The construction is given in, e.g., [51].) Variations
on this transducer can do useful recognition tasks. For
example, all transitions that were in domain Λij ’s pro-
cess graph are assigned output symbol D, indicating
that the input symbol being read is “participating” in
a domain. All other transitions in the transducer indi-
cate deviations from the sites being in a domain. They
can be assigned a unique output (“wall”) symbol w ∈
{Wi

j } that labels the kind of domain violation that has
occurred. The resulting domain transducer can now be
used to filter CA lattice configuration, mapping all do-
main regularities to D and mapping all domain viola-
tions to output symbols w that indicate domain walls
of various kinds.

We say that a phase of a domain is (spatially) pe-
riodic when the process graph consists of a periodic
chain of states with a single transition between suc-
cessive states in the chain. That is, as one moves from
state to state, an exactly periodic sequence of states is
encountered and an exactly periodic sequence of sym-
bols from Σ is encountered on the transitions. The
spatial periodicity of a periodic phase is simply S(Λi).
We say that a domain is periodic when all its phases
are periodic. Almost all of our attention in the sequel
will be confined to periodic domains, for the follow-
ing reason. It turns out that for such domains all of
the spatial periodicities S(Λij ) at each temporal phase
are equal. Thus, we can speak of the spatial periodic-
ity S(Λi) of a periodic domain Λi . This property, in
turn, is central to our proof of the upper bound on the
number of particle interaction products.

Lemma 1. If a domain Λi has a periodic phase, then
the domain is periodic, and the spatial periodicities
S(Λij ) of all its phases Λij , j = 0, . . . , p − 1, are
equal.

Proof. See Appendix A. �

Thus, the number of states in the process graph rep-
resenting a particular temporal phase Λij is the same

for all j ∈ {1, . . . , T (Λi)}, and it is, in fact, S(Λi).
Finally, there is a larger class of cyclic domains

whose process graphs consist of a periodic chain of
states: as one moves from state to state an exactly pe-
riodic sequence of states is seen. Note that this class
includes more than periodic domains, which are ob-
viously cyclic. It includes domains, in which between
two successive states in the chain there are multiple
transitions over Σ . (See [51] for a CA exhibiting two
such cyclic domains.) Based on our experience we
conjecture that Proposition 1 also holds for cyclic do-
mains. If this is so, most of the following results, and
in particular the upper bound theorem, would hold for
this large class.

Conjecture 1. For any cyclic domain Λi , the spa-
tial periodicities S(Λij ) of all its phases Λij , j =
0, . . . , p − 1, are equal.
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4. Particles

When domain violations form a spatially localized
(finite width), temporally periodic boundary between
two adjacent domains, they are called particles.

Definition 1. A particle α is a set {α0, α1, . . . , αp−1}
of finite-width words αj overΣ∗, called wedges, such
that

���(ΛαiΛ′) = Λα(i+1)mod pΛ′ (8)

for some finite p and Λ and Λ′ ∈   .

Since a particle is a bounded structure, it does not
have a spatial periodicity. In the following, the “pe-
riodicity of a particle”, therefore, refers to temporal
periodicity.

Since these particles are temporally periodic, we
view the appearance of wedge αj as the particle be-
ing in its j th phase. The kth symbol in the wedge’s
word is denoted by αjk . The state in which the domain

transducer finds itself after reading the kth symbol αjk
in the wedge αj is denoted by q(αjk ).

We now introduce an important but subtle distinc-
tion. The particle period p referred to above — the
surface periodicity — is associated with the repetition
over time of the wedge words as observed in the raw
space–time behavior sss0, sss1, sss2, . . . . It turns out, as will
become clear, that particles have an internal periodic-
ity that may be some multiple of the surface period-
icity p. The internal periodicity — the one of actual
interest here — though, is the periodicity seen by the
various phases of the bordering domains.

Definition 2. A particle α’s intrinsic periodicity P(α)
is the periodicity of the set of transducer-state se-
quences generated when reading a particle’s wedges.
For wedge αj = α

j

0 , . . . , α
j
n the state sequence

q(α
j

0 ), . . . , q(α
j
n) is generated in the transducer. We

denote this state sequence by q(αj ). P(α), then, is
the number of iterations over which the sequence
q(αj ) reappears.

Remark 1. P(α) is an integer multiple of α’s surface
periodicity.

Remark 2. A simple illustration of the need for in-
trinsic, as opposed to merely surface, periodicity is
provided by the γ particles of ECA 54. See Fig. 4(b)
and the accompanying text in Section 7.1.

After one period P(α), a particle α will have moved
a number dα of sites in the CA lattice. This shift
dα in space after one period is called the particle’s
displacement. dα is negative for displacements to
the left and positive for displacements to the right.
From the particle’s periodicity P(α) and displace-
ment dα , its average velocity is simply vα = dα/

P (α).
Note that the above remarks hold whether we are

looking at the wedges or at the transducer-state labeled
wedges: one obtains the same velocity.

The set of all particles α, β, . . . of a CA Φ is de-
noted by P.

Remark 3. Here we defined temporally periodic par-
ticles. There are particles in CAs, such as in ECA 18,
which are temporally aperiodic. In this case, one re-
places the periodicity condition Eq. (8) by one using
the ensemble operator; viz.,

���p(ΛαΛ′) = ΛαΛ′. (9)

4.1. Structural complexity of a particle

The preceding definitions and discussion suggest
that one can think of particles as having an inter-
nal clock or, in the more general case that includes
aperiodic particles, an internal state, much as the
solitary-wave solutions of continuum envelope equa-
tions have internal states [28]. One can ask about how
much information a particle stores in its states. This
is the amount of information that a particle transports
across space and time and brings to interactions.
These considerations lead one to a natural measure of
the amount of structural complexity associated with
individual particles.

Definition 3. The structural complexityC(α) of a par-
ticle α is defined to be

C(α) = −
p−1∑

j=0

Pr(q(αj )) log2 Pr(q(αj )), (10)
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where p is α’s period and Pr(q(αj )) is the probability
of α being in phase αj with the state-sequence q(αj ).

Remark 1. For the straightforward case of periodic
particles, in which the wedges and so their associated
state sequences are equally probable, we have

C(α) = log2 P(α). (11)

Remark 2. The information available to be pro-
cessed in particle interactions is upper bounded by
the sum of the individual particle complexities, since
this sum assumes independence of the particles. As
we will see shortly, the relative information — that in-
formation in one particle, conditioned on the other’s
phase (via the constraints imposed by the mediating
domain) and suitably averaged — determines the in-
formation available for processing by interactions.

4.2. Domain transducer view of particle phases

A particle is bounded on either side by two patches
of domain. (They could be patches of the same or dif-
ferent domains.) Consider what happens to the domain
transducer as it scans across the part of the lattice con-
taining the bounding domains (Λi and Λi

′
) and the

particle (α). It begins by cycling through the states of
the process graph of a phase (j ) of the first bounding
domain (Λi). It then encounters a symbol that does
not belong to the language of that domain phase, and
this then causes a transition out of that process graph.
Each successive symbol of the particle wedge leads
to additional transitions in the transducer. Finally, the
transducer reaches cells at the beginning of the other
bounding domain (Λi

′
), whereupon it begins to follow

the process graph of Λi
′
j ′ at some appropriate phase

j ′. In this way, a particle wedge αj corresponds to a
sequence q(αj ) of transducer states.

More formally, the transducer maps a particle
wedge αj , bordered by Λij and Λi

′
j ′ , to an ordered

n-tuple (n = |αj | + 2) of states

Q(αj ) = 〈q(Λij,k), q(αj ), q(Λi
′
j ′,k′)〉, (12)

where q(Λij,k) is the transducer-state reach on reading

symbol Λij,k . Since the transducer-state sequence is

determined by the bounding domain phases and the
actual wedge αj , it follows that the mapping from
particle wedges to state sequences is one-to-one. If
two particle wedges correspond to the same sequence
of states, then they are the same phase of the same
particle, and vice versa.

This representation of particle phases will prove
very handy below.

5. Interactions

In many CAs, when two or more particles col-
lide they create another set of particles or mutually
annihilate. Such particle interactions are denoted by
α + β → γ , for example. This means that the colli-
sion of an α particle on the left and a β particle on
the right leads to the creation of a γ particle. Particle
annihilation is denoted by α + β → ∅. For complete-
ness, we note that there are also unstable walls that can
spontaneously decay into particles. This is denoted by
α → β + γ , for example.

Often, the actual product of a particle interaction
depends on the phases αj and βk , in which the inter-
acting particles are at the time of collision. In such a
case, there can be more than one interaction product
for a particular collision: e.g., both α + β → γ and
α + β → ∅ can be observed.

The set of a CA’s possible particle interactions is
denoted by I. The complete information about a CA’s
domains    , particles P, and particle interactions I
can be summarized in a particle catalog. The catalog
forms a high-level description of the CA’s dynamics.
It is high-level in the sense of capturing the dynam-
ics of emergent structures. The latter are objects on a
more abstract level than the original equations of mo-
tion and raw (uninterpreted) spatial configurations of
site values.

6. Bounding the number of interaction products

Restricting ourselves to particle interactions with
just two colliding particles —α and β, say — we now
give an upper bound on the number nα,β of possible
interaction products from a collision between them.
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Fig. 1. Interactions between an α and a β particle with domain
Λ lying between.

(See Fig. 1 for the interaction geometry.) In terms of
the quantities just defined, the upper bound, stated as
Theorem 1, is

nα,β ≤ P(α)P (β)0v

T (Λi)S(Λi)
, (13)

where 0v = vα − vβ > 0 and Λi is the domain in
between the two particles before they collide. Note
that if 0v = 0, then nα,β = 0 trivially.

For simplicity, in the rest of the development we
assume that 0v = vα − vβ ≥ 0. This simply means
that particle α lies to the left of β and they move closer
to each other over time, as in Fig. 1.

This section proves that Eq. (13) is indeed a proper
upper bound. The next section gives a number of ex-
amples, of both simple and complicated CAs, that
show the bound is and is not attained. These highlight
an important distinction between the number of pos-
sible interactions (i.e., what can enter the interaction
region) and the number of unique interaction products
(i.e., what actually leaves the interaction region).

To establish the bound, we collect several intermedi-
ate facts. The first three lemmas come from elementary
number theory. Recall that the least common multiple,
lcm(a, b) of two integers a and b is the smallest num-
ber c that is a multiple of both a and b. Similarly, the
greatest common divisor, gcd(a, b) of two integers a
and b is the largest number c that divides both a and b.

Lemma 2. gcd(ca, cb) = c gcd(a, b), c > 0.

Proof. See Theorem 2.7 in [52]. �

Lemma 3. gcd(a, b) lcm(a, b) = ab.

Proof. See Theorem 2.8 in [52]. �

Lemma 4. lcm(ca, cb) = c lcm(a, b), c > 0.

Proof. Using Lemmas 2 and 3, it follows that

lcm(ca, cb)= cacb

gcd(ca, cb)

= c ab

gcd(a, b)
= c lcm(a, b). � (14)

Now we are ready to begin building an analysis of
particles and particle interactions.

Lemma 5. The intrinsic periodicity P(α) of a particle
α is a multiple of the temporal periodicity T (Λi) of
either domain Λi for which α is a boundary. That is,

P(α) = mαiT (Λi) (15)

for some positive integer mαi that depends on α and
Λi .

Proof. At any given time, a configuration containing
the particle α consists of a patch of the domain Λi , a
wedge belonging to α, and then a patch of Λi

′
, in that

order from left to right. (Or right to left, if that is the
chosen scan direction.) Fix the phase of α to be what-
ever we like —αl , say. This determines the phases of
Λi for the following reason. Recall that, being a phase
of a particle, αl corresponds to a unique sequence
Q(αl) of transitions in the domain transducer. That se-
quence starts in a particular domain-phase state Λij,k
and ends in another domain-phase state Λi

′
j ′,k′ . So, the

particle phase αl occurs only at those times when Λi

is in its j th phase. Thus, the temporal periodicity of α
must be an integer multiple of the temporal periodic-
ity of Λi . By symmetry, the same is also true for the
domain Λi

′
to the right of the wedge. �

Corollary 1. Given that the domain Λi is in phase
Λij at some time step, a particle α forming a boundary
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of Λi can only be in a fraction 1/T (Λi) of its P(α)
phases at that time.

Proof. This follows directly from Lemma 5. �

Remark. Here is the first part of the promised re-
striction on the information in multiple particles. Con-
sider two particles α and β, separated by a domain
Λ0. Naively, we expect α to contain log2 P(α) bits of
information and β, log2 P(β) bits. Given the phase of
α, however, the phase of Λ0 is fixed, and therefore the
number of possible phases for β is reduced by a factor
of 1/T (Λ0). Thus the number of bits of information
in the α–β pair is at most

log2 P(α)+ log2 P(β)− log2 T (Λ
0)

= log2
P(α)P (β)

T (Λ0)
. (16)

The argument works equally well starting from β.

Lemma 6. For any two particles α and β, the quantity
lcm(P (α), P (β))0v is a non-negative integer.

Proof. We know that the quantity is non-negative,
since the lcm always is and 0v is so by construc-
tion. It remains to show that their product is an in-
teger. Let kα = lcm(P (α), P (β))/P (α) and kβ =
lcm(P (α), P (β))/P (β); these are integers. Then

0v ≡ dα

P (α)
− dβ

P (β)
= kαdα − kβdβ

lcm(P (α), P (β))
.

When multiplied by lcm(P (α), P (β)) this is just
kαdα − kβdβ , which is an integer. �

Lemma 7. When the distance d between two ap-
proaching particles α and β in phases αj and βj

′
, re-

spectively, is increased by lcm(P (α), P (β))0v sites,
the original configuration — distance d and phases αj

and βj
′
— recurs after lcm(P (α), P (β)) time steps.

Proof. From the definition of lcm(a, b) it follows di-
rectly that lcm(P (α), P (β)) is a multiple of P(α).
Thus,

α(j+lcm(P (α),P (β)))modP(α) = αj , (17)

and the α particle has returned to its original phase.
Exactly parallel reasoning holds for the β particle. So,
after lcm(P (α), P (β)) time steps both α and β are
in the same phases αj and βj

′
again. Furthermore, in

the same amount of time the distance between the two
particles has decreased by lcm(pα, pβ)0v, which is
the amount by which the original distance d was in-
creased. (By Lemma 6, that distance is an integer, and
so we can meaningfully increase the particles’ sepa-
ration by this amount.) Thus, after lcm(P (α), P (β))
time steps the original configuration is restored. �

Lemma 8. If Λi is the domain lying between two
particles α and β, then the ratio

r = lcm(P (α), P (β))0v

S(Λi)
(18)

is an integer.

Proof. Suppose, without loss of generality, that the
particles begin in phases α0 and β0 at some substan-
tial distance from each other. We know from the pre-
vious lemma that after a time lcm(P (α), P (β)) they
will have returned to those phases and narrowed the
distance between each other by lcm(P (α), P (β))0v
cells. What the lemma asserts is that this displacement
is some integer multiple of the spatial periodicity of
the intervening domain Λi . Call the final distance be-
tween the particles d. Note that the following does not
depend on what d happens to be.

Each phase of each particle corresponds to a partic-
ular sequence of transducer states — those associated
with reading the particle’s wedge for that phase. Read-
ing this wedge from left to right (say), we know that
Q(α0) must end in some phase-state of the domain
Λi ; call it Λi0,0. Similarly, Q(β0) must begin with a

phase-state ofΛi , but, since every part of the interven-
ing domain is in the same phase, this must be a state
of the same phase Λi0; call it Λi0,k . In particular, con-
sistency requires that k be the distance between the
particles modulo S(Λi). But this is true both in the
final configuration, when the separation between the
particles is d, and in the initial configuration, when it
is d + lcm(P (α), P (β))0v. Therefore
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d + lcm(P (α), P (β))0v = d (mod S(Λi)),

lcm(P (α), P (β))0v = 0 (mod S(Λi)).

Thus, lcm(P (α), P (β))0v is an integer multiple of
the spatial period S(Λi) of the intervening domain
Λi . �

Remark. It is possible that lcm(P (α), P (β))0v =
0, but this does not affect the subsequent argument.
Note that if this is the case, then, since the least com-
mon multiple of the periods is at least 1, we have
0v = 0. This, in turn, implies that the particles do
not, in fact, collide and interact, and so the number of
interaction products is simply zero. The formula gives
the proper result in this case.

The next result follows easily from Lemmas 2 and
5.

Lemma 9. IfΛi is the domain lying between particles
α and β, then

gcd(P (α), P (β)) = T (Λi) gcd(mαi,mβi). (19)

Proof. We apply Lemma 4:

gcd(P (α), P (β))= gcd(mαiT (Λ
i),mβiT (Λ

i))

= T (Λi) gcd(mαi,mβi). �

With the above lemmas the following theorem can be
proved, establishing an upper bound on the number of
possible particle interaction products.

Theorem 1. The number nα,β of products of an in-
teraction between two approaching particles α and β
with a domain Λi lying between is at most

nα,β ≤ P(α)P (β)0v

T (Λi)S(Λi)
. (20)

Proof. First, we show that this quantity is an integer.
We use Lemma 3 to note that

P(α)P (β)0v

T (Λi)S(Λi)

= gcd(P (α), P (β)) lcm(P (α), P (β))0v

T (Λi)S(Λi)
, (21)

and then Lemma 8 to find that

P(α)P (β)0v

T (Λi)S(Λi)
= gcd(P (α), P (β))r

T (Λi)
, (22)

and finally Lemma 9 to show that

P(α)P (β)0v

T (Λi)S(Λi)
= T (Λi) gcd(mαi,mβi)r

T (Λi)

= r gcd(mαi,mβi), (23)

which is an integer.
Second, assume that, at some initial time t , the

two particles are in some arbitrary phases αj and βj
′
,

respectively, and that the distance between them is
d cells. This configuration gives rise to a particular
particle–phase combination at the time of collision.
Since the global update function is deterministic, the
combination, in turn, gives one and only one inter-
action result. Now, increase the distance between
the two particles, at time t , by one cell, while keep-
ing their phases fixed. This gives rise to a different
particle–phase combination at the time of collision
and, thus, possibly to a different interaction result.
We can repeat this operation of increasing the dis-
tance by one cell lcm(P (α), P (β))0v times. At that
point, however, we know from Lemma 7 that after
lcm(P (α), P (β)) time steps the particles find them-
selves again in phases αj and βj

′
at a separation of d.

That is, they are in exactly the original configuration
and their interaction will, therefore, also produce the
original product, whatever it was.

Starting the two particles in phases αj and βj
′
,

the particles go through a fraction 1/gcd(P (α), P (β))
of the possible P(α)P (β) phase combinations, over
lcm(pα, pβ) time steps, before they start repeating
their phases again. So, the operation of increasing the
distance between the two particles by one cell at a
time needs to be repeated for gcd(P (α), P (β)) dif-
ferent initial phase combinations. This way all pos-
sible phase combinations with all possible distances
(modulo lcm(P (α), P (β))0v) are encountered. Each
of these can give rise to a different interaction result.
From this, one sees that there are at most

gcd(P (α), P (β)) lcm(P (α), P (β))0v

= P(α)P (β)0v (24)
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unique particle–domain–particle configurations. And
so, there are at most this many different particle
interaction products, given that Φ is many-to-one.
(Restricted to the homogeneous, quiescent (Λ = 0∗)
domain which has T (Λ) = 1 and S(Λ) = 1, this is
the result, though not the argument, of [9].)

However, given the phases αj and βj
′
, the distance

between the two particles cannot always be increased
by an arbitrary number of cells. Keeping the particle
phases αj and βj

′
fixed, the amount 0d by which the

distance between the two particles can be increased or
decreased is a multiple of the spatial periodicity S(Λi)
of the intervening domain. The argument for this is
similar to that in the proof of Lemma 8. Consequently,
of the lcm(P (α), P (β))0v increases in distance be-
tween the two particles, only a fraction 1/S(Λi) are
actually possible.

Furthermore, and similarly, not all arbitrary
particle–phase combinations are allowed. Choosing a
phase αj for the α particle subsequently determines
the phase Λij of the domain Λi for which α forms one
boundary. From Corollary 1 it then follows that only a
fraction 1/T (Λi) of the P(β) phases are possible for
the β particle which forms the other boundary of Λi .

Adjusting the number of possible particle–domain–
particle configurations that can give rise to different
interaction products according to the above two ob-
servations results in a total number

P(α)P (β)0v

T (Λi)S(Λi)
(25)

of different particle–phase combinations and distances
between two particles α and β. Putting the pieces to-
gether, then, this number is an upper bound on the
number nα,β of different interaction products. �

Remark 1. As we shall see in the examples, on the
one hand, the upper bound is strict, since it is saturated
by some interactions. On the other hand, there are also
interactions that do not saturate it.

Remark 2. We have seen (Corollary 1, Remark) that
the information in a pair of particles α and β, separated
by a patch of domain Λi , is at most

log2
P(α)P (β)

T (Λi)
(26)

bits. In fact, the theorem implies a stronger restric-
tion. The amount of information the interaction car-
ries about its inputs is, at most, log2 nα,β bits, since
there are only nα,β configurations of the particles
that can lead to distinct outcomes. If the number
of outcomes is less than nα,β , the interaction ef-
fectively performs an irreversible logical operation
on the information contained in the input particle
phases.

7. Examples

7.1. ECA 54 and intrinsic periodicity

Fig. 2 shows the raw and domain-transducer filtered
space–time diagrams of ECA 54, starting from a ran-
dom initial configuration. We first review the results
of [22] for ECA 54’s particle dynamics.

Fig. 3 shows a space–time patch of ECA 54’s dom-
inant domain Λ, along with the domain-transducer
constructed to recognize and filter it out, as was done
to produce Fig. 2(b).

Examining Fig. 2 shows that there are four parti-
cles; we label these as α, β, γ+, and γ−. The first two
have zero velocity; they are the larger particles seen
in Fig. 2(b). The γ particles have velocities 1 and −1,
respectively. They are seen in the figure as the diag-
onally moving “light” particles that mediate between
the “heavy” α and β particles.

The analysis in [22] identified seven dominant
two- and three-particle interactions. We now analyze
just one: the γ+ + γ− → β interaction to illustrate
the importance of a particle’s intrinsic periodicity.

Naive analysis would simply look at the space–time
diagram, either the raw or filtered ones in Fig. 2,
and conclude that these particles had periodicities
P(γ+) = P(γ−) = 1. Plugging this and the other
data — T (Λ) = 2, S(Λ) = 4, and 0v = 2 — leads to
upper bound nα,β = 1

4 ! This is patently wrong; it is
not even an integer.

Fig. 4 gives the transducer-filtered space–time di-
agram for the γ+ and γ− particles. The domain Λ
is filtered out, as above. In the filtered diagrams,
the transducer-state reached on scanning the particle
wedge cells is indicated.
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Fig. 2. (a) Raw space–time diagram and (b) filtered space–time
diagram of ECA 54 behavior starting from an arbitrary initial
configuration. After [22].

From the space–time diagrams of Fig. 4(b) one
notes that the transducer-state labeled wedges for each
particle indicate that their intrinsic periodicities are
P(γ+) = 2 and P(γ−) = 2. Then, from Theorem 1
we have that nα,β = 1. That is, there is at most one
product of these particles’ interaction.

Fig. 5 gives the transducer-filtered space–time
diagram for the γ+ + γ− → β interaction. A com-
plete survey of all possible γ+–Λ–γ− initial particle
configurations shows that this is the only interac-
tion for these particles. Thus, the upper bound is
saturated.

Fig. 3. (a) Space–time patch of ECA54’s primary domain Λ. (b)
The transducer that recognizes Λ and deviations from it. After
[22].

7.2. An evolved CA

The second example for which we test the upper
bound is a CA that was evolved by a genetic algo-
rithm to perform a class of spatial computations: from
all random initial configurations, synchronize within
a specified number of iterations. This CA is φsync1

of
[38]: a binary, radius-3 CA. The 128-bit look-up table
for φsync1

is given in Table 1.
Here we are only interested in locally analyzing

the various pairwise particle interactions observed in
φsync1

. It turned out that this CA used a relatively
simple set of domains, particles, and interactions. Its
particle catalog is given in Table 2.
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Fig. 4. The transducer-filtered space–time diagrams for the γ+
and γ− particles. (a) The raw space–time patches containing the
particles. (b) The same patches with the Λ filtered out. The cells
not in Λ are denoted in black; those in Λ in white. In the filtered
diagrams the transducer-state reached on scanning the particle
wedge cells is indicated. After [22].

As one example, the two particles α and β and the
intervening domain Λ have the properties given in
Table 2. From these data, Theorem 1 tells us that there
is at most one interaction product:

nα,β = 4 · 2 · (1/4)
2 · 1

= 1. (27)

Fig. 5. The transducer-filtered space–time diagrams for the
γ+ + γ− → β interaction. After [22].

Table 1
Look-up tables (in hexadecimal) for φsync1 and φparent

a

φ Look-up table (hexadecimal)

φsync1 F8A19CE6B65848EA
D26CB24AEB51C4A0

φparent CEB2EF28C68D2A04
E341FAE2E7187AE8

a To recover the 128-bit string giving the CA look-up table
output bits st+1, expand each hexadecimal digit (the first row
followed by the second row) to binary. The output bits st+1 are then
given in lexicographic order starting from the all-0’s neighborhood
at the leftmost bit in the 128-bit string.

The single observed interaction between the α and β
particles is shown in Fig. 6. As this space–time dia-
gram shows the interaction creates another β particle,
i.e., α + β → β. An exhaustive survey of the 8 (=
4 × 2) possible particle–phase configurations shows
that this is the only interaction for these two particles.
Thus, in this case, we see that Theorem 1 again gives
a tight bound; it cannot be reduced.

7.3. Another evolved CA

The third more complicated example is also a CA
that was evolved by a genetic algorithm to synchro-
nize. This CA is φparent of [53]. It too is a binary
radius-3 CA. The 128-bit look-up table for φparent was
given in Table 1.

Table 2
The particle catalog of φsync1

a

Domains Λ
Name Regular language T (Λ) S(Λ)

Λ 040∗, 141∗ 2 1
Particles P
Name Wall P d v

α ΛjΛj 4 −1 − 1
4

β ΛjΛ1−j 2 −1 − 1
2

γ ΛjΛj 8 −1 − 1
8

δ ΛjΛj 2 0 0
Interactions I
Type Interaction Interaction

React α + β → β γ + β → β

React δ + β → β γ + α → α

React δ + α → α δ + γ → α

a Λj , j ∈ {0, 1}, indicates the two temporal phases of domain
Λ.
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Fig. 6. The interaction between an α and a β particle in φsync1 .

Here the two particles α and β and the intervening
domain Λ have the properties given in Table 3. Note
that this is the same domain as in the preceding ex-
ample.

From this data, Theorem 1 now says that there are
at most

nα,β = 8 · 2 · (7/4)
2 · 1

= 14 (28)

interactions.
Of these 14 input configurations, it turns out several

give rise to the same products. From a complete survey
of α–Λ–β configurations, the result is that there are
actually only four different products from the α + β
interaction; these are

Table 3
Properties of two of φparent’s particles

Domain T S

Λ 2 1
Particle P d v

α 8 2 1
4

β 2 −3 − 3
2

Fig. 7. The four different (out of 14 possible) interaction products
for the α + β interaction.

α + β → ∅, α + β → γ, α + β → 2β,

α + β → β + α.

They are shown in Fig. 7.
This example serves to highlight the distinction

between the maximum number of interaction config-
urations, as bounded by Theorem 1, and the actual
number of unique products of the interaction. We
shall return to this distinction later on.

7.4. ECA 110

In the next example, we test Theorem 1 on one of
the long-appreciated “complex” CA, elementary CA
110. As long ago as 1986, Wolfram [10, Appendix
15] conjectured that this rule is able to support uni-
versal, Turing-equivalent computation (replacing an
earlier dictum [42, p. 31] that all elementary CA
are “too simple to support universal computation”).
While this conjecture initially excited little interest,
in the last few years it has won increasing accep-
tance in the CA research community. Though to date
there is no published proof of universality, there are
studies of its unusually rich variety of domains and
particles, one of the most noteworthy of which is
McIntosh’s work on their tiling and tessellation prop-
erties [54]. Because of this CA’s behavioral richness,
we do not present its complete particle catalog and
computational–mechanical analysis here; rather see
[55]. Instead, we confine ourselves to a single type of
reaction where the utility of our upper bound theorem
is particularly notable.
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Fig. 8. The particle β of ECA 110: the space–time patch shows
two complete cycles of particle phase.

We consider one domain, labeled Λ0, and two par-
ticles that move through it, called β and κ [55]. (This
β particle is not to be confused with the β of our pre-
vious examples.)Λ0 is ECA 110’s “true vacuum”: the
domain that is stable and overwhelmingly the most
prominent in space–time diagrams generated from ran-
dom samples of initial configurations. It has a tempo-
ral period T (Λ0) = 1, but a spatial period S(Λ0) =
14. The β particle has a period P(β) = 15, during
the course of which it moves four steps to the left:
dβ = 4 (Fig. 8). The κ particle, finally, has a period
P(κ) = 42, and moves dκ = 14 steps to the left during

Fig. 9. The particle κ of ECA 110: the space–time diagram shows
one complete cycle of particle phase.

its cycle (Fig. 9). These data give the β particle a ve-
locity of vβ = − 4

15 and the κ particle vκ = − 1
3 .

Naively, one would expect to have to examine 630
(= P(β)P (κ) = 15 × 42) different particle–phase
configurations to exhaust all possible interactions.
Theorem 1, however, tells us that all but

(15)(42)((−4/15)− (−1/3))

(14)(1)
= 3 (29)

of those initial configurations are redundant. In fact,
an exhaustive search shows that there are exactly three
distinct interactions:

β + κ → α + 3wright, β + κ → β + 4wright,

β + κ → η.

Here, α, wright, and η are additional particles gener-
ated by ECA 110. These interactions are depicted, re-
spectively, in Figs. 10–12.

We should note that the wright particle is somewhat
unusual in that several can propagate side by side, or
even constitute a domain of their own. There are a
number of such “extensible” particle families in ECA
110 [55].

Fig. 10. The reaction β + κ → β + 4wright in ECA 110.
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Fig. 11. The reaction β + κ → α + 3wright in ECA 110.

Fig. 12. The reaction β + κ → η in ECA 110.

We again see, in this complex case, that the bound
of Theorem 1 is attained.

8. Conclusion

8.1. Summary

The original interaction product formula of [9] is
limited to particles propagating in a completely uni-
form background; i.e., to a domain whose spatial and
temporal periods are both 1. When compared to the
rich diversity of domains generated by CAs, this is
a considerable restriction, and so the formula does
not help in analyzing many CAs. We have general-
ized the original result and along the way established
a number of properties of domains and particles —
structures defined by CA computational mechanics.
The examples showed that the upper bound is tight
and that, in complex CAs, particle interactions are
substantially less complicated than they look at first
blush. Moreover, in developing the bound for com-
plex domains, the analysis elucidated the somewhat
subtle notion of a particle’s intrinsic periodicity — a
property not apparent from the CA’s raw space–time
behavior: it requires rather an explicit representation
of the bordering domains’ structure.

Understanding the detailed structure of particles and
their interactions moves us closer to an engineering
discipline that would tell one how to design CA to per-
form a wide range of spatial computations using var-
ious particle types, interactions, and geometries. In a
complementary way, it also brings us closer to scien-
tific methods for analyzing the intrinsic computation
of spatially extended systems [55].

8.2. Open problems

The foregoing analysis merely scratches the sur-
face of a detailed analytical approach to CA particle
“physics”: each CA update rule specifies a micro-
physics of local (cell-to-cell) space and time inter-
actions for its universe; the goal is to discover and
analyze those emergent structures that control the
macroscopic behavior. For now, we can only list a
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few of the open, but seemingly accessible, questions
our results suggest.

It would be preferable to directly calculate the
number of products coming out of the interaction
region, rather than (as here) the number of distinct
particle–domain–particle configurations coming into
the interaction region. We believe this is eminently
achievable, given the detailed representations of do-
main and particles that are entailed by a computational
mechanics analysis of CAs.

Two very desirable extensions of these results
suggest themselves. The first is to go from strictly
periodic domains to cyclic (periodic and “chaotic”)
domains and then to general domains. The principle
difficulty here is that Proposition 1 plays a crucial
role in our current proof, but we do not yet see how
to generalize its proof to chaotic (positive entropy
density) domains. The second extension would be to
incorporate aperiodic particles, such as the simple
one exhibited by ECA 18 [56]. We suspect this will
prove considerably more difficult than the extension
to cyclic domains: it is not obvious how to apply
notions like “particle period” and “velocity” to these
defects. A third extension, perhaps more tractable
than the last, is to interactions of more than two
particles. The geometry and combinatorics will be
more complicated than in the two-particle case, but
we conjecture that it will be possible to establish an
upper bound on the number of interaction products
for n-particle interactions via induction.

Does there exist an analogous lower bound on the
number of interactions? If so, when do the upper and
lower bounds coincide?

In solitonic interactions, the particle number is pre-
served [3,8,9,33,57]. What are the conditions on the
interaction structure that characterize solitonic interac-
tions? The class of soliton-like particles studied in [9]
possess a rich “thermodynamics” closely analogous
to ordinary thermodynamics, explored in detailed in
[58]. Do these results generalize to the broader class
of domains and particles, as the original upper bound
of [9] does?

While the particle catalog for ECA 110 is not yet
provably complete, for every known pair of particles
the number of distinct interaction products is exactly

equal to the upper bound given by our theorem. This
is not generally true of most of the CAs we have
analyzed and is especially suggestive in light of the
widely accepted conjecture that the rule is computa-
tion universal. We suspect that ECA 110’s fullness
or behavioral flexibility is connected to its computa-
tional power. (Cf. Remark 2 to Theorem 1.) However,
we have yet to examine other, computation universal
CA to see whether they, too, saturate the bound of our
theorem. One approach to this question would be to
characterize the computational power of systems em-
ploying different kinds of interactions, as is done in
[59] for computers built from interacting (continuum)
solitary waves.
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Appendix A

Proof of Lemma 1. The proof consists of two parts.
First, and most importantly, it is proved that the spa-
tial periodicities of the temporal phases of a periodic
domain Λi cannot increase and that the periodicity of
one phase implies the periodicity of all its successors.
Then it follows straightforwardly that the spatial peri-
odicities have to be equal for all temporal phases and
that they all must be periodic.

Our proof employs the update transducer Tφ , which
is simply the FST which scans across a lattice configu-
ration and outputs the effect of applying the CA update
rule φ to it. For reasons of space, we refrain from giv-
ing full details on this operator — see rather [21]. Here
we need the following results. If φ is a binary, radius-r
CA, the update transducer has 22r states, represent-
ing the 22r distinct contexts (words of previously read
symbols) in which Tφ scans new sites, and we cus-
tomarily label the states by these context words. The
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effect of applying the CA φ to a set of lattice config-
uration represented by the DFA M is a new machine,
given by TφM— the “direct product” of the machines
M and Tφ . Once again, for reasons of space, we will
not explain how this direct product works in the gen-
eral case. We are interested merely in the special case
where M = Λij , the j th, periodic phase of a domain,
with spatial period n. The next phase of the domain,
Λij+1, is the composed automaton TφM , once the lat-
ter has been minimized. Before the latter step TφM
consists of n “copies” of the FST Tφ , one for each of
Λij ’s n states. There are no transitions within a copy.
Transitions from copy k to copy k′ occur only if k′ =
k+1 (mod n). In total, there are n22r states in the direct
composition.
TφM is finite and deterministic, but far from min-

imal. We are interested in its minimal equivalent
machine, since that is what we have defined as the
representative of the next phase of the domain. The
key to our proof is an unproblematic part of the
minimization, namely, removing states that have no
predecessors (i.e., no incoming transitions) and so
are never reached. (Recall that, by hypothesis, we are
examining successive phases of a domain, all repre-
sented by strongly connected process graphs.) It can
be shown, using the techniques in [21], that if the
transition from state k in Λij to state k + 1 occurs
on a 0 (respectively, on a 1), then in the composed
machine, the transitions from copy k of Tφ only go
to those states in copy k + 1 whose context string
ends in a 0 (respectively, in a 1). Since states in copy
k + 1 can be reached only from states in copy k, it
follows that half of the states in each copy cannot be
reached at all, and so they can be eliminated without
loss.

Now, this procedure of eliminating states without
direct predecessors in turn leaves some states in copy
k + 2 without predecessors. So we can re-apply the
procedure, and once again, it will remove half of the
remaining states. This is because applying it twice is
the same as removing those states in copy k + 2 for
which the last two symbols in the context word differ
from the symbols connecting state k to state k + 1
and state k + 1 to state k + 2 in the original domain
machine Λij .

What this procedure does is exploit the fact that, in
a domain, every state is encountered only in a unique
update-scanning context; we are eliminating combina-
tions of domain-state and update-transducer-state that
simply cannot be reached. Observe that we can ap-
ply this procedure exactly 2r times, since that suffices
to establish the complete scanning context, and each
time we do so, we eliminate half the remaining states.
We are left then with n22r/22r = n states after this
process of successive halvings. Further observe that,
since each state k of the original domain machine Λij
occurs in some scanning context, we will never elim-
inate all the states in copy k. Since each of the n
copies has at least one state left in it, and there are
only n states remaining after the halvings are done,
it follows that each copy contains exactly one state,
which has one incoming transition, from the previous
copy, and one outgoing transition, to the next copy.
The result of eliminating unreachable states, therefore,
is a machine of n states which is not just determinis-
tic but (as we have defined the term) periodic. Note,
however, that this is not necessarily the minimal ma-
chine, since we have not gone through a complete
minimization procedure, merely the easy part of one.
Λij+1 thus might have fewer than n states, but certainly
no more.

To sum up, we have established that, if Λij is a

periodic domain phase, then Λij+1 is also periodic

and S(Λij+1) ≤ S(Λij ). Thus, for any t , S(���tΛij ) ≤
S(Λij ). But ���tΛij = Λi(j+t)mod p and if t = p, we

have Λi(j+t)mod p = Λi(j+p)mod p = Λij . Putting these
together we have

S(Λij+1) ≤ S(Λij )⇒ S(Λij+1) = S(Λij ) (A.1)

for j = 0, 1, . . . , p − 1. This implies that the spatial
period is the same, namely n, for all phases of the
domain. And this proves the proposition when the CA
alphabet is binary.

The reader may easily check that a completely par-
allel argument holds if the CA alphabet is not binary
but m-ary, substituting m for 2 and (m− 1)/m for 1

2
in the appropriate places. We omit it here for reasons
of space and notational complexity. �
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