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Local space-time structures, such as domains and the intervening dislocations, 
dominate a wide class of cellular automaton (CA) behavior. For such spatially- 
extended dynamics regular domains, vicinities, and attractors are introduced as 
organizing principles to identify the discretized analogs of attractors, basins, and 
separatrices: structures used in classifying dissipative continuous-state dynami- 
cal systems. We describe the attractor-basin portrait of nonlinear elementary 
CA rule 18, whose global dynamics is largely determined by a single regular 
attracting domain. The latter's basin is analyzed in terms of subbasin and portal 
structures associated with particle annihilation. The conclusion is that the com- 
putational complexity of such CA is more apparent than real. Transducer 
machines are constructed that automatically identify domain and dislocation 
structures in space-time, count the number of dislocations in a spatial pattern, 
and implement an isomorphism between rule 18 and rule 90. We use a trans- 
ducer to trace dislocation trajectories, and confirm that in rule 18, isolated dis- 
location trajectories, as well as a dislocation gas, agree extremely well with the 
classical model of annihilating diffusive particles. The CA efficiently transforms 
randomness of an initial pattern ensemble into a random walk of dislocations 
in space-time. 

KEY WORDS: Spatially extended dynamical system; cellular automata; 
attractor; basin; separatrix; diffusion; dislocation; domain; invariant set; finite 
automata; transducer. 

1. I N T R O D U C T I O N  

Cellular automata (CA) are models of spatially extended dynamical 
systems with the particular feature of being as discrete as possible: in space 
(cells), in site value (e.g., binary), and in time/1) The discrete nature of CA 
makes the techniques of formal language and computation theories, which 
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deal with strings of discrete symbols, particularly appropriate tools for 
their analysis. Computational and formal language properties of CA global 
behavior have been investigated during the last two decades. (2-5) Discus- 
sions of computational capability have often centered on constructing 
specialized cellular automata to mimic features of serial computation 
models: Turing machines embedded in, for example, Conway's Game of 
Life, (6) or digital circuitry implicit in logic gate, billiard computer, and 
particle flow simulations. (7) Such constructions, however, fail to address the 
basic question of how to identify the generic computational properties of 
any given CA. 

Similarly, analyses of CA in the context of dynamical systems theory 
have tended toward specialized results, focusing, for example, on very small 
lattices and explicit or Monte Carlo enumeration of periodic orbits and 
their transients. (8 11) Nonetheless, the last decade has witnessed a substan- 
tial increase in our appreciation of the diversity of CA behavior. There 
have been extensive phenomenological studies, including classifica- 
tion,(12 14) identification of propagating structures, (15'~6) and measurement 
of bulk statistical properties. (~'17 19) These unfortunately have taken advan- 
tage of neither the rich potential implicit in the well-developed theory of 
computation nor the geometric underpinnings of dynamical systems theory. 

The following attempts a synthesis of these two approaches by con- 
sidering a view of CA dynamics based on the local space-time and 
state-space structures that organize the system's evolution. In doing so, it 
introduces a rather literal analysis of CA as dynamical systems. For a range 
of related CA one can identify the analogs of attractors, basins, and 
separatrix structures. (2~ These ideas will be illustrated by focusing on a 
particular elementary CA, rule 18 in the conventional numbering scheme. 
Although our discussion is restricted to this one example, it serves to 
illustrate a number of properties of CA generally, but in a simple setting. 
A more detailed development and more complete survey of CA will appear 
elsewhere. (22) 

The basic phenomenology of the CA we study here has been known 
for some time. (17'23) It organizes itself into local regions in which every 
other cell in space and time is 0 and the remaining cells are unrestricted. 
The boundaries between adjacent "phase-locked" regions are dislocations, 
where the spatial phase slips a cell. When evolved from a random initial 
condition consisting of a rarefied dislocation gas, numerical results indicate 
that the number density d of dislocations decays in time as d ~  (8n Dt) -~/2, 
with D ~ 1/2. Furthermore, the excursion x of a set of initially distant 
dislocations grows as (x  2) ~ 2Dt. The interpretation of this is that the 
dislocations move as if following a space-time random walk with diffusion 
constant D, annihilating in pairs when their paths c r o s s .  (24) In short, 
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starting from random configurations, the dislocations behave like a diffusive 
gas of annihilating particles. 

The focus in the present work is on the computational analysis of this 
behavior, on a reconstructive method for identifying domain structure, and 
on the implications of these in treating CA as dynamical systems. The 
techniques introduced below for detecting, analyzing, and manipulating 
general structural elements such as domains and dislocations point the way 
toward a generally applicable computation-analytical tool. 

The presentation is organized as follows. The next section gives defini- 
tions and introduces notation for elementary CA, finite automata and 
regular languages, and transducers. We define an operator governing the 
time evolution of ensembles of CA states, and give an algorithm for 
calculating the iterates of such ensembles. The following section addresses 
the central issue of space-time structures, giving definitions and applying 
them to rule 18, which serves as an illustrative example throughout. Next 
we describe the global structure of rule 18, and give its attractor-basin 
portrait. Finally, as an application of the ideas introduced, we examine the 
statistical properties of dislocation trajectories. 

2. DEF IN IT IONS 

2.1. Elementary CA and Rule 18 

D e f i n i t i o n .  ~12) A cellular automaton consists of a countable array 
of discrete sites or cells i and a discrete-time update rule q~ operating 
in parallel on local neighborhoods of a given radius r. At each time 
the sites take on values in a finite alphabet d of primitive symbols: 
a I ~ {0, 1,..., k -  1 } - d .  The local site-update function is written 

r, .... o i + . )  

The state s, of the CA at time t is the configuration of the finite or 
infinite spatial array: s, E d N, where ,~N is the set of all possible site value 
configurations on a lattice of N cells. The "extended state space," denoted 
d * ,  is the union of all states of any N: 

~ ' * =  U d u  
N~>0 

with d ~ = ~ .  
The CA global update rule q~: sou--* ~ N  applies ~b in parallel to all 

sites in the lattice: s, = @s,_ 1- For finite N it is also necessary to specify a 
boundary condition. In the following, we will always use periodic boundary 
conditions. 
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The automaton we are concerned with is an "elementary" CA for 
which (k, r ) =  (2, 1); that is, nearest-neighbor interactions and binary 
cell values, giving a total of k 2r+1= 8 possible neighborhood patterns. 
Following the conventional numbering scheme, (12) we arrange these 
patterns in the order below, write the value obtained by applying ~b to each 
pattern, and interpret the resulting string of 8 symbols as a binary number 
giving the rule index. This paper analyzes the CA having rule index 18, for 
which the rule table is as follows: 

Neighborhood 111 110 101 100 Oll 010 001 000 a~ ~o~a~ +~ 
Next site value 0 0 0 1 0 0 1 0 ai,+l 

As is readily seen from the rule table this CA is dissipative in the sense 
that the global update rule is many-to-one: ~ b d N c  zr N. 

It will turn out that for finite periodic lattices, there are a few values 
of N for which the evolution of the CA is radically different. Since we are 
presently interested in the typical behavior of a given CA, we define the 
notion of a sparse set of lattice sizes, on which the behavior is allowed to 
be atypical, but which are themselves so rare as to be insignificant. This 
allows us to investigate the qualitative dynamics of the attractor-basin 
portrait without worrying about complications introduced by rare number- 
theoretic fluctuations in the behavior. Such fluctuations are an interesting 
subject in themselves, but do not concern us here. 

Defini t ion.  Given a set R =  {N1, N2,...} of distinct CA lattice sizes, 
let IR(n) be the number of elements Ni ~ R such that Ni ~< n. Then R is said 
to be sparse if and only if 

IR(n) 
lim = 0 

If a property P holds for all but a sparse set of lattice sizes, we will say that 
P holds for "almost all" lattices, or equivalently, for "typical" lattices. 

2.2. Finite Automata  and Regular Languages 

In this section, we briefly review the basic definitions of automata and 
languages we will need. For  a thorough presentation of this topic, see any 
standard text on the subject. (25) It is important not to confuse the automata 
defined here, which represent ensembles of symbol strings, with cellular 
automata, which are the dynamical systems we are studying. 

Defini t ion.  An automaton, or "machine," is formally defined as a 
quintuple M =  {Q, Z', 6, qo, F}. Here Q is a set of states; S is an alphabet 
of tape symbols; 3: Q x _r ~ Q is the transition rule, taking the current state 
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and a symbol read from a tape into a new state; qo is the initial state; and 
F is the set of final or accepting states. If the set Q of states is finite, 
LIQI[ < o% then M is afinite automaton. 

Finite automata can be deterministic or nondeterministic depending 
on whether for all states qe  Q, each transition from q to another state 
is labeled with a unique tape symbol. These two automaton classes 
are abbreviated DFA and NFA, respectively. An automaton is said to 
recognize a string if, upon reading it from the tape, no disallowed 
transitions are seen. An automaton accepts a string if, after recognizing 
it, the automaton is in one of the accepting states. Strings that are not 
accepted are rejected. Two finite automata are equivalent if they accept 
identical sets of strings. Two automata are disjoint if they accept disjoint 
sets of strings. 

A formal language L is a set of strings over some alphabet 
_r: L _ Z * =  Ui~>o Z/. The language L(M) of a machine M is the set of all 
strings, sometimes called words, accepted by that machine. This definition 
is independent of whether or not M is finite. 

Defini t ion.  A regular language is that L(M) accepted by some 
finite automaton M. We define regular language space, or just "language 
space," as the set 5~ of all regular languages. 

For each regular language L there is a unique automaton Mmi n with 
the minimal number [IQl] of states that accepts only and all of the strings 
in L. Since we will be focusing almost exclusively on minimal machines, we 
drop the subscript and simply write M, with the understanding that we 
mean Mini n unless it is explicitly stated otherwise. Consistent with this, 
we denote by M(L) the minimal DFA accepting L. This allows us to use 
finite automaton and regular language representations interchangeably. 

An important subclass of the regular languages we will be studying is 
the class of process languages. That is, for all words co e L, all subwords 
V~ {si' ' 'si+J: sk:(co)k,  i + j ~  IIco/I, i,j>.O} of co are in L. We form the 
subword closure sub(L) of a language L by including in sub(L) all 
subwords of each co e L. Finite automata for regular process languages 
have the property that all states are accepting: F =  Q.(26) 

D e f i n i t i o n .  The process graph of a process language L is the graph 
formed by allowing the associated machine M(L) to start in any state, and 
minimizing the result. 

The process graph is the "state transition graph" of ref. 4. It clarifies 
the structure of the language by absorbing the transient states devoted to 
"phase-locking" of individual strings to the machine's recurrent states. (27) 
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Of the many measures of infinite languages, the one we will find most 
useful is the size, defined below. 

D e f i n i t i o n .  Let NL(n) be the number of strings of length n in a 
language L. The relative size of a language Lj with respect to another 
language L2 such that L1-~ L2 is defined as 

NLI(n) 
S(L1 [ L 2 ) -  lim - -  

. ~  o~ NL2(n ) 

S(L~ [L2) is just the fraction of strings in L2 that are also in LI, in the 
limit of large n. 

2.3 .  T r a n s d u c e r s  

The automata defined above can be used either as input devices 
for classifying existing strings or as output devices that generate strings 
belonging to a given language. These two modes of operation are easily 
combined by modifying the machine so that on each transition a symbol 
is emitted as well as read. The resulting "transducer" machines, also called 
Mealy machines, (25) are functions from strings to strings. In the informa- 
tion theory literature the process versions are referred to as channels. (28) In 
ergodic theory, they are endomorphisms of subshifts. (29) Transducers give 
a very compact notation for functions that map complicated sets, e.g., 
Cantor sets, to complicated sets. Of equal importance, they are construc- 
tive in the sense that they indicate literally how the function is to be 
implemented and so computed. 

In this section we formally define transducers and develop a few basic 
tools for manipulating them. Transducers will turn out to be central to the 
analysis of structural properties of CA state space. 

Definit ion. A transducer T =  {Q, Sin , (~, qo, F, Sou t, r}  is an 
automaton where Q, 6, q0, F are as defined above and where Sin is the 
previous input alphabet Z. Sou t is an output alphabet. The observation 
function fl maps Q x-rin to Sout. A transducer operates as a finite 
automaton with the extra feature of writing a symbol in Zout to an output 
tape upon reading a symbol in Sin from the input tape. 

The effect of running a transducer over a space-time pattern, say, is 
to recode the data by replacing original symbols with those emitted by the 
machine. Formally, the transducer induces a function fT that maps strings 
over Sin to strings over -rou t . 

D e f i n i t i o n .  Let T be a transducer. The output machine, which we 
denote [-T]out , is the minimal DFA accepting the set of all strings that can 
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be emitted from T, on all possible inputs. [T]out can be constructed by the 
following series of steps: 

(i) The input symbols on all transitions of T are disregarded, 
leaving only the output symbols labeling transitions. 

(ii) The resulting NFA is converted to a DFA using the standard 
algorithm. ( 2 5 )  

(iii) The DFA is then minimized to obtain the unique machine with 
the minimal number It Qlt of states. This operation is also 
standard. (25) 

We call this construction minimization with respect to the output. 
Given a machine M(L) and a transducer T, one can define the com- 

position operator T o M(L) such that the resulting machine, itself a trans- 
ducer, accepts as input exactly the set of strings in L, and for each such 
input string s e L, it emits the encoded string fz(s). In effect, M(L) and T 
are connected in series, with M(L) emitting strings in L which are then 
used as inputs to T. This corresponds to restricting the domain of fa- to the 
language L. The operator is formally expressed in the following. 

Def in i t ion .  Let M and T be a finite automaton and a transducer, 
respectively: 

M = {Qm, Sin, 6M, q0 m, F M} 

T T={QT, Z~n,6T, q~,FT, Sout, fl T } with .~Tn = sM 

Then the composition of T and M, denoted T' = T o M, is a transducer 

T ' =  {Q', ~Y'in, (~t, q~, F' ,  Sou ,, fl'} 

such that: Q' are ordered pairs of the states in Qa- and QM: Q, = QT x QM; 
the input alphabet is Z'I,=SiV~=zM; the start state is q'o=(q~, q0M); the 
accepting states are F'={(qT, qM):qT~F T, qMEFM}; the output 

,' _ T , t i alphabet is -rou t - 2:out, the transition rule 6': Q x S i n  ---4 Q' is given by 

~'(q',<Yin)=(<~T(qT, tTin),<~M(qM, ain)), where q,=(qX, qM) and O'in~,~'irn 

and the observation function fl': Q' • --r'in --+ --r'ou t is 

fl'(q', ai.) = flr(qT, ai.), with q' = (qX, qM) 

A transducer can also be used to define a "machine metric" that 
measures the distance of a string from a given language. The action of this 
transducer is to encode a given pattern into a string of l's that represents 
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in unary form the number of disallowed transitions observed in the pattern. 
We will represent the fiducial language by its corresponding automaton M. 
Then the metric with respect to this language is defined as follows. 

D e f i n i t i o n .  Let M be a machine, and co be any string, not 
necessarily in L(M). The machine metric is 

( l l fT~(~) l l  IlcoJI < oo 
/ 

I{coll M = 4 II ffM(~o.)ll 
/ lim - -  otherwise 
( - ~  ~ IIco.lr 

where T M is the transducer formed from automaton M by augmenting it 
to output the null symbol 2 on allowed transitions and adding new edges 
that emit a 1 on previously disallowed transitions. The new edges are 
"reset" edges, connected to the state representing the effect of having read 
the disallowed symbol when in the start state, fTM(CO) is the string emitted 
by T M upon reading the input co. In the infinite case, co, denotes the string 
consisting of the first n symbols of co. The finite and infinite cases are 
related by dividing the former by IIcoIr. 

In a later section, we will use a machine metric that counts disloca- 
tions in spatial patterns generated by rule 18. 

2.4. CA as Regular  Language Processors 

The connection between CA and regular languages is readily made by 
identifying the CA alphabet ~4 with the automaton alphabet X. Then a CA 
state s t e ~ N  is treated as a word in some language L e ~.  It is important 
to note that this makes the analysis independent of lattice size, since L is 
a subset of the extended state space d * - _ r * ,  and hence may contain 
strings of all lengths. When discussing CA with lattices of arbitrary but 
fixed size N, we will often use the regular language notation. It is under- 
stood that we mean only the strings in the language that are of length N. 

The operation of the global CA update rule ~b is to recode a parent 
string s,_ 1 into a child string st. Stated in this way, it is clear that q~ can 
be implemented as a transducer, which we denote Te .  Since a transducer 
reads the symbols one by one, the full definition must include a specifica- 
tion of the direction in which it is to be passed over the spatial array; in 
the following, we will always take this direction to be from left to right. The 
machine representation of T~ for an arbitrary elementary CA is shown in 
Fig. 1. It operates as a queue with two memory registers, in which a child 
symbol is emitted when the final member of its parent neighborhood is 
read. The output symbols are given by the local update rule operating on 
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1 1 0 ( 0 1 1 ~  

1[,011~ 

Fig. 1. The CA update rule transducer T~ that reads a state s t_x and emits its iterate 
s t = #(s ,_  x). T~ is passed over the spatial array from left to right. In this and the following 
figures, inscribed circles and squares denote start and accepting states, respectively. Edges 
are labeled with ain ] aou t to denote the input and output symbols. 2 is the null symbol; for 
example, when used for output, it means that no symbol is emitted. The labels inside the states 
correspond to the previous two symbols read. This is the machine for the infinite lattice case; 
finite lattices require additional constraints due to boundary conditions. 

the current parent neighborhood: i-1 ~b(aln 2, al n 1, i aout = ~ This is in fact 
just a description of the most memory-efficient way of programming one- 
dimensional CA dynamics for numerical experiments. 

As defined above, the CA update rule q~ operates on individual con- 
figurations. Alternatively, we can look at how a CA processes regular 
language representations of spatial configurations. (4) This is analogous in 
dynamical systems theory to the study of the evolution of state ensembles, 
rather than individual orbits. To this end, we define the ensemble evolution 
operator �9 by 

ff2t : (l)ff2t 1 : (1) tff20 

where g2 o is any regular language of spatial configurations used as initial 
conditions: 

0 , =  {s : s  = 4 ' s ,_  1, V s , _ l  ~ ~2,_ ~ } 

When O o = d * ,  the spatial languages are regular for all finite t: 0 , ~ ,  
Yt < ~.r The FME algorithm defined below shows that the iterate of any 
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(a) (b) 

Fig. 2. Schematic of the operation of the language operator gO (a) in CA state space and 
(b) in regular language space. Note that case (b) subsumes all values of N simultaneously. 

regular language is regular: O o ~ N ~  g2, e N, Yt < ~ .  We also note here 
that, since any finite language is regular, the spatial language generated by 
any CA over a finite spatial lattice (N < ~ )  is also always regular. Thus, 
if either space or time is finite, the set of CA configurations is a regular 
language3 3~ As a consequence, �9 is an automorphism that maps regular 
language space into itself: @: ~ - - . N .  For  infinite lattices, however, the 
asymptotic spatial language, found in the limit t--. oo, need not be 
regular--or  even recursively enumerable. (5) Somewhat surprisingly, this 
property often does not hamper our computational analysis, as will be seen 
in the next section. 

Figure 2 shows a comparison of the operation of �9 in configuration 
space ~ u ,  where it operates on sets of configurations, and in regular 
language space N, where it operates on individual languages. The impor- 
tant advantage of the latter approach is that it allows us to investigate the 
dynamics of ensembles of structurally similar CA states without having to 
deal with the highly nontrivial complications introduced by tracing the 
evolution of individual states. 

D e f i n i t i o n .  The finite machine evolution (FME) algorithm. Given 
the CA update transducer Te  for a specific CA rule ~b, and a machine 
M, 1 = M(g2,-1), we calculate M, = M(~2,) = M(~g2t_l)  by using 
machine composition and minimizing the resulting transducer with respect 
to the output symbols: 

M r =  [T~o M,_~]o.t  

3. S T R U C T U R E S  IN L A N G U A G E  S P A C E  

The global machine M,=M(g2,) ,  when g 2 t = ~ t ( ~ * ) ,  describes the 
ensemble of the iterates of all possible initial conditions at some time t. It 
necessarily captures all of the information processing accessible to the CA, 
which includes correlations and information transmission as well as corn- 
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putation. Many previous investigations of CA language properties have 
tended to focus on the global machine. (4'31~ 

In terms of dynamical systems theory, though, the global machine 
describes the entire attractor-basin portrait. (2~ In many cases, this descrip- 
tion is seen to be prohibitively difficult to construct because, for example, 
M t grows too large with time. In fact, such complete global descriptions 
are rarely pursued in dynamical systems theory. The main exceptions to 
this come in the study of flows on manifolds of constant negative cur- 
vature, uniform hyperbolic systems, and some very simple periodic systems: 
all of which are highly idealized systems. Similarly for CA, the complexity 
of the global machine is reflected in the fact that the asymptotic language 
can be nonregular, as noted above. Even for elementary CA, there are 
many cases in which the size of M t increases extremely rapidly in time. This 
is true in particular of rule 18: M((23) has [[Q[] = 143 states; M((~4) is 
estimated to have IIQII > 20, 000.(4) Furthermore, there are other CA rules 
for which the growth is even faster. (31) 

Another shortcoming of the global approach is that machines for 
qualitatively similar CA can be vastly different. Comparison of the space- 
time patterns generated by rule 18 and rule 90 shows a marked similarity; 
indeed, for an important class of initial conditions they are identical. Yet 
the global machine for rule 90, far from exhibiting the radical growth seen 
in rule 18, has just one state for all t. 

The apparent intractability due to unbounded growth and the contrast 
between global machines for rules with such similar behavior suggest that 
an alternative view is required. It is not necessary, for example, to use 
f20 = sr nor can we expect it to be particularly useful, as we just noted. 
Characterizing the entire attractor-basin portrait of any dynamical system 
with a single expression is implausible for anything but the simplest 
dynamics. Instead, one standard approach is to identify the structures that 
dominate and organize the system's behavior. The most basic of these for 
dissipative systems are attractors, basins, and separatrices. The state space 
is then understood in terms of those structures. In the case of CA, we want 
to find the dominant, dynamically-homogeneous space-time patterns and 
their associated languages. 

Yet previous investigations from the viewpoint of pure dynamical 
systems theory have tended to overlook computationally equivalent 
space-time behavior. For example, the study of periodic orbits of very small 
lattices,(8-H) perturbation growth rates as the analog of Lyapunov charac- 
teristic exponents, (32) and information transmission in space or in time (33) 
have failed to provide a formulation of attractors, basins, and separatrices 
that integrates them with a description of the intrinsic computational 
capability of the underlying CA. 
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This is a reflection of a basic problem in the literal application of 
dynamical systems theory to CA and other spatially-extended systems. The 
theory does not provide a formalism for the investigation of a state's inter- 
nal structure. A state of a dynamical system is a structureless point. But it 
is exactly the internal, now spatial, structure of a CA configuration that is 
of interest. This deficit can be addressed by interpolating between the literal 
notion of a CA state as a position-dependent configuration of cells and the 
intuitive notion of a translation-independent pattern. Generally speaking, a 
pattern is ( i )a  position-independent configuration and (i i)a typical 
sequence generated by the process, where "typical" is used in the sense of 
the Shannon-McMillan theorem of information theory. (28) The use of a 
regular language or finite automaton description of processes captures 
exactly these features. 

For  CA rule 18, the dominant structure is the domain described above: 
every other site has value 0, while the remaining sites can be either 0 or 
l, (17'23) The iterate of a domain consists of a domain shifted by one site. 
This observation is consistent with the intuitive notion of a domain as a 
dynamically-homogeneous region of the spatial array. We formalize the 
preceding comments in the following subsections. First we consider the 
spatial structure via the notion of a regular domain. Then we address 
temporal structure and stability by defining regular vicinity and regular 
attractor. 

3.1.  D o m a i n s  

D e f i n i t i o n .  A regular domain or "domain language" A ~ ~ of a CA 
is a process language representing a set of spatial regions with the following 
two properties: 

(i) Temporal invariance: A is mapped onto itself by the dynamic; i.e., 
�9 A = A. 

(ii) Spatial homogeneity: The process graph of A is strongly con- 
nected. ~34) This is similar to statistical stationarity of the spatial 
pattern. 

For  general CA there can be any number of different domains A i, each 
with its own computational structure. 

It is straightforward to generalize this to more complicated dynamical 
behavior than single iteration invariance. A domain can be defined as a 
nonwandering orbit of languages. This includes those whose temporal 
behavior is periodic or even chaotic. In each case, all languages in the orbit 
must be spatially homogeneous. 

A domain describes a computationally-homogeneous region of the 
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spatial array. In this way we take "domain" to mean the domain language 
A or, alternatively, any configuration s E A. 

Definition. A wall is a boundary between domains. Two domains 
A i and A j separated by a wall will be denoted A i'j. Walls may consist of 
any number of cells, including zero. A dislocation is a wall of zero thickness 
separating two identical domains. 

Definition. The phase of site i in a domain A j is the state q of the 
machine M(A j) when ~i is read in a chosen direction. 

In the case of rule 18, the observed behavior described in the introduc- 
tion defines a domain language A ~ All spatial states are made up of con- 
catenations of words ~o e A ~ separated by dislocations. In particular, the 
two-domain language A ~176 consists of all states in which there is a single 
dislocation. For reasons that will become clear later, we also include in A ~176 
the null language 0* consisting of the null states for all lattice sizes, i.e., all 
strings of consecutive O's. The process graph of A ~ is shown in Fig. 3. The 
DFAs for both A ~ and A ~176 are shown in Fig. 4. Note from the figures that 
A ~ consists of strings made up of isolated l's separated by an odd number 
of O's. 

Proposition. A ~ is a regular domain. 

Proof. (i) Temporal  invariance: by explicit construction using the 
FME algorithm. Figure 5 shows an intermediate stage of the construction 
of the first iterate of M(A~ immediately after composing the machine with 
the rule 18 update transducer TaB. After minimizing with respect to the out- 
put, the final machine M(~A ~ = [T18 ~ M(A~ is seen to be identical to 
M(A~ 

(ii) Spatial homogeneity: this follows immediately, since the process 
graph of A ~ shown in Fig. 3, is strongly connected. | 

Proposition. A ~176 is a time-invariant (fixed-point) regular lan- 
guage, although it is not a domain. 

Proof. We begin by calculating the image of M(A ~176 under rule 18 
by means of the FME algorithm. Figure6 shows the transducer 

Fig. 3. 

0 

The process graph of A ~ in which both states are start and final states. The symbol 
2; denotes the symbol set {0, 1 }. 

822/66/5-6-16 
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0 

0 

( 
1 0 

(a) (b) 
Fig. 4. DFAs (a) M(A ~ for single domain language A ~ and (b) M(A ~176 for domain-wall- 
domain language A ~176 Note that M(A ~ differs from the process graph of Fig. 3 in that it is 
a DFA, which necessarily has a single start state. In this case, the start state is a transient that 
shows how M(A ~ synchronizes to the string it is reading. 

olo  
111 

( 

1[~ 010 

olo 

) 

) 

) 

Fig. 5. A ~ is a regular domain: machine TIso M(A ~ obtained after composing the rule 18 
update transducer with the single-domain machine of Fig. 4a. Minimization with respect to 
the output results in a machine identical to that shown in Fig. 4a, 
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olo~ 

Fig. 6. A ~176 is a fixed-point language: machine T~8o M(A ~176 obtained after composing the 
rule 18 update transducer with the two-domain machine of Fig. 4b. On completion of the 
remaining steps of the proof, Fig. 4b is found. 

T~s o M(A~176 After finishing the F M E  algorithm, we find that the resulting 
machine is slightly different from M(A~176 there is a set of input strings 
accepted by M(A ~176 whose images under rule 18 are accepted by M(A~ 
This is a spurious effect due to the spatial inhomogeneity of M(A ~176 in 
combination with the spatial correlation of the input and output strings of 
the CA update rule transducer. The input to T18 o M(A ~176 consists of some 
portion of the spatial state s t_ ~, starting an arbitrary distance from the dis- 
location. For  input strings of the form (01)* 10ZOZ..., the observed region 
before the parent dislocation maps to a sequence of adjacent O's. There is 
no nonzero cell to the left of the child dislocation to fix the spatial phase, 
and so the dislocation does not show up. As we discuss in the next section, 
dislocations can only disappear in pairs, except when the state evolves to 
the null state 0". Thus the dislocation is still present, but merely unseen. 
We remove this "phase-ambiguity" artifact by requiring that for all nonnull 
states st_ ~ the machine observe the dislocation before it can enter a final 
state. After the result is minimized, the final machine is seen to be identical 
to M(A~176 shown in Fig. 4b. Finally, A ~176 is not a domain, because it is 
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not spatially homogeneous: its process graph has two strongly connected 
components. | 

An essential issue that arises here is the question of discovering 
domains in the first place. Even with unlimited space-time data, the domain 
language(s) for a given CA may be sufficiently complex as to defy visual 
identification. For rule 18, the dominant structure had already been found; 
but this is not true in general. One consequence of the foregoing analysis 
is that a general approach to identifying these structures, once developed, 
would provide a basis for automated dynamical systems investigation of 
CA computational capability. A promising answer to this problem is what 
we have used here: the machine reconstruction technique. (26'35) As a 
starting point to this study, we applied machine reconstruction to the state 
reached by 10 5 iterations of rule 18 on a periodic array of 10 5 sites, starting 
from a random initial condition. The results of a series of reconstructions 
were trivial variants of the two-domain machine M(A ~176 shown in Fig. 4. 
The variations consisted of missing edges or nondeterministic transitions to 
"dangling" states from which there was no exiting edge, both of which are 
common signatures of incomplete statistics. With machine reconstruction it 
was quite straightforward to identify the regular domains and attractors 
and proceed with the dynamical systems analysis. Plans include an expert- 
system-like environment to facilitate the discovery of domains and to 
perform automated construction of vicinities and basins and proofs of 
invariance and attraction. The knowledge base for such a system consists 
of the properties, rules of manipulation, and theorems for regular 
languages and finite automata. It also incorporates basic notions from 
dynamical systems, such as those used here. 

3.2. Vicinit ies 

Before turning to the discussion of regular attractors, it is necessary to 
develop the notion of the vicinity of a language. In dynamical systems 
theory, an attractor is required to be stable to small perturbations within 
an open neighborhood. (2~ To adapt this to the present context, it is 
necessary to define first what is meant by "open neighborhood" and second 
what is meant by "small." 

An open neighborhood is an open set in the topology of the state 
space. We must find a topology that allows us to formulate open sets 
appropriate for the qualitative dynamics of CA. To this end, we make the 
following observation. 

R e m a r k .  Regular language space induces a topology on the 
extended CA state space. 
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Proof. The set N of regular languages satisfies the two requirements 
of the basis of a topology on d * :  

(i) Y L ~ ~ L = d * ,  since d *  is itself a regular language. 

(ii) L c~ L' E N, VL, L' e N, by the closure of regular languages under 
intersection. (25) | 

All regular languages are open sets in this topology. Thus, the 
extended CA state space possesses the necessary topological structure. This 
allows us to define the regular vicinity of a language as an open set con- 
taining that language, and which is itself a regular language. The idea is to 
use the vicinity of a language the way e-balls are used in qualitative 
dynamics. 

D e f i n i t i o n .  A regular vicinity V(L) of a language L is (i) a regular 
language and (i i)an open set in d *  such that L ~ V(L). 

To define "small perturbation," we use Hamming distance, which leads 
to the following notion of Hamming vicinity. The discrete nature of CA 
state space precludes carrying over the standard definition, since it would 
demand continuity of site values. 

D e f i n i t i o n .  The Hamming vicinity VH(L) of a regular language L is 
the regular vicinity generated by adding a unit Hamming distance pertur- 
bation to each string in L: Vn(L)=L + 5L, where 116LHHarnming~ 1, that 
is, 5 L =  {0" +0"10"} ,  and -i- is sum modulo the alphabet size. Figure 7a 
shows the Hamming vicinity transducer T v~. 

Some problems arise with perturbations of patterns on infinite lattices. 
For rules with a quiescent state 0", one can define "finite initial condi- 
tions ''(36) as the set of states having a finite nonzero support. Then the effect 
of the perturbation on these states may depend sensitively on whether it 
occurs within the nonzero region or outside it. For  example, a single bit flip 
inside the nonzero support of a finite pattern in A ~ generates 0 or 2 disloca- 
tions, whereas a bit flip outside the nonzero region can create either 0 or 
1 dislocation. It is convenient to restrict the vicinity to include only pertur- 
bations in the nonzero region. Note that the new vicinity type can be used 
with finite lattices with no additional consequences, since in that case the 
support is the whole finite lattice. 

D e f i n i t i o n .  The restricted Hamming vicinity Vn,res,ricted(L) of 
a regular language L is the regular vicinity generated by adding a 
unit Hamming distance perturbation somewhere within the region of 
nonzero support of each string in L: Vn.restrioted(L)=L 5c 6,L, where 
ll6rL]lHamming~ 1 and the perturbation 5, is restricted to operate within 
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Fig. 7. 

o 

~ 11o 

olo ~tt o l o ~ ~ )  

o l o ~ ~ _ ~  ~t~ 

(a) (b) 
(a) The Hamming vicinity transducer TvH. (b) The restricted version Tv, c Note that 

these transducers are nondeterministic over inputs. 

the nonzero support of each string in L. Figure 7b shows the restricted 
Hamming vicinity transducer T vHr. 

Lemma. V ~ ~ VH(A~ shown in Fig. 8a, and V ~ =- supp 
VH, restricted(A0), shown in Fig. 8b, are the regular Hamming vicinity and the 
restricted Hamming vicinity of A ~ respectively. The subscript supp denotes 
the restriction of the perturbations to the region of nonzero support. 

1~ 0 I 0 

1' 1 0 

(a) (b) 
Fig. 8. (a) The H a m m i n g  vicinity V ~ of the regular domain  A ~ shown in Fig. 4a. (b) The 

o machine for the language Vsupp, formed from A ~ by flipping a single bit in the nonzero region 
of each state. 
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Proof. By explicit construction using the definitions, V ~  
0 oAO]out" [Yv~oA~ and Vsupp = [TvHr | 

Note that V~ consists of two disjoint parts: (i) states that remain in 
A ~ and (ii) states in which the perturbation generates two dislocations 
separated by an even number of O's. 

3 .3 .  A t t r a c t o r s  

Having set up the necessary geometrical prerequisites, it is now 
possible to define the regular attractor of a CA. First we define the 
necessary temporal behavior, and then we combine that with a stability 
analysis using regular vicinities, to arrive at the final definition. 

D e f i n i t i o n .  An invariant language L is one that is mapped onto 
itself by the dynamic: ~ (L)  = L. A periodic language is a language L such 
that ~p(L) = L for some finite integer period p. A language orbit F is the 
set of iterates of a language: F =  {q~t(L): t/> 0}. 

Note that since any finite union of regular languages is itself a regular 
language, any periodic regular language orbit can be turned into a 
regular invariant language by taking the union over the orbit's elements. 
Aperiodic language orbits, which can occur only on infinite lattices, may be 
nonregular, however. 

Def in i t ion .  An invariant language L is a fixed-point regular attrac- 
tor if it is a regular language and there exists a regular vicinity V(L) such 
that: 

1. All states in V remain in V forever: ~,(V)__ V, u ~> 0. 

2. All states in V, except possibly for a set R such that S(RI V)= 0, 
eventually collapse down onto L: thus, for almost all s e V, 3t ~> 0 
such that ~ ( s )  e L. 

Letting a set of zero size remain outside the attractor indefinitely is 
absolutely essential to domain-wall-dominated CA, as will be seen below. 
This is analogous in continuous-state dynamical systems to allowing 
unstable or marginally stable fixed points and periodic orbits to exist in 
the vicinity of an attractor. One of the benefits of this type of definition 
is that the simple Hamming vicinity is an adequate tool in establishing 
the existence of attractors. An alternative formulation would have 
introduced a machine metric that implicitly excluded such nonattracting 
states; the net result would be the same. 

In conjunction with numerical investigations, the definitions and 
propositions formulated so far allow us to analyze in some detail the state 
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space structure of rule 18. Our goal is to establish that A ~ and A ~176 are 
fixed-point regular attractors. The argument breaks up into three cases 
depending on the CA lattice size and the class of initial conditions: (i) finite 
periodic lattices; (ii)infinite lattices with finite initial conditions; and 
(iii) infinite lattices with infinite initial conditions. After analyzing the cases 
via several observations, a proposition, and a conjecture, we summarize the 
remaining steps for a direct proof. 

O b s e r v a t i o n .  For  finite periodic lattices with an even number of 
sites N, A ~ is a fixed-point regular attractor. 

Discussion. A previous proposition established that A ~ is time- 
invariant. We take as the regular vicinity of A ~ the unrestricted Hamming 
vicinity V ~ The periodic boundary conditions ensure that on all lattices of 
even N, the number  of dislocations is even; thus, all states in V ~ have either 
d =  0 or 2 dislocations. In the next section we will prove that the number 
of dislocations is nonincreasing with time and dislocations annihilate in 
pairs, which means that all states in V ~ remain in V ~ for all t. To show 
attraction, it would be sufficient to show that the fraction of states in the 
nonattracted set goes to zero with increasing lattice size. Numerical simula- 
tions, to be discussed in a later section, indicate that the upper bound on 
the fraction of nonattracted states obeys a power law N -~ with c ~  1/2. 
The upper bound is already below 3 % on lattices with as few as 400 cells. 
This indicates that the size of the nonattracted set relative to V ~ vanishes, 
and so A ~ is an attractor. 

Ob se r va t ion .  For  finite periodic lattices with N odd, A ~176 is a 
fixed-point regular attractor. 

Discussion. The discussion is quite similar to the case for N even. 
A ~176 has been proven to be time-invariant. The periodicity of the lattice 
ensures that the unrestricted regular Hamming  vicinity V ~ 1 7 6  VH(A ~176 
consists, aside from the single pattern 0", of states with d =  1 or 3 disloca- 
tions. Since for all states s ~ V ~176 either 05~8(s ) = 0* or d decreases by 0 or 
2, all states in V ~176 remain in V ~176 for all t. As in the case of A ~ the numeri- 
cal evidence shows rapid decay of the size of the nonattracted set with 
increasing lattice size. Thus, for periodic lattices with odd size N, almost all 
states in V ~176 eventually fall into A ~176 and so A ~176 is an attractor. 

Note that behavior on finite lattices depends on the parity of the 
lattice. For  even N, the periodic boundary conditions require that there be 
an even number  of dislocations in the state at all times. Since A ~176 apart  
from the single state 0", has a single dislocation, it will never be present on 
an even-sized lattice. Similarly, A ~ (again, apart  from 0")  will never exist 
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on a lattice with N odd. Thus, one or the other may be present, but never 
both together. 

By taking advantage of the domain isomorphism discussed in the next 
section, we can apply the well-understood algebraic analysis of elementary 
CA rule 90 to rule 18 (37) to learn more about  the attractors. The principal 
result of concern to us here is that on periodic lattices of size N =  2 k, all 
initial conditions evolve under rule 90 to the null state 0". (8) For N r  k, 
this is not the case. As we will see, the implication of this for rule 18 is that 
for states with d dislocations evolving on lattices of size N = 2  k - d ,  a 
relatively large number of states will fall directly into 0* before any disloca- 
tions have annihilated. For  example, for N-= 2 k all states in A ~ eventually 
evolve to the single pattern 0", and for N = 2 k -  1 all states in A ~176 evolve 
to 0". Thus, 0* is the attracting invariant set for these lattices, and the 
regular attractors A ~ and A ~176 are "degenerate" in the sense that only the 
state 0* is actually present. Similarly, for N =  2 ~ -  2 a significant number 
of states in V ~ will fall directly into 0", and for N = 2 k - 3 many states in 
V ~176 evolve to 0". However, this "leakage" into 0* is typically a zero-sized 
effect, as the following observation indicates. 

First we define M(0*) as the set of all states that map to 0", i.e., the 
basin of 0". In a later section, we will define the basin of a language more 
formally. 

O b s e r v a t i o n .  Let (A, V) denote the attractor and its vicinity on a 
finite periodic lattice of any size. That  is, (A, V) = (A ~ V ~ for N even, and 
(A, V ) =  (A ~176 V ~176 for N odd. Then on all but a sparse set of lattices, 
S ( ~ ( 0 " )  c~ V[ V ) = 0  and S(M(O*)c~AIA)=O. 

Discussion. First we show that the set of lattices discussed above, 
for which 0* is known to be an important  attracting invariant set, is sparse. 
The set of these lattice sizes is Ra= {N:N=2k-d ,  d e { 0 ,  1,2, 3} and 
k e g }. The number  IR~(n) of lattice sizes N in Re such that N ~  n grows as 
IRe(n) = 4  x [_log2(n)J-  const for large n, where [_x_] is the integer part  of 
x. In the limit of large n, we have 

IRe(n) 4 log2(n ) 
lim = lim - -  - 0 

and so Ra is sparse. We next investigate numerically the behavior on the 
remaining lattices. Simulations on lattices not in the above sparse set have 
shown that as a function of increasing N, the upper bound on the fraction 
of states in the attractor A that map to 0* decays with a power law. The 
same is true of the vicinity V. This indicates that S(M(0*)c~ A I A ) =  0 and 
S(~(0*)  n V I V) = 0 on all but the sparse set R a of lattices. 
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On infinite lattices A ~ and A ~176 coexist. To keep the attractors distinct, 
it is necessary to subtract from each language those states that evolve into 
0 ' .  To this end, we define the languages 

4 ~ -- A ~ - ~ ( 0 " )  

4 ~176 - A ~176 - ~ ( 0 " )  

where the set-theoretic difference P -  Q denotes the set of states in P that 
are not in Q. Note that 4 ~ and 4 ~176 are disjoint and time-invariant. 

P r o p o s i t i o n .  On an infinite lattice with finite initial conditions, 4 o 
and 4 ~176 are fixed-point regular attractors. 

Proof. In this case, 0* is a Gardern-of-Eden state, so ~ ( 0 " ) = 0 " .  
M(A ~ and M ( 4  ~176 are easily constructed from M(A ~ and M(A~176 
shown in Fig. 4, by making the start states nonaccepting. 4 ~ and 4 ~176 are 
therefore both regular languages. We use the regular vicinities ~-o __ supp 

0 --0,0 __ 0,0 
VH,restricted(A ) - - ~ ( 0 " )  a n d  Vsupp=Vu, restricted(A ) - - ~ ( 0 " ) .  T o  prove 
attraction, we quote the following results of ref. 36: (i) all states, apart from 
0", in which the initial number na of dislocations is even, fall into 4~ and 
(ii) if ha is odd, then the state will fall into 4 ~176 If we denote the set of finite 
initial conditions by F, this means in particular that all states in V~ p c~ F 
fall into 4 o . More formally, 

Vs e - o  Vsupp ~ F~ 3t < ~ such that qSts e 4 0 

~0,0 40,0 Similarly, all states in Vsupp t'~ F fall into - I 

C o n j e c t u r e .  On an infinite lattice with infinite initial conditions, 
A~ _= A~ A ~176 is a fixed-point regular attractor. Specifically, 

A~ = A~ u 4~176 u [~3(0") c~ A ~ ]  

where 4 ~ and 4 ~176 as defined above, are disjoint, possibly nonregular, 
attracting invariant sets, with S(N(0*) c~ A~ I A ~) = 0. 

Discussion.  In the case of infinite initial conditions, ~ ( 0 " )  may or 
may not be regular. If N(0*) is nonregular, then 4 ~ and 4 ~176 can be non- 
regular as well. Nevertheless, they may still be attracting. The language A oo 
is clearly regular and time-invariant, since it is the union of two invariant 
regular languages. M(A~)  is readily formed from M(A ~176 shown in 
Fig. 4b, by making all machine states accepting. All configurations in the 
regular Hamming vicinity V~ = V ~ w V ~176 remain in Vo~ for all time. To 
argue for attraction, we partition Vo~ into the disjoint, possibly nonregular, 
sets ~ ' ~ 1 7 6  ~ ' ~ 1 7 6 1 7 6 1 7 6  and ~(0") .  The preceding 
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observations indicate that almost all states in ~.o and f.o,o eventually fall 
into ~0 and ~0,0, respectively. By definition, all states in ~ ( 0 " )  evolve to 
the invariant state 0". We consider only .~o in detail, since the discussion 
for .~o,o is quite similar. The third observation above indicates that in the 
limit of infinite N, ~ ( 0 " )  has zero size relative to A ~ and V ~ Equivalently, 
S(A~ A~ and S ( P ~  V~ So, we can concentrate on V ~ 
and A ~ since they differ from ~o and ~o by a set of zero size. To show that 
almost all states in po eventually fall into .~o, it is sufficient to show that 
almost all states in V ~ fall into A ~ 

The set V ~ breaks up into three disjoint subsets: 

(i) { s : ~ t s E A  ~ for some t < o o } .  This is by far the largest set. 
Indeed, half of the states in V ~ have 0 dislocations, and hence 
are already in A ~ at t = 0. 

(ii) {s:~b,s , ~ o '  temporally periodic state not in A~ The tem- 
poral periodicity implies that s is spatially periodic. This is 
because of the expanding nature of rule 18: local site information 
is transmitted along the lattice in both directions at the speed of 
light. If the state as a whole is to be temporally periodic, it must 
be due to an underlying spatial periodicity. Since a spatially 
periodic state of period p evolving on an infinite lattice is 
equivalent to a primitive period of that state evolving on a finite 
periodic lattice of p cells, this set falls into the case of the first 
observation above, which indicates that it is of vanishing size. 

(iii) {s : ~bts , ~ ,  temporally aperiodic state not in A~ This is the 
"quasiperiodic" case in which the two dislocations either diverge 
forever from each other or march along the lattice roughly in 
parallel, their velocities having the same sign. It is not yet clear 
whether such states even exist. At the very least, if they do, they 
are extremely rare, and we ignore them. 

The net result is that at t = ~ at most a set of vanishing size remains 
outside of A ~ Almost all states in V ~ eventually fall into A ~ and so .~0 is 
attracting. As we said, similar arguments show that .~o.o is attracting and 
that S ( ~ ( 0 * ) n  A ~176 ] A ~176 = 0. Putting the two cases together immediately 
gives that A~ is a regular attractor, and that S(N(0*)c~ A~ I A ~ ) =  0. 

Remark. We expect to be able to use the language-theoretic 
apparatus we have set up to demonstrate rigorously the attracting nature 
of A ~ and/1  ~176 This will be left for presentation elsewhere. The strategy to 
be used is as follows. Define i2o= o o Vsupp- A , and evolve this language 
forward in time using the FME algorithm, at each time step excising those 
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states which have fallen into A ~ In this way, examine the time series of 
languages 

l ~~ = ~(12 ~ 1 ) - A  ~ with ~-o = Vsup p0 _Ao 

This is the set of vicinity patterns that have not fallen onto the attractor. 
Our goal is to find sufficient regularity in the time series to make it possible 
to bound the decay in the size of l~o as t ~ av. If the asymptotic size is 
zero, then attraction is proved. The conjecture is that there is a monotonic 
decrease in the upper bound on the size of the nonattracted set and that 
this decay rate can be estimated by a functional renormalization equation 
determined by the CA rule acting on the defined ensemble. The spatial 
rescaling should reveal with increased lattice size a "fractal" structure. The 
critical exponent associated with the self-similarity will describe that set 
and determine the size decay rate. All we require is monotonic decrease, a 
fairly lenient property compared to those used in the existing algebraic and 
combinatorial analyses. 

The arguments in this section employed both proof and numerical 
observation. The remaining steps necessary to turn them into rigorous 
propositions can be laid out in detail: 

(i) Prove that the sets of nonattracted states in V ~ and V ~176 have 
zero size relative to A ~ and A ~176 for typical N. 

(ii) Prove that ~ ( 0 " )  has zero size relative to A ~ and A ~176 on all but 
a sparse set of lattices. 

(iii) Prove that the set of aperiodic nonattracted states in V~ on an 
infinite lattice with infinite initial conditions has zero size 
relative to A~.  

In this way the formalism we have introduced has reduced the overall 
problem to these three cases. Each requires that a given set have vanishing 
size. The numerical investigations indicate that the sizes of the above three 
sets rapidly decay with increasing lattice size. 

A simple summary follows from accepting the numerical evidence: the 
regular attracting domain A ~ organizes the state space. Disregarding for 
the moment ~(0" ) ,  we can consider A ~176 as the lowest "energy" fluctuation 
above the vacuum state A ~ Like analogous situations with topological 
solitons, the dislocation in A ~176 is stabilized by the global topology of either 
finite odd-size or infinite lattices. And so A ~176 is an attractor, although not 
a domain. 
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3.4. OTHER STRUCTURES 

Finally, we note that we can use the above definition of regular attrac- 
tor as a basis for defining other structures in language space, namely basins 
and separatrices. These definitions mirror those found in standard dynami- 
cal systems theory. 

D e f i n i t i o n .  The set of all preimages of a regular attractor A is its 
basin: r162 U,~>0 q> ,(A). The set of states that are not in basins, but 
still in the accessible region of configuration space, make up the 
separatrices: 5r N -  UA~{A~} ~(A), where {A s} is the set of all attrac- 
tors of the system. 

Both CA basins and separatrices may contain states with no prede- 
cessors. These so-called Garden-of-Eden configurations occur only as initial 
configurations in d N. The list of attractors, basins, and separatrices of a 
CA is its attractor-basin portrait. The attractor-basin portrait of rule 18 is 
the subject of the next section. 

4. GLOBAL STRUCTURE OF RULE 18 

Having defined some of the fundamental structural objects in language 
space, we can now put them together with a discussion of certain 
behavioral properties determined by the global organization of the state 
space, to come up with a fairly complete picture of the overall behavior of 
rule t8. The main question is the following: What usually happens to a 
typical initial configuration as it evolves in time? By "typical," we mean 
in particular "almost all configurations on almost all lattices." Atypical 
behavior is best treated as a refinement of the overall picture we present 
here, to be addressed only after the typical behavior is understood. In dis- 
cussing the attractors, therefore, we will use A ~ and A ~176 for both finite and 
infinite lattices, with the understanding that we are disregarding the sparse 
set of finite lattices for which a significant fraction of states evolve to 0", 
and on the remaining lattices, the nonattracted sets of zero size in the 
vicinity of each attractor. For  the infinite case, this last includes N(0*) as 
well. 

As a first step, we note again that we can treat any initial state s as 
a concatenation of domains of various lengths, separated by dislocations. 
Then part of the question is to decide what happens to these dislocations 
as the state evolves in time. 

k e m m a .  (37) The number of dislocations in an arbitrary CA state 
evolving under rule 18 decreases or remains constant in time. Furthermore, 
for all states except those that evolve immediately to the null state, disloca- 
tions always annihilate in pairs. 
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Proof (Outline). From the CA rule table. There are three cases, each 
concerning a spatially-local configuration: ( i )no dislocations, ( i i)an 
isolated dislocation, and (iii) two or more nearby dislocations that may or 
may not collide during the next time step. The first case has been addressed 
by showing that A ~ is an invariant language: no dislocations are created in 
time. The single-dislocation case is proven by enumerating all local 
neighborhoods that contain one dislocation. The result is that the disloca- 
tion moves to the left or right, but neither disappears nor multiplies. Thus, 
when f2 o consists of configurations in A ~ or A ~176 no dislocations are 
created in time. Case (iii) is proven as follows. The local action of the 
update rule ensures that unless the dislocations' closest boundaries are 
separated by less than 2r + 1 = 5 cells, the dislocations do not interact, and 
can be treated under case (ii) above. The sole exception to this is when two 
dislocations and the cells between them are mapped to a region of con- 
secutive O's, in which case they annihilate and the number of dislocations 
decreases by two. Enumeration of all 5-cell neighborhoods shows that the 
number of dislocations either remains the same or decreases by an even 
number. | 

In addition, the domain walls appear to execute a random walk on the 
lattice, as we describe in detail in the next section. This suggests a 
stochastic model of dislocation motion, in which they perform independent 
random walks on the lattice until they collide, at which time they 
annihilate. The stochastic model is further motivated by a proof that the 
motion of a single dislocation in rule 18 performs a random walk. (38) 
The classical model of diffusing annihilating particles was studied by 
Griffeath, (24) who proved that with probability 1 the density of dislocations 
asymptotically falls to zero. In essence, diffusive motion ensures that almost 
every dislocation eventually will collide with another and the pair will 
annihilate. On finite lattices, the dislocations annihilate as far as possible. 
For  infinite lattices the random walk implies that the limiting set of states 
with a positive dislocation density has vanishing size relative to the full 
state space. 

The consequence of diffusing dislocations for rule 18, given sufficiently 
large and typical N, is that almost every initial configuration in ~ N  even- 
tually goes to a regular attractor: either to A ~ if N is even, or to A ~176 if 
N is odd. Requiring that N be typical excludes the sparse set of lattices for 
which 0* is an important attracting invariant set. There is an even number 
of dislocations in any initial condition on an even lattice. And so with 
probability 1, the state will eventually evolve into A ~ on an even lattice. If 
N is odd, the number of dislocations is always odd, due to pairwise 
annihilation. And so, almost all initial conditions on an odd lattice even- 



The Attractor-Basin Portrait of a Cellular Automaton 1441 

tually fall into A ~176 The same argument holds for the case when N is 
infinite, but the initial condition has a finite number of dislocations. On 
infinite lattices with an infinite number of dislocations the dislocation 
density asymptotically falls to zero, and hence any finite subsequence in the 
state falls into A ~ with probability 1. Under the assumption of diffusive 
motion, then, A ~ and A ~176 are the only two statistically significant attractors. 

The central conclusion to be drawn from this discussion is that dis- 
locations annihilate, leading eventually to simpler, not more complex, spa- 
tial patterns. The regular language complexity in the conventional "global" 
analysis (4) blows up due to the complexity of the motion of all possible 
dislocations implicit in the initial ensemble of all possible configurations. 
There are many routes of evolution onto the attractors, and thus very large 
machines will persist for arbitrarily long times. The exact topological 
analysis necessarily includes these, but is unfortunately also dominated by 
them. 2 Consequently, these machines obscure important features such as 
the typicalness of the patterns observed and the simple decomposition into 
domains and walls. The simple, observed fact is that the number of disloca- 
tions is almost always decreasing. This means that ultimately the language, 
for all initial conditions but a vanishingly small set, asymptotically 
becomes quite simple. 

There is undoubtedly a deep connection between the apparent dif- 
fusivity of the dislocations and the structure of the attractors A ~ and A ~176 
The exact nature of that connection, and the particular mechanism by 
which the randomness of the initial ensemble is transformed into 
space-time random walks, remain open questions. Nevertheless, the greater 
part of the behavior of rule 18 is described by the picture of computa- 
tionally simple domains bounded by dislocations that wander about at 
random, annihilating as they collide. 

4.1 .  T r a n s d u c e r s  f o r  G l o b a l  S t r u c t u r e  A n a l y s i s  

Given this identification of the gross behavior of rule 18, we can 
organize our discussion around the observed domains and the dislocations 
between them. In doing so, we will find use for three different transducers, 
all based on the domain language A~ the machine metric IlsllM(a0~ that 
counts the number of dislocations in a spatial state s, an intercalation 
operator  Tin t . . . .  late(A~ and a domain isomorphism Tdecimate(/0). The 
machine metric was introduced above in a more general context. The 
remaining two transducers are defined here. 

z We note that the direct probabilistic generalization of the FME algorithm also obscures this 
structure, since it carries along the full topology in the support and also is sensitive to all 
variations in the initial configuration distribution. (39) 
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Fig. 9. Transducer Tintercalate(A ~ for inserting new sites at dislocations. The result of such an 
operation is a global linearization of rule 18. Note that when a dislocation is detected, two 
symbols, rather than one, are emitted. The transducer takes length-N strings to length-(N+ d) 
strings, where d is the number of dislocations in the input string. 

The site-intercalation transducer Tin t . . . .  late(A~ shown in Fig. 9, is a 
machine for removing dislocations by adding extra sites to the lattice. 
Within a domain it is the identity on all transitions, i.e., 0[ 0 and 1 1 1, but 
when a wall is detected, we put 1101. The result is a many-to-one mapping 
from arbitrary patterns to patterns in A ~ By inserting the additional 0, the 
wall is effectively removed. The mapping fx~ . . . . . .  late(A0): d *  -~ A ~ is equivalent 
to the global linearization operator G(s) of ref. 36. Since the evolution of A ~ 
is identical in rule 18 and rule 90, this operator linearizes rule 18 in the 
sense that the rule becomes equivalent to the linear, superposition- 
preserving dynamics of rule 90. 

This type of global linearization applies only to patterns consisting of 
domains of the same type, i.e., the same regular attractor. For  CA with 
more than one domain type {Ai}, such global linearization does not exist 
over the entire state space. Rather, it appears only on subspaces composed 
of configurations with domains of the same type. 

The domain isomorphism transducer Tdeoimate(A ~ (Fig. 10a) 
demonstrates in a transparent manner that rule 18 acting on A ~ is equiv- 
alent under decimation to rule 90 acting on d * .  Its effect is to drop the 
(predictable) 0 transition from the input pattern. This can also be con- 
sidered an encoding and is, in fact, a compression of the input pattern. The 
corresponding function fTd=im~,o(a~ A ~  d *  maps the domain patterns of 
rule 18 onto the full extended state space. It is important to point out that, 
in general, decimation of space-time patterns requires both a spacelike 
machine to decimate spatial configurations and a timelike machine to 
decimate in time. The proper framework for this requires introducing 
space-time machines. We defer this discussion to later, ~ since pursuing it 
here would take us too far afield. In this particular example the issue can 
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(a) (b) 
Fig. 10. (a) Transducer Tdecimate(A ~ for removing, in fact compressing or encoding, the 
patterns in A ~ into d* .  The two transient states ensure that the machine synchronizes 
properly to strings beginning with any number of consecutive 0's. (b) The transducer has been 
minimized with respect to its output. The resulting automaton accepts ~1". 

be effectively skir ted because  the space, t ime, and  space- t ime machines  are 
identical .  

One  mus t  also look  at  the effect of fxdo~mate(a 0) on the rule table. F r o m  
this we find the machine  c o m m u t a t i o n  re la t ion  

T9o o T d e c i m a t e ( A  0 )  = T d e c i m a t e ( A  0 )  o T28 

In  terms of languages,  direct  compar i son  of the space- t ime pa t te rns  shows 
that  the ac t ion  of rule 18 on ne ighbo rhoods  of size five after two t ime steps 
is ident ical  to rule 90 act ing on ne ighbo rhoods  of size three after one t ime 
step, when one d rops  in tervening zeros: 

i 0 S~ +2 0 . . . .  T - . .  0 S ! - 2 0 St  
i - 2  i SI+2 

� 9  S t S t  � 9  i -  i+1 i+3 i 3 0 s t+l l  0 0 " ' "  ' ' '  S t +  1 S t + l  S t + l  i--2 i i+2 
�9 , �9 S t +  2 S t + 2  S t + 2  " . . 

0 i-2 0 i 0 i+2 0 ..- 
�9 . . S t +  2 S 1 + 2  S t + 2  Tdetamate 

where s ~ zur In o ther  words,  we have the l anguage  c o m m u t a t i o n  re la t ion 

1~90 ~  ) = fTdecimate(A0) ~ 1 ~ 2 8 ( A ~  ) 

Thus,  not  only  is there  an equivalence on pat terns ,  bu t  also on  the ac t ion  
of  the rules. The  t r ansducer  implements  this directly,  being the p ro jec t ion  
o p e r a t o r  for the associa ted  commut ing  d i ag ram 

A o ~8 , A o 

STdeoimate(AO ) l I STdecimale(AOI 

sJ*  > d *  
~90 

822/66/5-6-17 
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If we minimize it with respect to the output alphabet, then we obtain ~r 
which is invariant under rule 90. One consequence is that rule 18 is linear 
on the domain in the sense that ~(A ~ obeys a linear superposition in 
space-time. (See also ref. 36.) 

We can use the inverse decimation operator fTd~cim.te(A0) to enumerate 
a cascade of unstable periodic sublanguages embedded in A ~ If we think 
of the latter as defined by the rule "every other site is arbitrary and the rest 
are zero," then these sublanguages are "every (2k)th site is arbitrary and 
the rest are zero," assuming, of course, that k > 0 .  These are regular 
languages, which are denoted A ~ k > 0. In this notation, A ~  A ~ Clearly, 
A~ c o 1 A k. They are the successive preimages of A ~ under fTdeo~mato(A0); that 
is, 

A~ = r  -1 r ~ k > 0  
1 dYdecimate \ k / ,  

For all positive k, A ~ is a periodic language with temporal period 2 k 1. 
Each language orbit 

{~,(A~ 0~< t < 2  k 1, k > 0 }  

is easily shown to be a domain. When the orbit recurs, the origin is shifted 
by 2 k-  1 sites. Finally, A ~ k > 1, are unstable to unit Hamming perturba- 
tions and decay to A ~ 

4.2. Basins and Separa t r ix  S t r u c t u r e  

The basin of A ~ consists of those configurations, aside from A ~ itself, 
that have an even number of dislocations, but do not converge to tem- 
porally periodic or quasiperiodic states containing dislocations. That is, 

~(A~176 {s ~ ~r I]S]I~(A0)=2n, n = 1, 2 ..... and lim IIqS,Sl]M(A0)=0} 

Similarly, for A ~176 We have 

M(A~176176176 {s ~ ~r HSI[M(A0) = 2n + 1, n =  1, 2,..., 

and lim II~btSllM~A% = 1 } 
t ~ o o  

The preceding analysis indicated that A ~ and A ~176 are the only two 
important attractors. As we are concerned with typical behavior, we collect 
into the global separatrix 5 e all spatial states that do not evolve into A ~ or 
A ~176 For  example, we include in 5~ any other attractors, since, if they exist, 
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the numerical results indicate that they have vanishing size relative to A ~ 
and A ~176 We can formally write this in set-theoretic notation as 

~90 = ~e/ x - ~ (  A ~  - ~ (  A ~ 1 7 6  

It is also the set of states for which the number of dislocations remains 
greater than 1 forever. As we noted above, one set for which this is true is 
the set of temporally periodic states with more than one dislocation. Exam- 
ples of this are readily obtained by looking at periodic lattices with only a 
few cells. For instance, the spatial configuration (1000010000100010)*, 
with two dislocations in the basic pattern, when iterated on periodic lat- 
tices with N =  16m, m>~ 1, or N infinite, has temporal period p =  14. 
However, all such languages are also spa t ia l l y  periodic, and hence have 
zero size. For an infinite lattice there are also quasiperiodic orbits, in 
which, for example, two dislocations (i)travel away from each other 
forever or (ii)translate in parallel with a roughly constant or periodic 
separating distance. 

We identify three disjoint subsets of the separatrix 5 f = ~ v e ,  w 
3~ W 5 f .  ~ven contains those periodic orbits, and their preimages, with 
an even number of dislocations greater than one; 5god d has an odd number 
greater than one. 5P~ contains all the aperiodic, quasiperiodic orbits and 
their preimages. 

The foregoing analysis specifies the attractor-basin portrait. The 
remaining problems include identifying the complexity class of the basins 
and separatrices and giving their finite descriptions, if such exist. We leave 
these to the future. 

4 .3 .  T h e  A t t r a c t o r - B a s i n  P o r t r a i t  

We gather together the preceding results for an essentially graphical 
display of the global view of the attractor-basin (AB) portrait of rule 18. 
We present two views. The first is somewhat skeletal and is the picture 
provided by regular language space. The second is schematic and gives a 
cartoon of the state space of arbitrary but high dimension. 

From the viewpoint of regular language space the AB portrait is 
relatively simple. We can identify the basic sets in a skeletal AB portrait in 
which the vertices of the graph are various languages. A skeletal picture of 
rule 18's attractor-basin portrait as seen in regular language space is given 
in Fig. 11. The various symbols indicate the formal languages identified in 
the computation-theoretic analysis: attractors {A~176176 basins B~  
N'(A ~ and B~176176176 and separatrices 5~={5~ . . . .  5foo,Sfodd}. The 
temporal evolution from one language to another goes down the figure. 
The context of this diagram is a lattice of arbitrary typical size N, either 
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Fig. 11. A skeletal picture of rule 18's attractor-basin portrait as seen in language space. The 
various symbols indicate the formal languages identified in the computation-theoretic analysis. 
The temporal evolution from one language to another goes down the page. The thin lines with 
arrows indicate the effect of perturbations 6A away from the attractors. 

infinite or finite with periodic boundary conditions. If N is odd, then only 
the portion to the right of the right vertical dashed line is observed. If N 
is even, then only that to the left of the left dashed line is relevant. On an 
infinite lattice the entire diagram is present. The vertical dashed lines also 
denote the extent to which small perturbations can affect states in the 
attracting languages. A unit Hamming  distance perturbation 6rA from 
the attractor drives the state to its basin or, at worst, to a periodic orbit 
in the associated subset of the separatrix. In fact, topological constraints 
prohibit bit-flip perturbations within the nonzero support  from driving the 
configuration to the other attractor. If the lattice is infinite and the initial 
patterns are restricted to a finite support  of nonzero site values, then there 
are no separatrices, since all states eventually collapse onto one or the 
other at tractor in finite time. (36) Unit Hamming  distance perturbations 
outside the region of nonzero sites then can introduce single dislocations 
and so move from B ~ to B ~176 and vice versa. The subseparatrices 5 p = 
{~e .. . .  ~em, ~odd} are disjoint. 5~ven and ~odd consist of temporally periodic 
patterns with an even and odd number  of dislocations greater than one 
asymptotically in time, respectively. 5~oo contains all aperiodic patterns with 
more than one dislocation, and all patterns with an infinite number of dis- 
locations, in the limit t ~ oo. As noted at the outset of this section, we omit 
from the diagram (i) behavior on the sparse set of atypical lattices for 
which O* is an important  attracting invariant set and (ii) on the remaining 
lattices, the zero-sized set ~ (0" ) .  The nonattracted sets of zero size are 
collected in the separatrices. 

But there is much more that can be said about the configuration space 
itself. Generally, local particle annihilation dynamics induces a hierarchical 
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s t ructure  of subbas ins  and  por ta ls .  (4~ The subbas ins  are subspaces  in 

which the number  of d i s loca t ions  is constant .  Thus,  they are  level sets of 
the mach ine  metric:  b a =  {s: [[SIIM(A0)= d}. They are connected  by  por ta l s  
which are defined solely in terms of the par t ic le  ann ih i l a t ion  geometry.  
Since the number  of d is locat ions  canno t  increase,  there  is a flow directed 
f rom higher-  to lower -d imens iona l  subspaces.  Here  by "d imens ion"  we refer 
to the number  of "act ive" degrees of f reedom, which we take  to be the 
n u m b e r  of dis locat ions.  In  the t rans i t ion  from a d-subbas in  bd, caused by 
two d is loca t ions  annihi la t ing,  the number  of d is locat ions  decreases by two. 
And  so the state moves  from a d-subbas in  to a ( d - 2 ) - s u b b a s i n .  I t  is also 
possible  for more  than  one pa i r  of d is locat ions  to annihi la te  in one t ime 
step, in which case the state falls into a ( d - 2 m ) - s u b b a s i n ,  where m is the 
number  of annih i la t ing  pairs.  The subbas in -por t a l  s t ructure  is shown 
schemat ica l ly  in Fig. 12. 

~ N 

b2 

Fig. 12. The state-space view of the attractor-basin portrait of rule 18 for an even-length 
lattice or, equivalently, the leftmost portion of Fig. 11. The diagram illustrates the subbasin- 
portal structure of the state space. One subbasin corresponds to each horizontal plane. Within 
each subbasin bd, the number of dislocations d is constant. The portal is indicated by the solid 
dark blob. When pairs of particles annihilate, the state passes through the portal. Its shape 
is determined by the geometric constraints of annihilation. That portion of the separatrix con- 
sisting of configurations with the subbasin's number of dislocations is shown as a filamentary 
structure to denote its vanishing relative size. The general flow of time is down the figure. 
Asymptotically in time and lattice size, the overwhelming fraction of initial patterns in V ~ end 
up on the attractor A ~ all of the dislocations having annihilated. 
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The intercalation operator fT~ . . . . . .  ~to(A ~ maps the configuration space 
of an N-site lattice containing d dislocations to the domain subspace of an 
(N+d) lattice on which the rule is linear. (36) This gives an additional 
hierarchical constraint to the state space. 

It is important to point out that the state structures implied by the 
portal concept and the intercalation operator are not the same. Portals, on 
the one hand, are local in the state space and their geometric structure is 
entirely determined by the local "real" space constraints on particle 
annihilation. The intercalation operator, on the other hand, is global in 
both the state and "real" spaces. The result is that the portals still organize 
the state space of multiple distinct-domain dynamics, a situation in which 
the global intercalation operator does not exist. Indeed, the underlying 
views behind each are complementary. Understanding their relationship is 
certain to lead to an even more detailed picture of the state space geometry 
of domain-wall-dominated CA than that presented in this section. 

5. D I S L O C A T I O N  T R A J E C T O R I E S  

This section presents a concrete application of the preceding ideas. We 
give a construction procedure that builds detectors for propagating 
space-time structures in domain-wall-dominated CA. The application uses 
these transducers to find dislocations in rule 18 in order to investigate their 
statistical behavior in detail. We are interested specifically in the diffusive 
behavior of an isolated dislocation and of a dislocation gas. The results 
strongly suggest that rule 18 is a nearly ideal diffusion process with 
annihilating particles. This study of the statistical properties along with the 
dynamical systems analysis gives a very complete picture of rule 18. 

5.1. D e t e c t i o n  

We can recode space-time data to show the dislocation trajectories 
generated by rule 18 by taking the domain-machine M(A ~ and defining 
a transducer Tdomain(A ~ that emits a (domain) symbol D on allowed 
transitions of A ~ and a (wall) symbol W on disallowed transitions. This 
dislocation recognizer is shown in Fig. 13. In general, for an arbitrary set 
of domain types {At}, it is straightforward to construct a transducer that 
will encode the data to show each of the domain and wall structures. 

For rule 18, running Tdomain(A ~ over the space-time data gives an 
encoded picture that shows only the dislocation trajectories. Figures 14-16 
are typical of simulations starting with a random initial condition. Each of 
these pictures shows a different space-time region of the same simulation. 
Note the progressively reduced scale in Figs. 14 and 15 used to make the 
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Transducer Tdomain(A ~ for recognizing dislocations in rule 18 domain structure A ~ 

diffusive behavior  more  apparent.  The thickness of the lines is due to the 
figure's finite resolution. In Fig. 16, blackened squares correspond to dis- 
locations and hollow squares show the nonzero  cells of the original pattern. 

The transducer is run over the spatial da ta  in a particular direction: in 
our  case, from left to right. This introduces a spatial asymmetry  into the 
picture. For  example, the visible asymmetry  in the trajectory at the top of  
a triangle of white space (Fig. 16) is due to the fact that  as Tdomain(A ~ is 
moved  to the right over the data,  it identifies a dislocation only by reading 
a 1 in the wrong place. Thus, a 1 followed by an even number  of consecutive 
O's shows a dislocation at the right side, when the next 1 is encountered. 
This has the effect of a constraint  on the mot ion  of the observed disloca- 
tion: all moves to the left are a single cell, but  moves to the right may be 

0 

t 

199999 
0 i 1999 

Fig. 14. Trajectories of dislocations evolving from a random initial configuration. The time 
and space scales are highly contracted to show the diffusive behavior. Every fifth iteration is 
displayed. The square indicates the region displayed in Fig. 15. 
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Fig. 15. Expanded view of a part of Fig. 14. Every iteration is displayed. The tick mark at 
t = 52000 shows the location of Fig. 16. The apparent break in the trajectory just below that 
point shows the recognized dislocation making a large lateral jump to the right in a single 
time step. 

any  o d d - v a l u e d  dis tance.  F u r t h e r ,  a m o v e  left m a y  be fo l l owed  by a m o v e  

e i the r  to the  r igh t  o r  left, b u t  a m o v e  r igh t  m u s t  be fo l lowed  by one  to  the  

left. M o r e  c o m p l i c a t e d  t r ansduce r s  can  be def ined  to evade  this d i rec-  

t ional i ty .  F o r  example ,  the  t r a n s d u c e r  c o u l d  labe l  all b locks  1(00) ~ 1, n = 0, 

1, 2 ..... as walls.  W i t h  this de tec to r ,  the  d i s l o c a t i o n  b e c o m e s  de loca l i zed  

Fig. 16. Trajectory of a single dislocation recognized by Tdomain(A~ This is an expanded 
view of a part of Fig. 15, located at the tick mark on the vertical axis of that figure. The region 
shown is in fact smaller than the width of the tick. 
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as it enters a triangle of O's. The associated detector for bounding the 
delocalization region is more complex, requiring an infinite queue 
(FIFO) memory, if it is to not only recognize dislocations, but also to label 
all participating sites appropriately. 

Given a machine that will encode the space-time data to recognize dis- 
locations, it is possible to examine the encoded data for other, higher-order 
regularities. By designing the transducer properly, one can use this process 
to identify structures of arbitrary regular language complexity. The result 
is the original language "modulo" the transducer machine. In this all the 
encoded structures are excised, giving a clearer picture of long-range struc- 
tures. This technique is applicable to a large class of systems, including 
those which possess regular domains. It also generalizes to structures of 
higher complexity, using recognizers based (say) on stack transducers that 
implement context-free or context-sensitive grammars for recognition. 

5.2. Diffusion 

Having recoded the space-time data according to the preceding 
scheme, it is simple to measure the statistical properties of an ensemble of 
dislocations. Consider the set of dislocation trajectories originating from a 
uniformly distributed ensemble of initial conditions belonging to A ~176 We 
translate the states so that the dislocations lie initially at the same site. This 
initial distribution is formed by using M(A ~176 as a pattern generator, 
taking uniform transition probabilities at branchings. The result obtained 
by evolving Ntota  I members of this ensemble forward in time is the "disloca- 
tion plume" shown in Fig. 17. There the gray scale darkness of a space-time 
cell (i, t) is proportional to the number Na(i, t) of dislocations visiting it. 
To improve contrast, it has been normalized so that maxi {pa(i)} = 1 at 
each time t, where pa=N~o~ta~Na(i, t). Note the "checkerboard" pattern of 
the plume. This is due to the fact that in a single time step a dislocation 
can move in space by only an odd number of cells. Figure 18 shows the 
plume histogram at times t =  1, 10, and 100, in which the checkerboard 
pattern of the histogram has been factored out. The histogram's asym- 
metry, noticeable at the early time steps, is due to right-going dislocation 
detection. The relaxation from the early time binomial process to the 
Gaussian is clearly demonstrated. 

The plume's width ff(t)-=(X2) 1/2, plotted against time in Fig. 19, 
quickly approaches the time dependence of a random walk. As the straight 
line in Fig. 19 indicates, we find o-(t)~ (2Dt) -~ with a least-squares fit for 
t >  512, giving D=0.506 and c~ =0.501 +0.004. The systematic deviation 
from Gaussian diffusion seen at early times is again due to the recognition 
asymmetry, which gives 2 -i/2 tails to the distribution and to the binomial 
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Fig. 17. The dislocation plume: Evolution of the initial ensemble A ~176 consisting of con- 
figurations with a single dislocation. The gray scale intensity of a space-time cell is propor- 
tional to the number  of dislocations visiting there. It is normalized at each time step to run 
from white to black so the distribution tails are more apparent. 

structure of the dislocation movement. The result of the exact analysis of 
these effects is that, for example, log a(1)=3/2.  The simulations give 
log a(1) = 1.52 _+0.05. 

To complete the statistical analysis of rule 18 diffusion dynamics 
facilitated by the dislocation detection transducer, we remeasure the 
temporal decay rate of the dislocation number density. Grassberger (23) 

0.5 

p(i) 

t = l  

0 i 100  

Fig. 18. Dislocation histogram at times t = 1, 10, and 100. 
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Fig. 19. Standard deviation of the dislocation histogram as a function of time. The measured 
slope of the asymptotic line is 0.501 + 0.004 for t > 100. Logarithms are base 2. The straight 
line shown has slope 1/2. 

estimated it using a rarefied dislocation gas on a very large lattice; that is, 
initial patterns with widely separated dislocations of the form 
(Z0)* l l(0Z')*. Additionally, dislocations after t = 0  were detected only as 
isolated pairs of l 's; i.e., as (Z0)* l l (0X)* again. Thus, dislocations were 
not counted in any other form, such as (Z0)* 102nl(0Z) *, n = 1, 2 ..... The 
consequence is that statistics could only be gathered relatively infrequently 
and for a limited type of initial ensemble. Here we avoid these problems 
entirely and collect substantially better statistics on unrestricted initial 
conditions by using the domain metric to estimate the dislocation number 
density 

dN(t) = N l H~t(S0)I[M(A0) 

We count the density dN(t) of dislocations at each time in a randomly 
generated state So=SJ  N. The result is graphed in Figure 20, where we 
see dlos(t) plotted against time. As the straight line suggests, we find 
d(t)= (8gO) 1/2t-~ with least-squares analysis giving values of D = 0 . 5 4  
and a = 0.49 _+ 0.04. The estimate is from a fit over data at all times. 

Finally, we briefly mention the vicinity convergence properties. The 
fraction of vicinity patterns of A ~ say, that have not been attracted to A ~ 
after t steps on an N-site lattice is given by 

f (N ,  t )= H I2~ (N)t] 
n V~ 
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Fig. 20. Dislocation number density versus time on a periodic lattice of 105 sites. The initial 
pattern was random. The density is plotted at each of 100,000 time steps. Again, logarithms 
are base 2. The straight line has slope - 1/2. 

where 1 2 ~ 1 7 6  ~ We estimate this statistic via a Monte Carlo 
sample of V ~ There are two results of immediate use. First, on even-size 
lattices up to 500 sites we found an upper bound fmax(N, ~ ) o c  N -~ 
with 7 = 0.51 ___ 0.02, using 20,000 initial vicinity patterns. The largest non- 
attracted fractions were found at lattice sizes N*  obeying the recursive 
rule N*+ 1 = 2N* + 2, N* = 4. Thus, although f(N, t) has erratic, number- 
theoretic fluctuations, the fraction of nonattracted vicinity patterns 
decreases rapidly. We also found that for fully half of the lattice sizes 
the nonattracted patterns were a vanishing fraction. The second result is 
that, on a lattice of 1000 sites using 10,000 initial vicinity patterns, we 
found near-diffusive decay of f(103, t )oc t -~ with c t=0.47_0.04.  Thus, 
when restricted to the vicinity, decay to the attractor also appears to be dif- 
fusive, with the fraction of nonattracted patterns decreasing monotonically 
in time and in lattice size. Similar results were found for odd lattices. 
Details will be reported elsewhere. 

The figures and the estimated spreading, decay, and finite-size scaling 
rates give strong evidence that the dislocation trajectories are diffusive. Via 
the above results on domains, attractors, and vicinities, the diffusive 
behavior further supports the contention that the attractors A ~ and A ~176 
are the only statistically important  attracting invariant sets of the system. 
As noted above, assuming that the dislocations are actually diffusive, the 
previous results on their attracting properties can be established in the 
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statistical sense. That is, the fraction of initial configurations leading to 
diffusive motion of two or more dislocations that do not annihilate is 
vanishingly small. The Appendix gives an estimate for this fraction. 

5.3 .  C o m p u t i n g  w i t h  D i s l o c a t i o n s  

We have seen that space-time patterns generated by rule 18 are com- 
posed of domains A ~ separated by dislocations. The computational struc- 
ture of a domain is extremely simple, since M(A ~ possesses only two 
recurrent states. In other words, the recurrent part of M(A ~ is capable of 
storing only 1 bit of information. This is clearly too simple to be harnessed 
for useful computation. If it exists, the useful computation must be per- 
formed by the dislocations at the domain boundaries. 

We can make a quantitative estimate of the computational capability 
of rule 18 dislocations in the following way. After detecting dislocations 
with the transducer Taomain(A~ we recode the motion of a single trajectory 
as a symbol stream by assigning the symbol L to a move to the left and 
R to a move right. We then apply the machine reconstruction technique to 
this R - L  data stream. The resulting machine, displayed in Fig. 21, shows 
an asymmetric structure: every R must be followed by an L. Noting that 

the topological entropy of this machine is log2 ~b, where ~b= (1 + x/-5)/2 is 
the golden mean, we call it the golden mean machine Mgm. The asymmetry 
in Mg m is due to the asymmetry of the dislocation-recognizing transducer 
Tdomain(A ~ which identifies dislocations by a misplaced 1 in the spatial 
data set. As we noted above, other dislocation-recognizing algorithms can 
be used for which this constraint would not be present. Apart from this, 
however, we see that all trajectories consistent with this single constraint 
are allowed. Numerical estimates indicate a uniform branching probability 
from Mgm'S start state. Thus, one type of computation of which rule 18 is 
capable is the map from A ~176 to L(Mgm). This is a very restricted class of 
computation, since it is a mapping between such simple regular languages. 

In an early investigation of CA computational capability, Wolfram 
identified four classes of CA. He based his classification on visual examina- 

R 

L 

Fig. 21. The golden mean machine Mg m reconstructed from the space-time trajectory of a 
single dislocation. The symbol L denotes a dislocation move to the left; R a move right. 
Its entropy is log 2 ~b, where ~b = (1 + ~ ) / 2  is the golden mean. 
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tion of the space-time patterns they generate. Class 4, which he conjectured 
to be the most computationally capable, was defined by the presence of 
spatially isolated transients of many shapes evolving for arbitrarily long 
times. The conjecture was that, using these propagating "blobs," a model 
of universal serial computation could be constructed.(1) 

A simple recoding of rule 18, however, produces space-time patterns 
satisfying the criteria of class 4. This recoding, elsewhere called the 
"blocking transformation, ''(1) is a special type of decimation transducer. 
Recall that in the blocking transformation every other cell, for example, in 
space and time is excised. The new pattern represents the evolution of the 
recoded initial condition under a different CA rule, typically one with a 
larger neighborhood size. General blocking transformations replace a fixed 
length block of cells with a single symbol. Blocking transformations, 
though, are neither as versatile as transducers nor do they exploit a CA's 
qualitative dynamics. 

Visually, blocked space-time patterns of arbitrary states evolving 
under rule 18 display spatially isolated patches of fluctuating cells moving 
against an invariant background of O's. It is the spatial period 2 nature of 
A ~ however, that is responsible for this. When a domain is in phase with 
the blocking scheme's internal state, arbitrary patterns will be observed. 
When it is out of phase, all the nonzero sites will be removed. The resulting 
blocked region is a homogeneous patch of O's. Thus, the structures in the 
blocked pattern are caused by the wall dynamics. They are misinterpreted 
by the blocking transformation since the domains alternate between being 
in-phase and out-of-phase with the blocking. The evolution of the bound- 
aries of an in-phase domain governs the evolution of the blocked patch 
between them. When the boundaries meet, they annihilate and the 
"spatially isolated transient" disappears. 

Based on the appearance of propagating blobs under a simple 
recoding, one might be tempted to argue that rule 18 should be placed in 
class 4. However, its computational capability appears quite limited, being 
dominated by diffusive behavior of the dislocations. The simplicity of Mg m 

makes it doubtful that rule 18 can be, harnessed to perform useful computa- 
tions. The misleading "transients" in the blocked patterns are an artifact 
introduced by the blocking transformation. They occur because the 
transducer used in the blocking was unsuited to the underlying domain 
structure. 

The ambiguities of Wolfram's classification suggest a reevaluation of 
how computation is identified in CA. The use of transducers in concert 
with machine reconstruction (26'41) gives a principled approach to analyzing 
a CA's intrinsic computational capability. The first step employs machine 
reconstruction to search for computational structures such as domains. 
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When found, these are factored out using domain transducers similar to 
Tdecimate(A~ The resulting encoded pattern then can be searched for 
higher-order structures, again using machine reconstruction. In this way, 
one builds a hierarchy of computational models, with structures in each 
level describing computational properties missed at the previous level. The 
hierarchy as a whole describes a CA's information processing architecture. 
The hierarchy's depth in this view is a simple measure of a CA's global 
computational capacity. 3 

For intrinsic computation to be useful, there are the additional 
requirements that individuai computations be robust and that a compiler 
exist for a class of nontrivial tasks. The first means that, at the very least, 
small perturbations do not change the computational class of the temporal 
evolution. This in turn requires an understanding of the global organiza- 
tion the CA induces in regular language space; that is, of the attractor- 
basin portrait. The second requirement, a compiler, determines how a 
computational task is mapped onto the CA's dynamics. Nontrivial tasks 
can be supported either by the CA's evolution toward attractors or by 
propagating wall structures. A dislocation compiler for rule 18, for exam- 
ple, is a mapping of a computational task specification T to an initial 
condition Sot A ~176 such that the time series So, sl, s2 . . . . .  S t  . . . .  executes the 
task via the R - L  movement of wall and domain structures. The output is 
a string in L(Mgm). Since rule 18's computation appears quite limited, we 
must leave the question of useful intrinsic computation to a future analysis 
of more complex CA. 

Although formulated in the present context of spatially-extended 
systems, the general questions raised concerning the design and existence of 
compilers for CA are germane to parallel programming and distributed 
processing. Should such compilers exist, then analyses along the lines 
developed here would indicate where useful computation can lie in high- 
dimensional state space. They also would give a global view of the 
geometry underlying the computation. The practical use of this appears to 
be in the analysis of errors and stability of a given CA implementation. 

6. C O N C L U D I N G  R E M A R K S  

Domains and dislocations are basic dynamical paradigms. In physics, 
dislocations are observed as crystal defects and elementary particles, in 
chemistry they are seen in polymer chains and chemical waves, and in 
biology they are found in cellular membrane development and have been 
posited to be the information processing foundation of prebiotic evolu- 

3 A related reconstruction hierarchy for the computational classification of continuum-state 
dynamical systems is presented elsewhere. 126'27) 
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tion (42) (an additional brief list is given in ref. 43). These structures often 
result from lateral inhibition coupling between processing elements, to use 
the neurophysiological term. This same coupling is responsible for the 
ability of artificial neural networks to learn, although in these high-dimen- 
sional systems their nonspatial architecture makes the domain and disloca- 
tion structures substantially more difficult to visualize. We have avoided 
this important difficulty by focusing on spatially-extended systems. The 
attempt in the preceding was to set up a constructive framework to study 
structures supporting complex information processing in high-dimensional 
state spaces. 

Let us recapitulate our results. First, we developed a structural 
analysis of CA based on elementary notions from computation theory. 
Second, this allowed us to describe the attractor-basin portrait and sub- 
basin-portal structure of a specific CA. Third, along the way, we intro- 
duced specific tools for observing and manipulating CA structures: the 
various transducers or, more formally, endomorphisms of Sofic systems. 
Finally, as an application, these were used in a statistical analysis of 
dislocation trajectories within specific subspaces of the state space. The 
results, along with the attractor-subbasin-portal portrait, strongly suggest 
that there are only two statistically significant attracting invariant sets. 
A rigorous proof of this remains an open problem; though it appears to be 
within reach. 

Within a larger arena, we have addressed one aspect of the general 
problem of recognizing structures in space-time. Consider, as another 
example, a soliton wave in a shallow-water channel. Typically, the recogni- 
tion of a propagating structure is done intuitively via visual inspection. In 
some cases, such as with solitons, this identification eventually develops a 
formal expression. The propagating entity has a mathematically defined 
shape expressed in closed form. With this, one can search for those struc- 
tures by convolving the space-time pattern with the soliton kernel. In a 
literal sense, the shapes form a basis for the space of recognizable patterns. 
The method of transducer machine recognition introduced above gives a 
different, but complementary, computational approach to space-time 
pattern recognition, as we have just described it, that is both general 
and reconstructive. It, along with machine reconstruction, suggests an 
automated method of identifying significant structures and tracking them 
in space-time. Although the present approach starts with discretized data, 
we note that rather than being a liability, this is also the domain of many 
important problems in time series and image analysis and processing. The 
authors are well aware of the need to extend the present techniques to 
continuum-state spatially-extended systems. 

During the attractor-basin analysis, we referred to another general 
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problem, concerning transients in high dimensions. (4~ Rule 18 is one 
nontrivial, i.e., nonlinear, space-time system that apparently can be 
analyzed completely in this way. The key elements in this are the global 
linearization techniques of the intercalation operator, (36) the dynamical 
homogeneity of regular domains that we have introduced here, and the 
organization of subbasins and portals. (4~ The analysis of domain-wall- 
dominated CA hints at similar analyses for a wider class of spatially- 
extended systems, such as map lattices and soliton-bearing PDEs. 

Implicit in our investigation of subspaces of initial configurations, 
represented by taking O0 to be various regular process languages other 
than d * ,  is a set of techniques to study the geometry of high-dimensional 
spatially extended systems. This was motivated, in fact, by techniques used 
in earlier work on continuous-state lattice dynamical systems (46) and their 
extremely long transients. (4~ And these, too, seem applicable to a wide 
range of similar problems posed by high-dimensional dynamical systems. 

In order to illustrate the basic ideas, we have used the example of 
rule 18. The question naturally arises of whether the analysis generalizes to 
other CA. The answer is yes. The additional rules can be seen by simply 
examining the space-time diagrams of other CA. Due to the reconstructive 
approach we have taken and the computation-theoretic formulation of the 
dynamical systems concepts, the interesting possibility arises that the 
analysis for these other CA can be automated. We have alluded to the way 
in which an automated machine reconstruction "expert system" could be 
used as an aid to analysis. The goal is for it to help with automated proofs 
of language invariance and attraction, with the derivation of basins and 
vicinities, and in the investigation of the computational structure of basins 
and separatrices. 

The analysis we have given is not complete, though our and others' 
results strongly suggest the possibility that it is nearly so. Rather, it out- 
lines a range of problems and a constructive computational approach that 
integrates qualitative dynamics. We are left, therefore, with several ques- 
tions. We close by mentioning a few of the most pressing ones. Of what 
complexity are the basins of the two regular attracting domains and the 
null language 0"? How about the separatrix? The near completeness of the 
analysis suggests that there should be a rigorous proof that the deter- 
ministic rule 18 is diffusive. This will require an exact analysis of the 
short-time behavior and an analogous development of approximation of 
stochastic process languages. (39) The relationship between the intercalation 
linearization and the subbasin-portal picture is important to fully under- 
stand the global structure of the state space. Finally, how can we compute 
with dislocations? Does a dislocation compiler exist? If not, why is this 
structure not usable to perform computations? 

822'66 5-6 18 
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A P P E N D I X :  D I S L O C A T I O N  D E C A Y  S T A T I S T I C S  

We estimate for an infinite lattice the probability that randomly 
diffusing dislocations have not annihilated by some time t. This also gives 
an estimate of the fraction, or basin measure, of those initial patterns which 
have decayed by t. 

Consider the effect of flipping a single cell in each state of an ensemble 
consisting of a uniform distribution on A ~ We assume that the perturba- 
tion occurs in the region of compact support, i.e., there are nonzero cells 
on both sides of it. We count dislocations using the machine metric 
U "t]M(A 0) defined above. With probability 1/2, the cell flipped will be a 
wild-card, so the perturbation will not generate any dislocations. 
Otherwise, it will produce two dislocations a distance d apart, with d -  1 
equal to the number of adjacent O's to the right of the perturbed cell. The 
uniform distribution of initial conditions implies that the wild-card cells are 
independently, identically distributed with p ( a i = 0 ) =  1/2. This in turn 
implies that the probability that the dislocations are exactly d cells apart is 
given by 

{20-(d+l)/2dodd 
p(d) = d even 

Thus, the probability that two dislocations are d, or fewer cells apart is 
dt 

p(d<d,)= ~ p ( d ) = l - 2  -(d'+l)/2 
d--I 

for dt odd. 
Two dislocations will typically collide when their plumes overlap; that 

is, when the standard deviation a ~d.  As noted in the main text, the 
standard deviation of the plume gives a time dependence of a ~ 8n Dt-l/2 
with D ~ 1/2. 

The probability that two dislocations have collided after t steps is the 
probability that their initial separation was a or less, which is given by 

p(d<.a)= 1 - 2  (8~zD x/7+ 1)/2 

For  long times, the probability that the dislocations have not yet collided 
is therefore 

P . . . .  ire(t) ~ 2 2~.j7 

This gives an estimate of the decay in the number of initial conditions that 
have not yet fallen onto the attractor, assuming diffusive motion. It clearly 
vanishes in the limit t ~ ~ .  
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