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A pictorial tour of the theories of epochal evolution and structural
complexity is presented with a view toward the dynamical origins,
stabilization, and content of evolutionary innovations. A number of
alternative explanations for the occurrence of long periods of sta-
sis that are interrupted by sudden change have been proposed since
the first days of mathematical evolutionary theory. Here contrasts
are drawn between the mechanisms underlying epochal evolution and
those implicated in the classical theory of stochastic intermittency
(drift) due to Fisher, Wright’s adaptive landscapes, Kimura’s neutral
evolution, and Gould and Eldredge’s notion of punctuated equilibria.
The comparisons suggest what a synthetic theory of the evolution of
complexity might look like, while at the same time emphasizing that
it will remain incomplete without a theory of biological structure. The
computational mechanics theory of structural complexity is offered as
an approach to the latter.

1 EPOCHAL EVOLUTION AND INNOVATION

The emergence of biological form and function through evolution is often
considered to happen by a process of gradual adaptation: through a series
Evolutionary Dynamics—
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of small changes observable features and improved behaviors appear. When
niches alter in character or when a species first moves into a existing niche,
the context of prior diversity is changed and relative fitnesses in a popula-
tion adjust. Selection then acts to reshape the cloud of diverse individuals
in directions appropriate to the new environment. The diversity of individ-
uals is the expression of genetic variation—variations whose origins are not
correlated with individual fitness. Darwin’s analysis of Galapagos finches is
the paradigmatic case: The diversity in beak length and shape was seen as
reflecting incremental adaptations to small geographic variations in type of
food source [14].

This has given rise to a view of evolutionary dynamics as an optimization
process: The environment provides constraints and species either go extinct
or are able to incrementally change in ways that take advantage of or mitigate
the constraints. When there is this kind of tight coupling between organism
and environment and when the time scales of change allow adaptation, the
form and behavior of the resulting organisms mirror niche structure and envi-
ronmental constraint. Moreover, individual biological traits take on functional
meaning, since they reflect the “solutions” to “problems” imposed by the en-
vironment. Finally, in this view the environment is a source of novelty and
the instigator of change. Though it can react, Darwinian evolution cannot, in
and of itself, produce novel biological structures and functions.

For well over a half century, however, it has been known that gradual
adaptation is a substantially incomplete picture of evolutionary dynamics.
Early mathematical analyses of stochastic processes, the rise of molecular
genetics, investigations of the fossil record, the development of nonlinear pop-
ulation dynamics, and recent laboratory evolutionary experiments reveal that
evolution need not be gradual, but can be episodic. Perhaps the most ex-
treme examples are seen in evolutionary metastability: Long periods of stasis
are interrupted by rapidly emerging innovations. Importantly, evolutionary
metastability loosens the coupling between individual diversity and adaptive
response to the environment: There can be substantially more individual di-
versity than adaptation to the environment requires. Another consequence is
that this loose coupling opens up the possibility that evolutionary dynamics
can produce novel structures on its own, not only in lock-step response to en-
vironmental change. Unfortunately, current explanations of metastability do
not define what biological structure is and so are not yet complete theories of
the innovation of novel form and function.

One of the earliest recognitions of metastability in evolutionary dynamics
is Fisher’s analysis of stochastic intermittency in multi-allele drift processes
[19]. He showed that in the absence of selection, when only drift was operat-
ing, there could be a transient fixation on one or another allele and that when
a shift to a new allele occurred, the transition came quickly—compared to the
time scale of allele fixation. (This is illustrated in figure 1.) Being a funda-
mental property of random finite-sample processes, stochastic intermittency
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FIGURE 1 Metastability through intermittent fixation: A population is described
by the proportion (Pa, P, Pc) of individuals with one of three alleles A, B, and C.
The probability Pr(Pa, P, Pc) of the population exhibiting proportion (Pa, Ps, Pc)
is highly peaked at the pure populations: (1,0, 0), (0,1, 0), and (0,0, 1). Nonetheless,
there is some (low) probability of being in intermediate, “mixed” populations and so
transitions between the pure populations are possible. Interestingly, the transitions
when they occur, occur rapidly.
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FIGURE 2 Metastability through fitness-valley crossing: A population residing at
a local optimum in a fitness landscape must cross through a valley of lower fitness in
order to reach another, possibly higher-fitness, peak. The landscape is defined over
a space of phenotypes or traits.

can occur at a number of different levels in an evolutionary process: e.g., at
both the genotype and phenotype (character) levels [4].

Another description of metastability is found in Wright’s early attempt
to explain the dynamics of evolutionary change. Wright introduced the notion
of adaptive landscapes to describe the (local) stochastic adaptation of popula-
tions to environmental constraints [70]. This geographical metaphor has had
a pervasive influence on theorizing about natural and artificial evolutionary
processes. The basic picture is that of a gradient-following dynamics moving
over a “landscape” determined by a fitness “gravitational potential”. Adaptive
landscapes admit two kinds of (related) metastability. First, in fitness-valley
crossing an evolving population stochastically crawls along a surface deter-
mined, perhaps dynamically, by the fitness of individuals, moving to peaks
and very occasionally hopping across fitness “valleys” to nearby, and possibly
higher fitness, peaks. (See figure 2.) The barriers to innovation here are deter-
mined by the depth of the valley intervening between two peaks. Due to this,
they are sometimes referred to as “energy” barriers, highlighting the physical
metaphor. Second, in the shifting balance theory periods of stasis correspond
to times when populations are isolated at local optima in the landscape, as
before. Innovations, however, correspond to populations adapting in response
changes in stability of landscape extrema—changes that are initiated by ex-
ogenous forces (e.g., environmental) and that alter the locations of peaks and
valleys. (See figure 3.) In the shifting balance theory the barriers to inno-
vation are determined by the time scale of behaviors largely external to the
evolutionary process.
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FIGURE 3 Metastability through shifting balance: A population resides at a local
optimum in an adaptive landscape. The landscape is defined over a space of phe-
notypes or traits. An exogenous (e.g., environmental) change occurs that alters the
shape of the adaptive landscape in such a way that the population’s local optimal-
ity disappears and its stability is lost. The population then climbs to a neighboring
peak.

More recently, extending Wright’s notion of adaptive landscapes, it has
been proposed that the processes underlying combinatorial optimization and
biological evolution can be modeled as “rugged landscapes” [38, 44]. These
are landscapes with wildly fluctuating fitnesses even at the smallest scales of
single-point mutations. It is generally assumed that these “landscapes” pos-
sess a large number of local optima. With this picture in mind, the common
interpretation of stasis and change in evolving populations is that of a pop-
ulation being “stuck” at a local peak, until a rare mutant crosses a valley of
relatively low fitness to a higher peak; a picture more or less consistent with
Wright’s.
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FIGURE 4 Metastability through neutral evolution: A population resides at a local
optimum in a fitness landscape—here defined over the space of genotypes. Rather
than passing through a valley of lower-fitness genotypes, driven by genetic variation
(e.g., mutational) the population diffuses over a network of equal-fitness genotypes,
until a higher-fitness genotype is found that leads to a new peak. While diffusing
over the neutral network, the population’s average fitness does not change. There is
phenotypic stasis during a period of relatively rapid genotypic variation.

Metastability also occurs when genetic variations do not produce changes
in fitness. Since selection cannot act on those variations, there can be long peri-
ods of phenotypic constancy, despite the accumulation of substantial genomic
change. The history of this idea—mneutral evolution—goes back to Kimura
[39, 53], who in the 1960s argued that on the genotypic level, most genetic
variation occurring in evolution is adaptively neutral with respect to the phe-
notype. In this situation, many genotypes code for single phenotypes. Ad-
ditionally, due to intrinsic or even exogenous variations (e.g., environmental
fluctuations on relatively fast time scales), there simply may not exist a deter-
ministic “fitness” value for each possible genotype. In this case, fluctuations
induce variations in fitness such that genotypes with similar average fitness are
not distinct at the level of selection. Differences in fitness are simply washed
out and selection cannot act on them. Thus, metastability can be induced
either by many genotypes coding for a given phenotype or by “noise” in the
fitness evaluation of individuals. (See figure 4.)

Today, the occurrence of neutral evolution is supported by a large and
increasing body of evidence that there are substantial degeneracies (many-to-
oneness) in genotype-to-phenotype and phenotype-to-fitness mappings. Neu-
trality has been implicated in the evolutionary optimization methods [9, 65]
and the evolution of RNA structure [15, 22, 23, 24, 31, 32, 34, 35|, protein
structure [2, 36], and ribozymes [41, 69]. When degeneracies in the genotype-
to-fitness map are operating, a large number of different genotypes in a pop-
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ulation fall into a relatively small number of distinct fitness classes with ap-
proximately equal fitness, resulting in metastable evolution.

Probably the best known example of evolutionary metastability, though,
is the punctuated equilibria behavior attributed to macroevolutionary pro-
cesses by Gould and Eldredge [29]. They proposed punctuated equilibria to
explain the observation in the fossil record of long periods of (morphological)
constancy, which are interrupted by relatively short bursts of change, and so
argued that gradual adaptation was inadequate. Although exact mechanisms
supporting the metastable periods were not analyzed, the causes of punc-
tuations were thought to originate typically in the environment, such as in
planetwide climatic change [28].

The fossil record, however, is not amenable to experimental testing. Fortu-
nately, new experimental techniques for the study of bacterial evolution have
led to controllable laboratory model systems with sufficiently short replication
times that evolution can now be observed in detail over many thousands of
generations [42]. These systems promise to yield the detailed and extensive
data required for testing theories of evolutionary dynamics. In fact, recently
Lenski and collaborators have reported punctuated-equilibrium-like behav-
ior in the evolution of E. coli cell size—a proxy for fitness [16]. Even more
recently, a genetic analysis of individuals taken from populations during the
periods of stasis showed that there was substantial genetic variation—changes
that were not phenotypically expressed [54]. Bacterial evolution appears to be
a relatively clear and testable case of evolutionary metastability.

Metastability in artificial evolution has been observed in simulation stud-
ies of the population dynamics of machine-language programs [56]. In these
studies, programs compete for memory and processing resources, replicate by
copying themselves, and mutate when errors in copying occur. By directly
observing changes in program structure and also by monitoring average repli-
cation rate—both of which are straightforward in simulation models, unlike bi-
ological experiment and the fossil record—periods of stasis and sudden change
were observed over the course of many thousands of generations [1, 56].

There has also been a substantial amount of simulation and theoretical
work recently on evolutionary search and optimization processes which ex-
hibit metastability. One thread of this was directed at testing conjectures
about evolution’s ability to collect together functional “gene” groups by pref-
erentially assembling building blocks or partial solutions [50]. In addition to
concluding that building-block assembly was not responsible for the evolution
of optimal solutions, it was discovered that the evolutionary search dynamics
was not a gradual optimization process. Rather, it was dominated by periods
of stasis and sudden change [65]. See figure 5 for an example run of a simple
evolutionary algorithm that searches a space of binary strings for one with
the largest number of functional gene groups.

Similar kinds of evolutionary metastability have been investigated in some
detail in alternative models—“rugged landscapes” and others—by using dis-
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FIGURE 5 Macroscopic view of epochal evolution: survival dynamics, the level on
which selection operates. Behavior of the average fitness (f) (lower curve) and best
fitness (upper curve), for a population of individuals with 30 (binary) genes. They
were evolved under a fitness function with three gene constellations, each consisting
of 10 (binary) genes. Constellations are functional groups of genes that must all
be properly set for a genotype to increase in fitness by one unit. The evolving
population consisted of 250 individuals that at each generation were selected to
replicate in proportion to their fitness and then mutated with probability 0.005 per
gene. The fitness starts at 0 (no constellations set properly) and increases in a series
of steps to a maximum fitness of 3 (all three constellations properly set). (Reprinted
with permission from [66].)

crete, rather than continuous, fitnesses in order to produce fitness plateaus
over genotype space [3, 24, 25, 52].

Thus, it appears there is no shortage of examples, from basic theory and
simulation to field and laboratory data, of metastable evolution—a behavior
quite different from that implied by the view of evolution as gradual adapta-
tion. Aside from the overt behavioral differences in the population dynamics,
these cases indicate that evolution, on its own, can generate change and nov-
elty. Except in the cases of shifting balance and punctuated equilibria, there
are no appeals to environmental pressures that drive innovations. Moreover,
in some of these cases, it has been reported that innovations do not lead to im-
proved structures or functionality, calling into question functional ascriptions
for evolutionary innovations.

These case studies of evolutionary metastability do not attempt to ex-
plain how novel form and function arise nor do the theories quantify form
and functional change. One response to these concerns is found in early work
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on the artificial evolution of computation. There the author introduced the
phrase epochal evolution to describe the stepwise emergence of sophisticated
strategies observed when evolving cellular automata to perform spatial com-
putational tasks [49]. Why invent a new descriptor and not call these these
stages punctuated equilibria or not label them by one of the other alterna-
tives? First, the theory of punctuated equilibria was introduced to describe the
fossil record—a manifestly richer and more complex process than the artificial
evolution of computational models. Second, it was clear that the evolutionary
stages were due neither to Fisher’s intermittent fixation nor to pinning at lo-
cal optima. Third, more fundamentally it was important to not prejudice the
analysis of the mechanisms driving the evolving cellular automata population
dynamics. Now, however, based on the analyses of the cellular automata evo-
lutionary dynamics, a theory of epochal evolution has been developed and the
generality of the underlying mechanisms is better appreciated. Since there is
little chance of confusion, we now refer to the examples of metastability given
above as epochal evolution and ask which combinations of its constituent
mechanisms produce the observed behaviors of stasis and rapid innovation in
various cases.

The goals in the following discussion are two-fold. The first motivation is
to provide an accessible tour, augmented by illustrations, of recent theoret-
ical results developed by Erik van Nimwegen and the author on the origins
of metastability in evolutionary dynamics. The overview focuses on the cen-
tral mechanisms underlying epochal evolution, leaving out the mathematical
theory [11, 64, 65, 66]. (See van Nimwegen’s thesis [62] for a detailed develop-
ment.) The second motivation is to connect these ideas, which fall largely in
the domain of mathematical population dynamics, with a parallel project on
quantifying organization and structural complexity in natural systems, which
falls largely in the domains of statistical physics and dynamical systems theory
[7, 12, 58]. At the end, the discussion returns to compare epochal evolution to
the various alternative mechanisms mentioned above and to the current doc-
trines of evolutionary theory. One conclusion drawn from the comparison is
that at present the various evolutionary theories do not offer a mathematical
basis on which to analyze the emergence of biological form and function. Thus,
the ultimate goal, suggested by juxtaposing epochal evolution and structural
complexity, is to knit the two threads of innovation and complexity together
to build a predictive theory—an evolutionary mechanics [8]—of the emergence
of novel structure.

2 STATISTICAL DYNAMICS OF EPOCHAL EVOLUTION

What, if any, are the common mechanisms that can explain the examples of
epochal evolution given above? How are we to begin understanding the gen-
eral process of epochal evolution? It turns out that answering these questions
requires comparing, contrasting, and analyzing three different views of evolu-
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tion: its appearance in genotype space, in phenotype space, and in a functional
(fitness) space. (We have already seen an example of the latter in figure 5.)
Comparing and contrasting these spaces is the burden of the following sec-
tions. The mathematical analyses that justify the approach and the results
quoted in the following are found in the work just cited.

2.1 SUBBASINS AND PORTALS: MICROSCOPIC EVOLUTION

We think of genotype space—the collection of all genotypes—as a network
whose nodes are genotypes and whose links connect genotypes that can be
transformed into each other by simple genetic modifications, such as single-
point mutations. Taking this and the biological facts of neutral evolution and
the many-to-one structure of genotype-to-fitness maps into account, we see
that genotype space decomposes into a set of neutral networks, or subbasins
of approximately isofitness genotypes, which are entangled in a complicated
fashion; see figure 6. As illustrated there, the space of genotypes is broken
into strongly and weakly connected sets with respect to paths generated by
genetic modifications. Equal-fitness genotypes form one or several strongly
connected neutral subbasins. The volume of each subbasin is determined by
the number of genes that can vary without changing fitness: the more wildcard
genes within a genotype, the larger the volume. In fact, subbasin volume grows
exponentially with the number of wildcard genes. Moreover, subbasins of high
fitness are generally much smaller than subbasins of low fitness, since higher-
fitness genotypes (typically) tend to require more fized genes to maintain their
fitness. One consequence is that a subbasin tends to be only weakly connected
to subbasins of higher fitness. This is depicted by the tube-like portals in figure
6.

The genotype space for the epochal evolution example of figure 5 consists
of all genotypes of 30 (binary) genes; a set of 230 (~ 10°) binary strings. There
are three functional gene-constellations, the 10 genes of which must be prop-
erly set to obtain a unit of fitness. Due to this, genotype space contains four
subbasins of fitnesses 0, 1, 2, and 3, respectively. There is only one genotype
with fitness 3; 3069 genotypes have fitness 2; ~ 3 x 105 have fitness 1; and
all others (~ 10%) have fitness 0. Thus, there are large degeneracies in the
mapping from genotype to fitness.

Since the different genotypes within a subbasin are not distinguished by
fitness selection, neutral evolution—driven by random sampling and genetic
variation of individuals—dominates when the population resides in the sub-
basins. Selection stills acts to stabilize the population, of course, but only by
culling low-fitness individuals; e.g., those in low-fitness subbasins. This leads to
a rather different interpretation of the processes underlying stasis and change
from that suggested by “landscape” models, for example. In landscape models
a population stays pinned at a local optimum in genotype space, since all vari-
ation leads to decreased fitness. In epochal evolution, however, a population is
free to diffuse randomly through subbasins of isofitness genotypes. A balance
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FIGURE 6 Subbasin and portal architecture in genotype space underlying epochal
evolutionary dynamics. A population—a collection of individuals {S;} with dis-
tribution Pr(S;)—diffuses in the subbasins (large sets) until a portal (tube) to a
higher-fitness subbasin is found. (Reprinted with permission from [11].)

between selection and deleterious mutations leads to a (meta-) stable distri-
bution of fitness (or of phenotype), while the population searches through
spaces of neutral genotypic variants. During the neutral diffusion process the
population of genotypes accumulates in the wildcard genes the history of the
particular genetic variations that occurred. Even though there is no geno-
typic stasis during epochs, there is phenotypic stasis. As was first pointed out
in the context of molecular evolution in [35], through neutral mutations, the
best individuals in the population diffuse over the neutral network of isofitness
genotypes until one of them discovers a connection to a neutral network of
higher fitness. The fraction of individuals on this network then grows rapidly,
reaching a new equilibrium between selection and deleterious mutations, af-
ter which the new subset of most-fit individuals diffuses again over the newly
discovered neutral network.

Note that in epochal dynamics time scales are a naturally separated. Dur-
ing an epoch, selection acts to establish an equilibrium in the proportions of
individuals in the different subbasins, but it does not induce adaptations in
the population. Adaptation occurs only in a short burst during an innovation
(passage through a portal), after which equilibrium on the level of fitness is
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reestablished in the population. On a time scale much slower than that of in-
novations, members of the population diffuse through a subbasin of isofitness
genotypes until a (typically rare) higher-fitness (portal) genotype is discov-
ered. Thus, long periods of stasis occur because the population must search
most of the subbasin before a portal to a higher-fitness subbasin is discovered.
We refer to this as an entropy barrier to innovation, since the long duration
of epochs is controlled by the volume of the most-fit neutral network on which
the population resides.

In this way, we shift our view away from the geographic metaphor of evo-
lutionary adaptation “crawling” along a “landscape”, impeded by “energy”
barriers (fitness-valleys), to the view of a diffusion process constrained by the
subbasin-portal architecture. That architecture is induced, in turn, by degen-
eracies in the genotype-to-phenotype and phenotype-to-fitness mappings. This
is not only a shift in architectural view, though, since it places a strong em-
phasis on the dynamics of populations as they move through subbasins, find
portals, and so evolve increased fitness. It turns out that, while genotype-space
architecture is a key component, it is not the only determinant of evolutionary
population dynamics.

2.2 FINITE-POPULATION DYNAMICAL SYSTEMS: MESOSCOPIC
EVOLUTION

From a microscopic point of view of genotype space, the exact state of an
evolving population is only fully described when a list S of all genotypes with
their frequencies of occurrence in the population is given. On the microscopic
level, the evolutionary dynamics is implemented as a Markov chain with the
conditional transition probabilities Pr(S’|S) that the population at the next
generation will be the collection §’, given that the current population is S. For
any reasonable genetic representation, however, there is an enormous number
of these microscopic states S and so too of their transition probabilities. The
large number of parameters, O(2X!) for L genes, makes it almost impossible
to quantitatively study the dynamics at this microscopic level.

More practically, a full description of the dynamics on the level of micro-
scopic states S is neither useful nor typically of interest. One is much more
likely to be concerned with relatively coarse statistics of the dynamics, such
as the evolution of the best and average fitness in the population or the wait-
ing times for evolution to produce a genotype of a certain quality. The result
is that quantitative mathematical analysis faces the task of finding a coarser
description of the microscopic evolutionary dynamics that is simple enough
to be tractable numerically or analytically and that, moreover, facilitates pre-
dicting the quantities of interest to an experimentalist. The key, and as yet
unspecified, step in developing such a description of evolutionary processes
is to find an appropriate set of intermediate-scale mesoscopic variables, or
mesostates, with which to define the dynamics.
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Fortunately, the very formulation of Neo-Darwinian evolution suggests a
natural decomposition of the microscopic population dynamics into a part
that is guided by selection and a part that is driven by genetic diversifica-
tion. Simply stated, selection is an ordering force that operates on the level of
the phenotypic fitness in a population. In contrast, genetic diversification is
a disordering and randomizing force that drives a population to an increased
diversity of genotypes. Thus, it seems natural to choose as mesostates the
proportions of genotypes in different fitness classes (subbasins). Additionally,
one can assume that, due to random genetic diversification within each sub-
basin, the distribution of individuals within a subbasin is determined only by
these proportions and is, otherwise, as random and unstructured as possible.
(This is the mazimum entropy assumption of statistical physics.)

Following this reasoning, we describe a population in terms of the propor-
tions Py, Pi,...,Pn of individuals located in each of the subbasins
By, B1,...,Bpy. The maximum entropy assumption entails that within sub-
basin B;, individuals are equally likely to be any of the genotypes in B;. (This
is a rather strong assumption that works surprisingly well in predicting ob-
served population dynamics.) In other words, we assume that all wildcard
genes are equally likely to be set in any possible way, as long as this does not
lead to a portal configuration that changes fitness. Thus, we use the coarser
distribution of fitnesses, rather than the much more unwieldy genotype distri-
bution, to describe a population. (For simplicity of description, we are assum-
ing that the subbasins have distinct fitnesses.) The immediate benefit is that
we work with a space of populations that is vastly smaller—its dimension is
the number N of subbasins—than the exponentially large space of genotypes.

Figure 7 illustrates how epochal evolution appears in the intermediate-
scale mesoscopic representation afforded by fitness distributions. The figure
plots fitness distributions P = (P, P1, Py, P3) from the run of figure 5. In
the figure the Py axis indicates the proportion of fitness-0 genotypes in the
population, P; the proportion of fitness-1 genotypes, and P, the proportion
of fitness-2 genotypes. Of course, since Pisa probability distribution, Py =
1— Py — P, — P, is completely determined, and the space of possible fitness
distributions forms a solid three-dimensional simplez.

We see that initially Py = 1 and the population is located exactly in
the lower-left corner of the simplex. Later, between ¢ = 20 and t = 60, the
population is located at a metastable fixed point on the line Py + P, = 1 and
is dominated by fitness-1 genotypes (P, > Pp). Some time around generation
t = 60 a genotype with fitness 2 is discovered, and the population moves into
the plane Py + P, + P, = 1—the front plane of the simplex. From generation
t = 70 until generation ¢t = 170, the population fluctuates around a metastable
fixed point in the upper portion of this plane. Finally, a genotype of fitness 3 is
discovered, and the population moves to the asymptotically stable fixed point
in the interior of the simplex. It reaches this fixed point around ¢t = 200 and
remains there fluctuating around it for the rest of the evolution experiment.
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t=0

FIGURE 7 Mesoscopic view of epochal evolution—the level of population dynam-
ics: the simplex (a solid tetrahedron) of allowed populations (dots) and the dynamic.
The flow dynamics, including the clustering and regions of stability, is induced by se-
lection and genetic variation. The stochasticity seen is the result of finite-population
sampling. In this example, the fitness distribution P= (Po, P1, P, P3) is shown for
a population evolving under the fitness function of figure 5 which gives genotypes
three levels of fitness: 0, 1,2, 3. The location of the fitness distribution at each gener-
ation is shown by a dot. The dashed lines indicate the direction in which the fitness
distribution moves from metastable to metastable cluster. (The population data
used here comes from the same run as in figure 5.) The times at which the different
metastable states are first reached are indicated as well. These should be compared
to the innovation times of figure 5. (Reprinted with permission of the authors [66].)

2.3 SURVIVAL DYNAMICS: MACROSCOPIC EVOLUTION

Having described epochal evolution at the microscopic level of diffusion
through subbasins and portals and the mesoscopic level of the population
dynamics, we can return to the highest level of evolution: survival dynamics
in the space of functionality—the space on which selection acts. In the simple
example already shown in figure 5 we used fitness as a proxy for functionality.
Recall that figure 5 showed the fitness dynamics of a population of 30-gene
individuals evolving under a three-constellation fitness function.

At time ¢ = 0 the population started out with 250 random genotypes.
As can be seen from figure 5, during the first few generations all individuals
were located in the largest subbasin with fitness 0, since both average and
best fitness are 0. The population randomly diffused through this subbasin
until, around generation 20, a portal was discovered that led into the sub-
basin with fitness 1. The population was quickly taken over by genotypes of
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fitness 1, until a balance was established between selection and deleterious
mutation: selection increasing the fraction of fitness-1 individuals and delete-
rious mutations (that go from fitness 1 to 0) decreasing their number. The
individuals with fitness 1 continued to diffuse through the subbasin with fit-
ness 1, until a portal was discovered connecting to the subbasin with fitness
2. This happened around generation ¢ = 60 and by ¢ = 70 a new selection-
mutation equilibrium was established. Individuals with fitness 2 continued
diffusing through their subbasin until the globally optimal genotype with fit-
ness 3 was discovered some time around generation ¢t = 170. Descendants of
this genotype then spread through the population until around ¢t = 200, when
a final stable equilibrium was reached.

2.4 PORTRAIT OF AN INNOVATION: UNFOLDING AND STABILIZING
NOVELTY

Putting together the views of evolution at the three different levels of genotype
subbasins and portals, population dynamics, and survival dynamics, one sees
that epochal evolution is a process of state-space unfolding (see figure 8):

1. Initially, the population moves in (say) n mesoscopic dimensions of the
population-dynamics space of fitness distributions.

2. Tt is attracted to a (noisy) fixed point—the metastable collection of popu-
lations observed during the epoch.

3. At the same time it diffuses neutrally in the very high dimensional micro-
scopic space of genotypes. During epochs, many genotypic changes occur
and accumulate, but do not alter the phenotype. This invariance of the
phenotype is a symmetry of the fitness distribution with respect to micro-
scopic change.

4. An innovation occurs when, having accumulated a certain combination of
changed genes, a portal to increased fitness is discovered in the microscopic
space.

5. This breaks the existing epoch symmetry, since genetic changes now affect
fitness.

6. A new mesoscopic dimension becomes activated, fitness increases and se-
lection begins to stabilize the innovated feature by removing lower-fitness
genotypes (without the feature) and adding higher-fitness ones (with the
feature).

7. The mesoscopic population dynamics now moves in an (n + 1)-dimensional
space.

In the unfolding process microscopic variation is amplified through the in-
novations and becomes locked-in due to the dynamics at the mesoscopic and
macroscopic levels. Randomness serves to drive the diffusion in the microscopic
dimensions and eventually leads to the discovery of portals to innovation. Se-
lection acts to stabilize the structure of the mesoscopic spaces, once a new
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FIGURE 8 Portrait of an innovation: The mesoscopic (left) and microscopic (right)
views of two innovations produced by epochal evolution. See text for description.

dimension has been activated. Complementing this flow of information from
the microscopic to the macroscopic, there is also feedback from the macro-
scopic level that determines the constraints on the microscopic dynamics. That
is, the macroscopic organization of possible individuals—e.g., attainable fit-
ness levels—is reflected in the subbasin-portal architecture of the microscopic
space. The mathematical analysis of these mechanisms and their interaction
we call statistical dynamics.

It will be helpful at this point, having outlined the statistical dynamics of
epochal evolution, on the one hand, and having earlier mentioned several al-
ternative descriptions of the causes of metastability, on the other, to draw the
contrasts more sharply between them. First, epochal evolution is not Fisher’s
intermittent fixation. Though aspects of drift due to sampling and mutation
are components of epochal evolution, the epochs are stabilized by selection
removing low-fitness genotypes, which is not part of Fisher’s model. Second,
epochal evolution is not Kimura’s purely neutral evolutionary dynamic, since
a key part of the former is an explicit mechanism for finding and then lock-
ing in structural innovations. In this sense, the theory of epochal evolution
proposes an overall architecture for piecewise-neutral evolutionary processes.
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Third, epochal evolution is not Gould-Eldredge punctuated equilibria in that
it is a predictive quantitative theory with specific mechanisms that, with new
automated evolutionary experiments, will be laboratory testable. The theory
of punctuated equilibria did not commit to much, if any, underlying mecha-
nism, other than exogenous (environmental) causes of change. (The statistical
dynamics of epochal evolution is a theory of endogenous change.) Punctuated
equilibria served more as a descriptive summary of phenomenological aspects
of the fossil record, as one naturally expects of paleontology. Perhaps at some
future date, with more fossil data and a more elaborated theory of epochal
evolution, it may be shown that punctuated equilibria in macroevolution is
a kind of epochal evolution. At present, all one has is observational consis-
tency, without the ability to positively identify underlying mechanisms from
the fossil record.

One notable consequence of the statistical dynamics analysis is that
epochal evolution is a kind of open-ended evolution. It is explicitly a dynam-
ics by which a sequence of innovations can be discovered and then become
the structural substrate for further evolution. Also, depending on which (ran-
domly chosen) sequence of portals is realized, the course of macroscopic evo-
lution can be very different and so reflect the accumulation of, what some call,
frozen accidents. In these respects, the statistical dynamics of epochal evolu-
tion is a partial response to the criticism of population dynamical systems
modeling of evolution as being evolutionarily closed and incapable of intrin-
sic novelty. The claim is that such models must at the outset build-in the
ultimate dimensionality of an evolutionary process which, in turn, caps evolu-
tionary innovations [20]. Epochal evolution shows that this is not an intrinsic
failing of population dynamical systems: they can be open-ended in the way
epochal evolution unfolds and then stabilizes new state space. The main limit
imposed on the continuing emergence of increasingly complex structures—
assuming other parameters, such as population size and mutation rate, are
compatible—comes from the structure of the space of individual function, not
directly from population dynamics.

These observations on innovation processes in evolution lead immediately
to questions about what one means by “structure” and “function”—largely
open questions, as yet incompletely addressed by evolutionary theory. How
can we ever say unambiguously, for example, that an evolutionary system
evolved toward complexity, or that it was or was not open-ended, without a
theory of structure and function that allows us to quantitatively monitor their
change?

At its current stage of development, in the statistical dynamics of epochal
evolution, “individuals” are simple and direct genotype-to-fitness maps. Be-
yond gene constellations that confer fitness when properly set, they are nearly
structureless individuals. For example, they have no spatial structure and no
temporal behavior. These aspects can play no role in determining individual
fitness. Thus, there is no analog of development in the theory, except that
which is implicit in the genotype-to-fitness maps. In contrast, the laboratory
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experiments and the simulations of evolving dynamical systems mentioned
above do have structured individuals, often exhibiting complex structures and
rich dynamical behavior. To develop a predictive theory of epochal evolution
for these, one needs to be precise about how a given individual is structured,
how it functions, and how its functionality confers fitness, in order to track in-
creases (or decreases) in evolutionary and developmental complexity. In short,
to quantify changes in structure and function one needs to define “complex-
ity”.

3 STRUCTURAL COMPLEXITY AND INNOVATION

Fortunately, recent progress has brought us to a level of understanding com-
plexity that suggests we are close to defining it in ways that are germane
to evolution. In particular, results on how complexity emerges in nonbiolog-
ical systems give important insights into the structures that can emerge in
evolutionary processes and also into the constraints that structural innova-
tions must respect when they occur. Before describing these ideas, however,
it will be helpful to set the historical context and to make several important
distinctions.

As a label for natural systems that are difficult to model and analyze, over
the last two decades “complexity” has served a useful role by ambiguously re-
ferring both to randomness and to organization. The study of complex systems
has sometimes focused on simple (albeit, nonlinear) processes that appear ran-
dom and are difficult to predict—e.g., deterministic chaos and fractal separa-
trices. The question there, to say it most directly, is, How does disorder emerge
from simplicity? At other times, studies of complex systems have focused on
large-scale processes consisting of many interconnected components—what
one might call complicated systems. The question there has been, How is it
that order arises despite so much possible disorganization? It is not surprising
that two such opposite phenomena—disorder emerging from order and order
from disorder—falling under the same rubric of complex systems would lead
to confusion. Fortunately, the confusions and resulting debates about what
“complexity” is led to a useful clarification. There are two basic and different
categories of complexity: complication versus structure. As we now appreciate,
although complication emerging from simplicity and organization emerging
from disorder appear to be opposite kinds of phenomena, the complexities to
which they refer are, in fact, complementary and not opposites.

On the one hand, we have complexity as varying degrees of randomness
or complication in a system’s behavior or in its architecture. The behavior of
a dynamical system ranges, say as we change a control parameter to make it
more nonlinear, from being regular, periodic, and predictable to chaos and un-
predictability. The organization of social systems ranges from the predictable
delivery of vast amounts of food to major cities to the seeming turbulence and
uncoordinated deal-making behavior of traders in a stock exchange. Thus, we



James P. Crutchfield 19

Deterministic
Complexities
(T, S, H, K)

0 Randomness 1

FIGURE9 Measures of complicatedness—temperature T', thermodynamic entropy
S, Shannon information H, and Kolmogorov-Chaitin complexity K—(vertical axis)
are all proportional to the amount of randomness in a process (horizontal axis).
In one way or another, these quantities assume that all of the randomness in a
process must be described using deterministic models—such as, a universal Turning
machine on which the Kolmogorov-Chaitin complexity is defined. This is why they
are referred to as deterministic complexities. (Reprinted with permission from [7].)

think of natural complication as a spectrum of randomness: from pure order
to utter disorder.

This spectrum is quite familiar to us. So much so that many fields have
developed their own vocabularies for degrees of complicatedness. In physics,
for example, one uses temperature (T') and thermodynamic entropy (S) to
monitor where a system is in its spectrum of randomness: low temperature or
entropy indicate an ordered system, high temperature or entropy a disordered
one [55, 57, 71]. In the theory of communication, one uses Shannon’s measure
(H) of information: predictable messages are uninformative; unpredictable
messages are highly informative [6, 59]. In the theory of computation, one
uses Kolmogorov-Chaitin complexity (K) as an algorithmic measure of an
object’s randomness [5, 40, 43, 45], and so on. We can illustrate very simply,
as done in figure 9, the relationship between these ways of measuring degrees
of complicatedness: T, S, H, and K are all proportional to randomness.

On the other hand, we have complexity as varying degrees of organization—
or structure, regularity, symmetry, and intricacy—in a system’s behavior or
in its architecture. We say that a ferromagnet is more structured at the tran-
sition between its low-temperature ordered phase and its high temperature
disordered phase, since only there does it exhibit aligned-spin clusters of all
sizes. The network of financial, technological, and industrial interdependencies
that support the production of modern microprocessors is certainly neither
a regular and fixed architecture, in which case it would be too rigid and un-
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FIGURE 10 Structural complexity C (vertical axis) peaks in the intermediate re-
gion between the extremes of randomness (horizontal axis). (Reprinted with permis-
sion from [7].)

adaptive, nor one that is entirely unstructured, in which case it would simply
be nonfunctional. The required institutional memory, flexibility, competition,
and cooperation have led it to some state intermediate between these or-
ganizational extremes. In a way analogous to randomness, in the space of
organizational architectures, we can think of a spectrum of structure: from
simple symmetric architectures to sophisticated and hierarchical ones.

The corresponding measure of structuredness we call structural complez-
ity (C). There have been many more or less specific proposals for structural
complexity—some, it turned out, actually measure randomness. (See the re-
view and especially the long list of citations in [17, 18, 58].) Nonetheless,
we can summarize the basic idea behind structural complexity by contrast-
ing it with the spectrum of randomness. This is done schematically in the
complezity-entropy diagram shown in figure 10. The peaked curve shows that
(i) the extremes of randomness, highly predictable and highly random, are
structurally simple (low C) and (ii) structural complexity is largest in the
intermediate regime between the extremes.

We now consider structural complexity to be a complementary coordi-
nate to degrees of randomness, as depicted in figure 10. It characterizes a
different feature of a system—for temporal processes, the amount of histori-
cal memory—than randomness—which is the amount of information a system
produces. That is to say, randomness and structural complexity are both nec-
essary descriptors: the former captures surprise, the latter organization. In
analyzing dynamical systems, for example, one uses complexity-entropy di-
agrams like that of figure 10 to display the spectrum of how a collection of
systems generate and store information to varying degrees.
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We refer to the theory of structural complexity as computational mechan-
ics since it extends statistical mechanics—a theory of randomness—to include
definitions of structure that capture computational architectures. The main
questions asked when analyzing a system in this framework do not focus on
the storage and transduction of energy. They ask instead how a system stores,
transmits, and transforms information. Briefly, what are a system’s intrin-
sic computational properties? Originally introduced over a decade ago [12],
the mathematical foundations are now well developed. (See [61] and, again,
[17, 58], which also review alternative approaches to structural complexity.)
Computational mechanics defines structural complexity (C) in terms of a de-
composition of a system’s behavior into its minimal causal architecture—a
representation called an e-machine. C' is the amount of information, includ-
ing spatial correlation and temporal memory, which this minimal architecture
stores. In a well defined sense C'is the size of the set of minimal causal compo-
nents embedded in a system. The procedure for identifying a system’s minimal
causal architecture is called e-machine reconstruction.

Aside from providing a first-principles approach to extracting an e-machine
for a system and so measuring its structural complexity, one of the main results
is that novel structures (forms of intrinsic computational architecture) emerge
in pattern-forming systems that are at phase transitions. More generally, it is
often observed that structural complexity emerges from the dynamical inter-
play of ordering and disordering forces—such as, those operating when dis-
covering portals in neutral networks. (These results justify the rather coarse
and schematic view captured in the complexity-entropy diagram of figure 10.)

Comparisons of how novel structural complexity emerges at different kinds
of transition, such as phase transitions, and over time in cellular automata
[33], for example, give some insight into the structural innovations that can
emerge in evolutionary processes. (Investigations of evolving cellular automata
give many examples of just this kind of structural innovation in an artificial
evolutionary process—innovations that can be structurally analyzed in some
detail using computational mechanics [9, 10].) First, the central way to de-
tect that some new thing has emerged in an innovation is to monitor the
causal architecture—either over time, if analyzing a temporal process such as
the evolutionary population dynamics of cellular automata, or over a range
of parameters, if it is a controlled process, such as a system undergoing a
phase transition. Second, increased structural complexity can appear either
smoothly, as shown in figure 10, or abruptly as in a critical phase transition;
see, for example, [13]. In the latter case, there is a qualitative change in a sys-
tem’s causal architecture: a divergence in the number of causal components
and a shift to a more powerful computational class. Innovations have been
analyzed in systems that show a shift from a disorganized initial “heat bath”
to patterned levels of coherent domains and particles, from finite-memory to
infinite-memory processes, and from finite-state-machine to pushdown-stack
architectures. Such innovations have structural signatures and, using compu-
tational mechanics, there are now ways to detect them and quantify what
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novelty has emerged. Thus, the emergence of structural complexity from the
interplay of a system’s tendency to order and its tendency to disorder suggests
where to look for innovations, how to detect them, and how to describe what
has been created.

4 EVOLUTION TO COMPLEXITY

In the computational mechanics of structural complexity one sees the begin-
nings of a principled approach to form and function in evolutionary processes.
First, identifying and then quantifying the kinds and amounts of structure
embedded in natural systems are the first steps to making the concept of
form precise and testable. To the extent that one considers biological form
to include symmetry, regularity, hierarchy, pattern, modularity, and so on,
structural complexity, as defined in computational mechanics, is an appropri-
ate operational approach to it. Second, building on an unambiguous concept
of form, one can view functionality as arising from the relationships between
a system’s intrinsic structures—their static architecture and their dynamical
interaction—and intrinsic or externally determined evaluation of those struc-
tures.

In the computational mechanics view, then, evolutionary innovations are
changes in the architecture of information processing. These changes can be
reflected at the level of either a population or an individual. The novelty of
an innovation is built out of structures on lower levels and occurs in “orthogo-
nal” coordinates when something truly new emerges. Unlike the purely struc-
tural emergence observed in pattern formation processes—such as, the ap-
pearance of spiral waves in a Belusov-Zhabotinsky chemical reaction-diffusion
system—innovations can take on meaning and function within in an evolu-
tionary process. Unlike the spiral waves, this intrinsic emergence does not
require an outside observer to monitor the changes in structural complexity
[8]. The meaning and function of intrinsically emerging organization derives
from the fitness evaluation of individuals and the persistence of traits over
time—features that are part and parcel of an evolutionary process.

In computational mechanics, the process by which open-ended innovation
can occur is called hierarchical e-machine reconstruction. We think of hier-
archical e-machine reconstruction, or some dynamically instantiated version,
as specifying the minimal requirements for open-ended evolution: successive
innovation of levels of distinct structural classes that build on the lower levels’
component structures. Figure 11 illustrates an open-ended series of evolution-
ary innovations: nested levels of information processing of increasing compu-
tational power. At each level, there is a spectrum of structures, some of which
are more appropriate (e.g., useful or functional), since they balance both par-
simonious resource use against minimal degrees of randomness. To store and
use better structures, however, requires increased resources—they are in one
or another sense larger than less optimal structures.
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FIGURE 11 Computational mechanics view of open-ended evolution: a sequence
of innovations leading up through a hierarchy of increasingly sophisticated classes
of information processing. The distinct classes of structure are illustrated with a
complexity-entropy diagram (H?,C") that represents the trade-offs between ran-
domness and structural complexity appropriate at each organizational level. The
arrows indicate an adaptive dynamics that leads within each level to increasingly
sophisticated structures. When adaptation exhausts finite resources, there is an in-
novation of a new class of structure. (Reprinted with permission from [7].)

It is perhaps not surprising that finite resources drive the process of in-
novation. Why? If an individual at some level of organization had infinite
resources, say to model its environment, then there would no benefit to re-
structure existing resources or to incorporate new ones. It would gain no pre-
dictive advantage, since the current model is as predictive as any alternative.
When resources are limited there is an effective pressure to innovate a new
class of organization—one that more efficiently uses the available resources
while improving efficacy. In this way, computational mechanics describes an
open-ended series of innovations as an unfolding hierarchy of recursively em-
bedded structural classes. Though this view of open-ended evolution focuses
on innovations in structural complexity, one sees the parallel between this
process and how innovations arise during epochal evolution by a process of
unfolding and then stablizing new state spaces. In computational mechanics
one focuses on nested levels of information processing; in epochal evolution
one focuses on activating and then stabilizing new state spaces.
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5 ORIGINS OF FORM AND FUNCTION: SELECTION,
ACCIDENT, OR MORPHOGENESIS?

It is often said that organisms today are more complex than in earlier times.
But what (exactly) is this complexity and how did it emerge? Having reviewed
the dynamics of epochal evolution and the theory of structural complexity and
the roles they play in innovation, we can now contrast them more directly
with views from within evolutionary biology on the emergence of form and
function. According to Williams, three doctrinal bases have been used over
the last century to address the evolution of complexity [68]:

1. Natural selection: “trial and error, as opposed to rational plan”;
2. Historicity: “the role of historical contingency in determining the Earth’s
biota”; and
3. Mechanism: “only physico-chemical processes are at work in an organism
. as opposed to vitalism”.

Natural selection holds that structure in the biological world is due pri-
marily to the fitness-based selection of individuals in populations whose di-
versity is maintained by genetic variation [46]. That is, genetic variation is a
destabilizing force that provides the raw diversity of structure. Natural selec-
tion then is a stabilizing dynamic that acts on the expression of that variation,
which is structural diversity. It “generates” organization by culling individuals
based on their relative fitness, which is determined by their structure. This
view identifies a source (genetic variation) of new structures and a mechanism
(selection) for altering one form into another. Thus, the adaptiveness accumu-
lated via selection is seen as the dominant mechanism driving the appearance
of form and function.

The historicity doctrine acknowledges the Darwinian mechanisms of selec-
tion and variation, but emphasizes the accidental determinants of biological
form [28, 51]. What distinguishes this position from the emphasis on natural
selection is the claim that major changes in structure can be and have been
nonadaptive. While these changes have had the largest effect on the forms of
present day life, at the time they occurred they conferred no survival advan-
tage. Furthermore, today’s existing structures need not be adaptive, reflecting
instead a history of frozen accidents. One consequence is that a comparative
study of parallel earths would reveal very different collections of life forms
on each. Like the doctrine of natural selection, historicity accounts for the
emergence of structure by a process of preferentially culling one or several
structures within pre-existing structural diversity. But it is a dynamics that
is manifestly capricious or, at least, highly stochastic with few or no causal
constraints. Due to this, the historicity doctrine is not a theory of the origins
of diverse form and function.

In the mechanistic view of evolution the goal is to elucidate “principles
of organization” that underlie the appearance of biological form. In this,



James P. Crutchfield 25

it focuses directly on the question of what biological complexity might be.
The doctrine contends that energetic, mechanical, biomolecular, and morpho-
genetic properties guide and limit the infinite range of possible biological form
[20, 21, 26, 37, 60, 67]. The constraints result in a relatively small set of struc-
ture archetypes. In a sense, these play a role in morphology analogous to the
Platonic solids in geometry: they pre-exist, before any evolution takes place.
In the evolutionary emergence of complexity, then, natural selection chooses
between these “structural attractors”, possibly fine-tuning their adaptiveness.
In this view, Darwinian evolution serves, at best, to fill the waiting attractors
or not, depending on historical happenstance. It does not, however, create the
structure of those attractors.

What is one to think of these conflicting theories of the evolution of com-
plexity?

First, although natural selection’s culling of genetic variation provides a
theory of gradual structural transformation, it does not provide a theory of
structure itself. For example, what is the average time under an evolutionary
dynamic and under the appropriate environmental pressures for a fish fin to
be transformed into a leg? If one knew the genetic trajectory—the required
sequences of modified and innovated genes—in principle one could use the
theory of population genetics to estimate how long the transformation would
take. But this assumes and hides too much—How did those genes determine
the functionality of fins and legs? To estimate from first principles the time to
evolve a leg from a fin one needs a measure of the structures concerned and
of the functionality they do or do not confer.

Second, historicity too provides a theory of transformation and not of
structure. Moreover, for its highly stochastic transformational dynamics to be
successful—or, at least, to not destroy all structures—and for there to be the
requisite broad structural diversity on which it acts, historicity requires that
the space of possible biological structures be populated with a high fraction
that are functional. Whether this is true or not is simply unknown. Addi-
tionally, in emphasizing the dominance of historical accident, it advocates
an extra-evolutionary theory for the origins of novel organization and form,
side-stepping the issue of biology’s role in actively producing them. An expla-
nation that appeals to a meteor crashing into the earth simply falls outside the
domain of evolutionary theory. Moreover, the occurrence of such events is un-
likely ever to be explained by the principles of physical dynamics. The collision
just happened: a consequence of particular initial conditions that occurred in
a celestial dynamical system which is most likely chaotic and, if so, demon-
strably unpredictable. Such accidents impose significant constraints; they do
not constitute an explanation of the origins or biological form or function.

Finally, the mechanistic doctrine does not offer a theory of evolutionary
transformation, though it focuses on morphogenesis which certainly inter-
acts with evolutionary processes. Although it employs methods from pattern-
formation and bifurcation theories, it too falls short in that it does not provide
a theory of structure itself nor of the functions of evolved structures. In partic-
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ular, the structural attractors are not quantitatively analyzed in terms of their
internal architecture nor in terms of system-referred functionality or fitness.

It would appear that the three doctrines rely on undefined concepts of
form and function. What about the theory of neutral evolution? What does
it say about form and function and their evolution? In natural selection’s
emphasis on gradual adaptation each and every biological thing, embodying
the direct solutions to the survival problems posed by environmental con-
straints, has a function and so a “story”. Neutrality, though, breaks the logic
of functional ascription. The direct consequence of neutral evolution is the ap-
pearance of nonadaptive, nonfunctional, and nonfitness-conferring genotypes
or phenotypes. Previously, Kimura argued that neutrality or near-neutrality
is the rule in molecular evolution. One can also develop a different kind of
argument, that one should expect neutrality to be common in the evolution
of form and function, using the theory of structural complexity.

To say it most simply, whenever there is structure, there will be a many-
to-one mapping from genotype to phenotype and to fitness. Why? To say there
is “structure” is to say that the range of possible entities is constrained, not
random. If the range of possible forms is not fully random (is not structure-
less), then the mapping of genotypes—an exponentially large number of long
strings in a high-dimensional space—to structures is degenerate: many geno-
types will code for individual structures, the former substantially out num-
bering the latter. The many-to-oneness derives most fundamentally, though,
from a collapse of dimensionality in going from the microscopic realm of geno-
type space to the macroscopic realm of form and function. Even if genotypic
coding consisted of continuous parameters rather than discrete genes so that
the preceding (combinatorial) argument did not apply, any reduction in the
dimension (from genotype space to phenotype space to function space) results
in neutrality. Thus, the evolution of structurally complex organisms appears
to implicate in a fundamental way neutral evolution and so inherently epochal
population dynamics. Moreover, when properly calibrated against landscape-
optimization processes, evolution along neutral pathways dominates since the
time it takes to find innovations is markedly shorter than the time taken by
fitness-valley crossing [63].

If neutral evolution is to be expected in the emergence of complex or-
ganisms, then there need not always be functional “stories” for each of their
component structures, since some structures may have arisen during periods
of stasis. Of course, they may become functional later on, say even contribut-
ing to an innovation. (Gould and Vrba call this recontextualizing originally
nonfunctional traits exaptation [30].) Imagine examining a contemporary or-
ganism. Which of its structures emerged during periods of stasis and which
not? The ambiguity here is only heightened when one realizes that, in many
cases for which data is available, epochs of stasis are defined in terms of mor-
phological, and not functional, constancy. Much of what we see in the biologi-
cal world need not be there because it fulfills a purpose—not even for survival.
Functionality, perhaps emerging through adaptive innovations, comes equally
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from the context of a given form—something much harder to detect than
form itself. Thus, confronted with the possibility of metastable evolution, one
comes to appreciate diversity of all kinds, even that which is not functional
and which appears to serve no purpose. One may have to adopt a very long
view. Present diversity may be highly determinant at some later time and in
a different context.

6 NONE OF THE ABOVE

The impression the doctrinal debate leaves, though, is that there is a pressing
need for both a qualitative dynamical theory of structural emergence [27] and
a theory of biological structure itself [47, 48]. The main problem, at least to an
outsider, does not reduce to showing that one or the other existing doctrine
is correct. Each employs a compelling argument and often empirical data as
a starting point. Rather, as a first step, the task facing us is to develop a
synthetic theory that can balance the tensions between selection, accident,
neutrality, and mechanism. The analysis of epochal evolution—how it un-
folds and stabilizes novel macroscopic spaces, when this occurs and when it is
precluded—does suggest what this qualitative dynamical theory might look
like. Tt resolves the tension between the microscopic, mesoscopic, and macro-
scopic levels on which evolutionary processes act and gives an architectural
view of the microscopic and mesoscopic consequences of function.

If we ask about the origin of function, though, does it lie in selection,
historical accident, morphogenesis, or some combination, the answer here has
to be “none of the above”. There is some basic thing missing in these three
approaches. (Neutral evolution, as just noted, plays no direct role and mostly
serves to complicate the question of function.) They do not directly address
the question of functionality, nor are they equipped to do so. I argued that,
on the way to addressing the origins of function, what is missing is a theory
of form based on structural complexity and a theory of its emergence based
on epochal evolution.

At this point, however, structural, and functional constraints operating
during epochal evolution are only reflected, and indirectly so, in the subbasin-
portal architecture of genotype space. Like the three existing doctrines, the
theory of epochal evolution is not a theory of structure, nor does it yet in-
corporate one. Thus, there is a second, much more difficult, step: to develop
a quantitative theory of structure and then out of that, a theory of function.
Without these, we appear to be in no position to explain the evolution of com-
plexity. It would appear that if one stops here, when evolution is revolution,
we simply cannot say what has been innovated.

The computational mechanics of nonlinear processes, however, is a the-
ory of structure. Pattern and structure are articulated in terms of various
types of causal architecture—what we called computational classes. The over-
all mandate there is to provide both a qualitative and a quantitative analysis
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of natural information processing architectures. If computational mechanics is
a theory of structure, then innovation via hierarchical e-machine reconstruc-
tion is a computation-theoretic approach to the open-ended transformation
of structure. It suggests one mechanism with which to study what drives (fi-
nite resources) and what constrains (intrinsic computation) the appearance
of novelty.

The discussion has brought us to a possible next step toward an evolu-
tionary dynamics of structural emergence. This would be to fold hierarchical
e-machine reconstruction into an evolutionary process, resulting in an intrin-
sic dynamics of innovation. In a rough way, something like this is observed in
the evolution of cellular automata, mentioned earlier. The theoretical analysis
there is incomplete. However, at least evolving cellular automata provides a
concrete case, which appears to be tractable and which can be used to ferret
out the many taxing definitional problems in the evolutionary dynamics of
form and function.

There are two main points to draw from the parallel threads of epochal
evolution and structural complexity. First, epochal evolution arises intrinsi-
cally: long periods of stasis and sudden change need not be driven by external
forces. They are the product of the many-to-one mappings from genotype to
phenotype and phenotype to fitness. Epochal evolution is to be expected and
it occurs by an open-ended process of discovering and stabilizing novelty—
novelty that becomes substrate for further evolution. Second, the emergence
of structure can be monitored as an open-ended hierarchy of novel kinds of
embedded computation and information processing. When these two threads
are knitted together, one hopes that, when evolution is revolution, we will be
able to say what novelty has been created.
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