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Abstract. Temporal pattern learning, control and prediction, and chaotic
data analysis share a common problem: deducing optimal equations of
motion from observations of time-dependent behavior. Each desires to
obtain models of the physical world from limited information. We describe
a method to reconstruct the deterministic portion of the equations of
motion directly from a data series. These equations of motion represent a
vast reduction of a chaotic data set’s observed complexity to a compact,
algorithmic specification. This approach employs an informational
measure of model optimality to guide searching through the space of
dynamical systems. As corollary results, we indicate how to estimate the
minimum embedding dimension, extrinsic noise level, metric entropy, and
Lyapunov spectrum. Numerical and experimental applications
demonstrate the method’s feasibility and limitations. Extensions to
estimating parametrized families of dynamical systems from bifurcation
data and to spatial pattern evolution are presented. Applications to
predicting chaotic data and the design of forecasting, learning, and control
systems, are discussed.

1. Introduction

When refining a model of a physical process a scientist focuses on the agreement of
theoretically predicted and experimentally observed behavior. If these agree in some
accepted sense, then the model is “correct” within that context. Lorenz[1, 2] pointed out
the fundamental limitations to which this scientific procedure is subject, when the
underlying physical process is chaotic. In considering exact theoretical prediction, there
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is an irreducible long-term error in the prediction of system’s state that is on the order
of the chaotic attractor’s size in state space.[3] Even a “correct” model cannot exactly
reproduce observed chaotic behavior, and one must turn to geometric[4] or statistical[5]
criteria of validity. Such qualitative information about the geometry and the asymptotic
distribution of states on the attractor is contained, in fact, in a single time series.[4, 6]
At present, a model of a chaotic process is considered “correct” when the geometry,
dimension, and entropy, of its attractor agree with those of the attractor reconstructed
from the observed data.

Here we consider the inverse problem to verifying theoretical models: how can we
obtain the equations of motion directly from measurements? To do this we shall extend
the notion of qualitative information contained in a sequence of observations to consider
directly the underlying dynamics. We will show that using this information one can
deduce the effective equations of motion. The latter summarize up to an a priori
specified level of correctness, or accuracy, the deterministic portion of the observed
behavior. The observed behavior on short time scales unaccounted for by the
reconstructed equations will be considered extrinsic noise.[7]

This model ansatz is tantamount to assuming that the observations have been
produced by some arbitrary dynamical system in the presence of fluctuations. Unless
explicitly noted, we restrict our discussion to the case that the dynamical system is
finite-dimensional: the state is specified by the point

→
x = (x 0, x 1, . . . , xmbed−1) ∈∈ M,

where M is mbed -dimensional manifold, the state space. The state evolves according to

the dynamic
→
F (

→
x ) = ( f 0(

→
x ), f 1(

→
x ), . . . , fmbed−1(

→
x )). If the behavior varies continuously in

time then the system evolves according to a stochastic differential equation

(1.1)→̇
x (t) =

→
F (

→
x (t)) + ξ(t) .

In the case of discrete-time, the evolution is specified by a stochastic difference equation

(1.2)→
xn+1 =

→
F (

→
xn) +

→
ξ n ,

where n denotes time step. Further assumptions appear in these equations: the effect of

fluctuations is additive,.nr 0C 0 independent of
→
x . We take

→
ξ (t), for example, to be

zero-mean Gaussian distributed δ-correlated noise with amplitudes
→
σext along each

coordinate: < ξ(t)ξ(t − τ) > = δ(τ)
→
σext . A model M then consists of the pair (

→
F ,

→
σext ) of

τ <<
Io

hµ

, where hµ is the metric entropy and Io ' − log2ε is the unbiased average information

obtained from a measurement of resolution ε.

relevant dynamics, with concomitant increase in the model’s complexity, the extrinsic noise may be
revealed to be of deterministic origin and therefore incorporated into the estimated equations of motion.

fluctuation coupling are appropriate, experience has shown that the additive form is adequate for
most modeling purposes. The analysis presented here may be carried through for these other models with
greater theoretical and computational difficulty.
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estimated dynamic and extrinsic noise level vector.

To aid in the geometric interpretation of a model M = (
→
F ,

→
σext ) we introduce

slightly more general terminology. If the space of all dynamical systems on some

manifold M is denoted D(M): then
→
F ∈∈ D(M); that is, the model dynamic is a point

in the space of (deterministic) dynamical systems. In practice we must consider a wider
class of dynamical systems as we initially do not know the dimension of M, and so D

shall denote the space of all dynamical systems, and
→
F is to be considered a point in this

larger space also. The model M with its stochastic component is then an “ellipsoid”

centered on
→
F ∈∈ D. The set of dynamical systems in this ball are noise-equivalent, as

they describe essentially the same time-averaged dynamics in the presence of a given
level

→
σext of fluctuations. Said another way, M is an ensemble of realizations of a

stochastic dynamical system. In practice we introduce reconstruction basis coordinates

for M and a function basis
→
φ (

→
x ) = (φ0(

→
x ), . . . , φK−1) for approximating the dynamic

→
F

to “order” K:
→
F (

→
x ) = A

→
φ (

→
x ), where aik = (A)ik is the coefficient of the k.lf 364 φk for f i .

These choices result in the space of deterministic models DM which is the
Kmbed -dimensional space of approximations to the infinite-dimensional D. Note that we

do not include the mbed components of
→
σext in DM and that

→
F is linear in the parameters

{aik}.
Properly considered, the problem of deducing the deterministic portion of a data

series is a subset of the general problem of pattern recognition: detecting a priori
unknown structure in data. This is, indeed, not a new problem. A vast literature in
statistics, optimization, control, prediction, and information theory, addresses itself to
problems of this nature. In fact, the use of state space methods has recently come to the
fore in times series analysis.[8] What distinguishes our work is the incorporation of
concepts from dynamical systems theory:

(1) the notion of global stability (attractors);

(2) the deterministic production of apparently random behavior (chaos);

(3) quantitative measures of temporal complexity (metric entropy and Lyapunov
characteristic exponents);

(4) the notion that relevant state space coordinates can be developed systematically
from a data set (reconstruction); and, finally,

(5) the consideration of manifestly nonlinear behavior.

The approach outlined here proposes a set of problems through which we may
complete the line of investigation concerning the geometric characterization of
apparently random behavior that has developed over the last half dozen years. Going
beyond this, it suggests an approach that employs global structure in chaotic data
analysis. Previously, measures of chaos have been based on averages or random samples
of local structure. When employed in real data analysis these have often suffered from
large errors[9] and from spurious results[10] and also in their consistent
interpretation.[10, 11] This is due largely to the omission of global information that is
manifestly contained in the data.
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Before presenting the method for deducing deterministic equations of motion, we
will first briefly review chaotic data analysis and attractor reconstruction. Following the
method’s description we show how it leads to an estimate of the minimum embedding
dimension, and to estimates of the Lyapunov spectrum, metric entropy, and extrinsic
noise level. The analysis of data from several numerical and experimental examples then
illustrates its application. We conclude with a few comments on implementation and a
discussion of applications to other more complex dynamical systems, to prediction and
control systems, and to scientific model building.

2. Data acquisition

We must first describe the nature of the information with which data analysis
begins. A data series is a set of N sequential temporal data points
{→
vn : n = 0, . . . ,N − 1}. The sampled data is obtained every sampling interval τs with

measurement resolution εs . Information is acquired at the measurement channel rate
Cacq = − τ−1

s log2(εs): the communication capacity[12] of the measurement channel.[7]
This rate imposes an upper limit on the observable complexity of the process which can
be entirely reconstructed. Specifically, the measured metric entropy hµ is bounded:
hµ ≤ Cacq . In the typical experimental situation this upper bound is rarely approached.
In other words, measurements of the state variables contain vastly more information
than the dynamics which generated the data series is capable of producing. To illustrate
the basic method we will be concerned with time series: a temporal sequence of a single
experimental observable.

The overall approach to chaotic data analysis that we present here consists of five
parts. These are not necessarily separate steps, e.g. some estimates can be improved
iteratively. First, one chooses a reconstruction technique and transforms the data into
the state space. Second, the dimension of the reconstructed data is estimated to provide
an initial guess of an upper bound on the embedding dimension mbed . Third, the
equations of motion are estimated; this also yields the minimum embedding dimension.
Fourth, a number of related statistical quantities are computed, such as a estimates of
the extrinsic noise

→
σext , the Lyapunov spectrum, information dimension, and metric

entropy. Finally, these steps can be repeated with data from successive control settings
to get an arc in DM of a parametrized family of dynamical systems.

3. Reconstruction

A reconstruction technique[4] R is a nonlinear (diffeomorphic[6] ) coordinate change
from

→
v , the sampled data, to

→
x , the reconstructed state space coordinates. Several

reconstruction techniques have been used to date. Consider a single continuous-time
scalar signal v(t). In the derivative method the coordinates are developed from the
signal as successive temporal derivatives:

→
x (t) = (v(t), v̇(t), v̈ (t), . . .). The most widely-

with spatially-extended or fully-turbulent systems this may not be the case. The dominant problem
often becomes how to obtain sufficient information to characterize spatial pattern evolution.
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used method is delay reconstruction. Here the coordinates are taken as successive delays
of a signal,

→
x = (v(t), v(t − τ), v(t − 2τ), . . .). Spatially-separated probes have also been

used as state space coordinates:
→
x = (vx (t), vx+δ(t), vx+2δ(t), . . .). τ and δ are free

parameters chosen to yield optimal reconstructions; where optimality is determined by
the application. The Karhunen-Loéve transformation applied to these coordinates
greatly reduces a reconstruction’s sensitivity to τ and δ.[13] We note in passing that all
of these techniques can be found in one form or another in the above-mentioned body of
related literature as scatter plots, time-differenced series, contiguity lag models,
multivariate time series, and so on. This literature apparently does not supply, however,
a systematic theory to aid in the selection between the methods nor is there any
geometric interpretation of reconstruction itself like that provided by dynamical systems
theory.

As will be shown, deducing the optimal equations of motion leads to an estimate of
the minimum embedding dimension. To get started, however, an estimate of an upper
bound for mbed is helpful. This can be found using standard techniques to estimate the
local dimension m local .[5, 14, 15] With this, the initial guess, an upper bound, for the
embedding dimension is 2m local .[16]

The reconstruction method R can introduce unknown distortions that complicate
the representation of the dynamic in some given function basis. Ultimately, one would
like to generalize the optimization method described below to search in space of
reconstruction techniques, i.e. embeddings, and also to look for nonlinear coordinates.
For our present purposes, we shall assume that an adequate reconstruction is available.
With this, the data can be embedded in a hierarchy of state spaces of increasing
dimension.

4. The EoM procedure

By definition the function basis
→
φ spans the model space DM :

→
F (

→
x ) = A

→
φ (

→
x ). We

assume that this can be done systematically for any mbed . With any such basis the task
reduces to the common statistical problem of estimating the parameters {aik},
A ∈∈ IRKmbed , from a cloud of data points that lie on or near the deterministic dynamic.
Numerous expansion bases are available for this, such as Taylor, Chebeysev, rational
functions, and splines. One might even consider expansions in which the coefficients
entered as nonlinear parameters. Although these choices are important for a particular
application, they do not affect our method’s overall implementation, only the ease and
accuracy with which equations of motion are obtained and the apparent simplicity, or
lack thereof, of the estimated equations of motion themselves.

Roughly speaking, there are two estimation classes: one based on using data from
the entire attractor to estimate parameters; the other based on using data from local
regions on the attractor. The first we call the global EoM procedure; the latter, the
atlas EoM procedure. We shall concentrate on the former, as it is simplest to describe
and leads to equations of motion most like those with which we are familiar. The atlas
method, as we shall describe below, is closely allied to differential topology[17] and is
more general than the global approach in the sense that fewer statistical and geometric
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assumptions about the data are required. Consequently, the atlas approach can be
successfully applied to a wider class of behavior.

The goal in estimating the deterministic equations of motion from a noisy data set
is to deduce a minimal model that reproduces the behavior. To do this we first need a

measure of deviation of the data from a given dynamic
→
F . The observed noise

→
σobs = (σobs,0, σobs,1, . . . , σobs,mbed−1) provides this and is defined component-wise by

(4.1)σ2
obs,i =

1

N

N−1

n = 0
Σ (yn,i − Fi (

→
xn))2

where
→
yn = (yn,0,yn,1, . . . ,yn,mbed−1) is the state that succeeds

→
xn in the data set. This

measures the error in predicting the observed next state
→
yn using the estimated dynamic

on the observed current state
→
xn :

→
F (

→
xn). In the statistics literature it is called the “one-

step prediction error variance”.

The second requirement is a goodness-of-fit measure that reconciles the two
conflicting tendencies of the improvement in fit and the model’s increased complexity,
with increasing approximation order.[18] This is used to objectively select an optimal
model from the range of those consistent with the data. It is, in fact, a “cost function”
that ranks model candidates in DM . The information contained in a model or model
entropy I (M ) is given, in a simple approximation, by

(4.2)I (M ) '
mbed

i = 1
Σ log2 σobs,i +

mbed ,T (K )

i = 1

k = 0

Σ log2 σaik
' log2 σobs + mbed T (K ) ,

where T (K ) =
(mbed + K )!

mbed !K !
is the number of basis functions up to order K in mbed

variables, σaik
are the error variances of the parameters, and σobs = || →

σobs ||/mbed . The
basic principle for selecting the optimal model in DM , an informational Occam’s razor, is
that the model entropy I (M ) is minimized. This should be compared with the maximum
entropy formalism of Jaynes.[19] We could have simply selected ad hoc a particular
approximation scheme, such as linear or quadratic Taylor functions. With such a
restriction, the model entropy does not play an important role. However, the inclusion of
the optimality criterion of minimum model entropy allows for the procedure itself to
select the most appropriate scheme.

As defined below, I (M ) differs from conventional “model identification criteria”[20]
in that it accounts for the effect of deterministic amplification or damping of

→
σext . This

is especially important for time- or space-dependent data series derived from locally
unstable dynamics. Any such criterion applied to data produced by a chaotic dynamical
system, for example, that ignores this systematically underestimates the “goodness of
fit” and reports that the data is random when it may be wholly deterministic.

mbed dependence of T (K ) for notational convenience.
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A few comments on I (M ) are necessary to suggest its interpretation and how the
above approximation is developed. Consider an ensemble of experiments each of which
produces a data set and, upon EoM analysis, a model. The ensemble of models is
described in part by the distribution P(M ) on DM of estimated dynamics. The model
entropy is formally

(4.3)I (M ,M ′) =

DM

∫

dm P(m) log2

P(m)

P(M ′)
,

where P(M ′) describes the a priori distribution of models M ′ in the class specified by
Eqs. (1.1) and (1.2). Recalling the Gaussian approximation that is implied there and
noting that P(M ) consists of two components: deviations due to errors in parameter
values and “errors” due to

→
σext for a given order K expansion, the model entropy is

(4.4)I (M ) = log2

σobs

σext

+
σ2

ext −σ2
obs

2σ2
obs

+
1

2N

(

N−1

n=0
Σ

(
→
yn −

→
F (

→
xn))2

σ2
obs

+T (K )

)

,

where σext = || →
σext ||/mbed . Ignoring the deterministic amplification of

→
σext , i.e. the first

and second terms, using a subjective estimate of the measurement errors for
→
σobs in the

third term, and dropping common, constant factors, we recover in the remaining third
and fourth terms an existing information criterion based on maximum likelihood.[20]

5. Lyapunov characteristic exponent spectrum

The full spectrum of mbed Lyapunov exponents {λi : i = 0, . . . ,mbed − 1} may be
estimated using the optimum model. The Lyapunov exponents associated with directions
transverse to the orbit and off the attractor, i.e. not directly constrained by information
in the data set, are estimated in the sense of optimality defined by I (M ). The vector
field not constrained by the data set is informationally the simplest with respect to the

chosen reconstruction R and function basis
→
φ .

The procedure for this estimation derives directly from the Lyapunov characteristic
exponent (LCE) spectrum’s definition. For discrete-time dynamics (or discretely-
sampled continuous data)

(5.1)λi =

∫

dµ(
→
x ) log2 || ∂

→
F

n
(
→
x ) • →

e i || ,

where
→
e i is the ith basis vector in the tangent space; the index i is taken so that the

spectrum is monotonically decreasing; ∂
→
F is the matrix of partial derivatives; and µ(

→
x )

is the invariant measure on the attractor, which is simply estimated by the data itself.
This yields the LCE estimator given by

(5.2)λi
N→large

' 1

N

N

n=1
Σ log2 ||∂

→
F (

→
xn) • →

e i || .

Thus, the computational technique is straightforward and directly related to that



8

developed for numerical simulations.[21, 22] The overall approach to estimating the full
Lyapunov spectrum proposed here should be compared with estimations based on
averages of linear approximation to the tangent space from local data.[9, 10, 11]

The metric entropy is then estimated as the sum of positive λi ; the information
dimension, via the Kaplan-Yorke formula.[23] We note that another independent

estimate of the metric entropy may be developed from the local spreading due to
→
F as

measured by a conditional probability density.[24, 25] This estimator forms the basis of
optimal prediction algorithms described in the applications at the end.

6. Extrinsic noise level

If, as we have assumed, the data is produced by a chaotic system the observed noise
level

→
σobs measures, but does not distinguish, two sources of “error”: those due to the

deterministic amplification of extrinsic fluctuations and the fluctuations themselves
→
ξ .

This decomposition is expressed informationally as

(5.3)log2 σobs = hµ + log2 σext .

The units for each term are bits per time unit; where the time unit is τs .

Once the deterministic amplification of extrinsic noise is estimated by the metric
entropy or Lyapunov spectrum, an estimate of the “true” extrinsic noise level follows

(5.4)σext ' σobs 2−hµ .

With respect to the assumed model class, this yields an estimation of the fluctuations
actually present in the system and not generated by the deterministic dynamics. The
methods of estimating

→
σext used in references [25] and [7] should be compared to this. In

this context, log2 σext plays the role of a thermodynamic entropy: the information
missing from the deduced “macroscopic” variables and parameters of the deterministic
dynamic. We shall return to this thermodynamic interpretation in a later section. To
summarize, there is no need for an a priori estimate of the extrinsic noise level, as one
often finds explicitly or implicitly in current chaotic quantifiers. We have replaced this
with the model hypothesis of Eqs. (1.1) and (1.2) and model entropy minimization.

7. The attractive hypothesis

A further important assumption is that the reconstructed data lies near or evolves
to an attractor. Although this need not be the case if the EoM analysis is being applied
in a context in which explicitly transient, globally unstable behavior has generated the
data set, it is worth discussing in some detail for several reasons. First, it is the main
case of interest to us here; there are several interesting applications. Second, it aids
considerably in improving estimated equations of motion and in reducing computational
resources. And third, it is an often unspoken assumption that deserves explicit
acknowledgement in any statistical analysis of chaotic data. It articulates one’s
anticipation of an important property of the data, that may or may not be born out
during analysis. As such, we call it the attractive hypothesis.
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The mathematical statement formalizes the requirement that the data “map” into
itself. We define the state space volume Λattract as the largest Euclidean mbed -cube
circumscribing the reconstructed data points {→

xn}:
(5.5)Λattract ≡ { →

x ∈∈ IRmbed : min {xni} ≤ x i ≤ max { xni} , i = 0, . . . ,mbed − 1 } .

The extrema are taken over the entire data set; the subscript i refers to the i th

coordinate. With this, the attractive hypothesis requires

(5.6)
→
F (Λattract ) ⊂ Λattract .

For brevity’s sake and as it does not affect the main points of our discussion, we consider

only the deterministic dynamic and not the model’s stochastic component.* This
particular statement of the attractive hypothesis is rather strong. A weaker form, for
example, would be to limit the constraint to a ε-cover of the data set. But this has its
own difficulties and so we shall use the above form.

The geometric interpretation of the attractive hypothesis is rather simple for
continuous time flows, Eq. (1.1): the vector field sufficiently far from the data cloud
points inwards. Thus, any simulated trajectory starting outside the region constrained
by the data will move toward Λattract . For discrete time maps the geometric picture is
simply that an initial condition maps into Λattract on the first iteration.

In implementing the attractive hypothesis, the vector field or discrete-time dynamic
outside the data-containing region is augmented with a smooth contractive
extrapolation. To facilitate this the data is normalized initially to [−1, 1]mbed . Then one
of several standard extrapolations outside this cube are imposed. One alternative is to
simply add data outside the cube that provides the desired extrapolation. Another
alternative is to employ a basis that explicitly implements the attractive property
outside the cube, e.g. Hermite polynomials rather than Taylor functions.

As discussed in this section the attractive hypothesis applies to either global or
atlas EoM analysis. It imposes boundary conditions on the chosen fitting procedure,
toward whose implementation details we now turn.

8. Dynamic estimation and a diagnostic

This completes the theoretical background of our method. In this section we

describe procedures for fitting the graph of the dynamic
→
F or, equivalently, estimating

the parameters {aik}. There is a large number of algorithms for the central fitting and
optimization task that we have just introduced: least squares, simplex methods,
simulated annealing, and the Boltzmann machine, come to mind. After experience with
the first three, we have settled on the singular value decomposition implementation of
least squares fitting.[27, 28] This is very robust and stable for the type of over-

*Ruelle[26] provides a detailed discussion of attractors in the presence of fluctuations.
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determined and nearly singular problems with which we are concerned here.†

Furthermore, it does not require an orthogonal basis as errors in parameter estimates are
independent due to the implicit use of Karhunen-Loéve transformation.

There are a number of practical concerns regarding the choice of basis functions.
For example, if we use smooth basis functions to fit a dynamic with apparent (e.g. circle
map) or real discontinuities (e.g. Lorenz map) or that is not smooth (e.g. tent map), the
fits are naturally very poor. Similarly, a term in the real dynamic may not be optimally
approximated in the chosen basis: e.g. a periodic driving term approximated by a Taylor
expansion. A basis may be appropriate if the data is properly transformed, however. For
example, one can use z = sin(wt) rather than t as a coordinate for a Taylor function
basis in the case of data from a driven oscillator.

To aid in the detection of poor approximation, we have developed a simple
diagnostic. Although it does not take into account particular features of a chosen basis,
it does provide a measure of the difficulty encountered using smooth bases to fit a
dynamic whose graph has high state-space frequency components. We use the
ε-convergence properties of a dimension-like quantity that measures the RMS range of
the dynamic over ε-size domain cells. Its convergence is monitored in the same manner
used for entropy convergence to investigate the effects of noise on symbolic dynamics.[25]
The diagnostic is interpreted as follows. If the convergence is slow, there is much
variation in the dynamics and the estimation will require high order or fail altogether. If
the convergence is rapid, then a smooth approximation is likely to work.

Ultimately, we believe a procedure will be found that avoids this class of fitting
problem altogether by determining the optimal nonlinear basis directly from the data
set. It would then go on to estimate the equations of motion in a form compact with
respect to that basis. A first step in this direction is the atlas EoM procedure presented
in the next section.

9. Atlas EoM estimation

To balance these cautionary remarks on implementation details, we digress at this
point to indicate the general applicability of deducing equations of motion. The proof
that EoM analysis always works in principle for smooth dynamical systems relies on the
Morse lemma. This states that any smooth manifold is approximated by a set, or atlas,
of local quadratic polynomial charts.[29] In the case of EoM analysis, there are two
manifolds of interest: (i) the reconstructed state space, the domain of the dynamic, and
(ii) the graph of the dynamic. If, as we have assumed, the underlying dynamical system
is smooth, there is a finite domain cell size ε below which the coordinate charts for the
dynamic allow adequate approximation within some error level δ in the range of the
dynamic. With real data, the minimum ε is bounded from below by

→
σext . It may be

†This is an optimization problem with the cost function being I (M ). We have implemented simulat-
ed annealing and a simplex method. For low dimensions (mbed < 5) the singular value decomposition is
much faster. Perhaps for larger mbed , where the computational resources for singular value decomposition
are prohibitive, these alternative techniques will be preferred.
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much larger, however, indicating a simpler state space manifold and dynamic and that

fewer than O(
→
σ
−mbed
ext ) charts are necessary.

Employing this topological framework, our atlas EoM procedure computes a global
list of coordinate patches to the graph of the dynamic, approximating the dynamic with
a local spline and noting the domain of applicability for each. The splines may go up to
cubic order in our implementation. Thus for a fixed error δ, the domain cell size is

chosen to be ε ' δ−k for an order k spline. Within each chart the spline parameters are

estimated from the local data using singular value decomposition.* A number of splines
are available for this task: B-spline, Bezier, and Hermite. Each provides its own type of
local approximation. We have implemented B-splines as they allow both the first and
second derivatives to be continuous across the charts. This results in a globally C 2

dynamic. We note that B-splines also allow for rapid computation of the LCE spectrum.
Finally, the model entropy is simply summed over the fit of each local chart.

The atlas procedure is tantamount to implementing EoM analysis with a function
basis of splines. This approach allows a much wider range of dynamics to be fit than by
global fitting with conventional bases. Unfortunately, its implementation is more
difficult and it produces “piecewise” equations of motion. The latter are not what one
typically considers a “closed” form model. From the computational point of view,
however, the complexity in atlas equations of motion is only apparent. Theoretically,
the vast reduction in algorithmic complexity of the chaotic data to a dynamical system
is the same in the atlas procedure as for the global method. Properly speaking, the
algorithmic complexity is the same for both methods; although their required
computational resources differ by some constant factor. Practically, with our atlas-based
dynamical system simulator, the difference is noticed only as a moderate slow down in
simulation speed.

Local approximation of the dynamic over small regions in the state space has also
been discussed previously in the time series literature by Priestley,[31] under the name of
locally-linear autoregressive moving average (ARMA) models. In these the dynamic is
approximated by simple linear regression or interpolation. The central motivation is
forecasting time series. Independently, references [32] and [33] have suggested very
recently the same approach. The former provides a wide-ranging review of efficient data
structures and algorithms for artificial intelligence computation. A hierarchical tree-
structured piece-wise linear atlas is proposed as an efficient method for learning behavior
and also for sequence prediction. Local data is linearly interpolated to produce the
predictions. The second reference evaluates this approach for predicting chaotic time
series. This work does not discuss, however, deducing equations of motion, simulating
them, or other important facets, such as the attractive hypothesis, extrinsic and

*When applied to the data in the domain of each chart, singular value decomposition also provides a
method for simultaneously estimating m local . This is estimated as the rank of the local covariance matrix,
computed by the number of significant singular values, averaged over each chart in the atlas. This method
is closely related to the “local linear regression” method of dimension estimation.[14, 30]
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observed noise, etc....

There has also been much related work in chaotic data analysis that examines
statistics from local linear fits. The first attempt to measure chaotic attractor dimensions
employed a local linear regression to obtain a piecewise linear approximation to an
attractor.[14] More recently, work on measuring the Lyapunov characteristic exponents
from chaotic data has employed local estimates of the tangent mapping, which is itself a
locally linear approximation of the dynamic.[11, 34]

In our own investigations of piecewise linear atlases we have found them to be
unreliable indicators of the underlying deterministic behavior. Simple examples, even in
one dimension, show that piecewise linear equations of motion can exhibit periodic
behavior when the original dynamics is chaotic and visa versa. This depends on the
chart size and on translation of the atlas spline knots as a whole. The other
consideration which has lead us away from piecewise linear dynamics to smoother atlases
is that they violate the physically-motivated hypothesis of smooth dynamical systems.
Most physical processes do not exhibit arbitrarily fast changes in their first derivatives.
Finally, without smooth continuation between charts, it is not clear how far differential
topology can be applied to piecewise linear equations of motion.

In their defense, there are some data sets for which abrupt changes in derivative
and even discontinuities are appropriate. Additionally, if the chart size is near

→
σext and

this noise is added during a simulation, then piecewise linear atlases will exhibit
behavior that is noise-equivalent to a smooth atlas.

We shall not discuss the atlas procedure further due to the substantial complication
of the method. In an effort to convey the central ideas of EoM analysis, in the remaining
sections we will consider only the global EoM procedure: global function fitting over the
reconstructed attractor.

10. Global EoM estimation

The global EoM procedure operates component-wise to estimate each f i in turn.

The result is the estimated dynamic
→
F , a set of mbed functions, and mbed noise levels.

The basic method is to compute I (M ) as a function of approximation order K and mbed

and also as a function of the removal of particular basis functions. Additionally, the
singular value decomposition computes singular values that measure the parameter error
ellipsoid size, and these too may be reduced in number in order to minimize I (M ) and
so improve the fit at each step. The latter is taken as the inner most loop in our
procedure, then the order K is varied, and finally, the embedding dimension is changed.
We start mbed at 2m local and K at a large value permitted by the computational
resources. These are reduced by removing coordinates and basis functions which
decrease I (M ) until there is no further improvement. The resulting mbed is the minimum
embedding dimension.

Once the optimum model is obtained in this way, then it may be compared to the
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original data via numerical simulation of Eqs. (1.1) and (1.2).* The comparison requires
that the appropriate amount,

→
σext , of noise be added to the simulation and that any

coordinate transformation, due to reconstruction or later modification be inverted.

For data series from continuous-time signals, the integral form of Eq. (1.1) is
estimated. That is, we approximate the flow φt : M → M, where

→
x (t) = φT (

→
x (t −T )),

and φT is a discrete-time mapping given by

(10.1)
→
x (t) =

→
x (t −T ) +

t

t−T

∫

dτ
→
F (

→
x (τ)) ,

There are two benefits of fitting this integral form over fitting Eq. (1.1) directly. First,
more robust estimates of the parameters are obtained due to the averaging of short-time
scale noise. Second, the same fitting algorithm may be used for discrete and continuous
time data streams. When the signal is fit in this integral form our method of estimating

the parameters of
→
F is highly reminiscent of linear prediction filters, used extensively in

speech synthesis, for example. In linear prediction coding, the f i are linear. In contrast,
our method, via Eq. (10.1), constitutes a nonlinear prediction filter. We shall return to
this topic in the last sections.

There are four general comments on the method’s implementation. First, although
we have not done an exhaustive study of data set size scaling, experience indicates that
a relatively small number of points, less than a few thousand, is adequate for chaotic
attractors in up to 4 dimensions.

Second, in comparing original to model orbits, one must keep in mind that the
comparison is both geometrical and statistical. A corresponding level of noise

→
σext must

be added during the simulation of the estimated model. If the behavior is chaotic, the

model does not reproduce the original data series nor is
→
F itself necessarily the “true”

deterministic dynamics and
→
σext the “true” extrinsic fluctuation strength. The method

makes three claims: (i) The original dynamics and the estimated model are in the same
noise-equivalence class. (ii) Almost all simulated orbits are statistically similar, in the
sense of (say) power spectra and statistical moments, to the orbit reconstructed from the
original data. And, (iii) almost all simulated orbits lie on a branched manifold that is
topologically equivalent to the reconstructed attractor.

Third, for the global EoM procedure, the required computational resources, that is,
memory and time, scale as N 2mbedT (K ). The number of fit parameters must also be
kept smaller than the number of data points. Some authors suggest the upper bound for

this is
√

N . We note that the method is easily parallelized for distributed processors or
adapted to array processors, and so may be greatly speeded up. Even so, on current

*As a necessary tool in EoM analysis, we have written an interactive simulator that directly accepts a
basis type, such as Chebeysev, Taylor, or B-spline, and a list of expansion coefficients produced by the
EoM analysis.
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Figure 1.

Effect of extrinsic noise on model entropy. I (M ) versus expansion order K ∈∈ [0, 11] and
extrinsic noise level

→
σext for the one-dimensional map described in the text. The extrinsic

noise level was 10−18, 10−14, 10−10, and 10−6, for the stars, circles, squares, and
diamonds, respectively. At each noise level, the Taylor coefficients are reconstructed
with errors less than 10−3.

scientific workstations we expect through further optimizations to estimate global
equations of motion in up to 8 variables using function bases up to fourth order.

Finally, we note that transient data and data from different experimental runs can
be used. Indeed, in some circumstances this can greatly improve the accuracy of EoM
analysis. This is because data off of the attractor serves to constrain parameter estimate
in regions of the dynamic which otherwise would not be determined directly.

11. Numerical examples

We will illustrate EoM analysis with the global procedure using a Taylor function
basis for three numerical and three experimental chaotic data sets. Although extensive
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testing has been performed, only these examples will be described as they illustrate not
only that the method is readily applied to real data, but also some limitations and
several additional features whose more general discussion cannot be included. Unless
otherwise noted, all examples are discrete time maps in low dimensional systems.
Another motivation for the choice of examples is that with data from a low-dimensional
system several of the important features of the analysis can be graphically demonstrated.
Results for high dimensional systems do not admit simple illustration.

The first example shows the effect of extrinsic noise on the model entropy and the
optimum model. We consider the stochastic logistic map xn+1 = rxn(1 − xn) + ξn where
the nonlinearity parameter r is 3.7, so that the deterministic behavior is chaotic. ξn

denotes uniformly distributed noise with amplitude σext . Figure 1 shows the dependence
of I (M ) on expansion order K and noise level σext . Note that T(K) = K for one
dimension. 1000 iterates were used in the analysis.

At each noise level, the parameter r, as well as the other implicit parameters, are
correctly estimated to within .1% error or better. The extrinsic noise level is estimated
with similar accuracy. The overall feature to note in the figure is a distinct minimum in
the model entropy that identifies the optimum model. Initially with increasing
approximation order, the model entropy drops steeply to a convergence floor once a
sufficient number of terms are reached. In this example, this occurs at the inclusion of
quadratic terms. Beyond this there is a linear increase as the model grows in complexity
with added redundant terms.

The next figure demonstrates the estimation of the minimum embedding dimension
in terms of the trade off between mbed and approximation order T (K ). Figure 2 shows a
perspective plot of the model entropy surface for the logistic map, just described. The
reconstruction used delayed coordinates in up to nine embedding dimensions. The
approximation order went up to 25. Although difficult to discern in the plot, there is a
gradual increase in I (M ) with mbed along the trough. This increase is sufficient to select
the mbed = 1 model as optimum.

The second numerical example used the two-dimensional Hénon map to generate a
time series:

(11.1)
xn+1 = yn + 1. − 1. 4xn

yn+1 = . 3xn

.

The reconstructed attractor in various dimensions was obtained using successive delays
of xn . Figure 3 shows I (M ) as a function of mbed and T (K ) for this example. 1000
points were used. The optimum model, indicated by the dot in the figure, was found to
be

(11.2)
xn+1 = . 839 − 1. 76yn

yn+1 = . 785 + . 016xn + . 300yn − 1. 79x 2
n

.

(Terms with parameters smaller than 10−3 have not been included.) Here, the variables
xn and yn refer to the original variable xn and its first delay xn+1. There is no
discernible difference between the original reconstructed attractor and the one simulated
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Figure 2.

Estimating the minimum embedding dimension. I (M ) versus expansion order
K ∈∈ [0, 25] and embedding dimension mbed ∈∈ [1, 9] for the delay-reconstructed logistic
map, as described in the text. The minimum I (M ) identifies the optimum model as
indicated. The extrinsic noise is zero. The Taylor coefficients for the optimum model are
estimated to better than 10−6.

using the optimum equations.

The third example demonstrates the type of dynamic with which global function

fitting has difficulty. Two dimensional data was taken from the phase− π

2
Poincaré

section of the driven, damped Duffing oscillator

(11.3)
ẋ = y

ẏ = − γy + ax − bx 3 + Fcos(ωt)
.

where (γ,a,b,F , ω) = (. 03, 1. , 10. , . 65, . 93). The position and velocity were sampled at
the driving period.
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Figure 3.

I (M ) versus expansion order K and embedding dimension mbed for the delay-
reconstructed Hénon map, as described in the text. The minimum I (M ) identifies the
optimum model as indicated. This model reproduces the qualitative features of the
original data. The floor to the right indicates various (mbed ,K ) for which I (M ) was not
computed.

Upon EoM global analysis, fitting to high order exhibited only a very slow
convergence and no convergence floor in I (M ). The diagnostic was consistent with the
interpretation of a complex dynamic. This was confirmed, as shown in figure 4, with a
stereo plot of the one component of the graph of the dynamic: xn+1 is plotted as a
function of (xn ,yn). There are sharp ridges and steep cliffs that are obviously difficult to

approximate with Taylor, or any other known, function basis.*

*This is a counterexample to the statement in reference [32] that “most mappings that arise in prac-
tice have slowly varying slope”.
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Driven systems do lead to one interesting feature, and this will be our only direct
comment on numerical investigation of continuous-time flows. Consider a two-
dimensional driven oscillator, like the Duffing oscillator just mentioned. The state space
is three-dimensional, consisting of position, velocity, and driving phase coordinates.
When the EoM global analysis is carried out in mbed = 3 dimensions, the sin(ωt) term
must be approximated directly in the chosen basis. This leads to slow convergence and
relatively poor approximation. However, when the EoM analysis is carried out in higher
dimensions with the phase variable included as one coordinate among others, a
Hamiltonian subsystem is detected instead of a periodic driving term. The latter could
have been approximated by a series expansion, as was done in three dimensions. This
would have been a more complex approximation. Instead, the procedure “chose” to
substitute a dynamical subsystem to generate sin(ωt). This achieves a simplification of
the optimum model by substituting a computational procedure {ẋ = y , ẏ = − ωx} in the
place of explicit inclusion of the sin(ωt) expansion.

To conclude the numerical example section, we note that we have tested the global
method using a number of other numerically-generated data sets from well-known
dynamical systems. The three dimensional flows included Ro

..
ssler, Lorenz, and other

parameter regimes of the driven, damped Duffing, and van der Pol ordinary differential
equations. Four dimensional flows included Ro

..
ssler’s hyperchaos[35] and the Hénon-

Heiles system.[36] The latter is a Hamiltonian flow. One six dimensional flow was
tested: a coupled pair of Ro

..
ssler oscillators. The discrete time maps included several in

each of one, two, three, four, and fifteen dimensions. The latter was data generated from
a 15 site logistic lattice.[37] Reconstruction techniques used include the original variables
and derivatives of single variables. To test the sensitivity to possible distortions of the
data, additional transformations were applied to the reconstructed data for the lower
dimension examples. These included shearing, scaling, rotation, and translation. The
results were all consistent with the procedures we have just outlined. The fits were
typically very good. In a few cases, such as Ro

..
ssler’s towel map, equations simpler than

the original system were recovered.

Interestingly, time delay reconstruction, a very popular method, often leads to poor
approximations. The general indication is that it produces fairly complex, difficult-to-fit
dynamics. Fortunately, the atlas method gives good results with time delay
reconstruction.

12. Experimental examples

One of the authors carried out[38] a limited version of the procedures outlined
above a number of years ago on an electronic circuit implementation of Shaw’s variant of
the chaotic driven van der Pol oscillator:[39, 40]

(12.1)
ẋ = y + Fcos(ωt)

ẏ = −µy(a − x 2) − kx
,

where ( a, k , µ, F , ω) = (.11, .72, 9., .23, 1.35). The chaotic attractor here consists of
two “bands” or ribbons with a single folding process. There is no visible fractal
structure, due to high effective dissipation. The driving phase φ = 0 data from x(t) and
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Figure 4.

Graph of the dynamic for the Duffing oscillator Poincaré map. A stereo pair of
perspective plots of the x-component of the dynamic. The long vertical axis is
xn ∈∈ [−. 68, 70]; the horizontal, yn ∈∈ [−1. 17, . 85]; and the third, short axis is
xn+1 ∈∈ [−. 68, 70]. The latter should be viewed as coming in or out of the page,
depending on one’s stereo visualization method. Sharp ridges and steep cliffs are
evident, indicating difficult approximation. Approximately 4000 points are shown.

y(t) was sampled approximately every 40 milliseconds by a microcomputer with 12 bits
of resolution. 2048 two-dimensional points were accumulated, so that there were 1024
points on one of the bands. This band was parametrized by angle of return θn to yield a
one-dimensional map θn+1 = f (θn). The function f (θ) was fit by a fourth order
polynomial: f (x ) = a + bx + cx 2 + dx 3 + ex 4, where (a,b,c,d ,e) = (.66, 1.9, -2.4, -1.1,
.91). This equation of motion reproduced the observed chaotic behavior quite well, as
expected. The single Lyapunov characteristic exponent for the map λmap ' . 6 bits per
iteration was computed by Eq. (5.2) above. From that, the maximum Lyapunov

exponent for the ODE was estimated: λvdp =
λmapω

4π
' . 065 bits per time unit. The
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observed noise level
→
σobs was approximately 2−9. The extrinsic noise level was estimated

then to be slightly above the measurement resolution: σext ' →
σobs2

−λmap ' . 0012.

To illustrate the current procedure, however, we took Poincaré section data from a
recent electronic implementation of the above van der Pol oscillator in a more complex
parameter regime: ( a, k , µ, F , ω) = (.07, .37, 7.3, .56, 1.62). We again attempted to
obtain the Poincaré map using global EoM analysis. Although the ODEs are given
explicitly, the Poincaré map equations are not known a priori. In such a case, successful
EoM analysis can provide analytic information, the estimated equations of motion,
which cannot be analytically derived.

2000 two-dimensional points were used in the analysis. A Taylor basis of varying
order was used to fit the data in up to 4 embedding dimensions. The attractor was
reconstructed using various combinations of the two original coordinates and their
delays. The minimum model entropy of -30 bits was found using the two original
coordinates and seventh order approximation. There were 20 significant parameters and
so we shall not quote them here.

Figure 5 compares the original orbit with one from a simulation of the estimated
equations of motion. The overall agreement is quite good. One noteworthy feature in
the reconstructed dynamics is the appearance of the attractor crossing itself slightly.
This indicates the estimated EoM have a certain degree of noninvertibility. This is
definitely not a property of the original data as it derives from an ODE which admits
only diffeomorphic Poincaré maps. This is yet another topological property of the data
that could in principle be imposed during the EoM analysis via the inverse function
theorem. The inclusion of this would additionally complicate the implementation as it

requires the simultaneous fitting of all mbed coordinates of the dynamic.* The benefits
would be a reduction in the number of parameters to be fit and so an increase in overall
speed and accuracy. We shall not digress further on this interesting problem.

We have also analyzed nine data sets from a chaotic dripping faucet[41] with good
results. We shall mention a few of these, although the details of these analyses will
appear elsewhere.

We examined the drip-interval data sets shown in reference [3] (figures (a), (b), (e),

and (f) on page 55) as well as several others as yet unpublished.† Out of the nine
available data sets each representing different behavior, we were able to obtain good
equations of motion for five. Those for which we could not obtain equations of motion
appear to be undersampled, in the sense that in any embedding dimension the dynamics
is not completely determined by the reconstructed states. This is not surprising given

*We note that the invertibility criterion is straightforwardly implemented in the atlas procedure using
the local inverse function theorem for each patch of data and each local spline approximation to the dy-
namic.

†Please refer to the cited figures for the following discussion. 1000 points from these data sets were
used in the EoM analyses.
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Figure 5.

(Left) Two-dimensional Poincaré section of the original van der Pol electronic oscillator
data. 2000 points from the data set are shown. (Right) An orbit from the estimated
Poincarémap. Approximately 4000 iterates are shown.

the rather simple and indirect time-interval observable used.

For the attractor shown in figure (a) we found an optimum model in one dimension
with the deterministic dynamic

(12.2)xn+1 = . 243 + 2. 81 xn − 3. 17 x 2
n .

The extrinsic noise
→
σext was approximately .04 and the single LCE was approximately .7.

When simulated without noise the deterministic dynamic exhibits a period four orbit.
With

→
σext level noise added one finds a single noisy chaotic band similar to that seen in

the original reconstructed data. In a statistical sense we can argue that the EoM analysis
has revealed the dynamic to be periodic, in contrast to one’s initial perception of a single
chaotic band with noise added. The extrinsic noise has driven the periodic deterministic
dynamics into an apparently chaotic band. This inference is also supported by the
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scaling theory for period-doubling cascades in the presence of fluctuations.[42]

For the attractor of figure (b), the optimum model was found in two dimensions
with a third-order dynamic

(12.3)

xn+1 = yn

yn+1 = 9. 348 − 16. 1432 xn − 26. 3935yn + 10. 3878 x 2
n + 34. 6795 xnyn

+ 24. 3786y2
n − 3. 13519 x 3

n − 7. 14675 x 2
nyn − 21. 6583xny

2
n − 5. 91889y3

n

.

σext was estimated to be .01. The simulated attractor exhibited two noisy bands.

Figures (e) and (f) are examples of undersampled data sets. The “attractor” in
figure (e) passes through itself in one region in up to five delay-reconstructed dimensions
although it appears locally two-dimensional, m local ' 2. The data in figure (f) is also
similarly degenerate near the “knotted” regions with m local ' 2. Embedding in higher
than 2m local dimensions does not yield a nondegenerate mapping for the estimated
dynamic. From Whitney’s embedding theorem, we conclude that these data sets are
undersampled. In this sense they are projections from some attractor onto the
inadequate coordinates provided by drip-interval sampling. To reconstruct behavior in
this regime more probes, such as spatial probes across meniscus under the orifice, appear
necessary.

13. Chaotic data analysis

We have outlined a general approach to estimate an “experimental” model that
optimally reduces a complex data set to a compact algorithmic form. The deduction of
equations of motion from data series as presented here should enjoy the same range of
applicability as current statistical measures of chaos. It adds a significant and new type
of qualitative information to chaotic data analysis that moves in the direction of
including global structure of the underlying dynamics. Since global structure is taken
into account the method offers more robust characterizations of complex data than
present techniques. It also offers the future possibility of comparing “experimental”
equations of motion to those derived from first principles. We anticipate that further
optimizations will extend the range of usefulness to higher complexity systems. EoM
analysis, as we have outlined it here, puts into a single framework a number of
procedures used in chaotic data analysis: the determination of the minimum embedding
dimension, attractor dimension and entropy, and the spectrum of Lyapunov
characteristic exponents.

Further comment is in order to clarify the relationship between global and atlas
equations of motion. A set of global equations is always to be preferred over an atlas
model. The former (i) affords larger compression of the data into smaller algorithmic
form; (ii) allows for faster computation, simulation, and prediction; and (iii) typically
provides a better estimate of the vector field outside the data set. The atlas method,
although more widely applicable, suffers from generating more complex models:
typically, I (Matlas) > I (Mglobal ). For data that admits a global model, it is generally
preferred since it represents something close to a minimum algorithmic reduction of the
data with respect to the chosen function basis. Furthermore, it indicates that some
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property of the function basis is appropriate to representing the data. With the atlas
method there is no direct indication of this additional structural information.

EoM analysis can be also used to deduce parametrized families of dynamical
systems. Parameters are estimated across a family of equations of motion, each of which
is obtained from data at different experimental control settings. Assuming one followed
a single attractor through a bifurcation sequence, then the particular changing
parameters could be identified. The smooth variation of the dynamic through a
bifurcation sequence provides yet another constraint in parameter estimation and so can
be used to improve the estimates at each parameter setting. At present, we have carried
this procedure out only for the logistic and Hénon maps to identify the nonlinearity
parameter in each.

We turn now to discuss three areas of application that motivate our longer term
interest in EoM analysis.

14. Spatially-extended dynamical systems

With straightforward modifications EoM analysis can be applied to spatially-
extended systems or higher-dimensional systems, such as neural networks and network
dynamical systems. To focus the discussion we shall consider only spatially-extended
dynamical systems in this section.[37]

In spatially-extended systems, there are other independent variables in addition to
time. Associated with each we must chose an optimum reconstruction method. For
example, consider space-time patterns u(x,t) produced by a partial differential equation
of the form

(14.1)u̇(x , t) = F (u,∇u,∇2u, . . .) .

Rather than estimating the differential form of spatial derivatives, it is statistically more
robust to estimate the integral form

(14.2)wK (x , t) =

∞∞

−∞∞

∫

dy K (x ,y)u(x , t) ,

where K (x ,y) is the kernel associated with the highest spatial derivative. Thus, one fits
to an partial integral equation rather than the partial differential equation. If the
dynamics contains a diffusion operator (∇2), then the kernel is the Gaussian

(14.3)K (x ,y) ∝∝ exp

(−(x − y)2

2X 2

)

.

Here, X is conventionally interpreted as a spatial diffusion length. For the purposes of
spatio-temporal reconstruction, however, it is a free parameter analogous to T in Eq.
(10.1). These considerations are similar to the preceding discussion on estimating the
flow rather than the ODE directly.
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Once the form of the space-time dynamic has been selected, obtaining the equations
of motion for spatio-temporal data proceeds just as we have outlined in the preceding
sections. The major differences are (i) that we submit space-time patches of data to
analysis, (ii) the interpretation of the results as a space-time dynamic, and (iii) the type
of simulator used to study the estimated equations of motion. The remaining theoretical
issue for applying EoM analysis to evolving pattern data is an embedding criterion so
that the local pattern dynamics is non-degenerate.[43] We now describe this is some
detail for discrete-space and discrete-time lattice dynamical systems.[37]

Spatial and temporal entropies measure the rate of spatial and temporal
decorrelation.[44] We denote these entropies hs

µ and ht
µ, respectively. They relate the

amount of information an observer has about the edge of a pattern (spatial entropy) or
about the next state (temporal entropy), given the asymptotic statistics of space-time
patches.[43, 45] We assume that each probe has the same measurement resolution ε.
With each measurement, a probe provides − log2 ε bits of information. To provide
sufficient information for reconstructing the space-time dynamic, the probes must be
within a space-time region R delimited by spatial and temporal decorrelation. We can
approximate this by the space and time separation over which signals from two probes
become mutually unpredictable. The region R is bounded then by (±τmax,± δmax),

where τmax = − log2 ε

ht
µ

and δmax = − log2 ε

hs
µ

measure informationally the temporal and

spatial decorrelation lengths.

The number of probes is determined by the complexity of the observed behavior
and the requirement that the local patterns in the template lead at each time to a

unique state at the spatial point of interest.* This is the criterion for local embedding of
the spatio-temporal dynamic. Quantitatively it is measured using the indeterminacy[7]
applied to the template data.

Consider the set of neighborhood patterns {nhi
n(r):n = 0, 1, 2, . . . , i ∈∈ spatial

lattice} of radius r spatial sites. There are k 2r+1 possible neighborhood patterns, where
k = ε−1 is the number of distinct measurement outcomes from a probe. A local
embedding occurs when the neighborhood patterns determine the next state with
probability one. That is, the conditional distribution P(si

n+1 |nhi
n) is unity, where si

n is
the measurement of the local state at time n and site i . The indeterminacy provides an
informational measure of this

(14.4)Φ(r) =
{nhi

n}
Σ P(nhi

n)
{si

n+1}
Σ P(si

n+1 |nhi
n) logk P(si

n+1 |nhi
n) ,

where P(nhi
n) is the observed density of neighborhood patterns {nhi

n}. When Φ(r)
vanishes then a sufficiently large neighborhood has been found with which the space-
time dynamic can be reconstructed.

*We ignore for now the additional complication of extrinsic noise.
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The number of probes N can be estimated as follows. Measurements from the set of
probes must yield information at a rate higher than the total information production in
the neighborhood templates. The density of information production is given by the
specific metric entropy hµ. The specific metric entropy is an intensive quantity with
units of bits per unit volume per unit time. Within R the total information production
is approximately hµ τmax δmax. The required number of probes is then

(14.5)N ≥ − hµ τmax δmax

log2 ε

A specific space-time configuration of probes is not indicated by these considerations,
however. A particular configuration is determined by the application: the neighborhood
dynamics itself and the local interconnectivity variables within R.

The occurrence of spatial amplification of noise, such as in convective instabilities,
indicate the necessity of including spatial measures of perturbation propagation, such as
co-moving Lyapunov characteristic exponents and multipoint entropies, dimension, and
coherence.[46] Above we have seen the importance of metric entropy, dimension, and
LCE spectrum and how EoM analysis can be used to estimate them. When applied to
spatially-extended dynamical systems, EoM analysis will be similarly useful.

Another class of spatially-extended systems, closely allied to lattice dynamical
systems, is discrete-state cellular automata. To estimate equations of motion in this case,

we use Walsh functions as the function basis for
→
F . Unfortunately, with manifestly

discretized state variables we cannot appeal to continuity or differentiability as
constraints with which to lower the external noise level by filtering, as done in Eq.
(10.1). Foregoing any filtering procedures, the first author attempted to apply this
approach to estimate the neighbor transition matrix P(si

n+1 |nhi
n) for the binary cellular

automata-like patterns exhibited by mollusks. Digitized images of the shells* were
analyzed with inconsistent results. Some of the space-time dynamics lead to
propagating patterns like those found on the shells. On the whole, however, the available
statistics were inadequate. This was due largely to limited data from any one shell.
Additionally, the data exhibited a systematic bias due to the inherent geometric
distortion of the shells’ natural curvature.

On a positive note, EoM analysis has been successfully applied to numerical
simulations of several lattice dynamical systems.[37] We have already mentioned above
the use of a 15 site logistic lattice as a high dimensional numerical example. With the
additional assumption of translation symmetry and the reduction of lattice patterns to
neighborhood data, EoM analysis yields spatial equations of motion. An analogous
experimental effort is underway to analyze image sequences from video feedback and
several magnetic systems.

*The specimens included the Tent Olive, (Oliva porphyria Linné), the Flamed Venus (Lioconcha cas-
trensis Linné), the Wavy Volute (Amoria undulata Lamarck), the Courtly Cone (Conus aulicus Linné),
and the the Textile Cone (Conus ebraeusLinné).
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Recently, the observation of extremely long transients in lattice dynamical systems
has brought into question the general relevance of attractors to complex spatio-temporal
behavior.[37] Recalling our previous remarks concerning the use of transients, we
conclude that even for these long-transient systems we may still obtain equations of
motion and so make predictions of the complex transient behavior.

In closing this section, we suggest that the generalization of EoM analysis to highly
interconnected systems, such as neural networks, autocatalytic networks, and massively
parallel computers running particular algorithms, may provide a tool for investigating
the informational architecture of these systems and their processing performance. This
will hopefully allow for more quantitative understanding of these complex high-
dimensional systems.

15. Prediction and control

Deducing the deterministic portion of a chaotic signal is one example of the general
problem of detecting structure in data. The method’s successes hint at an extension of
nonlinear dynamics to pattern recognition, data compression, prediction, and control.
From the perspective of dynamical systems theory, essentially the same problem occurs
in these fields: there may be an apparent statistical component to a signal that contains
some a priori structure of deterministic origin. This indicates that it may be reduced to
a more compact, algorithmic specification. This specification forms its signature, which

may then be incorporated into a prediction or control system. *

As discussed above, the estimated dynamic can be used to predict the next state
→
yn ,

given an observed state
→
xn for discrete time behavior. The prediction is simply

→
F (

→
xn).

→
σobs then measures the predictor’s average effectiveness over the corresponding single
sample time. For continuous time behavior Eq. (10.1) is a predictor for time T .

→
σobs(T )

measures the continuous time predictor’s average effectiveness over time T . When
→
σobs is

small, the predictions are accurate; near unity, the predictions are no better than
random guessing. Such mean square error measures of a predictor are standard tools in
time series analysis. The estimated dynamic is a predictor that employs information
from data points arbitrarily separated in the data series. This distinguishes it from
typical “moving average” predictors.

Predictions for longer times are clearly possible. The information about the
observed state, however, decays initially at a rate given by the metric entropy. This
places a limit on the effectiveness of the observed state information for predictions over

successively longer times. The maximum prediction time is simply − log2 ε

hµ

.[25, 39, 50]

*This section is an elaboration of a dynamical system predictor using dynamic estimation pro-
posed[47] as an alternative to Pope’s attempt[48] to predict iterations of the logistic map using Holland’s
classifier system.[49]
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The possibility of automatically deducing equations of motion for general nonlinear
dynamical systems suggests a new look at the design of prediction and control systems.
EoM analysis can be used to design nonlinear prediction and control systems using data

from a target system or some desired behavior to deduce the appropriate equations.†

The estimated equations form an “internal” model. In this context, the model entropy
I (M ) can be used as an informational measure of performance for such systems. It
indicates how well-adapted the internal model is to the environment the system is
attempting to predict or control.

A predictor, aside from monitoring the prediction error
→
σobs , could also adapt its

internal model in ways to minimize I (M ), thereby improving its effectiveness over time.
Accumulates errors in short-term prediction provide the required information for
adaptation of the internal model over longer times. During the course of the adaptation,
the system would simultaneously deduce nonlinear models while it used them to predict
behavior.

Another more difficult, but illustrative, application of EoM-based prediction is to
weather forecasting. During the inception of prediction theory, Wiener [51] discussed this
from the point of view of modern ergodic theory and dynamics. Weather forecasting, as
we envision it now, combines aspects of spatially-extended dynamics discussed above
with EoM-based prediction. In setting up a weather forecaster, the initial internal
model would derive from basic meteorology. The input would be historical and real-time
data from temporal and spatial probes in satellites, earth-based weather stations, and
other sources. Such a forecaster would require enormous computational and data
acquisition resources. Nonetheless, with an appreciation of complex nonlinear dynamics
built into it, there appears at present no fundamental physical or computational
limitation to its operation.

One possible approach to the practical limitation of computational resources is to
model the earth’s weather system with a hierarchical and spatially-distributed set of
EoM-based forecasters. Each level in the hierarchy would be assigned a particular spatial
array of EoM forecasting subsystems, each one of which forecasts the weather in some
localized spatial region for some specified range of spatial-wavenumber within that
region. The main theoretical uncertainty in such a massively-parallel forecasting system
would be the manner in which each local forecaster interpreted the predictions of nearby
forecasters. One obvious implementation is to include all of the neighbors’ variables.
However, it may be necessary to include only those variables associated with the spatial
transmission of information and not the entire state of each neighboring forecaster.

There are several benefits to a forecasting system of this design. First, it would
adapt its internal model, improving its performance. Second, it would deduce over time
the relevant observables and meteorological dynamics. Third, it could allocate
computational resources where they were needed in areas of high information

† Reference [32] discusses this possibility at some length.
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production. More local forecasters would be assigned to storm fronts and moved away
from calm weather regions. A massively-parallel forecaster would be ideally suited to the
new generation of parallel computers currently becoming available.

16. Scientific modeling and the dynamic of inquiry

Beyond simply producing an “experimental” model to be compared with theoretical
models, the long-term goal of this endeavor is to make use of qualitative information of
the type we have exploited to identify physically relevant variables and the new “laws”
underlying their interaction. The hope is that a large fraction of the process of scientific
investigation could be implemented automatically, without human intervention.
Optimality criteria based on the model entropy I (M ) and its future derivatives will be
central in this to select between competing theories.

Germane to this line of discussion, we recall Packard’s algorithmic picture of

scientific inquiry.* Traditionally, in a classical mechanical universe, there has been the
tacit assumption of Baconian convergence of successively-refined models to those which
predict detailed behavior, such as the future evolution of a system’s state. Once a model
predicts this detailed behavior it has been validated. When investigating nonlinear
processes, one concludes that the existence of chaotic, deterministic behavior precludes
the detailed comparison of theoretical models to experimental data. The conventional
picture of inexorable improvement of models only applies to non-chaotic behavior.

Within a small sphere of scientific inquiry, such as deducing deterministic structure
in a noisy data stream, EoM analysis allows for the complete modeling of Packard’s
scientific algorithm. The process of model improvement is given explicit form in terms
of searching for optimal models in the space of dynamical system D. The model entropy
provides a quantitative foundation for the discussion of the breakdown of the traditional
scientific method for chaotic systems. EoM analysis suggests an alternative, and
convergent, scientific algorithm for modeling time-dependent behavior based on the
minimum model entropy criterion.

The selection between competing theories is based on minimizing the prediction
error

→
σobs and increasing the simplicity of the model. The model entropy is one combined

measure of this. Kemeny[18] discusses a similar measure of a scientific theory’s
complexity that is based on the order of polynomials and how this must be traded off
against a theory’s prediction accuracy.

Our EoM model M can be thought of as a scientific theory in the sense that
predictions can be based on it and their success evaluated. The evaluations in turn form
the basis for comparison and validation. This might seem to elevate the rather humble
notion of model that we have employed up to this point to an inappropriate generality.
One should keep in mind, however, that we are discussing this in the limited context of

*Reference[7] discusses this in more detail. The modeling methodology of Box and Jenkins[52] should
be compared with this picture.
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noisy times series of combined stochastic and dynamic origin. As an example of the
competition of scientific theories in a similar setting, consider the physical problem of
fluid turbulence. A decade and a half ago there were the two rival theories due to
Landau[53] and Lorenz-Ruelle-Takens.[1, 54] The relative weighing of these two
hypothesized dynamic models has occurred since then, with the latter being the most
appropriate in the onset regime of turbulent flows. We note now, at this late date, that
this scientific evaluation could have been done automatically by deducing the equations
of motion from the turbulence data and noting that the model was not of the Landau
high-dimensional torus type, but was in fact of the low-dimensional chaotic attractor
type. Even if the Landau model made equally accurate predictions, it is an inherently
more complex model, I (MLandau) > I (MLRT ), as it requires arbitrarily many oscillator
subsystems.

We return to the choice between global and atlas equations of motion as it presents
some interesting philosophical issues. As we have already indicated, in deducing
equations of motion global EoM are to be preferred over atlas EoM, when the former is
available. We have, nonetheless, demonstrated with the graph of the Duffing oscillator
Poincarémap a dynamic that is very complex in any conventional global basis. Thus, atlas
analysis may very well be our only recourse, since it adapts to unconventional
nonlinearities. But an atlas EoM, with its set of charts and parameters for each, does
not naturally indicate simplicity in the observed behavior, even if we incorporate efficient
storage and evaluation. The size of the data structure is large, roughly O(ε−mbed ). We
doubt that new “laws” could be discovered with this. If this turns out to be the typical
situation as one applies EoM analysis to wider-ranging problems, then what of
Poincaré’s, and many other scientists’, belief in nature’s simplicity, or at least in
humanity’s ability to find simplicity in nature? According to Poincaré[55] it is by the
identification of this simplicity that science progresses. Will we be left with the data of
our experience coded into enormous, efficiently-organized data structures that admit no
further simplification and from which humans cannot deduce order?

We conclude with a final query that encapsulates the problem discussed in this
section. This concerns the automatic, machine-based deduction of macroscopic variables
given only microscopic information about a thermodynamic system. Jaynes[56]
addresses the complementary problem of prediction amongst macroscopic variables and
the constraints imposed on microscopic states. Consider a box of gas for which we wish
to deduce the existence and form of macroscopic variables, such as temperature,
pressure, and entropy. The only available information, however, details the microscopic
velocities and positions of each molecule. The theoretical questions then are, (i) what
structures in the extremely high dimensional state space indicate macroscopic variables?
And, can a machine (algorithm) identify these macroscopic variables automatically?
Constructive, affirmative answers to these questions would be a major step toward
automating scientific discovery, realizing Poincaré’s “scientific machine”.[55] Perhaps,
however, the existence of such macroscopic structure can only be intuited.
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17. Closing remarks

In a sense, we have reduced the problem of deducing equations of motion to
statistical “quadrature”. We have identified the necessary concepts from dynamical
systems theory for the statistical problem of modeling data series. What is needed to go
beyond the usefulness of the approach presented here is a theory of the relative
complexity of functions. The rigorous foundation of EoM analysis requires a measure of
the complexity of a function that can be applied to the graph of the dynamic
represented by the data. The model entropy and the diagnostic are steps in this
direction, but they are indirect and incomplete as they do not take into account the
complexity of the chosen function basis itself.

In this essay we have been able to cover our topic only with broad strokes, from
estimating experimental equations of motion to consideration of Poincaré’s scientific
machine. There are a number future problems that deserve closer scrutiny. The following
lists a few.

(1) The relationship between the various selection criteria: minimum prediction error,
minimum model size, maximum likelihood, maximum entropy, and minimum model
entropy;

(2) Scaling of the model entropy with data set size and approximation type and order;

(3) The implementation of efficient hierarchical data structures for smooth atlases;

(4) The design of a generic EoM-based control systems;

(5) The design of the proposed massively-parallel forecaster; and finally,

(6) Adaptive noise reduction using EoM analysis.

With EoM analysis and the independent work in references [32] and [33] we see a
rapprochement of dynamics, prediction, and modeling. Kolmogorov and Wiener[51] are
generally credited with initiating prediction theory. It is a somewhat curious fact that
while both were contributors to dynamical systems, especially Kolmogorov, the actual
development of prediction theory has strayed quite far from the geometric state space
approach of dynamics. We recall a similar lament[57] concerning chaotic dynamical
systems, computation, and complexity theory. There too the parallel developments of
dynamical systems and algorithmic complexity diverged rather far apart, and left physics
altogether. During Kolmogorov’s, Shannon’s, and Wiener’s day, dynamics, complexity,
and physics were not disparate endeavors. It strikes us that the intimate connection
between dynamics, one the one hand, and modeling, prediction, and complexity, on the
other, has been ignored with no small intellectual cost. We have attempted, within a
rather limited context, to aid in the simultaneous recurrence of these only-apparently
distinct fields.
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