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Abstract 

We illustrate and extend the techniques of computational mechanics in explicating the structures that emerge in the space- 
time behavior of elementary one-dimensional cellular automaton rule 54. The dominant regular domain of the cellular 
automation is identified and a domain filter is constructed to locate and classify defects in the domain. The primary particles 
are identified and a range of interparticle interactions is studied. The deterministic equation of motion of the filtered space-time 
behavior is derived. Filters of increasing sophistication are constructed for the efficient gathering of particle statistics and 
for the identification of higher-level defects, particle interactions, and secondary domains. We define the emergence time at 
which the space-time behavior condenses into configurations consisting only of domains, particles, and particle interactions. 
Taken together, these techniques serve as the basis for the investigation of pattern evolution and self-organization in this 
representative system. 

1. Patterns and computation in cellular automata 

After more than a decade of  extensive research, 
it has become a commonplace observation that one- 
dimensional cellular automata (CA) exhibit a striking 
-- and often perplexing - diversity of spatio-temporal 
behavior. The early empirical categorization of space- 
lime patterns into four "classes" [1] - loosely based 
,m an analogy with those found in continuous-state 
dynamical  systems - has resisted numerous attempts 
.at formalization. In many CAs, it is immediately evi- 
dent that the system self-organizes into some type of 
emergent pattern. In other CAs, the structure or even 
existence of an emergent pattern is less clear. The 
question that naturally arises therefore is how to char- 

* Corresponding author. Permanent address: IBM T.J. Watson 
Research Center, P.O. Box 704, Yorktown Heights, NY 10598, 
USA. 

I E-maih chaos@gojira.berkeley.edu. 

acterize the spatio-temporal patterns that emerge dur- 
ing the CA's evolution. If such a characterization is 
possible, it can be used as a basis tbr numerical and 
analytical tools that discover, analyze, and filter pat- 
terns that emerge in CAs. 

In [2-5], such methods were developed un- 
der the general name of  computational mechanics. 
Computational mechanics is a synthesis of  nonlinear 
dynamics and computation theory, which charac- 
terizes patterns and structure occurring in natural 
processes by means of formal models of compu- 
tation. Connections between CAs and computation 
theory have been an active area of  research for some 
time [6-8]. One major theme of  this research has 
centered around the problem of  designing a CA to 
behave in some particular way, such as simulating 
a universal Turing machine [9], exhibiting particles 
and computing with them [10,11], performing reli- 
able computations in the presence of noise [12], or 
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a host of  other tasks. Computational mechanics, in 
contrast, approaches CAs more from the perspective 
of  physical science. Rather than trying to engineer 
a CA rule table and construct an initial condition 
to satisfy some predefined criterion, computational 
mechanics attempts to discover and characterize the 
typical patterns occurring in a given CA. 2 In a well- 
defined sense, each CA specifies the local space-time 
equations of  motion of  a model universe, and compu- 
tational mechanics is addressed to the question: What 
are the "physical laws" and structures that emerge in 
the space-time behavior? 

A distinction must be made here between "pat- 
terns" and "configurations". Throughout this article, a 
pattern is considered to be a set or ensemble of  config- 
urations sharing some common spatial structure. Pat- 
tern dynamics then concerns the evolution of  sets of 
similar configurations, rather than of  some particular 
configuration exemplifying the pattern. If  the collec- 
tion of  all patterns is thought of  as a pattern space in 
which each distinct pattern is a point, then pattern dy- 
namics is the evolution of points in that space. In many 
CAs, there are a few important patterns that dominate 
and organize the behavior of  the system as a whole. 
These important patterns form a pattern basis i.e., a 
set of fundamental components in terms of  which all 
patterns in the system are analyzed [2]. 

The purpose of  this article is to illustrate the tech- 
niques of computational mechanics in a familiar set- 
ting. For this reason we have selected for investigation 
an elementary CA rule that has received attention in 
the past as one of the most interesting and "complex", 
and whose phenomenology has been at least partially 
described already [ 14]. As we will see, computational 
mechanics can place those results in a more general 
amd more rigorous context, as well as opening av- 
enues of  further investigation. In selecting elementary 
CA 54 to investigate, therefore, we do not focus pri- 
marily on the results themselves, but on the methods 
of  obtaining them. This will facilitate a comparison by 

2 Computational mechanics is useful, however, for determining 
how computations are implemented in CAs; e.g. see the analysis 
of evolved CAs in 113]. 

the reader of the methods of  computational mechanics 
with its alternatives. 

In Section 2 we define CAs and the essential ele- 
ments of  computation theory, section 3 outlines the 
central concepts of  regular domain, domain filtering, 
and particle identification in arbitrary CAs. Following 
this general review, Section 4 describes the fundamen- 
tal domain in ECA 54, constructs its domain filter, 
shows characteristic filtered and unfiltered space-time 
diagrams, and derives the deterministic rule govern- 
ing the time-evolution filtered space-time behavior. 
Sections 5-7 describe the primary particles observed 
in the filtered data, investigate the basic particle inter- 
actions, present numerical data on particle statistics, 
and begin the investigation of  "higher-order" struc- 
tures emerging out of the description of  the system in 
terms of  the fundamental particles. 

2. Cellular automata and computation theory 

2.1. Cellular automata 

To fix notation, we briefly recall the definition of  a 
CA. The configuration of the CA at time t, denoted st, 
consists of  a one-dimensional array or lattice of  sites 
{i = 0 . . . . .  N - 1 } with values s[ chosen from a finite 
alphabet .A = {0, 1 . . . . .  k - 1}, so st c .A N. The lo- 
cal site-update function (a operating on neighborhoods 
O~ = st i-r  . . .  sti+r of radius r is written St+ 1 
The list of  all neighborhoods 0 and their correspond- 
ing outputs 4~(0) is the CA's lookup table. The global 
update operator ci9 : .AN ~ . A N  applies 4, in parallel 
to all neighborhoods in the lattice; the CA's equation 
of  motion is denoted st+l = ~(s t ) .  For finite N, it is 
also necessary to specify the behavior at the edges of  
the array. In the following, we will always use peri- 
odic boundary conditions. 

The pattern dynamics of  a CA is investigated 
in terms of the CA ensemble evolution operator, 
denoted by 4 .  For any set £t = {st } of configurations 
(or strings embedded in configurations), the iterate 
£t+1 = ~ £ t  is given by 

£,+1 = [q~(s,):s,  c £t / .  (1) 
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The elementary cellular automata (ECAs) have k = 
2, r = 1. For reference, we list the lookup table of  the 
ECA 54, the rule under consideration here: 

qS(r/) = {0, r/ E {111,110,011,000},  
1, r/E {101, 100,010, 001}. (2) 

2.2. Computation theory 

Before proceeding to the discussion of domains and 
domain filtering, it is necessary to review some rudi- 
ments of  the theory of  computation [15]. We will pri- 
marily be concerned with two varieties of finite state 
machine: finite automata (FAs) and finite state trans- 
ducers (FSTs). We will refer to both FAs and FSTs by 
the generic term machine. 

An FA consists of a finite set of  states and a transi- 
tion function specifying directed paths between states. 
Any state may be a start state an accept state, or both. 
Initially the machine is "in" one of  its start states. 
During operation, it reads symbols one by one from 
some data source such as a CA configuration - or al- 
ternatively, it may generate symbols internally - and 
uses those symbols to make transitions from state to 
state according to the transition function. The struc- 
ture of  an FA is perhaps best understood by reference 
to its graph. The graph of  an FA represents its states 
as nodes and its transitions as edges labeled with sym- 
bols in the alphabet .A. An allowed path in the graph 
is a connected sequence of edges that begins at a start 
state and ends on an accept state. Each such path is as- 
sociated with a sequence of symbols (a word) consist- 
ing of the labels on the successive edges traversed. For 
any given word co, if there exists an allowed path cor- 
responding to that word, then the FA is said to accept 
~o. If there is no such path, the FA rejects co. The set of  
all words accepted by a given FA is the language ac- 
cepted by that FA. The class of  languages accepted by 
FAs is called the class of  regular languages. The FA 
accepting a regular language 12 is denoted by M(£) .  

FSTs are a variation of  FAs in which the edge labels 
consist of  two parts: an input symbol and an output 
string of some length (including length 0). Each path 
in the graph of  an FST is associated with a sequence 
of  input symbols (the input string) and a sequence of  

outputs. During operation, the input string is read in 
the same way as in FAs; but in addition, the outputs 
are concatenated to construct an output string. In this 
way, an FST implements a particular mapping from 
strings to strings. The simple summary is that FAs 
represent sets, while FSTs represent functions. 

An important subclass of FAs is the class of  reg- 
ular processes. A regular process accepts a regular 
language with the following properties: (i) subword 
closure: all subwords of all words accepted by the lan- 
guage are themselves accepted; (ii) dangler-free: for 
every word co c £,  there is at least one symbol s 6 .A 
such that cos is also in E; and (iii) the empty set (i.e., a 
string of zero length) is accepted. Each of these prop- 
erties is reflected in the structure of the regular process 
itself. In particular, subword closure requires that all 
states be accept states and that from a start state there 
is a branching structure of states and edges devoted to 
synchronization (or phase-locking) of the machine to 
the underlying pattern. In the process graph of a reg- 
ular process all states are both start and accept states, 
and the synchronization states and edges are absorbed 
into the machine proper. 

Finite state machines are appropriate for investigat- 
ing pattern dynamics of CAs for a number of reasons, 
among which we may note the following: (i) FAs en- 
compass the full range of behavior types from periodic 
to complex to random; (ii) characterization of  patterns 
using FAs makes possible a definition of  pattern com- 
plexity which is both natural and computable in prac- 
tice; (iii) ensemble evolution in the space of regular 
languages is closed under the CA rule; (iv) the CA up- 
date rule is itself an FST; and (v) automated inference 
techniques exist for reconstructing FAs from experi- 
mental data [ 16,17]. 

Another advantage of using FAs is that the pattern 
dynamics of  any CA, as represented by a time se- 
quence of FAs, can be explicitly calculated. If a pat- 
tern £t is a regular language, then its iterate £t+t = 
PEt  is a regular language as well, by point (iii) above. 
More importantly, however, M(/~t+l) can be explicitly 
constructed by means of the "finite machine evolu- 
tion" (FME) operator defined in [2]. The FME oper- 
ator makes it possible to trace the time evolution of 
any pattern representable by an FA, even when that 
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pattern subsumes an infinite number of  words - as is 
usually the case. 

3. Domains, filters, and particles 

3.1. Domains 

Of fundamental importance in the pattern dynamics 
of  CAs is the regular domain introduced in [2]. Infor- 
mally, a regular domain is a spatially and temporally 
homogeneous pattern describable by an FA - where 
"homogeneous" is to be understood in the sense of 
having the same regularities. It is a precise formulation 
of the rather vaguely defined term "domain" in physics 
that is generally used to denote some spatio-temporal 
region in which "things are basically the same". Well- 
known examples include ferromagnetic domains, in 
which all spins are oriented in the same direction, and 
convection cells in Rayleigh-Brnard fluid flows at the 
first onset of  instability, where a domain is a region of 
parallel rolls. Besides characterizing emergent spatial 
structures, the regular domains of  a CA are fixed or 
periodic points in pattern space, and as such play an 
important role in the qualitative analysis of  the sys- 
tem's  dynamics. 

Having outlined a few necessary ideas in Section 2, 
we can now quote the precise definition of a regular 
domain from Ref. [2], as follows. A regular domain 
A of a CA • is a process language representing a set 
of configurations, with the following two properties: 
(i) temporal invariance or periodicity: A is mapped 
onto itself by the dyanmic, i.e., ~ P A  = A for some 
finite period p; and (ii) spatial homogeneity: the pro- 
cess graph of each temporal phase of A is strongly 
connected. The latter is a form of spatial translation 
invariance and is similar to statistical stationarity or 
ergodicity of  the spatial pattern. 

In the analysis of  CAs, the identification of do- 
mains begins with inference of FAs from examples 
of  the CA's behavior i.e., the discovery of patterns 
in space-t ime data. In simple cases this can be done 
by inspection. More complex patterns, and especially 
patterns containing embedded disorder, usually re- 
quire the automatic inference technique of e-machine 

recostruction [16]. The inferred FAs represent hy- 
potheses or approximations of the imporant emergent 
patterns in the system. Once such a pattern has been 
tentatively identified, its temporal behavior can be 
analytically examined using the FME operator. In 
particular, it can be tested for invariance or period- 
icity by direct comparison of M(£ )  and M ( ~ E ) ,  
where the latter is constructed using the FME opera- 
tor. Similarly, to test for temporal period p, the FME 
operator is applied p times to construct M(~P/~), 
which is then compared with M(E).  If the pattern is 
temporally invariant or periodic, and if the process 
graph of its finite automaton is strongly connected 
(i.e., it is spatially homogeneous), then the pattern 
is a domain. The FME operator, comparison of FAs, 
and testing for connectivity are fully automated. In 
this way one can rigorously prove whether any given 
FA is a domain of any given CA. 

If  the discovered pattern consists of  spatially perio- 
dic repetitions of  a basic local configuration, then tem- 
poral invariance or periodicity of  the language can be 
established by following the evolution of a sample 
configuration. But for patterns containing aperiodic 
words, which are quite common in CA behavior, no 
finite set of examples can be used to deduce behavior 
of  the language as a whole. In such a case, the FME 
operator is essential. 

3.2. Filters 

Having established the existence of one or more do- 
mains for a given CA, a domain transducer (or domain 
filter) is constructed using a procedure outlined in [4]. 
A domain filter is an FST that implements a mapping 
from arbitrary configurations to strings in which sites 
participating in domains and domain walls are flagged 
with distinct symbols. A domain wall (or defect) is 
defined as follows. We consider a domain A and a fi- 
nite string 09 = zs such that z c A, s ~ ..4, and w ~A. 
Then s is a wall of domain A. We will also refer to a 
group of closely interacting walls as a defect. 

The domain filter scans sites in a spatial configu- 
ration in a particular direction (by convention, from 
left to right), reading each successive symbol of  the 
configuration and writing a symbol identifying the 
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site by the type of  domain or defect. In this way 
0 it classifies each site of a configuration according 

to which domain or defect it is participating in. In 
general, the transducer must read a number of  input 
symbols before any output can be written, in order to 
gather enough information to unambiguously identify 
the pattern; this is called synchronization. When the 
transducer encounters a defect, it must resynchronize, t 
The way in which it resynchronizes is built into the 
filter by construction, but in effect it is equivalent to 
backing up a sufficient number of sites and starting 
o v e r .  

173 

3 3. Particles 

Even though the domain pattern is temporally in- 
variant or periodic, a pattern consisting of a defect 
separating two domains need not be. For example, a 
certain type of defect may spontaneously decay into a 
number of defects of other types, may spawn an ever- 
spreading region of interacting defects, or may even 
disappear completely. If the pattern domain-defect- 
domain is itself temporally invariant or periodic, and 
if the width of  the defect never exceeds some fixed 
maximum, then the defect is called a particle. This 
htst term will be used here in a specific sense to mean 
a spatially localized, temporally invariant or periodic 
boundary separating two adjacent regular domains. 
qhe domain-particle~lomain pattern is itself a regular 
language. Its FA consits of a copy of the FA for each 
domain, with additional states and edges connecting 
the first domain A i to the second, A j .  Note also that 
although the domain-particle-domain pattern is tem- 
porally invariant or periodic, it is not itself a domain, 
since it is not spatially homogeneous: it is not possible 
t,) reach any state in A i from any state in A j .  

Applying the domain filter to each spatial configu- 
ration in the space-time diagram of a CA produces the 
jSltered space-time diagram. The filtered space-time 
diagram presents the temporal evolution of  embedded 
particles against the identified domain "background". 
From this filtered behavior, the particle equations of  
motion and the interactions between particles can be 
formulated. What emerges is a hierarchical descrip- 
tion of the system in which the fundamental patterns 

99 
0 i 99 

Fig. 1. Space-time diagram of ECA 54, starting from an arbi- 
trary initial condition. Boundary conditions are periodic. White 
squares are cells with value s~ = 0; black squares are cells with 
s~= 1. 

- the domains - serve as a background upon which 
particles evolve with their own properties. 

4. The primary domain of ECA 54 3 

4.1. The domain 

Fig. 1 shows a typical space-time diagram of ECA 
54, starting from an arbitrary initial condition on a lat- 
tice of 100 cells and iterating for 100 time steps with 
periodic boundary conditions. Cells with value s[ = 0 
are printed as white squares; cells with s~ = 1 are 
black squares. The question computational mechanics 
poses is this: Is there some pattern or collection of  pat- 
terns into which ECA 54 self-organizes? In particular, 
does ECA 54 have a regular domain? 

The answer is yes. We therefore begin the analysis 
of ECA 54 by describing its most important regular 
domain. Since it is spatio-temporally periodic (and its 
period is small), the basic pattern is not difficult to 
discover by visual inspection. Before showing that this 

3 Some of the material in Sections 4 and 5 originally appeared 
in [51. 
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Fig. 2. A protion of Fig. 1 showing the domain A54. Note the 
spatial phase shift of two cells every two iterations. 

pattern satisfies the requirements of a regular domain, 
let us first describe it is some detail. 

Fig. 2 shows a space-time diagram of ECA 54's pri- 
mary regular domain A54. The domain configurations 
are spatio-temporally periodic, with periodicity 4 in 
both space and time. Note, however, that the same pat- 
tern is repeated after two iterations, spatially shifted 
by two cells. The pattern of the top row, and every sec- 
ond row following, is given by the expression (0001)*, 
denoting any number of repetitions of the basic string 
0001. Similarly, the second row and every alternate 
subsequent row are examples of the pattern (1110)*. 

We can easily express this domain pattern as an 
FA M(A54). The process graph of M(A54) is shown 
in Fig. 3. The graph consists of two disconnected 
components,  A A (at left) and As ,  which accept the 
patterns (0001)* and (1110)*, respectively. Each com- 
ponent consists of four states, represented by circles, 
and four labeled edges. All states have inscribed circles 
and squares, indicating start and accept states, respec- 
tively. Each state is a distinct spatio-temporal phase of 
the domain and has been assigned a label in {a . . . . .  h} 
for comparison with other machines below. The spa- 
tial periodicity of configurations in A54 is evident in 
the fact that each component consists of a single loop 
of edges without branching. The temporal periodicity 
of the patterns is schematically indicated by the dotted 
lines showing the effect of the CA ensemble evolution 
operator ~/'54. In this representation, we have explicity 
discarded all information about the way in which an 
individual configuration lines up under its parent. 

The words in the language A54 are configurations 
(or parts of configurations) of the CA. We can think of 
the machine M(A54) as scanning the CA lattice from 
left to right, reading symbols in sequence, and using 
each symbol to move from state to state by taking 
the edge with the corresponding label. So long as the 
input string is in A54 , it is always possible to make 

such a transition. When a symbol inconsistent with 
A54 is encountered, no corresponding transition exists, 
so the machine must stop operation; the input string 
is not recognized by M(A54). (An alternate version 
of M(A54) would have an extra state into which the 
machine is driven by each input symbol inconsistent 
with A54. This state would have self-loops on both 0 
and 1, but would not be an accept state. In this way, 
all strings would be recognized, but those not in A54 
would be rejected.) 

The proof that A54 is a regular domain is extremely 
simple. Nevertheless, for definiteness we express the 
result in the following proposition. 

Proposition 1. The regular language A54 is a domain 
of ECA 54 with temporal period two. 

Proof The two temporal phases of A54 satisfy the two 
conditions of a period-two domain: 
(1) qb54A a = AB and (P54AA = A B .  Recall that q~54 

is the ensemble evolution operator for ECA 54, 
which iterates each configuration in the language 
AA or AB. Explicit construction of M(q~54AA) 
and M(qb4AB) using the FME operator shows 
that they are identical to M(As)  and M(AA), 
respectively. Alternatively, because all configura- 
tions in both A A and A8 are spatially periodic, 
their temporal behavior can be inferred from the 
evolution of a single configuration; see for exam- 
ple Fig. 2. 

0 ? 

Fig. 3. Process graph of ECA 54's domain A54. The component 
on the left is AA; on the right is A B. As the dotted lines 
indicate, they are mapped onto one another by the CA ensemble 
evolution operator, q~54. In this and all following graphs of 
machines, inscribed circles and squares denote start and accept 
states, respectively. 
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(2) The process graph of each temporal phase is 
strongly connected; this is true by inspection of 
Fig. 3. [] 

A54 is temporally periodic in two distinct senses. 
Considered as a set, A54 has temporal period 2, as the 
FME operator verifies, and as indicated by the two dis- 
connected components representing the two temporal 
phases of the domain. The evolution of a particular 
domain configuration, on the other hand, has temporal 
period 4, as can be seen in Fig. 2. These two distinct 
types of temporal periodicity give us an opportunity 
to introduce the space-time machine (or path automa- 
tion) into our set of computational-mechanical tools. 
A space-time machine is a finite state machine allowed 
to scan the CA space-time data by means of either 
space-like or time-like moves. In the simplest version, 
space-like moves are restricted to one spatial direction 
only; a space-like move is therefore identical to the 
move made by the (spatial) domain machine M(A54) 
above. Similarly, time-like moves are made only for- 

ard in time. Starting from space-time cell (i, t) with 
value s~, a space-like move consists of reading the 
symbol s~ +l and making the corresponding space-like 
transition in the machine, which is indicated by the 
sabscript s. That is, one follows the transition labeled 
either 0~ or Is, if s~ +l = 0 or s~ +1 = 1, respectively. 
A time-like move consists of reading symbol st+i I and 
making the corresponding time-like transition, labeled 
~ith subscript t. In this way, the original binary alpha- 
bet A = {0, 1} has been expanded to {0s, 0t, Is, it}. 
q~hus, the input alphabet for the space-time machine 
consists of symbols with space-time path information. 

The process graph of MsT(A54), the space-time 
machine for ECA 54's domain, is shown in Fig. 4. For 
clarity, we have omitted the states devoted to synchro- 
nization. Symbols with subscripts s and t represent 
s~te values encountered on a move to the right (space- 
like) or forward in time (time-like), respectively. Note 
that the two components of A54, AA and A8 are pre- 
served unchanged as square loops of states connected 
by space-like edges. The additional information in 
MST(A54) is found in the time-like edges between the 
two components. MsT(A54) gives a complete charac- 
terization of the spatio-temporal pattern identified by 

Fig. 4. The process graph of MsT(A54), the space-time ma- 
chine for A54. States are labled to correspond to those in the 
(purely spatial) domain machine M(A54) in Fig. 3. Subscripts 
s and t on the edge labels represent spacelike and time-like 
moves, respectively. Thus, the label 0s represents a symbol 0 
encountered on a space-like move. States and edges devoted to 
synchronization are not shown. 

the domain, including both the temporal periodicity 
4 of the configurations and the temporal periodicity 
2 of the pattern. A fuller description of the ideas un- 
derlying space-time machines, including methods of 
inferring space-time machines from data and of con- 
structing space-time filters, must wait for presentation 
elsewhere. 

4.2. Domain filtering 

According to the sequence outlined in Section 3, 
our next step after finding the domain is to construct 
the corresponding domain filter. In doing so, we pass 
on from the spatio-temporal description of the domain 
(i.e., MsT(A54) of Fig. 4) and return to a purely spatial 
representation of the domain (i.e., M(A54) of Fig. 3). 
The domain f i l ter  T04 , as constructed from A54 by the 
prescription in [4], is shown in Fig. 5. 

T°4 is an FST that takes as input any word s ~ A* 
and parses it into a sequence of domain and wall la- 
bels. In this way, it recognizes the structures implicit 
in the spatial configuration $. Two different types of 
state are shown in Fig. 5. States without inscribed la- 
bels are synchronization states, devoted to processing 
the first few symbols in s. The machine starts in the 
state with the double circle at the top of the figure, 
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Fig. 5. ECA 54's domain filter T°4,~ which maps sites in the 
domain to 0 and each defect to a unique output in {1 . . . . .  8}. 
Labeled machine states correspond to the domain states of 
Fig. 3. 

then moves along edges according to the input sym- 
bols. The first few input symbols serve to synchronize 
the machine to the underlying pattern, driving it from 
the start state of  total ignorance into one of  the re- 
current states. The edges are labeled Sin ISout for input 
(raw configuration) and output (filtered) symbols, re- 
spectively. Note, however, that during synchronization 
the machine produces no output, which is signified by 
putting Sout ---- ~.. During synchronization, the trans- 
ducer has yet to read a sufficient amount of information 
to unambiguously distinguish the domain components 
and the several wall types. Once the machine has syn- 
chronized, every site read is either in a domain or is 
a wall. At this point, the transducer is in the recurrent 
part of  the graph, where it remains for the rest of  its 
operation. For comparision, asymptotic states in Fig. 5 
are given labels corresponding to the states of  the do- 
main machine M(A54). Edges corresponding to sites 
in the domain are printed in bold lines and all have 
output symbol 0. Walls are printed in lighter lines, and 
have output symbols in the alphabet {1 . . . . .  8}. Note 
that each defect edge has a unique output symbol. 

O - v -  ~ . ~ ' ~  ~- &i " 

~, , 

0 i 99 

Fig. 6. Space-time data of Fig. 1, filtered with the domain 
transducer T04 of Fig. 5. White cells correspond to sites partic- 
ipating in A54; black cells, to sites with values s[ • {1 . . . . .  8}. 

Applying T°4 to the raw space-time data of Fig. 1, 
we obtained the filtered picture shown in Fig. 6. The 
domain transducer T°4 assigns a unique symbol to 
each type of  wall; for clarity in Fig. 6, however, we 
have plotted all eight wall types as black squares. In 
making the filtered plot, the transducer traversed the 
lattice from left to right, using the periodic boundary 
conditions to wrap around at the end in order to clas- 
sify the first few sites, i.e., to classify those used for 
synchronization. 

If we were to change the outputs of domain edges 
from 0 to l, and label each defect edge with the symbol 
0, then T°4 would implement the same mapping as the 
transformation function in [14], 

As its form indicates, F assigns 0 or 1 to each length 4 
subsequence in the spatial configuration depending on 
whether the number of  1 s in the subsequence is even 
or odd. Its simplicity takes advantage of  the facts that 
(i) all length 4 words in A54 have an odd number of  
ls; and (ii) all other length 4 words contain defects. 
Note that F introduces a spatial shift Ai = --4 in the 
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output by writing its output over the first symbol in 
the word, rather than the last. 

Unlike Eq. (3), however, T°4 was constructed by 
a prescription that applies to any domain language - 
not just that oi" ECA 54. Additionally, T°4 does more 
than just flag locations of defects; it also performs 
important classification of defect type, which we will 
exploit in the following sections. For example, the pat- 
tern of wall symbols {1 . . . . .  8} in the filter's output 
offers sufficient information for automatic identifica- 
tion of the particles visually evident in Fig. 6. This is 
the subject of  Section 5. 

4 3. Equation of  motion of  the filtered behavior 

One question that naturally arises at this point is 
whether the filtered space-time behavior, like that 
shown in Fig. 6, is itself consistent with some deter- 
ministic equation of  motion. That is, does there exist 
a mapping ~54 such that T04[~54(s)] = q~54[T°4(s)] 
for all CA configurations s? We know that in the case 
of  ECA 18 and in the case of arbitrary filtered CA, 
this is not true. in the former, the filtered behavior 
is described by a stochastic equation of  motion for 
diffusive annihilating particles [3]. In the latter, the 
resulting filtered space-time behavior often can be 
described only by a strictly more computationally 
complex class of spatial processes called cellular 
transducers [ 18]. 

The alphabet of the hypothetical mapping ~54 is 
,,l: = {0 . . . . .  8}. The set of initial conditions over 
which ~54 is defined is not (A')*, however; rather, 
i~ is the set of possible outputs of T o - its output 54 
l, mgua,~e, denoted by 0 [T54]out. Of course, [T°a]out C 
(A')*. By definition, for all CA configurations s c A*, 
me filtered string z = ~s)4(s) is in [T°4]out. 

^ 

To establish the existence of 4~54, we must first 
prove the following: 

l e m m a  2. On CA lattices with periodic boundary 
conditions, the domain filter T°4 is invertible except 
on strings without defects. That is, for every filtered 

0 • string z c ([T54]out - 0  ), there exists exactly one con- 
liguration s c (.4* - A54) such that z = T°4(s). On 
strings without defects, i.e., for z 6 0", T ° is 8 to 1 54 

' 

Fig. 7. Graph of the finite state transducer Q° 4 implementing 
the inverse of the domain filter T ° 

5 4 "  

Proof We show invertibility of T ° by constructing 54 
its inverse, denoted by Q° 4. In essence, this is done 
by simply reversing the order of  the edge labels on 
the graph of T ° i.e., replacing label xtv with vlx; 54' - - 
this converts input symbols into output symbols, and 
vice versa. The states devoted to synchronization are 
removed and a new synchronization structure, deter- 
mined by the remaining asymptotic part of  the ma- 
chine, is substituted in their place. Fig. 7 shows the 
resulting transducer. The transducer starts out in its 
synchronization state and remains there until the first 
nonzero input (i.e., filtered) symbol is encountered. 
That symbol synchronizes it to the input string, and 
it begins writing output (i.e., unfiltered) symbols. At 
the end of the lattice, the filter wraps around the pe- 
riodic boundary and continues generating output until 
the first nonzero input is encountered, i.e., it goes back 
and writes outputs for the portion of the filtered data 
originally read prior to synchronization. The constraint 
that at least one defect is present ensures that the trans- 
ducer will synchronize before wrapping around. Note 
that Q° 4 is deterministic; i.e., for each input symbol 
z. c .4', there is at most one edge with matching input 
label leaving each state of  Q° 4. This means that each 
filtered string z containing one or more defects, which 
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by assumption is in the set ([T°4]out - 0"), is mapped 
to exactly one unfiltered configuration $ ~ (.4* - A54). 
If z c 0", then there is no defect by which Q° 4 can 
synchronize. The unfiltered configuration can be any 
of the eight length-N domain configurations. [] 

Using Lemma 2, we can define the mapping that 
takes a filtered string z t at time t and generates its it- 
erate zt+l ,  as follows. If  there is a nonzero symbol 
in zt, we first apply the inverse domain filter to gen- 
erate st = Q°4(zt), then apply the CA rule to gener- 
ate $t+J = q554(st) ,  then convert back to the filtered 
string Zt+l = T04(St+l). If  Zt consists of all 0s, then 
necessarily the unfiltered string st is in A54; since A54 
is a domain, $t+l c A54 as well, implying that zt+l 
consists of  all 0s. Finally, even though qb54 need only 

0 be defined over the se t  [T54]out, we may trivially ex- 
tend it over all of (.4')* by mapping every string not 
in [T~)54]out to  all 0s. The net result is summarized in 
the following proposition. 

Proposition 3. Let {st: t = 0 . . . . .  k - 1} be a time 
sequence of spatial configurations generated by ECA 
54 on a finite lattice of  N sites with periodic boundary 
conditions, starting from arbitrary initial condition So. 
Let {zt = T04(St): t : 0 . . . . .  k - 1} be the time se- 
quence of filtered strings constructed from {st }. Then 
the zt evolve according to the deterministic equation 
of motion 

{ T~54 (q354 [Q°4 (zt)]), 
: zt c [T°4]out-  0", (4) 

zt+i ~54(zt) = O N, otherwise. 

Proof  Using a simple variation of machine composi- 
tion [2], it is straightforward to construct the FST for 
~54. S i n c e  Q°4,  ~54  a n d  T~54 are all deterministic, so 
is ~54. This means that the filtered space-t ime dy- 
namics is governed by an effective equation of motion 
that is itself deterministic. The FST for ~54 is given 
in Appendix A. [] 

In general, it is always possible to construct the 
inverse of  an FST; however, that transducer may be 
nondeterministic, i.e., there may be more than one 
edge with a given input symbol leaving a given state. 

The inverse of  a transducer T is nondeterministic if T 
has at least one state in which the same output symbol 
is assigned to more that one edge leaving that state. 
This can happen, for example, for filters of disordered 
domains, which have nonzero spatial entropy density. 
Since the disordered domain from which the filter was 
constructed contains states with branching edges, the 
filter itself contains states in which more than one input 
is mapped to the domain output symbol. Since this 
occurs in the recurrent portions of  the filter, there will 
be states with more than one incoming edge. In turn, 
if the labels of  these incoming edges have the same 
output symbol, then the inverted transducer will be 
nondeterministic. When the domain configurations are 
spatially periodic, as is the case in ECA 54, there are 
no such branches, and the domain filter is invertible. 

Since all CA rules are deterministic by definition, 
and since all domain filters are deterministic by con- 
struction, whether ~ is deterministic depends solely 
on whether the inverse domain filter is deterministic. 
As we noted above, this is the case for any spatially 
periodic domain, but not for disordered domains (see 
for example the analysis of ECA 18 in [2]). Thus we 
arrive at the following generaliztion of Proposition 3. 

Observation. For any spatially periodic domain in any 
CA, the space-t ime dynamics of the domain filter out- 
put is governed by a deterministic equation of motion. 

We end this section by stating a question that we 
will not answer here .  ~54 is deterministic, but is it a 
CA? That is, can ~54 be expressed in a finite radius 
lookup table? 

5. Particles and their interactions 

5.1. The fundamental  particles 

A visual inspection of Fig. 6 indicates that there are 
three particularly common types of wall structure in 
the filtered data: a stationary pattern with temporal pe- 
riod 4 and width fluctuating from 1 to 3 to 5 cells; a 
stationary pattern with temporal period 4 and width 2 
or 4 cells; and an isolated defect surrounded by 0s, 
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Fig. 8. Basic wall structures ("fundamental particles") in space- 
t~me patterns of ECA 54: (a) unfiltered space-time diagrams of 
the three types of particle ~,/3, and y described in the text; (b) 
filtered diagrams of the same data, produced by T° 4. Domain 
symbols are white cells. All defects are shown in black, with 
tile defect symbol inscribed in white. The temporal phases of 
tile particles, chosen by convention, are printed algonside the 
filtered strings. 

moving to the left or right with speed c = 4-1 site per 
iteration. Fig. 8 shows raw and filtered plots for each 
of these three structures, which satisfy the definition 
of particle given in Section 3. They are assigned the 
flames ~,/3, and y,  respectively. As the figure illus- 
trates, each particle shows temporal as well as spa- 
tial structure. We have therefore assigned a temporal 
phase to each particle, which is printed beside the fil- 
tered strings. 

Comparison of the filtered space-t ime signatures of 
these particles indicates that a single defect edge in the 
domain filter may participate in the detection of more 
than one particle. For example, the edges with defect 
output symbols 8 and 4 are used during both ot and/3 
particle detection, defect outputs 5 and 1 are in all three 
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particles, and defect outputs 2 and 6 are in both/3 and 
y particles. Consistent with this observation, we note 
that one interpretation of the/3 particle is that phases 
/31 and/32 are a pair of  colliding particles (y+  + y - ) .  
In this interpretation, /30 spontaneously decays into 
the pair (yc +, Y0) separated by two domain sites and 
directed back toward each other. This is seen as the 
diagonally placed defect symbols (5, 2) and (1,6),  
respectively, in the filtered diagram. These then collide 
to create a/33. A similar interpretation can be made 
for c~. 

This interpretation illustrates a notable tact about 
particles as we have defined them: A particle may be 
composed of interacting subunits that, in isolation, are 
themselves particles in their own right. The analogy 
to atomic physics is obvious here. More interestingly, 
in certain cases particles may line up to form "bound 
state" patterns that satisfy the definition of a regular 
domain. We will discuss some examples of this in 
Section 6. 

The general motto of  filter construction is, whenever 
a structure is discovered, filter it out. Once we have 
identified particles {or,/3, y +, F -  }, we construct a new 
filter tuned especially for them. This can be done by 
direct modification of the domain filter machine, but 
a more practical and instructive alternative is to con- 
struct a particle filter T~4 that operates on the output of 
the domain filter T ° classifying sequences of filtered 54' 
symbols by particle type. In doing so, we are moving 
up one level in a hierarchical analysis of  the system. 
At the domain filter level, all that was recognized was 
the domain; defects were classified only as deviations 
from the domain pattern. The particle filter T 1 further 54 
recognizes some of these deviations as being particles. 
Each filter performs the same basic type of operation 
to its input data: it recognizes and filters particular 
structures, highlighting still-undiscovered patterns as 
deviations from these structures. In the following dis- 
cussion, T I is first constructed to recognize the three 54 
fundamental particles, and then modified to recognize 
strings arising in interactions between pairs of parti- 
cles as well. 

In constructing T l 54, we will consider a particle to be 
well defined only if it is bounded on both sides by at 
least one domain cell; this prevents misidentification 
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of very long strings of  adjacent defects as sequences 
of  adjacent panicles.  Each cell identified by T°4 as 
part of  the domain is assigned output symbol 0 by T~4 
as well, thus preserving the domain filter's recognition 
of  the domain structure. Each defect cell participating 
in a particle of  a given type is mapped to a given out- 
put symbol, i.e., to one of  the symbols {u, fi, F +, F - } .  
Defect cells that do not correspond to any of the fun- 
damental particles are left unchanged; that is, the sym- 
bol in ..4' = {1 . . . . .  8} is copied to the filter output. 
This will allow us to examine the output of  T~4 for 
new, as yet unrecognized, structure. 

ECA 54's panicles  are made up of  a finite number 
of  short strings. Comparison of  the particles '  filtered 
strings (Fig. 8) shows that, for example, the string 
08880 should be classified as an ot particle, while the 
string 0880 corresponds to particle ft. On reading the 
partial input 08, therefore, the particle filter must defer 
output until the string may be unambiguously classi- 
fied. This effectively builds a queue of finite depth into 
the filter. Output is deferred until an isolated particle 
is recognized (or ruled out), then written as a string 
in a single transducer transition. There are 12 strings 
occurring in all phases of the fundamental particles. 
Each of these is built into the structure of the particle 
filter in the same way. 

5.2. Fundamental  particle interactions 

Having identified the different particle types, we 
may now investigate the various interactions among 
them. For example, near the bottom of  Fig. 1 one sees 
that the collision of  a F + and a V -  creates a single 
ft. All  told, there are five possible interactions be- 
tween pairs of  particles. Figs. 9(a)-(e)  show the fil- 
tered space- t imes diagrams of all five, which are also 
summarized in Table 1. 

Perhaps the most obvious feature of  Fig. 9 is that 
all two-particle interactions ultimately result in pat- 
terns containing only the domain and the fundamental 
particles. Interactions (a) and (b) show the effect of  
a collision of  a y with an u. In both cases, the orig- 
inal particles persist, though with spatial and tempo- 
ral phase shifts, and a new pair of ys  is created. As 
Figs. 9(a) and (b) show, new strings not corresponding 

Table 1 
Fundamental interactions among ECA 54's particles 
(a) u + y - - - +  y - + a + 2 F  + 
(b) F + + u ~ 2 y - + u + V  + 
(c) fl + y -  ~ y+ 
(d) F+ + fl ~ F -  
(e) y+ + ?,- --+ I3 
(13 y + + o t + y - ~  y - + u + y  + 
(g) y+ + fl + F-  -+ O 

Interactions (a), (b) and (g) induce a spatio-temporal shift 
in the incident particles, as discussed in the text. Note that the 
spatial arrangement of input and output particles is respected 
by the interaction notation. 0 denotes no particles. 

Fig. 9. Filtered space-time diagrams of the fundamental in- 
teractions among ECA 54's fundamental particles, as listed 
in Table 1: (a)-(e) are two-particle collisions; (f) and (g) are 
three-particle collisons. Filtering was done with the first version 
of particle filter T~4 described in the text. The domain is shown 
as white, the particles {u, r ,  F +, F } are shown in black. De- 
fects not corresponding to any of the particles are shown in 
black and have the corresponding T04 output symbols inscribed 
in white. 



J.E. Hanson, J.P. Cru tch f i e ld /Phys i ca  D 103 (1997) 169-189  181 

to any fundamental particle are generated during a few 
iterations immediately following the collission, but be- 
fore long these have condensed back into particles. In- 
teraction (a) induces a net spatial shift of  Ai = -- 1 and 
a net temporal phase shift of At = + 1 in the ot particle, 
and a space-t ime shift of  (Ai, At) = ( + l ,  0) in the 
original y - .  Interaction (b) shifts the ot by (Ai,  At )  = 
(~-1, +1)  and the original y +  by (Ai, At) = ( - -1 ,0) .  
If we neglect for the moment  the different values of  
the defect cells, we see that interactions (a) and (b) 
are spatial reflections of  each other. 

Interactions (c) and (d) show the results of  a colli- 
sion between a fl and a y. The interaction occurs in a 
single time step, as indicated by the fact that no new 
nonparticle strings are generated. Note that these two 
interactions are also spatial reflections of  each other. 
Interaction (e) shows the collision of two Vs. Again, 
the interaction takes place in a single time step. This in- 
teraction is itself spatially symmetric. Generally here, 
and unlike several of the interactions found in the q~sync 
CA of Ref. [19], there is no dependence of the two- 
particle interactions on their relative internal phases. 

Besides the five two-particle collisions, Figs. 9(f) 
and (g) and Table 1 show two simple three-particle 
collisions. Both of these interactions are spatially sym- 
metric. Interaction (f) consists of  a pair of  incoming 

s colliding simultaneously with an a .  All three par- 
ticles survive the collision. The ot undergoes a shift of  
( ~i, At )  = (0, +2);  the incoming ),s are both shifed 
by (Ai,  At)  = (0 , - -1) .  Note that the new filtered 
s~rings occurring during the interaction are also found 
in the two-particle u - y  collisions (a) and (b). Finally, 
interaction (g) shows the annihilation of a/3 by simul- 
taneous collision with two incoming Vs. 

One advantage of constructing the particle filter T~4 
as described in Section 5.1 is that it is now easy to 
modify it to recognize interactions among particles 
as well. There are eight new strings arising in two- 
particle interactions, all occurring immediately after 
an ~ - ) ,  collision. We can include these strings in T 1 54 
in the same way as the original particles' strings were 
included, assigning the output symbol 8 to all defects 
in strings unique to ot-y to indicate the intermediate 
bound state during the particle interaction. Generally, 
these modifications take the form of adding more states 
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Fig. 10. A portion of the graph of particle filter T14, which maps 
domain cells to 0, cells in the fundamental particles to output 
symbols {c~,/3, F +, V-} and strings occurring in pairwise a - y  
interactions to & All other defects are left changed, since they 
do not correspond to recognized structures. The input label Z "t 
denotes all input symbols not found on other edges leaving 
a given state. Edges terminating on broken circles actually 
reconnect to the indicated state at the top of the machine; they 
have been displayed in this way for clarity. Note that the number 
of  output symbols in an edge lable varies from zero (indicated 
by X) to four. Not shown are the other seven edges leaving state 
O, corresponding to input symbols {I . . . . .  7}. Each of these 
edges leads to a different group of states and edges similar to 
the one shown. 

and edges to T~4 by a procedure that is readily auto- 
mated. The net result is our second and final version of 
T~4, a portion of which is shown in Fig. 10. Output 0 
indicates a cell in the domain, outputs {oe,/3, F +, y } 
indicate defect cells making up the fundamental parti- 
cles, output 3 indicates defect cells in a - F  interactions, 
and outputs { 1 . . . . .  8} indicate defect cells not corre- 
sponding to any recognized structure. 

T~4 operates on output strings o f  T04 in the same 
way tha t  T04 operates on raw configurations. The 
machine is initially in the state with the double 
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circle. Once it reads a domain symbol (0), it syn- 
chronizes to state O, which indicates that the next 
defect encountered is isolated from any defects to its 
left. From state O lead eight edges, one for each of 
the outputs of  the domain filter. Each of these edges 
in turn leads to a branching sequence of states and 
edges that eventually writes as output one of the par- 
ticles and resets to state O, or flags an unrecognized 
defect configuration and resets to state X. In Fig. 10, 
this structure is fully indicated only for the edge with 
input label 8; each of the other edges leaving state O 
leads to a similar structure. 

5.3. Statistics and completeness o f  the particle-level 
description 

The filters T°4 and T~4 embody a description of 
ECA 54's information processing structure in terms 
of the domain A54, particles {u, fl, y+ ,  y - } ,  and the 
interactions in Table 1. We can now apply this pair 
of  filters to space-t ime data generated by ECA 54, in 
order to investigate the extent to which this "particle- 
level" description is complete. One simple way of do- 
ing this is to measure the frequency of occurrence of 
each of T~4's output symbols as a function of time. 
If the frequency unrecognized defects (T~4 outputs 
{ 1 . . . . .  8}) decays to zero in finite time, or if the ratio 
of  unrecognized defects to particles vanishes asymp- 
totically, then no asymptotic structures not describable 
in the particle-level vocabulary exist. The conclusion 
then would be that the particle-level description is 
complete. 

Fig. 11 shows the fraction of cells in a CA lattice 
of  size N = 106 which TI4 classified as particles 
{or, ,8, y + y - } ,  as fundamental interactions {8}, or as 
unrecognized defects {1 . . . . .  8}, plotted versus time 
for the first 50 iterations of  a random initial condition. 
The fraction of cells in the domain, not shown in the 
figure, increases monotonically from an initial value 
of 0.4996. The curves for y +  and y -  overlay each 
other almost exactly. Unrecognized defects 2 and 6 
start with the same initial fraction and disappear on the 
first iteration; defects 1, 3, 5, and 7 all have equal inti- 
tal fractions that vanish by iteration 10. The fractions 
of  defect types 4 and 8 do not vanish, though they are 
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Fig. 11. Fraction of the CA lattice devoted to the fundamental 
particles (or,/3, F +, F-)  to u-y interactions (b), and to unrec- 
ognized defects {1 . . . . .  8} versus time. 

significantly lower than all of  the particle frequencies. 
Unless they decay to zero faster than the particle fre- 
quencies, this is an evidence that the "particle-level" 
description, as captured by T~4, is incomplete. Un- 
fortunately, the frequencies of  defects 4 and 8 remain 
within a few orders of magnitude of the particle fre- 
quencies out to time t ~ 106, and show no sign of 
vanishing faster than the particle frequencies. As we 
will discuss in Section 6, these two defect types occur 
together, and are created by certain types of  multipar- 
ticle interactions usually involving as.  

Fig. 11 also indicates two epochs of ECA 54's 
time evolution. For the first few iterations, the sys- 
tem is self-organizing from a random initial config- 
uration into a system of particles (and defects 4 and 
8). This process is reflected in the wild fluctuations 
in particle fractions and in the gradual increase in 
us. It is notable that these apparent fluctuations at 
early times are not due to statistical variation in the 
random initial condition. We repeated the experiment 
several times using different random initial configura- 
tions and different lattices sizes, and the same "fluc- 
tuations" were repeated almost exactly - even down 
to the size and position of the oscillations in ot fre- 
quency. The only discernible discrepancies between 
the experiments were slight differences in the size of  
the oscillations in 3s, 4s, and 8s, starting at about 
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t = 10 and gradually disappearing thereafter. As the 
figure shows, by about r ~ 25 this initial conden- 
sation into domains and particles has been replaced 
by a slow, smooth decrease in all particle fractions, 

hich continues indefinitely. We may, therefore, con- 
sider r as an emergence time for the domain/par t ic le  
slructures. 

To measure the asymptotic behavior of  the system, 
b e  could simply continue the above experiment for 
much longer. However, to illustrate the flexibility of 
our filtering scheme, we will instead make a simple 
modification to the particle filter and count the exact 
number of each type of  particle at each time. This 
modification consists of  changing the output string for 
each temporal phase of each particle to contain only 
one nonzero symbol,  while maintaining proper spa- 
tial locations. Unrecognized defects are handled in the 
same way as in T~4. The resulting machine, denoted 
by T54, writes a single nonzero value at the center 
of each particle, regardless of  its width. This makes 
counting particles just a matter of  counting symbols 
in the filter output. 

Fig. 12 shows the number of particles and a - ) ,  inter- 
actions versus time plotted on a log- log  scale, for the 
same experiment but longer times as in Fig. 11. Nu- 
merical studies in [14] have indicated that at very long 
times the number of a s  and 8s decreases very slowly 
according to a power law [ N ( a )  + N(6)] ~ t - ' ,  with 
a = 0.15. Our experiments on lattices of  size N = 
10 a, I0 5, and 10 6 show the same a-f requency curves 
in all cases, with a long-time decay N ( a )  ~ t a hav- 
ing rate a = 0.10 4- 0.01. As Fig. 12 shows, how- 
ever, this long-time scaling regime sets in extremely 
gradually with a slow downturn beginning at about 
t ~ 16000. By about t ~ 2 x 105 , the downturn is 
completed and the a-f requency curve follows its long- 
time power law decay. One experiment on lattice size 
N = 104 was allowed to evolve for t = 2 x 108 it- 
erations: no systematic deviation from this functional 
form was observed. The fact that chaning the lattice 
s~ze had no effect on the shape of the a-frequency 
curve shows that the onset of the scaling regime is not 
due to finite-size effects. 

Another statistical measure of  the system's  global 
behavior is given by the fraction f(A54) of sites that 
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Fig. 12. Number of particles {or,/~, V +, ?, } and u-?/  interac- 
tions 3 versus time. The lattice size is N = [06. Logarithms are 
base 2. The dashed line shows the measured power law decay 
at long times. 

are in the domain. After the initial emergence time, 
f ( A 5 4 )  s h o w s  a v e r y  s l o w  monotonic increase to- 
ward a value of 1.0, which corresponds to a configura- 
tion entirely free of  defects or particles. In the scaling 
regime, f (A54)  increases as a power law with expo- 
nent a --- 0.007 + 0.0005. 

A further modification of the particle filter provides 
us with a valuable tool for data visualization on large 
space- t ime scales. Noting that the a s  are the longest- 
lived of the fundamental particles, we construct an "a -  
tracker," denoted by T 3 which traces the evolution 54' 
of a s  to the exclusion of  all other structures. This is 
accomplished as follows. First we change the parti- 
cle filter output to map all ¢~s and ?/s to the domain 
symbol 0. Then we modify the output on each input 
corresponding to an a or an oe-?' interaction so that a 
single nonzero symbol ( 1 ) is written, in the same way 
as in T~4. Unrecognized detects are all mapped to a 
third symbol (2). In this way, space- t ime data filtered 
with T ° and T 3 show a single 1 in the central cell 54 54 
of each a ,  blocks of 2s on the relatively rare unrec- 
ognized defects, and 0s in all other cells. This effects 
a vast reduction in the amount of  information in the 
space- t ime diagram. 

Fig. 13 shows two space- t ime diagrams of a random 
initial configuration on lattice of 1000 cells, evolving 
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0 999 

Fig. 13. Substantially larger space-time diagrams of ECA 54; 
each diagram contains 107 space-time cells. (a) Unfiltered 
space-time diagram. (b) Same space-time diagram filtered with 
the or-tracker described in the text. These figures are raster files 
taken directly from a moderate resolution computer screen, with 
an image resolution that is considerably coarser than the cell 
size. The importance of domain filtering lbr visualization is es- 
pecially obvious here. The filtering effects a data compression 
ratio of  about 103. 

for a total of 10000 time steps. Each diagram cov- 
ers a rather large number of  space-time cells - 107. It 
is interesting to note that even a PostScript rendered 
8.5" × 11" page contains only about 107 resolvable 
dots. At the top of  Fig. 13 is the unfiltered space-time 
data, below which is the output of  the a-tracker applied 
to the unfiltered data. Filtered output symbols 1 and 

2 are both shown in black. Both plots are raster files 
taken directly from the computer screen, with an im- 
age resolution considerably coarser than the cell size: 
a single pixel covers approximately three spatial cells 
and 33 time steps. Because of  this, the unfiltered data 
appear as a wash of randomly distributed pixels. The 
filtered plot, on the other hand, clearly shows the long- 
lived as  moving against a white background. The ef- 
fective dynamics at this level is of stable ot particles 
apparently undergoing a sort of  statistical "repulsion" 
mediated by the hidden ys. This is somewhat analo- 
gous to Brownian motion of  the ot particles. At early 
times, we see a few annihilative collisions between 
adjacent ors that draw too close to each other. These 
collisons are the cause of  the decay in the number of 
as  observed in Fig. 12. After this transient period, the 
number of as  in Fig. 13 remains constant and they re- 
main roughly equidistant as they wander about within 
a close neighborhood. If we were to continue tracking 
the evolution of the system, we would see occasional 
ot--~ collisions occur at increasingly long intervals, un- 
til finite lattice size effects came into play. 

6. Secondary structures 

Besides the primary domain and fundamental par- 
ticles, ECA 54 supports a large number of secondary 
structures, some having the domain and particles 
as building blocks, some not describable at the 
domain/particle level. This section presents a gallery 
of  a few of these. Our goal at present is not to effect an 
exhaustive description of patterns arising in ECA 54, 
but rather to show how the computational mechanics 
analysis of  the system facilitates their discovery and 
description. 

ECA 54 possesses a number of  regular domains 
other t han  A04 . The simplest of  these is the language 
0", consisting of  all blocks of consecutive 0s. This 
language is obviously a domain of  all CAs that map 
the all-zeros neighborhood I1 = 0 . . . 0  to 0. But in 
ECA 54, as in most such CAs, 0* is unstable. Other 
easily identified domains in ECA 54 consist of multi- 
ple isolated particles of a single type separated by do- 
main regions - for example, the pattern consisting of  
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(.) 

(b) 

(c) 

raw filtered 

Fig. 14. Unfiltered and filterd space-time diagrams of a few 
o( ECA 54's other domains: (a) an unstable domain; (b) a 
domain consisting of alternating ors and /~s; (c) a domain of 
"'pseudo-~s" in which every block of nonzero filtered cells is 
either part of an ~ or is a string occurring in an ~-y interaction. 
In the filtered plots, domain cells are white, particles are black 
and nonparticle defects are black with T ° output symbol. 54 

isolated y ~- particles moving against a background of  
A 0 is a domain. Using notation borrowed from regu- 54 
lar expressions, we may write this domain language as 
(A64 + y+)*. Other similar domains include (A54 + 
~/-)*, (A54 + u)*, (A54 +/3)*,  and (A54 + ot + fl)*. 
This last should be understood to mean patterns con- 
taining both isolated ~s and isolated fls; both types of  
particle may coexist without interacting because they 
have the same velocity (zero). All these domains are 
unstable to perturbations introducing other types of 
particle with different velocities. 

Fig. 14(a) shows a space-time plot of  a domain with 
configurations having spatial period 4 and temporal 
period 2. The domain itself is period 1. This domain 
is unstable: its boundaries always grow inward with 
speed c = 1 site per iteration. Initial conditions having 
spatial regions in this domain are responsible for the 
initial nonzero fractions of unrecognized defect types 
{ 1, 3, 5, 7} shown in Fig. 11. The fast decay in those 
fractions is due to this domain's instability. 

A more complex, and perhaps also more interesting, 
domain consisting of  alternating ots and fls is shown in 
Fig. 14(b). Domain configurations have spatial period 
9 and temporal period 4. This example again points out 
the inherent duality between domains and particles. In 
certain cases, particles may coalesce to form domains. 
The raw configurations can be interpreted in two ways, 
as the context of analysis requires. This is similar to 

r a w  f i l t e r e d  

Fig. 15. Raw (a) and filtered (b) space-time diagrams of lhe 
gamma gun. The gamma gun arises t~om the decay of the 
unstable domain shown in Fig. 14(bL 

the case of the/3 particle, which could be interpreted 
as a single entity or as the bound state of two Vs. 

Fig. 14(c) shows another unstable domain, in this 
case consisting of strings occuring in the ~ particle 
and in ot-y interactions. The spatial period is 8. The 
temporal period of  configurations is 6, but that of the 
pattern is 3. 

The "gamma gun" (called a "radiating particle" in 
[14]), shown in Fig. 15, is a periodic particle formed 
by the decay of the domain of Fig. 14(c). When that 
domain is bounded on both sides by regions of A54, the 
two boundaries gradually approach each other while 
emitting ys  that propagate out into the A.s4 regions. If 
the number of  repetitions of the basic domain string is 
even (e.g., filtered string . . .  0 (53108880)"0 . . .  with n 
even), then the ultimate collision of the two approach- 
ing boundaries results in a configuration in the domain 
A54, i.e., the secondary domain disappears completely. 
If the number of repetitions of  the basic string is odd, 
the ultimate result is the gamma gun. Vestiges of the 
vansihed domain can still be seen in the gamma gun's 
space-time signature. For example, in the eighth row 
of Fig. 15, the gamma gun's  filtered spatial string is 
. . .  053108880 . . . .  identical to one period of  the basic 
domain string noted above. 

Finally, we return to our consideration of previously 
unrecognized defect types 4 and 8. By construction, 
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T~4 classifies short blocks of  4s and 8s as follows: 
blocks of  length 1 are u - y  interactions, blocks of  
length 2 are fl particles, and blocks of  length 3 are u 
particles. This means that unrecognized 4s and 8s can 
occur in only two cases: (i) isolated blocks of  length 4 
or greater; or (ii) adjacent to other defect types (i.e., not 
isolated). The particle frequency statistics discussed in 
the last section show that all other unrecognized de- 
fect types vanish in the first few iterations. Therefore, 
only case (i) is possible at intermediate to long times. 
Application of  the inverse domain filter Q° 4 to long 
blocks of  4s and 8s shows that they, respectively, cor- 
respond to long blocks of  0s and 1 s in the unfiltered be- 
havior. These can arise in a number of  ways, the most 
common of  which is when a pair of incoming parallel 
ys  collides with an u particle, i.e., y+  + y+  + u or 
u ÷ y + y - .  Before the outcome of  the first collision 
has precipitated into isolated particles, the second ), 
hits the interaction region, resulting in a block of 8s. 
Another way in which blocks of  8s arise is when two 
or more adjacent us with the same temporal phase are 
pushed into each other by incoming ys. 

From the mapping ~54 for filtered configurations, 
or alternatively from the CA rule ~P54, we see that a 
block o f n  8s bounded by one or more 0s at each end is 
mapped onto a block of  n 4s. Blocks of  4s shrink over 
time, though at alternate time steps they also emit short 
lived ys  in the form of isolated ls 0 ' - )  and 5s (y+) .  
The general pattern is shown in Fig. 16. There are four 
possible outcomes, based on the initial length n of  the 
block of  8s. If n mod 4 = 0, then ¼n iterations later the 
filtered string will b e . . .  050010 . . . .  which maps to a 
fl particle by the y + - y -  collision shown in Fig. 9(e). 
If  n m o d 4  ---- 1, then ¼n iterations later the filtered 
string will be . . .  0504010 . . . .  which corresponds to 
an u particle with temporal phase u i, as indicated in 
Fig. 8(b). If  n mod 4 = 2, then I n  iterations later the 

Fig. 16. Evolution of long blocks of 4s and 8s in the domain 
filter output. 

filtered string will be . . .05044010 . . . .  correspond- 
ing to the 3-particle collision V + + fl + y -  shown in 
Fig. 9(g), which results in the mutual annihilation of  all 
three particles. Finally, if n mod 4 = 3, then I n itera- 
tions later the filtered string will be . . .  050444010 . . . .  
which is identical to the three-particle collison V + + 
u + y -  shown in Fig. 9(f), and results in the three 
particles T + u + y+ .  Differentiating among these 
four possible outcomes for classification and filtering 
is done by calculating n mod 4 and remembering the 
location of  the block's beginning. The latter requires 
adding a queue of  unlimited depth to the particle filter. 
This means that a complete description of  the pat- 
tern dynamics of  ECA 54, whatever else it may en- 
tail, requires at least a computational model including 
a queue, i.e., a more sophisticated model class than 
finite state machines. 

7. Particle physics of ECA 54 

This article has described a number of properties 
of elementary CA rule 54 - some new, some already 
known - using the unified, general-purpose frame- 
work of  computational mechanics. As such, it presents 
a case for the utility of that framework, by showing 
how otherwise disparate calculations and results can 
be brought together under a single set of  techniques, 
and by presenting new results that would be otherwise 
inaccessible, or at best ad hoc. 

The analysis of  ECA 54's patterns and pattern 
dynamics began with the identification of  its most 
important computationally homogeneous pattern, the 
regular domain A54. From this basic building block 
or "pattern basis", a domain filter was constructed 
to factor out spatio-temporal regions conforming to 
the domain patterns, locating and highlighting ex- 
actly those space-time cells at which defects in the 
pattern occur. The resulting filtered space-time data 
were found to be described by the iteration of  a de- 
terministic mapping. A second-level particle filter 
was constructed to automatically classify the impor- 
tant particles or coherent structures existing at the 
boundaries of  domain regions. Straightfoward modifi- 
cations to the particle filter enable it to recognize and 
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classify patterns of all fundamental interactions, and 
ultimately of all but an exponentially small fraction 
of asymptotic spatio-temporal behavior. 

In describing A54, we were also able to introduce 
the space-time machine, an important extension to the 
techniques of computational mechanics, and present 
as an example the space-time machine corresponding 
to ECA 54's fundamental domain. Clearly the ideas 
underlying the space-time machine and its relatives 
deserve extensive treatment; this must out of necessity 
be presented elsewhere. 

We conclude by elaborating on a point made in 
the introduction: computational mechanics, in con- 
trast with much work concerning CA and computa- 
tion, takes a distinctly naturalistic stance. Each CA 
rule may be regarded as a specification of the micro- 
scopic equations of motion of a model universe. That 
is, the CA lookup table directly determines only the 
local space-time rules of cell interaction and cell mod- 
ification. Confronted with the behavior that appears 
within such a universe over long temporal and spatial 
scales, computational mechanics attempts to answer 
the questions, what are the emergent structures? and 
what are the emergent physical laws governing their 
interactions? 

The result here of our computational mechanics 
analysis was a near-complete particle-level descrip- 
tion of ECA 54's space-time behavior. The emer- 
gent structures were the regular domain - a sort of 
vacuum state - and the fundamental particles - ex- 
citations above that ground state. The laws were ex- 
pressed in terms of the particle interactions and their 
properties, including the statistical features of the short 
and long term behavior. The collection of these be- 
havioral components constitutes the "physics" of ECA 
54's universe. More concretely, we showed that the 
space-time behavior condenses relatively quickly into 
lhese structures by the emergence time r. Every site 
in configurations generated beyond that time partic- 
ipates in one of the identified structures. There may 
be, however, compound structures built up out of the 
fundamental ones. As was seen in the particle de- 
cay statistics, for example, at around 16000 itera- 
lions a scaling regime sets in, described by the power 
law decay in a particles. Presumably, this new level 
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of organization is associated with the appearance of 
some new mechanism that removes these particles 
systematically. 

Note. Refs. [2-5,17,18] are available via the World 
Wide Web from the Computational Mechanics 
Archive, http://www.santafe.edu/projects/Comp- 
Mech. Refs. [13,19] are available from the Evolving 
Cellular Automata archive, http://www.santafe.edu/ 
projects/evca. 
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Appendix A. Deterministic equation of motion of 
the particle-level model 

In this appendix, we give the FST for the mapping 
qb54 defined in Eq. (4), that takes the filtered string 
z t = W~54(St) and maps it to the filtered string zt+l = 
T~54(St+l) ~--- W°4(~54($t)). The alphabet of q~54 is 
,A p = { 0 -  8}, though the mapping is defined only over 
the set  [T~54]out, i.e., the set of possible outputs of the 
domain filter. For this reason, most states in M(q~54) 
are lacking edges for many of the input symbols in A'.  

The mcachine will be specified by its transition ta- 
ble, which lists each state and its transitions in the 
following format: 

> .state [SinlSout] ~ dest [SinlSout] ~ de s t . . . ,  

where Sin is the input symbol, Sout the output, and dest 
the destination state, of the given transition. Optional 
prefixes > and • indicate that the state is a start state 
and/or accept state, respectively. Transitions are listed 
in order of input symbol. Transitions with no outputs 
are indicated by Sour = ~. 
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The start state of  M(~54)  (state 0) has a self-loop on 
input 0, corresponding to a domain input symbol,  and 
eight other edges for the eight different defect types. 
Once a nonzero input is read, the machine uses the 
next six input symbols to synchronize, finally passing 
down into its recurrent part, consisting of  accept states 
{45 . . . . .  64}, where it begins writing output symbols. 
On reaching the end of  the CA lattice, the machine 
remains in its current state and wraps around to the 
beginning of  the lattice, where it produces outputs for 
the input symbols read during synchronization. If the 
machine is still in state 0 at the end of  the lattice, then 
an output string zt+t  = O N is written. 
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> 0  [ 0 1 k l ~ 0  [ l l Z ] ~ l  
[2lk] --~ 2 [31~.] ~ 3 
[4lk] --~ 4 [51k[ ~ 5 
[6lk] --~ 6 [71~.] ~ 7 
[8IX] ~ 8 

1 [0rZ] ~ 9 [71k] ~ 10 
2 [01k] --+ 11 [61k] ~ 12 
3 [01k]--+ 12 [ l l k ] ~  11 
4 [01k] --~ 13 [41k] ~ 14 
5 [01k] ~ 14 [31,~] ---> 13 
6 [ 0 1 k ] ~  15 [ 2 l k ] ~  16 
7 [01,~] --~ 16 [51Z] ~ 15 
8 [01k]--~ 10 [ 8 1 k ] ~ 9  
9 [01 ,~]~  17 [ 8 1 k ] ~  18 

10 [0[k]--+ 19 [5lk] ~ 20 
11 [01k] ~ 18 [71k] ---> 17 
12 [ 0 1 Z ] ~ 2 0  [ 2 1 k ] ~  19 
13 [01k] --> 21 [I lk[  ~ 22 
14 [01k] ~ 23 [4[)~] ~ 24 
15 [01k] ---> 24 [31k] --~ 23 
16 [01~.] ---> 22 [61)~] --~ 21 
17 [ 0 1 k ] ~ 2 5  [ 5 [ k ] ~ 2 6  
18 [01~.] --~ 27 [81k] --~ 28 
19 [0l,k] ~ 29 [61~.] --~ 30 
20 [0lk] ~ 31 [31k] -+  32 
21 [0IZ]---> 26 [21~.] ~ 25 
22 [01)~] ---> 28 [71Z] ---> 27 
23 [01Z] ---> 30 [ I lk[  --> 31 
24 [01Z] ---> 32 [41k] ~ 34 
25 [01k]---> 33 [6IZ] ---> 34 
26 [01k] ~ 35 [31Z] ~ 36 

27 [0IX[ ~ 37 [5IX[ ~ 38 
28 [0l,k] --~ 39 [81x] ~ 40 
29 [01L] ~ 40 [71k] ~ 39 
30 [0[k] ---> 41 [21k] ~ 42 
31 [0IZ] --~ 43 [41~.] ---> 44 
32 [0[k] --+ 34 [ l ik]  ~ 33 
33 [ 0 1 k ] ~ 4 5  [ 7 1 k ] ~ 4 6  
34 [01k]--+ 47 [ 2 l k ] - +  48 
35 [01k] --~ 49 [41k] ---> 50 
36 [01~.] --~ 51 [I lk[  ---> 52 
37 [01k]--~ 53 [61;~] --~ 54 
38 [ 0 1 k ] ~ 5 5  [ 3 1 k ] ~ 5 6  
39 [ 0 1 k ] ~ 5 7  [ 5 l k 1 ~ 5 8  
40 [0lk] --~ 59 [81k] ~ 60 
41 [01k] --~ 61 [31k] ~ 62 
42 [01k] ---> 52 [61k] ~ 51 
43 [0lk] --~ 54 [I lk[  --+ 53 
44 [0]k] --~ 63 [41k] ---> 64 

, 45  [010] ~ 59 [8101--~ 60 
, 4 6  [013] ---> 57 [5[3] ~ 58 
, 47  [0[0] ---> 61 [3181 ---> 62 
, 4 8  [010]--~ 52 [618] ~ 51 
, 4 9  [010] ~ 54 [116] ---> 53 
, 5 0  [013] ---> 63 [410] ~ 64 
,51 [018] ~ 47 [218] ~ 48 
, 52  [015] ---> 45 [715] ~ 46 
, 53  [0101 ~ 45 [7101 ~ 46 
, 5 4  [010] ---> 47 [210] ---> 48 
, 55  [012] ~ 49 [410] ~ 50 
, 5 6  [010] ---> 51 [117] ---> 52 
, 57  [010] --~ 53 [611[ ~ 54 
, 58  [0[0] ~ 55 [311] ~ 56 
*59 [OlO] ---> 57 [5101 ~ 58 
*60 [014] ~ 59 [814] ~ 60 
,61 [010] ~ 49 [415] --> 50 
*62 [018] ~ 51 [110] ~ 52 
*63 [011] ~ 54 [110] ~ 53 
*64 [0[0]--~ 63 [414 ] ~  64 
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