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Abstract

How does nature self�organize and how can scientists discover such organi�

zation� Is there an objective notion of pattern� or is the discovery of patterns a

purely subjective process� And what mathematical vocabulary is appropriate for

describing and quantifying pattern� structure� and organization� This dissertation

compares and contrasts the way in which statistical mechanics� information theory�

and computational mechanics address these questions�

After an in�depth review of the statistical mechanical� information theoretic�

and computational mechanical approaches to structure and pattern� I present exact

analytic results for the excess entropy and ��machines for one�dimensional� �nite�range

discrete classical spin systems� The excess entropy� a form of mutual information� is

an information theoretic measure of apparent spatial memory� The ��machine�the

central object of computational mechanics�is de�ned as the minimal model capable

of statistically reproducing a given con�guration� where the model is chosen to belong

to the least powerful model class	es
 in a stochastic generalization of the discrete

computation hierarchy�

These results for one�dimensional spin systems demonstrate that the measures

of pattern from information theory and computational mechanics di�er from known



�

thermodynamic and statistical mechanical functions� Moreover� they capture impor�

tant structural features that are otherwise missed� In particular� the excess entropy

serves to detect ordered� low entropy density patterns� It is superior in many respects

to other functions used to probe the structure of a distribution� such as structure

factors and the speci�c heat� More generally� ��machines are seen to be the most

direct approach to revealing the group and semigroup symmetries possessed by the

spatial patterns and to estimating the minimum amount of memory required to re�

produce the con�guration ensemble� a quantity known as the statistical complexity�

It is shown that the information theoretic and computational mechanical analyses

of spatial patterns capture the intrinsic computational capabilities embedded in spin

systems�how they store� transmit� and manipulate con�gurational information to

produce spatial structure�

Finally� several approaches to generalizing the excess entropy and ��machines

to apply to multi�dimensional con�gurations are put forth� These measures are then

calculated for a few simple� two�dimensional patterns�
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Chapter �

Introduction

the news to my left over the dunes and

reeds and bayberry clumps was

fall� thousands of tree swallows

gathering for flight�

an order held

in constant change� a congregation

rich with entropy� nevertheless� separable� noticeable

as one event�

not chaos� preparations for

flight from winter�

cheet� cheet� cheet� cheet� wings rifling the green clumps�

beaks

at the bayberries

a perception full of wink� flight� curve�

sound�

the possibility of rule as the sum of rulelessness�

the �field� of action

with moving� incalculable center�

A� R� Ammons

in Corson�s Inlet ���
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��� A Congregation Rich with Entropy

A� R� Ammons� poem Corson�s Inlet ��� poses the central questions that this thesis

aims to address� In the poem� the poet shares his thoughts as he walks along the

beach by Corson�s Inlet� about �� miles south of Atlantic City� on the coast of New

Jersey� Above� Ammons observes a �ock of swallows moving from bayberry bush to

bayberry bush� gathering energy for their fall migration southward�

The �ock of swallows� Ammons notes� is both ordered and disordered at the

same time� The �ock is not static�it is an �order held in constant change�� Within

the loose boundaries of the �ock the birds move about almost at random� The �ock

is �a congregation rich with entropy�� and yet� not �chaos�� the �ock is a noticeable

event� a single entity� The poet observes the �ock� but has a little di�culty compactly

describing it�it is a mixture of opposites order and chaos�

This passage is not the only place in the poem where Ammons observes the

mixing of opposites� orders �held in constant change�� Looking at the sand dunes� he

notes that �manifold events of sand  change the dune�s shape that will not be the

same shape  tomorrow ��� �� Earlier in the poem he writes that

in nature there are few sharp lines� there are areas of

primrose

more or less dispersed�

disorderly orders of bayberry� ���

To Ammons� nature is a mixture of order and disorder� Ample evidence presents itself
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throughout his walk� but one gets the sense that Ammons is groping� somewhat� as

he tries to put these observations into words� His searching for words is particularly

apparent when Ammons considers the boundaries between the dunes and creek

by transitions the land falls from grassy dunes to creek

to undercreek� but there are no lines� though

change in that transition is clear

as any sharpness� but ��sharpness�� spread out ��� �

Returning to the passage above� note that Ammons tries to account for the

disorderly order of the �ock by suggesting �the possibility of rule as the sum of

rulelessness�� There is signi�cant randomness in the behavior of the individual birds�

but nevertheless these individuals combine to produce a distinct �ock� It�s not the

case� he presumes� that the birds are all following some �chief� bird� Rather� they�re

each obeying more or less their own commands� while trying to stay somewhat close

to their neighbors�

By �rule as the sum of rulelessness�� Ammons suggests that the disorder is

not �ghting against the pattern� but rather that the disorder plays an essential role

in creating the pattern� The randomness is not noise� but is a part of the pattern�

The �ock of swallows is not a perfectly ordered pattern perturbed by a small amount

of noise� The �ock is not a �noisy� version of an army marching in lock step�

Put another way� there is a great deal of randomness responsible for patterns

Ammons sees as he takes his walk� For example� in the ecology of Corson�s Inlet

Ammons sees
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��� the working in and out� together

and against� of millions of events�

���

not predictably �seeing me gain

the top of a dune�

the swallows

could take flight ��� some other fields of bayberry

could enter fall

berryless	 ���

Despite the clear transition between dune and creek� and the easily recognizable �ock

of swallows� Ammons recognizes that there is randomness to the natural orders that

he sees� and that the forms he sees arise not despite of this randomness� but because

of it� The processes that produce the patterns contain elements of randomness� More

importantly� the patterns themselves contain disorder as well as order�

In summary� Ammons perceives many forms and patterns as he walks along

Corson�s Inlet� Yet these shapes are not the orderly shapes of Euclidean� or even

fractal geometry� rather� they are �rich with entropy�� Moreover� this disorder is not

noise on top of the patterns he sees�the entropy is a consequence of the pattern

itself� There is nothing atypical about what Ammons sees in Corson�s Inlet� Nature

is replete with intricate mixtures of order and disorder of the sort Ammons describes�

��� Central Questions

Ammons�s observations on natural patterns� and his searching for words to describe

them� leads naturally to the questions I consider in this thesis� These questions fall
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into three broad areas� First� what is a pattern ����� An initial response might be

that a pattern is some observed regularity or repeated tendency� But can any general

method for discovering these regularities be given� Or is the discovery of patterns

a fundamentally subjective process� For some time now there has been considerable

interest in �pattern�forming� systems 	see� e�g�� Ref� ����� and references therein
�

But what exactly does �pattern� mean in this setting� Who is to say what patterns

are and who determines which systems have generated patterns and which have not�

Can we meaningfully compare two di�erent patterns� Moreover� as Ammons reminds

us� many natural patterns are only approximate� So how do we manage to separate

pattern from mere noise� Presumably� we also have to consider the possibility that

noise is part of the pattern� Is there some way to formalize what a noisy pattern is�

A second area of questions concern organization what does it mean to say

that a system is organized� In statistical mechanics� order is often associated with

a broken symmetry� For example� the Ising model orders by acquiring a net mag�

netization when the spin��ip symmetry is broken� Can we de�ne a similarly general

notion of organization� Can we distinguish between di�erent types of organization�

There has been much e�ort expended recently to study �self�organizing� systems 	see�

e�g�� Refs���� ��� ���� and references therein
� But who is to say which systems are

organized and which are not� The organized�nonorganized distinction is very crude�

Can�t there be degrees of organization� How would one say that one system is more

organized than another�
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A third set of questions revolves around information processing how can we

detect the computation being performed by a physical process or by other natural

systems� such as the immune system or the visual cortex� in which pattern recog�

nition� decision�making� and the like are 	ostensibly
 the central functions of the

underlying dynamical behavior� In a condensed matter system� for example� how

must spatial information be stored and shared so that it can reach a critical state�

How much historical memory is required to produce a given con�guration� How do

raw dynamical degrees of freedom support computation�the storage� transmission�

and manipulation of information�

Are pattern� organization� and computation related in any way� The central

thesis of this work is that they are intimately related and that inquiring about a

system�s computational capabilities is a concrete way to address questions of pattern

and organization ����� Computation� pattern� and organization are related in that

they are all statements about the relationships within and between a system�s com�

ponents and behavior� Restated in a more direct way� the hypothesis is simply that

analyzing how a process �computes��stores historical information� transmits it be�

tween internal degrees of freedom� and uses it to produce future behavior and system

con�gurations�reveals how it is organized and what types of patterns it generates�

Establishing this hypothesis requires adopting a particular stance� Throughout

this work the central issue is discovering� as opposed to verifying� pattern� The

veri�cation that a con�guration displays one of a certain� a priori selected set of
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symmetries is not at issue here though it is� admittedly� an important concern 	see�

e�g�� Refs� ���� and ����� and references therein
� Rather� the goal is to determine

what organization and which kind of patterns are intrinsic to a process What in a

process�s con�gurations and temporal behavior indicates how it is organized�

Faced with analyzing a system of many interacting components� it is usually

necessary to resort to a statistical description of some sort� A statistical approach also

becomes necessary when considering the trajectories followed by a chaotic dynamical

system� To capture essential aspects of such systems� statistical analyses typically

entail calculating some average property temperature� compressibility� Lyapunov ex�

ponents� escape rates� and so on� However� these are certainly not the only quantities

about which one can ask� In this work I consider some of the more detailed� yet still

statistical quantities that one can measure in a many�body setting and that indicate

a process�s degree of organization�

Statistical mechanics has a very limited set of tools for discovering and quan�

tifying structure� pattern� information processing� and memory in physical systems�

It is my contention that to satisfactorily address the questions posed above some

tools must be added to the statistical physicist�s tool�box� This dissertation reviews

and adapts techniques and concepts from information and computation theories that

will enable us to address questions of memory� structure� organization� and pattern�

It applies these techniques to simple statistical mechanical systems to show that a

richer set of tools is available for discovering pattern and describing organization in
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many�body systems�

��� Some Historical Context

Historically� the issues of pattern and organization have been the province of spatially

extended many�body systems� as analyzed by the theory of critical phenomena� to

mention one approach� More recently� though� many of the same questions have

arisen in the conundrum of deterministic chaotic dynamical systems simple� but

nonlinear processes produce unpredictable� seemingly random behavior� Physics has

long possessed a measure of the uncertainty of a probabilistic system�namely� the

Shannon entropy ���� ���� of the underlying distribution� The Shannon entropy�

introduced over ��� years ago by Boltzmann� was adapted in the ����s by Kolmogorov

���� and Sinai ����� to the study of dynamical systems� This� in turn� formed the

foundation for the statistical analysis of deterministic sources of apparent randomness

in the late ����s through the early ����s� These e�orts to describe the randomness

of a dynamical system have been rather successful� The metric entropy� Lyapunov

exponents� and fractal dimensions form a widely applicable set of tools for detecting

and quantifying unpredictable behavior� see� e�g�� Refs� ���� �����

Since this time� however� it has become more broadly understood that a sys�

tem�s randomness and unpredictability fail to capture its patterns and correlational

structure� This realization has led to a considerable e�ort to develop a general mea�
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sure or set of measures that quantify the structure of a system and the patterns it

generates ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� �����

These quantities are often referred to as �complexity� measures� More properly� they

should be called �structural complexity� or �statistical complexity� measures to dis�

tinguish them from Kolmogorov�Chaitin complexity ����� a measure of randomness�

and computational complexity ������ a measure of resource 	run time or storage


requirements in the theory of algorithms�

In this thesis I shall consider two approaches to measuring structure� First�

we�ll see how information theory provides a measure of the memory stored in a sys�

tem�s con�gurations� To date� this information theoretic measure of memory and

related quantities have been estimated for the symbolic dynamics of chaotic dynam�

ical systems ���� ��� ��� ���� ����� cellular automata ���� ����� stochastic automata

����� spin systems ��� ��� ���� and hidden Markov models ���� �����

Second� I�ll examine how the architectural analysis of information processing

provided by computation theory can be used to describe structure more completely

than by using information theory or� for that matter� statistical mechanics� By using

a hierarchical approach that begins with the least computationally powerful model

classes� it is possible to infer the computation being performed by the system� This

approach� an extension of statistical mechanics that includes elements of statistical

inference and computation theory� is known as computational mechanics�

For a more detailed discussion of the motivations and central issues that un�
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derlie computational mechanics� the reader is referred to Refs� ���� ��� ���� Compu�

tational mechanics has been applied to the period�doubling and quasiperiodic routes

to chaos ���� ���� the dripping faucet ����� one�dimensional cellular automata ���� ����

globally coupled maps ����� recurrent hidden Markov models ���� ����� and stochastic

resonance ������ Computational mechanics has also been proposed ����� as a useful

tool with which to re�examine the learning paradox of developmental psychology that

concerns the discovery of new patterns� not seen before �����

��� Possible Applications

There are three overlapping areas of application of the tools for discovering and quan�

tifying pattern� computation� and organization developed here� First� the methods

should be of bene�t when considering small�scale physical systems as the basis of use�

ful information�processing devices ����� Along the same line� the information theoretic

approach to memory might help clarify issues surrounding the �memory� observed in

systems with charge density waves ���� or with glassy dynamics �����

Second� it is likely that the structures that emerge in the canonical models

of many�body systems 	e�g�� the Ising� XY� and Heisenberg models
 can be analyzed

more thoroughly through the use of computational mechanics and information the�

ory� These model systems have formed the basis for much of our understanding of

critical phenomena� Thus� it seems natural to reexamine these models by applying
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the computational and information theoretic apparatus discussed here�

Third� statistical mechanical techniques are now being applied to a wide range

of �nontraditional� systems� such as self�organized criticality ���� genetic algorithms

����� ����� tra�c �ow ����� ����� and learning dynamics in neural networks ����� �����

Extant quantities in statistical mechanics have been in�uenced by the observability

constraints of physical experiments� For the most part� only directly measurable quan�

tities such as the pressure� conductivity� or net magnetization have been thoroughly

developed� However� for some of these more �exotic� systems such measurability

constraints may not be limitations� since the microstates themselves can be directly

observed� In these cases one need not carry forward the traditional constraints� espe�

cially when new structural questions require di�erent quantities to be estimated�

Information theory and computational mechanics provide a richer set of tools

for studying these sorts of systems� Of course� the most revealing and meaningful

quantities will always depend on the speci�c features of the system under study� It is

not my intention to argue for one particular way to measure organization or pattern�

Rather� I suggest that to fully capture patterns and organization in a wide range of

many�body systems� the probes o�ered by statistical mechanics fall short� concepts

and methods from information and computation theories become necessary�
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��� Overview

The presentation is organized as follows� Part I contains an introduction to the central

questions posed� and reviews the approaches to pattern and organization discussed

here� Speci�cally� Chapter � 	the current chapter
� poses the central questions this

thesis attempts to answer� In Chapter � I review the basic statistical mechanical

approaches to detecting and quantifying features in many�body systems� I also use

this section to �x the notation and context that I will assume for the rest of the

development� Chapters � and � review information theory� Chapter � de�nes and

motivates the key quantities of information theory the Shannon entropy� joint and

conditional entropies� mutual information� and information gain� Chapter � applies

these information theoretic quantities to an in�nite chain of random variables� This

leads to the entropy density� a measure of the irreducible randomness of the system�

and the excess entropy� a form of mutual information that provides a measure of the

apparent spatial memory of the process� Chapter � then gives a concise� but self�

contained� review of computational mechanics� When reviewing each of these three

di�erent approaches to pattern and structure� I begin by considering the central

questions that motivate each approach� We shall see how the quantities introduced

arise as natural answers to these questions� Awareness of the di�erent motivating

issues is crucial to understanding the di�erences and similarities between the three

views of organization and pattern�
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In Part II I report the results of applying the di�erent measures of structure

to �nite�range one�dimensional spin systems� Chapter � contains a brief review of the

statistical mechanics of one�dimensional spin systems� In Chapter � I present meth�

ods for calculating the excess entropy and ��machines for one�dimensional� �nite�range

spin systems� I then embark on a comparison of information theoretic� statistical me�

chanical� and computational mechanical approaches to pattern and structure� In

Chapter � I compare the excess entropy with the structure factors of statistical me�

chanics� We will see that the excess entropy is capable of detecting periodic structure

of any periodicity and thus may be viewed as an �all�purpose order parameter� for

periodic patterns� In Chapter �� I show that ��machines are necessary to describe

the structure of entropic patterns that do not have a strong periodic component�

In so doing� I illustrate how an ��machine provides an �irreducible representation�

of an approximate symmetry� In Chapter �� I directly compare the excess entropy

with a number of commonly used measures in statistical mechanics the correlation

length� speci�c heat� ferromagnetic structure factors� and the nearest�neighbor cor�

relation function� I argue that while there are qualitative similarities between all

these functions� none can be viewed as a measure of memory in the sense that the

excess entropy can be� Furthermore� I �nd that all these functions are maximized at

di�erent parameter values� indicating that they are not trivially related and that the

statistical mechanical functions cannot be used to determine the parameter values at

which a system�s spatial memory is maximized�
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In Part III I present a critical analysis of a statistical complexity measure

introduced in Ref� ������ Speci�cally� I show that this statistical complexity measure

vanishes in the thermodynamic limit for all �nite�memory ergodic Markov chains�

regardless of whatever structural features these systems possess� This class of systems

includes all �nite�range one�dimensional discrete spin systems�

In Part IV I present some preliminary work on extending the information and

computation theoretic approaches to more than one spatial dimension� In Chapter

�� I introduce the some of the questions surrounding pattern and organization in

two dimensions� In this chapter I also review the statistical mechanics of the two�

dimensional Ising model� and brie�y discuss critical phenomena in general� including

critical exponents and universality� In Chapter �� I present exact results for the

nearest�neighbor two�spin mutual information for the two�dimensional Ising model�

In chapter ��� I discuss several proposals for extending information theory and com�

putation mechanics to apply to two�dimensional con�gurations�

I conclude in Part V by summarizing the main results of the dissertation and

discussing several open questions�

Some of the text presented in this dissertation has appeared elsewhere� In

particular� chapters �� �� �� and ���� have been published 	with some slight modi�ca�

tions
 as Ref� ����� Portions of Ref� ���� have also been incorporated into chapters �� ��

and ��� Much of Chapter � was taken from a set of 	unpublished
 notes I distributed

as part of a series of lectures at the Santa Fe Institute in July� ����� Chapter �� has
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been published as Ref� �����



��

Chapter �

Review of Statistical Mechanics

We begin this chapter by reviewing equilibrium statistical mechanics� Statistical

mechanics is� of course� a very rich and deep �eld� and thus we cannot review it

thoroughly here� Refs� ���� ���� ���� ���� are good texts that provide an up�to�date

account of statistical mechanics� In Sec� ��� we�ll �x the notation used to describe spin

systems and will de�ne some of the central quantities of the statistical mechanics of

spin systems The thermodynamic entropy� the partition function� the Helmholtz free

energy� and the magnetization� In Sec� ��� we introduce some of the functions often

used to detect structure in spin systems the correlation function and correlation

length� the susceptibility and structure factors� and the speci�c heat� Finally� in

Sec� ��� we discuss how� as a practical matter� it is necessary to look for structure in

the Boltzmann distribution in order to perform the necessary sums to evaluate the

partition function�
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We shall also review some basic statistical mechanics in Chapter �� in which

we discuss the one�dimensional Ising model� in Sec� ���� the two�dimensional Ising

model is review� Statistical mechanics is also treated in Secs� ���� and ���� where the

modern theory of critical phenomena and the notion of universality are very brie�y

reviewed�

��� The Boltzmann Distribution

A central concern of equilibrium statistical mechanics is determining how physically

observable� bulk quantities can be explained from the behavior of the system�s con�

stituents� For example� how are the conductivity� heat capacity� and compressibility

of a metal determined by the interactions between the electrons and nuclei that make

up that metal�

The starting point for such calculations is a knowledge of the microphysics�

typically� the Hamiltonian for the system expressed as a sum or an integral over the

system�s internal degrees of freedom� The connection between the energy determined

by the Hamiltonian and the joint probability over the internal degrees of freedom is

given by

Pr	C
 
 e��H�C� � 	���


where C is a con�guration of the system and H is the system�s Hamiltonian� The

quantity 	 � ��	kBT 
 is the inverse temperature and kB is Boltzmann�s constant�
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For the remainder we set kB equal to one�

In principle� given a Hamiltonian one can use Eq� 	���
 to calculate macro�

scopically observable average quantities� However� performing the necessary sums is

usually prohibitively di�cult� a consideration we shall return to at the end of this

chapter� Before we begin examining how statistical mechanics goes about discovering

and quantifying structure� we pause to establish some notation and set the context

for the following development�

��� Spin Systems� Notation and De�nitions

The main object of our attention will be a one�dimensional chain
�

S� � � � S��S��S�S� � � �

of spins 	random variables
 Si�s that range over a �nite set A� For a spin�K system�

jAj � �K � �� Alternatively� one may also consider the chain as being a station�

ary time series of discrete measurements or the symbolic dynamics arising from the

partitioning of a dynamical system� In Part IV we discuss extending our analysis�

including the information and computation theoretic measures of structure�to more

than one spatial dimension� For the time being� however� we shall restrict ourselves

to one�dimensional distributions that are time independent� That is� we consider only

equilibrium distributions� If we imposed some time dependence�say a Glauber dy�

namics or an update rule for a one�dimensional cellular automaton�then we would

need to include a time index on all the spin variables�
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We divide the chain into two semi�in�nite halves by choosing a site i as the

dividing point� Denote the left half by

�

Si� � � � Si��Si��Si�� 	���


and the right half by

�

Si� SiSi��Si��Si�� � � � � 	���


We will assume that a spin system is described by a spatial shift�invariant measure


 on bi�in�nite con�gurations � � � s��s��s�s�s� � � � � si � A� The measure 
 induces

a family of distributions that will be of primary interest� Let Pr 	si
 denote the

probability that the ith random variable Si takes on the particular value si � A and

Pr	si��� � � � � si�L
 the joint probability over blocks of L consecutive spins� We assume

spatial translation symmetry� Pr	Si���si� � � � � Si�L�sL
 � Pr	S��s�� � � � � SL�sL
�

Let a block of L consecutive spin variables be denoted by SL � S� � � � SL� We shall

follow the convention that a capital letter refers to a random variable� while a lower

case letter denotes a particular value of that variable� Thus� sL denotes a particular

spin�block con�guration of length L� Finally� in the following we shall use the term

process to refer to the joint distribution over the bi�in�nite chain of variables� For a

more rigorous de�nition of the term process� see Ref� ������

We now de�ne the Hamiltonians we shall use to generate equilibrium distri�

butions of our spin chain� A general Hamiltonian for a one�dimensional chain of N
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spins that interact in pairs is given by

H	sN
 � �
NX

i�j��

Jijsisj � B
NX
i��

si � 	���


where� as usual� the Jij�s are parameters determining the strength of coupling between

spins� B represents an external �eld� and for a spin ��� system� si � f�����g or

si � f�� �g� Below� we shall consider only interactions within a �nite range R � ��

that is�

Jij � �� ji� jj � R � 	���


We shall also consider only coupling constants that are translationally invariant� i� e��

those depending only on ji� jj and not i and j individually� Hence� we de�ne

Jr � Jij � 	���


where r � ji� jj� Despite these restrictions on Jij� the quantities discussed below are

perfectly general and apply to any lattice system�

The canonical partition function for these spin systems is de�ned by

ZN �
X
fsNg

e��H�s
N � � 	���


The sum is understood to extend over all jAjN possible con�gurations of length N �
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The average internal energy U is simply the expectation value of the Hamil�

tonian and can be expressed as

U � � �

N

� logZN

�	
� 	���


The free energy F per site is given by

F � � T

N
logZN � 	���


In the thermodynamic limit� in which the system size N goes to in�nity� ZN typically

diverges exponentially so F remains �nite�

The thermodynamic entropy is de�ned as the logarithm of the number of

microstates accessible at a given energy� In the canonical ensemble� the entropy per

site S is related to the free energy per site F via

S � ��F
�T

� 	����


Finally� the magnetization m per site is de�ned as the average

m � �

N
h
NX
i��

sii � 	����
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where here and below angular brackets indicate thermal expectation value�

h�i � �

ZN

X
fsNg

� e��H�sN � � 	����


For spin systems with a Hamiltonian of the form of Eq� 	���
�

m � ��F
�B

� 	����


��� Statistical Mechanical Measures of Structure

����� Correlation function and correlation length

With the above notational preliminaries out of the way� we consider our �rst statistical

mechanical measure of �structure� the two�spin correlation function �ij� de�ned in

the usual way as

�ij � h	si � hsii
	sj � hsji
i � 	����


This quantity is sometimes called the truncated or connected correlation function to

distinguish it from hsisji� It follows from translation invariance that hsii � hsi�ki� k �

�� �� � � �� This enables us to write the correlation function as

�ij � hsisji � hsi� � 	����
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where hsi � hsji� Thus� �ij measures the tendency of the �uctuations 	about the

mean value
 of spins at site i and at site j to be correlated with one another�

Again from translation invariance it follows that hsisji � hsi�ksj�ki� k �

�� �� � � � � And so� the correlation function depends only on r � ji � jj and not on i

and j individually� This leads one to de�ne

�	r
 � hs�sri � hsi� � 	����


Except at a critical point� the correlations die exponentially with increasing r� that

is�

�	r
 � e�r�� as r� � 	����


The quantity � is called the correlation length� Simply stated� it measures the range of

in�uence of a single spin� Equivalently� � gives the size of a typical ordered cluster of

spins� An in�nite correlation length typically indicates that the correlation function

dies algebraically� rather than exponentially� This occurs at the critical points of

continuous 	second or higher order
 phase transitions�

����� Susceptibility and structure factors

The magnetic susceptibility � per site is de�ned as a measure of the system�s linear

change dm in magnetization per site due to the application of a small external �eld
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dB� That is�

dm � �dB � 	����


Thus�

� �
�m

�B
� � ��F

	�B
�
� 	����


As is always the case with linear response functions ���� ���� � can be written

as a sum of correlation functions�

� � lim
N��

	

N

NX
i�j��

�ij � 	����


We can exploit the translation invariance of �ij to perform one of the sums above�

We then obtain

� � 	

�
�

�X
r��

�	r
� �	�


�
� 	����


This expression for � can be reconciled with its de�nition� Eq� 	����
� by realizing

that� roughly speaking� the magnetization is more changeable with a variation in �eld

dB the greater the correlations between spin pairs�

Eq� 	����
 tells us that � is a sum over correlation functions and as such might

serve as a global measure of structure� In particular� consider the term
P�

r�� �	r
� the

sum over all possible two�spin correlation functions� from Eq� 	����
� At �rst blush�

this seems to be an ideal quantity to use as an indicator of structure� By summing

over all two�spin correlation functions � appears to provide a measure of the total
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correlations across the lattice�

However� this turns out not to be the case� To see this� consider a system near

an antiferromagnetic�paramagnetic transition� Clusters of ordered spins appear at all

length scales� but the type of order within a cluster is antiferromagnetic�alternating

up and down spins� Thus� the correlation functions �	r
 for such a system will

alternate in sign with r and will tend to cancel each other out� resulting in a small

quantity despite the presence of a strong antiferromagnetic ordering� To compensate

for this� one could choose� for example� to multiply each term in the sum by 	��
r�

But this is a somewhat arbitrary adaptation to a particular set of spin couplings that

derives ultimately from our own appreciation of the underlying order�

Instead� we can take the Fourier transform of spin con�gurations� The result

is a function that is usually called the structure factor� It is given by

S	q
 �
�X
r��

eirq�	r
 � 	����


The structure factor provides a measure of the correlation with a particular spatial

periodicity� as measured by the wavenumber q� As an observable� S	q
 is important

for both simulation and laboratory experiments� In a simulation it is often S	q
 that

is calculated to look for a phase transition an S	q
 that diverges as a function of

system size is a clear indication of critical behavior� In the laboratory� order in a

magnetic system is often probed by means of neutron scattering� Assuming dipole
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interactions and �xed target spins� the probability for scattering to occur with a

momentum transfer q is proportional to S	q
� see� e�g�� ����� Neutron scattering is

used� for example� to distinguish between a paramagnet and an antiferromagnet� Both

types of materials have zero magnetization� but their magnetic structural properties

are distinct�

Any transform 	integral or discrete
 carries with it representational restrictions

that are implicit in its choice of function basis� For example� an interpretation of S	q
�

as with all Fourier analysis� carries an assumption that the underlying order is a linear

superposition of periodic con�gurations� Hence� as we shall see� S	q
 is not suited

to detect aperiodicity� Moreover� it is sometimes the case that a particular choice of

function basis results in an unnecessarily �large� description� for example� a Fourier

decomposition of a square wave yields an in�nite number of nonzero amplitudes�

Unfortunately� there is no universally accepted way to de�ne a structure factor�

One alternative is to de�ne

!S�	q
 � 	S	q
 � 	����


so that the susceptibility is more closely related to the structure factor � � � !S�	�
�

	�	�
� Another alternative is to argue that if the structure factor is to measure

correlation between spins� the �self�correlation� term �	�
 should be excluded from

the sum� yielding

!S�	q
 �
�X
r��

eiqr�	r
 � 	����
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Both modi�cations of the structure factor do not signi�cantly alter the features of its

behavior reported in chapters ����� As such� we shall focus our attention on S	q
 as

de�ned in Eq� 	����
�

����� Speci	c heat

We conclude this brief review of statistical mechanical measures of structure by com�

menting on the speci�c heat� The speci�c heat C is a linear response function de�ned

by

dU � CdT � 	����


where U is the internal energy� Like �� C can be related to �uctuations�in this case�

energy �uctuations

C � 	�h	U � hUi
�i � 	����


As a result� C measures �uctuations in energy� not in correlations between spins� To

see this� consider a paramagnet� a spin system in which there are no couplings between

the spins and so the spin variables are independently distributed� The speci�c heat

for such a system is nonzero� reaching a maximum in the T � B region� That C is

nonzero for this system�a clearly correlationless paramagnet�indicates that C � �

is at best a misleading measure of spatial structure�
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��� Searching for Structure is Implicit in the Prac�

tice of Statistical Mechanics

In the previous section we reviewed some basic quantities often used in statistical

mechanics to detect and measure the presence of correlational structure� But there

are other� more subtle ways in which the search for structure enters into statistical

mechanics than in the use of its typical observables�

A calculation of 	say
 the partition function by explicitly considering all al�

lowed con�gurations is infeasible for all but the smallest of systems� It is quite often

the case� however� that the probability distribution to be summed over has symmetries

or internal structure that render large portions of the sum in Eq� 	���
 redundant�

Thus� one central challenge of statistical mechanics is to �nd these symmetries and

�gure out how to best exploit them�

As a simple example of the discovery and exploitation of symmetries consider

again the paramagnet� Since the spins do not interact� the energy of the system de�

pends only on how many spins are up� say� Equivalently� the probability distribution

of a single spin is independent of the others� Due to this particularly simple sym�

metry in the joint probability distribution over spin con�gurations� thermodynamic

averages may be calculated by using the binomial theorem� rather than a brute force

enumeration of all possible con�gurations�

A less trivial example of the �covert� role of structure in statistical mechanics
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is found in the technique of transfer matrices� For one�dimensional systems with

�nite�range interactions� such as the one�dimensional Ising models considered here�

the partition function can be re�expressed in terms of the dominant eigenvalue of this

�nite�dimensional matrix� Moreover� the joint probabilities over spin con�gurations

follow from the dominant left and right eigenvectors� Hence� all thermodynamic

averages can be determined given knowledge of the transfer matrix� Loosely speaking�

the transfer matrix encodes all of the information about the system� In chapters ���

we shall discuss transfer matrix methods in more detail�

Unfortunately� the transfer matrix method does not always work� often failing

for systems with disorder or long�range interactions� It is only successful for sys�

tems whose joint probability distribution over con�gurations factors in a certain way

namely� the distribution over the spin chain must decompose into independent dis�

tributions over contiguous spin blocks of �nite size� Said another way� the stationary

stochastic process generating the chain must be a �nite�memory Markov process�

When the transfer matrix method fails� sometimes it is possible to use an

in�nite dimensional matrix� i� e�� an operator ������ Another approach is the di�

agrammatic perturbation expansions of statistical �eld theory where one or several

fundamental interactions are identi�ed and their contributions to the thermodynamic

quantities in question are summed up by considering more and more complicated in�

teractions ���� �����

Yet another approach to �nding and utilizing structure in the joint proba�
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bility distributions over con�gurations relies on cycle expansion methods ���� �����

Here one systematically approximates the partition function by considering the con�

tributions from fundamental periodic con�gurations of successively longer periods� A

particularly e�ective and elegant application of the cycle expansion technique is the

calculation of the Lyapunov exponent of a product of random matrices ������

The vantage point a�orded by this brief overview suggests classifying statisti�

cal mechanical systems by considering the type of mathematical entity�contiguous

blocks of variables� operators� fundamental interactions� cycles�needed to most e��

ciently �encode� their con�gurations so that calculations of thermal averages can be

performed� In chapter � we shall see that the ��machines of computational mechanics

provide a formalization of this idea�



��

Chapter �

Information Theory I� Shannon

Entropy and its Variants

In this chapter and the following� we explore how information theory can be used to

measure a process�s unpredictability and memory capacity� We begin with a brief

historical review of the questions that motivated the development of information

theory� Then� the remainder of this chapter will focus on some of the key quantities

of information theory as applied to one or two random variables� Subsequently�

in chapter �� we examine how these information theoretic functions are applied to

stationary sequences of random variables�
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��� Historical Introduction

To appreciate the interpretation and use of information theoretic concepts in the

comparisons that we develop in the following� an historical review is helpful� This

will be� of necessity� brief� The interested reader is strongly advised to read basic

reference works such as Refs� ���� ������

In the late �����s Shannon founded the �eld of communication theory ������

motivated in part by his work in cryptography during World War II� This led to

a study of how signals could be compressed and transmitted e�ciently and error

free� His basic conception was that of a communication channel consisting of an

information source that produces messages which are encoded and passed through the

channel� A receiver then decodes the channel�s output in order to recover the original

messages� An essential component of his analysis was the de�nition of the source�s

rate of information production� called the source entropy rate� and the maximum

carrying capacity� called the channel capacity� of the 	possibly noisy and error�prone


channel�

Much earlier� Hartley had proposed to measure the amount of information from

a source via the logarithm of the number of possible source messages ����� Shannon�s

de�nition of the source entropy adapted Hartley�s measure to account for probabilis�

tic structure in the source some messages being more or less likely than others� He

interpreted the negative logarithm of a message�s probability as a measure of sur�
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prise the more unlikely a message the more informative it was when it appeared�

This surprise� averaged over a source�s messages� is the source�s entropy rate� The

functional form of Shannon�s entropy� as he realized� had already been developed by

Boltzmann in late �����s as a measure of disorder of thermodynamic systems ����� In

the following we will refer to this and related quantities as Shannon entropy� however�

since it will be used in the sense intended by information theory�

It is important to emphasize that the core of information theory concerns not

so much the various de�nitions of information and entropy� but rather the relationship

between the source entropy rates that can be sustained through channels and those

channels� capacities� These connections are what makes the similarity between Boltz�

mann�s notion of thermodynamic entropy and Shannon�s entropy rate so notable�

Boltzmann clearly did not anticipate Shannon�s use of entropy�

The primary results on which information theory is built and with which it

�nds its technological applications are Shannon�s two central coding theorems� This

�rst theorem says that information cannot be transmitted error�free through a channel

at a rate higher the channel�s capacity� The second theorem says that as long as the

source�s rate respects this limit then there exists an encoding and decoding scheme

for the source�s messages such that error�free transmission is possible and can occur

at rates arbitrarily close to the channel capacity� These theorems will be restated

more technically in Sec� ����

The mathematical foundations of Shannon�s communication theory followed
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quickly ����� ���� as did a number of applications and important extensions� For

example� Jaynes re�introduced portions of information theory back into statistical

mechanics� reformulating ensembles in terms of a maximum 	Shannon
 entropy as�

sumption under various constraints ����� This was partly motivated as an attempt

to understand the role of probability in statistical mechanics and the similarities be�

tween statistical mechanics and statistical inference ����� For a readable introduction

to this approach to statistical mechanics see Ref� ���� a more thorough account can

be found in �����

The basic quantities used in information theory are various forms of Shannon

entropy the entropy H of a distribution� the information gain D of one distribution

with respect to another� and the mutual information I between two distributions�

When adapted and applied to di�erent communication problems� these are the quan�

tities in which the results of the theory are expressed� It is noteworthy that many

uses of information theory in statistical physics and in nonlinear dynamics mostly

employ its basic quantities and do not use the more characteristic and central aspects

of coding� The remainder of this chapter is concerned with motivating� de�ning� and

discussing these three quantities H� D� and I�
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��� Shannon Entropy

Throughout� we shall use capital letters to indicate a discrete random variable� and

lowercase letters to indicate a particular value of that variable� For example� let X

be a random variable� The variable X may take on the values x � X � Here X is the

	�nite
 set of all possible values for X and is referred to as the alphabet of X�

The probability that X takes on the particular value x is written Pr	X � x
�

or just Pr	x
� We may also form joint and conditional probabilities� Let Y be another

random variable with Y � y � Y� The probability that X � x and Y � y is written

Pr	X � x� Y � y
� or Pr	x� y
 and is referred to as a joint probability� The conditional

probability that X � x given Y � y is written Pr	X � xjY � y
 or simply Pr	xjy
�

����� Entropy as Uncertainty

The use of probabilities to describe a situation implies some uncertainty� If I toss a fair

coin� I don�t know what the outcome will be� I can� however� describe the situation

with a probability distribution fPr	Coin � Heads
 � ����Pr	Coin � Tails
 � ���g�

If the coin is biased� there is a di�erent distribution e�g�� fPr	BiasedCoin � Heads
 �

����Pr	BiasedCoin � Tails
 � ���g�

All probability distributions are not created equal� Some distributions indicate

more uncertainty than others� it is clear that we are more in doubt about the outcome

of the fair coin than the biased coin� The question before us now is can we make
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this notion of uncertainty or doubt quantitative� That is� can we come up with

some function that takes a probability distribution and returns a number that can be

interpreted as a measure of the uncertainty associated with events governed by that

distribution�

We proceed by considering what features such a measure of uncertainty should

have� a line of reasoning �rst put forth by Shannon in his ���� paper ����� that gave

birth to information theory� For de�niteness� we call this measure H�X�� H takes

the probability distribution of X�X � fPr	x�
�Pr	x�
� � � �Pr	xN
 g� xi � X�and

returns a real number� The picture here is that there are N possible values X can

assume� and Pr	xi
 is the probability that X equals the ith possible value� denoted

xi�

First� we surely want H to be maximized by a uniform distribution� After all�

a uniform distribution corresponds to complete uncertainty� Everything is equally

likely to occur � you can�t get much more uncertain than that�

Second� it seems reasonable to ask that H is a continuous function of the prob�

abilities� An arbitrarily small change in the probabilities should lead to an arbitrarily

small change in H�

Third� we know that we can group probabilities in di�erent ways� For example�

consider a variable X with the following distribution

X � fPr	X�a
 � ���Pr	X�b
 � ���Pr	X�c
 � �� g � 	���
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One way to view this distribution is that outcome C or B occurs half of the time�

When it does occur� outcome B occurs with probability ��� That is

X � fPr	X�a
 � ���Pr	X�Y 
 � ��� g Y � fPr	Y �b
 � ���Pr	Y �c
 � �� g �

	���


We would like the uncertainty measure H not to depend on whatever grouping deci�

sions we make� In other words� we want H to be a function of the distribution itself

and not a function of how we group events within that distribution�

Remarkably� the above three requirements are enough to determine the form

of H�X� uniquely up to a multiplicative constant

����� Axiomatic De	nition

Let�s state the above three requirements more carefully and generally� Let H�X� be

a real�valued function of Pr	x�
�Pr	x�
� � � � �Pr	xN
� We require that the following

three statements hold

�� H�X� reaches a maximum when the distribution over X is uniform� Pr	xi
 �

��N i � �� �� � � � � N �

�� H�X� is a continuous function of the Pr	xi
�s�

�� The last requirement is awkward to write mathematically� but no less intuitive

than the �rst two� As mentioned above� the idea is that we want H�X� to
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be independent of how we group the probabilities of individual events xi into

subsets� We follow the notation of Robertson ������ Let the N probabilities be

grouped into k subsets� yk

y� �
n�X
i��

pi � y� �
n�X

i�n���

pi � � � � 	���


Then� we require

H�X� � H�Y � �
kX

j��

yjH�fpi�yjgj� � 	���


where the notation fpi�yjgj indicates that the sum extends over those pi�s that

make up a particular yj�

The above three requirements constrain the function H to be of the following form

H�X� � �k
X
x�X

Pr	x
 logPr	x
 � 	���


where k is an arbitrary positive constant ���� ���� ����� The choice of constant

amounts to a choice of units� we shall use base � logarithms and �x k at �� The

units of H�X� for this choice of constant are called bits and are discussed below in

Sec� ������

Thus� we de�ne the Shannon entropy of a random variable X by

H�X� � �
X
x�X

Pr	x
 log� Pr	x
 � 	���
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The notation H�X� can be misleading� H�X� is not a function of X� It is a function

of the probability distribution of the random variable X� The value of H�X� does not

depend on the values X assumes�

Note that the entropy is nonnegative� One can easily prove that

H�X� � � � 	���


Also note thatH�X� � � if and only ifX is known with certainty i� e�� the probability

of one outcome is � and the probability of all other outcomes is �� 	To show this one

uses limx�� x log� x � ��


The axiomatic de�nition of H given above justi�es the following statement

H	p
 is the quantitative measure of the amount of uncertainty associated with a

probability distribution p� But the story does not end here� There are many other

ways we can view the Shannon entropy� and indication of the quantity�s fundamental

role in computer science and physics� This multiplicity of interpretations is at times

a curse� however� since the di�erent interpretations can lead to confusion� In the

following several sections� we explore some of these additional interpretations� hoping

to give the reader a sense of the range of ways in which the entropy can be used�
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����� Shannon Entropy as Thermodynamic Entropy

It is not hard to see that the Shannon entropy is equivalent to the usual thermody�

namic entropy�

S	E
 � logN	E
 	���


where N	E
 is the number of accessible microstates as a function of energy E� Equi�

librium statistical mechanics postulates that microstates of equal energy are assumed

to be equally likely� the probability of the ith microstate xi occurring is

Pr	xi
 �
�

N	E

� � i � 	���


Plugging Eq� 	���
 into Eq� 	���
� we see immediately that the thermodynamic en�

tropy� Eq� 	���
 results�

This connection with thermodynamics that led Shannon to call his uncertainty

measure �entropy� ������ Legend has it that he was encouraged to do so by John von

Neumann� who said that since �no one really understands what entropy is�� calling his

new measure �entropy� would give Shannon �a big edge in the debates� ���� p� �����

����
 Shannon Entropy as Average Surprise

Here is another way to view Eq� 	���
 The quantity � log� Pr	i
 is sometimes referred

to as the surprise associated with the outcome i� If Pr	i
 is small� we would be quite
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surprised if the outcome actually was i� Accordingly� � log� Pr	i
 is large for small

Pr	i
� And if Pr	i
 is large� we see that the surprise is small�

Thus� we may view Eq� 	���
 as saying that H�X� is the expectation value of

the surprise�

H�X� �
X
x�X

f� log� Pr	x
gPr	x
 � h� log� Pr	x
 i � 	����


where the angular brackets indicate expectation value�

h�i �
X
x�X

�Pr	x
 � 	����


The entropy tells us� on average� how surprised we will be if we learn the value of the

variable X� This observation strengthens the assertion that H	p
 is a measure of the

uncertainty associated with the probability distribution p� The more uncertain we

are about an outcome� the more surprised we will be 	on average
 when we learn of

the actual outcome�

We can also use this line of reasoning to see why H is referred to as a measure

of information� Let us return to the example of a coin toss� Suppose I told you

the outcome of the toss of a fair coin� This piece of information would be quite

interesting to you� since before I told you the outcome you were completely in the

dark� On the other hand� if it is the biased coin with a ��" probability of heads that
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is thrown� telling you the outcome of the toss is not as useful� �Big deal� you might

say� �I was already pretty sure it was heads anyway� you really haven�t given me

much information�� It is in this sense that H�X� provides a measure of information�

The greater H�X�� the more informative� on average� a measurement of X is�

����� Entropy and Yes�No Questions

Entropy is also related to how di�cult it is to guess the value of a random variable�

This is discussed rather thoroughly and clearly in chapter � of Ref� ����� Here� I�ll

just explain the general ideas qualitatively�

We begin with an example� Consider the random variable X with following

distribution �������
Pr	X � A
 � ���� Pr	X � B
 � ����

Pr	X � C
 � ���� Pr	X � D
 � ���

������� � 	����


On average� how many yes�no questions are required to �gure out the value of X� A

reasonable �rst guess is X � A� This guess is right half of the time� and hence� half

of the time only one question is needed to determine the outcome of X� If this initial

guess is incorrect� one would then guess that X � B� Again� this question will yield

a �yes� half of the time� So� half of the time one will need to make the X � B guess

and half of the time that guess will be correct� As a result� ��� of the time it will

take two guesses to determine X�

If the X � B guess was incorrect� one more guess is needed� say� X � C�
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Regardless of the outcome of this guess� the value of X is now known� since if X �� C�

it must be that X � D� So� half of the time the X � B guess will be required� and

half of the time that guess will be wrong� necessitating the X � C guess� Hence� ���

of the time � guesses are needed� Adding this up� we have

Average # of Guesses �
�

�
	�
 �

�

�
	�
 �

�

�
	�
 � ���� � 	����


It turns out that the entropy of the distribution given in Eq� 	����
 is exactly equal

to �����

This is not a coincidence� One can show that ����

H�X� � Average # of Yes� No Questions to Determine X � H�X� � � � 	����


This result assumes that the guesser is making optimal guesses� That is� roughly

speaking at every guess� he or she tries to �divide the probability in half�� This is

exactly the strategy we employed in the above example�

Eq� 	����
 might appear a little mysterious as �rst� As a slightly less mysterious

example� consider another distribution

�������
Pr	Y � �
 � ���� Pr	Y � 	
 � ����

Pr	Y � 
 � ���� Pr	Y � �
 � ���

������� � 	����
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Clearly it will take an average of � guesses to determine the value of Y � The variable

X is easier to guess because a lot of the probability is concentrated on X � A and

X � B� and we can exploit this in our guessing�

This idea of entropy as the average number of yes�no guesses is consonant with

our earlier interpretation of entropy as a measure of uncertainty� The more uncertain

we are about an event� the harder it is to guess the outcome�

����� Entropy and Coding

The Shannon entropy H�X� is also related to the length of the minimal code for X�

Speaking somewhat loosely� a code is a mapping between sets of symbols� For exam�

ple� the Morse code maps the English alphabet�letters� punctuation and spaces�to

dots� dashes and spaces� We are interested in the average size of the minimal code

the shortest coding scheme that is still uniquely decipherable� Put another way� we

are interested in compressing an information source� not encrypting it� Encryption

entails devising a mapping between symbols that is di�cult to guess� Here� we as�

sume that both the sender and the receiver are privy to the particular mapping used

to encode the variables�

How does one devise an e�cient code� The idea is to choose short code words

for objects that occur most frequently� However� we also must make sure that the code

is uniquely decodable� i�e�� that we don�t compress the original signal so much that

it can�t be recovered� As an example� consider again the distribution of Eq� 	����
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from the previous section� Here� it makes sense to use the shortest possible code for

the event X � A since it has the highest probability of occurring�

This business of choosing more probable events should be familiar�it�s iden�

tical to the strategy we employed when we were trying to guess what X was� the

process of yes�no guessing speci�es a binary code ����� Returning to the example

of Eq� 	����
� recall our procedure for guessing the outcome of X and consider the

sequence of questions that led up to our determining a particular value� To make our

code� for each �yes� answer we�ll use a � and for each �no� answer we�ll use a �� The

result is the following code

A � �

B � ��

C � ���

D � ��� 	����


For example� if we discovered that X � B we would have gotten a �no� to our �rst

questions and a �yes� to our second� corresponding to ��� Note that this encoding

scheme is uniquely decodable� For example� if we observed �������� we know without

any ambiguity that the original sequence was AADB�

Given this correspondence between yes�no questions and binary coding� we see
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that Eq� 	����
 implies that

H�X� � Average Length of Binary Code for X � H�X� � � � 	����


Before concluding this section� we state a slightly more technical result� Sup�

pose one is encoding N identically distributed random variables X with a binary

code� Then� in the N � limit ����

�

N
	Average Length of Optimal Binary Code for X
 � H�X� � 	����


This is a form of the famous Shannon source coding theorem� to be discussed again

in Sec� ����

Each digit in a binary code corresponds to one bit� a �ip��op memory device

that can be in one of two positions� Thus� Eq� 	����
 tells us that H�X� is the average

number of bits needed to store the value of the random variable X�

���� Summary

In summary� the Shannon entropy H�X� of a random variable X is the answer to

many� seemingly di�erent questions� In Sec� ����� we have seen that the average

number of yes�no questions needed to guess the outcome of X lies between H�X�

and H�X� � �� Equivalently� we have seen in Sec� ����� that NH�X� is the average
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length of the binary code for N successive outcomes of X� Hence� H�X� is the average

amount of memory� in units of bits� needed to store the value of X�

In Sec� ����� I discussed how the Shannon entropy H�X� can be shown to

be the unique measure of the uncertainty associated with the outcome of X� This

axiomatic treatment puts H on very �rm footing� there is nothing arbitrary about the

de�nition of the Shannon entropy� Furthermore� we�ve seen that Shannon�s entropy

function is identical to the thermodynamic entropy� an 	indirectly
 experimentally

measurable state function of a statistical mechanical system�

��� Joint and Conditional Entropy

We continue this brief introduction to several key quantities of information theory

by de�ning some variants of the entropy discussed above� I�ll also state some of the

properties of and relationships between these quantities�

First� the joint entropy of two random variables� X and Y � is de�ned in the

natural way

H�X� Y � � �
X
x�X

X
y�Y

Pr	x� y
 log� Pr	x� y
 � 	����


The joint entropy is a measure of the uncertainty associated with a joint distribution�
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Next� we de�ne the conditional entropy

H�XjY � � �
X
x�X

X
y�Y

Pr	x� y
 log� Pr	xjy
 � 	����


The conditional entropy measures the uncertainty associated with a conditional prob�

ability� H�XjY � is the expectation value of the conditional surprise� � log� Pr	xjy


where the average is weighted by the joint distribution�

By writing Pr	x� y
 � Pr	x
Pr	yjx
 and taking the expectation value of the

logarithm of both sides of this equation� we see that the joint entropy obeys the

following� pleasing chain rule

H�X� Y � � H�X� �H�Y jX� � 	����


There are two noteworthy consequences of this observation� First� we may write

H�Y jX� � H�X� Y ��H�X� � 	����


As H�X� � �� we obtain the sensible result that conditioning reduces entropy� That

is� knowledge of one variable can never increase our uncertainty about other variables�

Second� Eq� 	����
 makes it quite clear that

H�Y jX� �� H�XjY � � 	����
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��� Mutual Information

We now turn our attention to mutual information� We de�ne the mutual information

I�X�Y � of two random variables X and Y via

I�X�Y � �
X
x�X

X
y�Y

Pr	x� y
 log�
Pr	x� y


Pr	x
Pr	y

� 	����


Some straightforward manipulations show us that

I�X�Y � � H�X��H�XjY � 	����


� H�Y ��H�Y jX� 	����


� H�Y � �H�X��H�X� Y � � 	����


The above shows quite clearly that I�X�Y � � I�Y �X��

Eq� 	����
 shows us why I is called the mutual information� we see that mutual

information between two variables is the reduction in uncertainty of one variable due

to knowledge of another� If knowledge of Y reduces our uncertainty of X� then we

say that Y carries information about X�

Looking at Eq� 	����
� it�s not hard to see that I�X�Y � vanishes if X and Y

are independently distributed� Pr	x� y
 � Pr	x
Pr	y
� Also� we see that the mutual

information between two variables vanishes if both variables have zero entropy� The

mutual information is positive in between these two extremes�
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��� Information Gain

The Shannon entropy of source X measures the average uncertainty of observing

outcomes x if we expect the outcomes to occur with probability Pr	x
� But what if�

despite the actual events occurring according to Pr	X
� we have prior knowledge that

leads us to expect the outcomes are distributed with probability Q	x
� The relative

information obtained in observing X is then given by the information gain D	P jQ


D	P jQ
 �
X

x�A	Q�x���

P 	x
 log�
P 	x


Q	x

� 	����


where we assume that if Q	x
 � �� then P 	x
 � ��

The quantity D is often referred to as a distance� but it is neither symmetric

in P and Q nor does it obey a triangle inequality� It is� however� nonnegative� and is

zero only when the two distributions are equal� D	P jQ
 is� in a sense� the number of

bits it takes to change distribution P into Q� Note that D	P	x
jU
 � log� jAj�H�X��

where U is the uniform distribution�



��

Chapter �

Information Theory II� Entropy

Density and Entropy Convergence

We now shift the emphasis back to analyzing spin con�gurations� or� more generally�

a stationary chain of random variables� In this chapter we apply the information the�

oretic quantities introduced in the previous chapter to the spin chain� By considering

the manner in which the entropy of the spin chain grows as more spins are considered�

we�ll be led to two important quantities the entropy density and the excess entropy�

The latter is especially noteworthy since it can be interpreted as a measure of the

process�s memory�
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��� Entropy Growth

Consider again the bi�in�nite sequence � � � S��S��S�S�S� � � �� The average uncertainty

of observing an L�spin block SL is given by the Shannon entropy of the joint distri�

bution Pr	sL
 ����

H	L
 � �
X

sL�AL

Pr	sL
 log� Pr	s
L
 � 	���


We de�ne H	�
 � � and� for later use� H	L
 � �� L � �� The block entropy is

nonnegative� H	L
 � �� and monotonic in L� H	L
 � H	L � �
� That is� adding an

additional random variable cannot reduce uncertainty ����� A schematic plot of H	L


vs� L is shown in Fig� 	���
 for a typical information source�

��� Entropy Density and Entropy Density Conver�

gence

The spatial density of the Shannon entropy of the spin con�gurations is de�ned by

h� � lim
L��

H	L


L
� 	���


where 
 denotes the measure over bi�in�nite con�gurations that induces the L�block

joint distribution Pr	SL
� The quantity h� measures the irreducible randomness

in spatial con�gurations the randomness that remains after the correlations and
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µ+ h  L
E

E

H(L)

Figure ��� Total Shannon entropy growth for a typical information source a
schematic plot of H	L
 versus L� H	L
 increases monotonically and asymptotes
to the line E� h�L� where E is the excess entropy and h� is the source entropy rate�

structures in larger and larger spin blocks are taken into account� For physical systems

h� is equivalent to thermodynamic entropy density�S in Eq� 	����
�in units where

kB� loge � � �� The entropy density is also known as the entropy rate or the metric

entropy� depending on the application context�

The entropy density h� can be re�expressed as

h� � lim
L��

�H	L� �
�H	L
� � 	���


Thus� we see that the curve�s slope as L� in Fig� 	���
 corresponds to the entropy

density h��



CHAPTER �� ENTROPY DENSITY AND ENTROPY CONVERGENCE ��

Eq� 	���
 can also be rewritten by using the conditional entropy as de�ned in

Eq� 	����
 ����

h� � lim
L��

H�SLjSL���

� lim
L��

H�SL� SL��� � � � � S�jSL��� SL��� � � � � S��

� lim
L��

H�SLjS� � � � SL��� � 	���


Thus� h� is the uncertainty of the next spin value sL conditioned on the �rst 	L �

�
 spins in the L�block� as L  �� This reinforces the interpretation of h� as

the irreducible randomness associated with the system� Eq� 	���
 indicates that h�

measures our uncertainty about the variable SL given knowledge of all the spins

that preceded it� In this sense h� measures� in units of bits per site� the per�spin

unpredictability of the in�nite string� Note that the entropy density is nonnegative�

h� � ��

Eqs� 	���
� 	���
� and 	���
 give di�erent expressions for the entropy density

h�� These are all equivalent in the present setting� though they need not be for

nonequilibrium or nonstationary processes �����

The entropy density is a property of the system as a whole� only in special

cases will the isolated�spin uncertainty H	�
 be equal to h�� This leads us to consider

how random the spin chain appears when �nite�length spin blocks are considered�
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This �nite�length apparent randomness is given by

h�	L
 � H	L
�H	L� �
� L � �� �� � � � � 	���


the incremental increase in uncertainty in going from 	L��
�blocks to L�blocks� Thus�

since we�ve imposed the �boundary condition� H	�
 � �� we have h�	�
 � H	�
�

Comparing Eq� 	���
 with Eqs� 	���
 and 	���
� we see that h�	L
 may be

viewed as the �nite�L approximation to the entropy density h�� Graphically� h�	L


is the two�point slope of the H	L
 vs� L curve� in other words� h�	L
 is the discrete

derivative of H	L
� The convergence of h�	L
 to h� is illustrated in Fig� 	���
� The

entropy density h� is indicated by a horizontal dashed line�

��� Density	 Rate	 and Algorithmic Complexity

Coming back to the issue of describing the observations of spin con�gurations we note

that the entropy density h� is equivalent to the growth rate of the Kolmogorov�Chaitin

	KC
 complexity of spin con�gurations� averaged over a given ensemble ���� ���� The

KC complexity of an individual con�guration is de�ned as the length of the minimal

program that� when run� will cause a universal Turing machine 	UTM
 to produce the

con�guration and then halt� The KC complexity is sometimes referred to as the algo�

rithmic 	or deterministic
 complexity because it demands a deterministic accounting
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1 L

h (L)µ

hµ

E

H(1)

Figure ��� Entropy density convergence A schematic plot of h�	L
 versus L using
the typical H	L
 shown in Fig� 	���
� The entropy density asymptote h� is indicated
by the horizontal dashed line� The shaded area is the excess entropy E�

for every spin in the con�guration� A random con�guration by de�nition possesses

no regularities so it cannot be compressed� As a result� a random con�guration�s

shortest description is the con�guration itself� Hence� we see that the KC complexity

is maximized by random con�gurations� as is the entropy density h��

��� Redundancy

If h� � log� jAj� the full information carrying capacity of the alphabet is being un�

derutilized� Said in a complementary fashion� in this case the information source

produces sequences that have correlations� One measure of these correlations is the
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redundancy �����

R � log� jAj � h� � 	���


There is no redundancy in a completely random source� since by de�nition such a

source has Pr	sL
 � U	sL
� L � �� �� � � �� and so h� � log� jAj� where U is the

uniform distribution�

��� Shannon
s Coding Theorems

As mentioned above in Sec� ������ loosely speaking� the sequence of yes�no questions

leading to the identi�cation of a particular outcome x of the random variable X

de�nes a code for that outcome� One can show that the average 	per symbol
 length

of the optimal� uniquely decodable binary encoding for the information source X lies

between h� and h� � � ����� If one tries to encode N copies of the variable X� the

average length of the code approaches Nh� as N  �� Thus� the entropy rate h�

of the random variable X can also be interpreted as the average number of bits of

memory needed to store information about the values X takes ���� �����

This view of entropy as average code length is in harmony with the notion of

entropy as uncertainty� If we are very uncertain about the outcome of an observation�

on average it will take a long code word to specify the outcome when it occurs� If we

are fairly certain what the outcome will be� we can take advantage of this knowledge

by using short code words for the frequently occurring outcomes� This strategy is
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employed in Morse code� where the most frequently occurring English letter �E�

is encoded using the shortest symbol� one �dot�� Put somewhat colloquially� then�

the entropy rate measures the average length required to describe observations of a

random variable�

In order to state Shannon�s coding theorems more carefully� we need �rst to

state the de�nition of a channel�s information carrying capacity� If the source is

denoted X and the output of the channel is denoted Y � then the channel capacity C

is de�ned as

C � sup
fXg

I�X�Y � � 	���


where the supremum is understood to be taken over all information sources X�i�e��

over all distributions of X� The picture here is that the sender transmits the signal

X which is received as Y by the receiver� As a particularly simple example� consider

a noiseless binary channel in which X� Y � f�� �g and Y is determined by X� the

signal is transmitted without errors� Thus� H�Y jX� � � and C � � bit� where the

supremum occurs when Pr	X � �
 � Pr	X � �
 � ��� �����

Now that the entropy density 	or rate
 and the channel capacity have been

de�ned we can quickly mention Shannon�s coding theorems again in order to show

the utility of the various entropies just discussed and also to highlight one di�erence

in motivation between information theory and statistical mechanics� The �rst coding

theorem states that if h� � C� the information source cannot be transmitted without
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errors� The second says that if h� � C� then there exists an encoding of the source

messages that produces a new source whose rate is less than� but arbitrarily close

to C� And so� by the �rst theorem� the source messages can be carried error free in

a noisy channel of capacity C and correctly decoded� Exactly how one �nds these

encoding schemes is not speci�ed by the theory� though many techniques have been

developed since information theory�s introduction�

Before continuing� we mention an additional example of a communication

channel which serves to illustrate the importance and non�triviality of Shannon�s

coding theorems� Consider now a binary symmetric channel ���� pp� ������� Here the

signals X and Y are binary� and there is a probability p that any particular bit of

the signal X is �ipped� That is� Pr	Y � �jX � �
 � Pr	Y � �jX � �
 � p� This

is an example of a noisy channel� Indeed� no single bit is reliable�each symbol in

the message X has a non�zero probability of being transmitted wrong 	i�e�� �ipped
�

Is it possible to reliably transmit any message using such a communication channel�

Remarkably� Shannon�s theorems let us conclude that such a channel can be used

reliably�

It is not hard to show that the channel capacity for the binary symmetric

channel is given by ��H�F � ���� p� ����� where H�F � � �p log� p� 	��p
 log�	��p


is the entropy associated with the probability that a single bit is �ipped� Shannon�s

second coding theorem then states that any source with an entropy rate h� � ��H�F �

can be encoded such that the new source 	the encoding
 can be transmitted error
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free along this communication channel� This is quite a noteworthy result� Shannon�s

theorem tells us that this noisy channel� which is� in some sense� completely unreliable�

can nevertheless be used to transmit signals error free�

��� Excess Entropy

The entropy density h� measures the per�spin unpredictability of in�nite con�gura�

tions� However� h� says little about how di�cult it is to perform this prediction�

For example� consider two periodic con�gurations one of period � and one of period

����� Both have zero entropy density� indicating that once the periodic pattern is

gleaned there is no uncertainty about the subsequent spins� But there are impor�

tant 	and obvious
 di�erences between the two con�gurations� It seems clear that�

in some sense� the period����� con�guration is �harder� to predict than the period��

con�guration� a distinction that is missed by stating h� � �� For example� one would

imagine that the con�guration with the longer period requires much more memory

to predict than that with the short period� How can we formalize the notions of

�memory� and �di�culty� of prediction� For the remainder of this chapter and the

following one� we shall be concerned with stating this question more clearly and then

answering it�

We begin our consideration of memory by observing that the length�L approx�

imation to the entropy density h�	L
 overestimates the entropy density h�� Speci��
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cally� h�	L
 overestimates h� by an amount h�	L
�h� that measures how much more

random single spins appear knowing the �nite L�block statistics than knowing the

statistics of the in�nite con�gurations
�

S� In other words� this excess randomness tells

us how much additional information must be gained about the con�gurations in order

to reveal the actual per�spin uncertainty h�� More precisely� the di�erence h�	L
�h�

is a form of redundancy� as discussed in section ��� above� Though the source appears

more random at length L by this amount� this amount is the information�carrying ca�

pacity in the L�blocks that is not actually random� but is due instead to correlations�

We conclude that entropy convergence is related to a type of memory�

There are many alternative ways in which the �nite�L approximations h�	L


converge to their asymptotic value h�� Recall Fig� 	���
� Fixing the values of H	�


and h�� for example� does not determine the form of the h�	L
 curve� At each L we

obtain additional information about how h�	L
 converges� information not contained

in the values of H	L
 and h�	L
 at smaller L� Thus� roughly speaking� each h�	L
 is

an independent indicator of the manner in which h�	L
 converges to h��

Given that each increment h�	L
 � h� is an independent contribution in the

sense just described� we sum up the individual L�redundancies to obtain our candidate

measure of memory� The resulting quantity is the total excess entropy ���� ��� ����

���� ���� ��� ���

E �
�X
L��

�h�	L
� h�� � 	���
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Graphically� E is the shaded area in Fig� 	���
� If one inserts Eq� 	���
 into Eq� 	���
�

the sum telescopes and one arrives at an alternate expression for the excess entropy

E � lim
L��

�H	L
� h�L� � 	���


Hence� E is the y�intercept of the straight line to which H	L
 asymptotes� as indicated

in Fig� 	���
� For stationary sources the excess entropy is nonnegative� E � ��

Looking at Eq� 	���
� we see that� informally� E is the amount in bits� above

and beyond h�� of apparent randomness that is eventually �explained� by considering

increasingly longer spin blocks� Conversely� to see the actual 	asymptotic
 randomness

at rate h�� we must extract E bits of information from observations of spin blocks�

We expect a large E to indicate a large amount of structure E is large if there

are long�range correlations that account for the apparent randomness observed in

distributions over small spin blocks�

This interpretation is strengthened by noting that E may be expressed as the

mutual information I� Eq� 	����
� between the two semi�in�nite halves of a con�gu�

ration�

E � I�
�

S �
�

S� � 	����


Note that this form makes it clear that E is spatially symmetric� Recalling that

the mutual information can also be written as the di�erence between a joint and a



CHAPTER �� ENTROPY DENSITY AND ENTROPY CONVERGENCE ��

conditional entropy

I�
�

S �
�

S� � H�
�

S��H�
�

S j
�

S� � 	����


we see that E measures the average reduction in uncertainty H�
�

S� of the left�half

con�guration
�

S� given knowledge of
�

S� One must interpret Eqs� 	����
 and 	����


with care since they contain entropy contributions� like H�
�

S�� that individually may

be in�nite�even for a fair coin process�

Eqs� 	����
 and 	����
 allow us to interpret E as a measure of how much

information one half of the spin chain carries about the other� In this restricted

sense E measures the spin system�s apparent spatial memory� If the con�gurations

are perfectly random or periodic with period �� then E vanishes� Excess entropy

is positive between the two extremes of ideal randomness and trivial predictability�

This property ultimately derives from its expression as a mutual information� since

the mutual information between two variables vanishes either 	i
 when the variables

are statistically independent or 	ii
 when they have no entropy or information to

share� These extremes correspond to E vanishing in the cases of ideal randomness

and trivial predictability� respectively� Finally� E measures the average degree of

statistical independence of the two halves of a spin chain�how �indecomposable�

the chain is�

Note that all three expressions for the excess entropy� Eqs� 	���
� 	���
� and

	����
� indicate that E carries units of bits� This is clear in Eq� 	����
� since the
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mutual information has units of bits� The entropy density� h� has units of bits per

site� and L� the length of a spin block� has units of lattice sites� Hence� both terms

on the right hand side of Eq� 	���
 have units of bits� so it follows that the left hand

side� E� must have units of bits as well� Lastly� Eq� 	���
 tells us that E is the shaded

area in Fig� 	���
� The y�axis of Fig� 	���
 has units of bits per site while the x�axis

has units of lattice sites� Since E is an area on Fig� 	���
� it has units of bits�

It follows immediately that any periodic sequence of period P has E � log� P�

Returning to the example at the beginning of this section� then� we see that a period�

���� sequence has an excess entropy log� ���� � ����� bits� while the period�� se�

quence has an excess entropy of log� � � � bits� Thus� as anticipated� the period�����

sequence does indeed possess more memory than the period�� sequence�

��� Correlation Information

In the previous section we interpreted the excess entropy as the total amount of

information that must be extracted from measuring L�blocks in order to recover the

asymptotic entropy density�that is� to see just how random each spin is� The entropy

convergence plot� Fig� 	���
� is the discrete derivative� with respect to block length

L� of the entropy growth curve H	L
 of Fig� 	���
� What if we take more discrete

derivatives of H	L
� It turns out that the second derivative of H	L
 recovers the

correlation informations k	L
 of Refs� ����� ���� and allows for another interpretation
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of excess entropy�

We follow Refs� ����� and ����� and de�ne the correlation information k	L
 of

order L as

k	L
 �
X
fsLg

Pr	sL
 log�
Pr	sL��jsL��

Pr	sL��jsL��
 � 	����


It is not hard to see that k	L
 � h�	L
 � h�	L � �
� Thus� the correlation infor�

mations are indeed a discrete derivative of the entropy convergence function h�	L
�

These quantities have a useful interpretation as the information gain between distant

spins ����� and so are somewhat similar to the two�point mutual information just

introduced�

From the boundary conditions on H	L
� we see that k	�
 � h�	�
 � H	�
�

Note that limL�� k	L
 � �� Under suitable assumptions about the source�s struc�

ture� it follows from the de�nition that the excess entropy is directly related to the

correlation informations according to

E �
�X
L��

Lk	L
 � 	����


In this form� E appears as type of correlation length E is an average length in which

the average is weighted by the correlation informations ����� �����
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�� Two�Spin Mutual Information

Finally� we mention that we can use the mutual information to de�ne an information

theoretic analogue of the two�spin correlation functions discussed above� The two�spin

mutual information is de�ned by

I	r
 � I�S��Sr� � 	����


and measures the information shared between two spins separated by r sites� Using

the translation invariance of spin con�gurations it follows that

I	r
 � �H�S���H�S�� Sr� � 	����


Note that I	�
 � H	�
 and that for a typical source I	r
 is monotone decreasing�

I	r
 � I	r � �
� For the special case of binary sequences in which �	r
 vanishes as

r�� I	r
 � ��	r
� r � � �����
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��� Information Theoretic Approaches to Struc�

ture in Dynamics	 Statistical Physics	 and Else�

where

The total excess entropy was used by Crutch�eld and Packard in Refs� ���� ��� ���

���� to examine the entropy convergence for noisy discrete�time nonlinear mappings�

They developed a scaling theory for the entropy rate convergence h�	L
 � h� 


���L� where� for Markovian �nite�memory chains� the excess entropy and entropy

convergence exponent  are simply related E � 	H	�
� h�
�	�� ���
� Analytical

calculations of entropy convergence for some simple discrete�time nonlinear maps were

carried out by Sz�epfalusy and Gy$orgyi ������ Subsequently� Csord�as and Sz�epfalusy

���� explored a generalized version of the excess entropy� which they call the �reduced

R�enyi information�� also in the context of discrete�time nonlinear mappings� The

reduced R�enyi entropy is also discussed by Z� Kaufmann ����� Excess entropy was

recoined �stored information� by Shaw ����� and subsequently �e�ective measure

complexity� by Grassberger ����� These two authors emphasize the entropy growth

view shown in Fig� 	���
� Entropy growth has also been considered by Eriksson

and Lindgren in ����� E has been discussed in the context of cellular automata

by Grassberger ���� and by Lindgren and Nordahl ������ Excess entropy was also

mentioned brie�y by Lindgren in Ref� ����� The quantity is simply called �complexity�
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as applied to several stochastic automata by Li �����

There have been other prior discussions of using information theory to mea�

sure a source�s structure� For example� mutual information has been proposed as

a measure of self�organization ���� ����� Watanabe ����� and Kolmogorov ���� take

approaches that are di�erent� yet again� The latter is particularly notable� though

brief� for how its discussion of source structure parallels the philosophies of model

inference by minimum message length ����� and minimum description length �����

found in the theories of model order estimation and universal source coding� Both of

these approaches address the discovery of source structure� though not as directly as

concerns us here�

A number of the above notions have also recurred in more recent discussions of

modeling information sources ���� ���� See also the references in ���� and the critical

evaluation there of information theoretic notions of complexity and structure�

It should be emphasized that there are subtle but signi�cant di�erences in

these works� notions of e�ective complexity� memory� and information� For example�

except for Refs� ����� and ����� which are concerned with inductive inference� almost

none of the above references pay attention to minimal representations� Minimality

is crucial for being able to conclude that a given quantity estimated from a model

actually describes an intrinsic structural property of a process and is not an artifact

of some unarticulated representational choice�a key issue to which we shall return

repeatedly in the following�
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The preceding observations on the nature of entropy convergence stay within

the framework of information theory�a largely statistical view of �structure�� These

quantities and a number of the preceding observations have been known for at least

a decade and a half� if not longer�



��

Chapter �

Computational Mechanics

In the previous chapter we saw that the excess entropy E provides a measure of the

apparent spatial memory stored in con�gurations� However� excess entropy and the

apparatus of information theory tell us nothing about how the system�s memory is

organized and utilized� Computational mechanics ���� addresses this issue by paral�

leling and extending the architectural analyses found in discrete computation theory�

For an introduction to discrete computation theory� see� e�g�� Refs� ���� or ����� In

explicitly considering how the system produces the apparent spatial memory E� we

shall be led to put forth another measure of intrinsic memory� known as the statis�

tical complexity� de�ned as the minimum amount of memory needed to statistically

reproduce the original con�guration 	and the ensemble from which it comes
� This is

a di�erent interpretation of memory than given to the excess entropy� Chapters �����

and ������ however� will show that these two notions of memory are related� This
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additional set of theoretical tools allows us to describe structure and information pro�

cessing at a more detailed and complete level than possible via information theory

alone�

��� Intrinsic Computation

Like statistical mechanics� computational mechanics is concerned with a large system

consisting of many individual components� However� computational mechanics ad�

dresses very di�erent issues� The motivating questions of computational mechanics

center around how a system processes information How is information stored� trans�

mitted� and transformed� How much memory is needed to statistically reproduce an

ensemble of con�gurations and how is this memory organized� In general� we are

interested in inferring the intrinsic computation being performed by the system itself�

By intrinsic computation ���� we mean something very di�erent than �com�

putation� as the word is typically applied either in reference to the use of modern

digital computers as tools for simulation or for symbolic manipulation 	e�g�� as found

in the Journal of Computational Physics
 or in reference to the use of a device to

perform useful information processing for some person or machine 	as in updating a

spreadsheet or determining the �ve billionth digit of �
� Useful computation usually

entails �xing the initial conditions and control parameters of a dynamical system so

that the outcome contains some information of interest to us� as outside interpreters
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of the result ����� For example� we might employ the mapping

xn�� �
�

�
	xn �

a

xn

 � x� � � � 	���


which has the useful property that limn�� xn �
p
a ����� This iterative procedure

for increasingly accurate estimates of roots was reported by Hero of Alexandria �����

in the �rst century B�C�

In contrast� when we ask about intrinsic computation� we are interested not

in manipulating a system to produce an output that is useful to us�which is akin

to an engineering stance towards nature� Instead� we are interested in examining the

information processing that the system itself performs and the underlying mechanisms

that support it�which is more of a scienti�c stance exploring how nature works on

its own terms�

As a concrete example� consider the two�dimensional nearest�neighbor Ising

model at the critical temperature� Here the correlations between spins decay with

a power law as a function of distance� yet the total magnetization of the system

remains zero� Computational mechanics is concerned with what sorts of e�ective

information processing the system must perform to reach and maintain the critical

state� How much historical and spatial memory is required� How is the memory

organized internally� What spatial patterns result� Are the critical con�gurations

in any way �harder� to reach than those found at low or high temperatures� More
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informally� how does the system balance up and down spins so that the correlations

decay as a power law� while keeping zero magnetization�

Whereas statistical mechanics starts with a system�s Hamiltonian or a descrip�

tion of its constituents� local space�time behavior and interactions� computational me�

chanics begins with the joint probability distribution over the state space trajectories�

With knowledge of this joint distribution� the intrinsic computation being performed

by the system can be determined� By not requiring a Hamiltonian� computational

mechanics can be applied in a wide range of contexts� including those where an energy

function for the system may not be manifest�

In any case� as noted above� the two microscopic starting points in the many�

body setting�a Hamiltonian or the joint probabilities of con�gurations over time�

are related 	at equilibrium
 to each other by the usual canonical ensemble�

Pr	C
 
 e��H�C� � 	���


where C is a con�guration� 	 the inverse temperature� and H the system�s Hamilto�

nian�



CHAPTER �� COMPUTATIONAL MECHANICS ��

��� E�ective States� Preliminary Examples

Rather than launching into the mathematical development� we begin our review of

computational mechanics with several very simple examples� These will lead quite

naturally to the de�nitions put forth in the subsequent section�

The questions we shall be addressing for each example are How can one

statistically reproduce a given in�nite con�guration using the minimal amount of

memory� In particular� how much information about the left half must be remem�

bered to produce the right half� Here statistically reproduce refers to the ability to

generate in�nite con�gurations whose �nite�length spin blocks occur with the same

probabilities as those in the original� in�nite con�guration�

Another� equivalent way of stating these questions is How much memory is

needed to optimally predict con�gurations� And� how is this memory organized� We

de�ne an optimally predictive model in the following way� Suppose we have a model

that uses a given amount of historical information to make its predictions� Then we

observe L spins sL in a con�guration described by Pr	
�
s 
� Using this information the

model produces an estimate cPr	sjsL
 of the probability of the next spin s� We say

that the model optimally predicts the con�guration if and only ifcPr	sjsL
 � Pr	sjsL


for all sL and all s� where Pr	sjsL
 is obtained directly from Pr	
�
s 
�



CHAPTER �� COMPUTATIONAL MECHANICS ��

����� Fair coin con	guration

Consider a string of heads 	H
 or tails 	T
 generated by a fair coin toss

�
s
� � � � �THTTTHHHHHTHTHTTHHT � � � � 	���


By de�nition all tosses are independently distributed� the probability that any par�

ticular toss is a heads is ��� and any particular length�L block has probability ��L�

We begin by asking How much of the left half is needed to predict the values in the

right half� Restated� imagine walking down the string from left to right� noting the

state of the variables one observes� After a very long time�long enough for one to

have observed as many tosses as desired�how many of the preceding variables must

one keep track of in order to optimally predict those encountered later�

A moment�s re�ection reveals that one does not need to keep track of any

variables� Since the coin tosses are independent� knowledge of previous tosses does

not reduce the uncertainty about the next toss� As a result� for this particularly

simple example no memory is required to optimally predict subsequent variables�

Here� the predictions are as good as they can be 	i�e�� optimal
� which admittedly is

not good at all� The uncertainty about the next coin toss is complete� The result

could be either heads or tails with equal probability� as re�ected by an entropy rate

h� of � bit per toss for the fair coin�

What must one do in order to perform this optimal prediction� Equivalently�
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AH1/2 T1/2

Figure ��� The probabilistic �nite�state machine for fair coin tosses� This machine
is a model of the original con�guration in the sense that a random walk through the
machine�making state�to�state transitions following the edges� denoted sjp according
the their labeled probability p�produces a sequential con�guration of symbols si � A
with the same statistical properties as the original

�
s
�
� For more discussion� see text�

how can one statistically reproduce the con�guration� The answer to these questions

is illustrated in the probabilistic �nite�state machine of Fig� ���� which compactly tells

us how to reproduce strings with the same statistics as the original con�guration�

The machine operates as follows� Start in state A� With probability ���

generate an H and return to state A� And with probability ��� generate a T and also

return to state A� A random walk through the machine following these rules results

in a string of H�s and T�s that is statistically identical to
�
s
�
� In this sense we say

that the machine constitutes a model of the original fair coin process�

It is important to emphasize that no larger machine�i�e�� with more states or

edges�is required to reproduce all strings in the class of which
�
s
�
is one realization�

Nor is any smaller machine capable of doing so�
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Ab1

Figure ��� The �nite�state machine for a string consisting of all b�s�

����� Period�� con	guration

Consider a string consisting of a sequence of all b�s

�
s
� � � � �bbbbbbbbbbbbbbbbbbbb � � � � 	���


As with the fair coin� it is clear that one doesn�t need to remember any of the previous

symbols to perform optimal prediction� The value of the next variable will be a b

regardless of the values of the previous variables�

The �nite�state machine for
�
s
�
is shown in Fig� ���� From state A� the ma�

chine always outputs the symbol b and returns to state A� In this way the machine

statistically reproduces
�
s
�
� For this example the prediction is error free� as re�ected

in the fact that h� � ��
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↓1

B C

↑1

Figure ��� The recurrent portion of the �nite�state machine for the period�� con�g�

uration
�
s
�
of Eq� 	���
� Note that this machine has two states while the machines

of Figs� ��� and ��� have only one state� This is an indication that the � � � ���� � � �
con�guration requires more memory to reproduce�

����� Period�� con	guration

Now consider an in�nite� alternating spin con�guration

�
s
� � � � � � � � � � � � � � � � � � � � � � � � � � � 	���


Again� we begin by asking How much of the left half is needed to predict spins

in the right half� Here� some memory is needed to keep track of the phase of the

alternating spin pattern� As long as this phase is remembered� one can optimally and

exactly predict all the subsequent spins� As with the period�� con�guration�
�
s
�
can

be predicted with certainty since its entropy density is also h� � �� But to achieve

this certainty� one must distinguish between the pattern�s two di�erent phases� As a

result� the state machine for
�
s
�
has 	at least
 two states� as indicated in Fig� ����

How can we use the machine of Fig� ��� to reproduce
�
s
�
� Unlike the previous
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examples� it is not clear where to begin stateB or stateC� One response�consonant

with assumptions implicit in equilibrium statistical mechanics�is that it doesn�t

matter� If we run the system for in�nitely long we will statistically reproduce the

original con�guration� The starting state is just a �boundary condition� whose e�ects

are negligible in the thermodynamic limit�

However� in another sense� the state in which we start most de�nitely does

matter� Suppose we choose to start always in state B� We then examine all the

length�� spin blocks generated by this choice� We see that the string ��� is generated

with probability �� Yet in the original con�guration
�
s
�
we observe Pr	���
 � ���

and Pr	���
 � ���� The machine of Fig� ��� doesn�t correctly predict the statistics

of the con�guration�

There is an easy remedy for this situation start in state B half the time and

state C half the time� We can achieve this by adding a start state to the model� This

is shown in Fig� ���� We now always begin operating our model in the unique start

state A� In Fig� ��� and all subsequent �gures the start state is indicated by a double

circle� The new� improved model generates spin blocks that exactly reproduce the

distribution of �nite�length spin blocks observed in the original con�guration�

In this example� the start state is a transient state� It is never revisited after

the machine outputs the �rst spin value and moves to state B or state C� The states

B and C in Fig� ��� are recurrent� being visited in�nitely often as the machine is

operated� When examining machines obtained from one�dimensional spin���� Ising
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A

↑
1/

2 ↓1/2

B C

↓1

↑1

Figure ��� The full probabilistic �nite�state machine for the period�� con�guration
�
s
�
� The start state A is indicated by the double circle� A is a transient state� it

is never visited again after the machine outputs the �rst spin� States B and C are
recurrent� they are visited in�nitely often as the machine outputs an in�nite spin
con�guration�

systems� we shall encounter examples where the start state is a recurrent state� as

was done� but not mentioned� in Figs� ��� and ���� We shall also see machines that

have more than one transient state and that have more complex transient transition

structures�

����
 Noisy period�� con	guration

Finally� consider an in�nite binary string in which every other symbol sampled from

the alphabet A � f�� �g is a �� but otherwise the symbols are unconstrained

�
s
� � � � � ����������������������������� � � � � 	���
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B C

01/2

01

11/2

A

03/4

11/4

Figure ��� The probabilistic �nite�state machine for the noisy period�� con�guration
�
s
�
� Again� the start state A is a transient state and states B and C are recurrent�

Figuring out how to build a model capable of reproducing this con�guration is perhaps

not as straightforward as in the previous examples� The key realization is that once

we observe a single � we are �synchronized� to the pattern� That is� after seeing a ��

a � must follow� since the con�guration never exhibits two adjacent ��s� After seeing

the � that follows the �rst �� a � or a � can occur with equal probability�the only

rule is that every other symbol is �� The probabilistic �nite�state machine for this

con�guration is shown in Fig� ����

Note that the uncertainty associated with predicting the next symbol changes

as one moves back and forth between state B and state C� From state B there

is no uncertainty�a � is always the next symbol� From C there is an associated

uncertainty of � bit� since the next symbol is equally likely to be a � or a �� Thus�

the entropy density is h� � ��� bit per symbol� It should be not be immediately

obvious how we determined the probabilities for transitions leaving state A� For this�
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we will need to review the general procedure for building such machines� as will be

done below�

����� Summary of examples

Despite the examples� simplicity� a few summarizing remarks are in order before

moving on to formalize the notion of �e�ective� state that we�ve just used implicitly�

First� note that the coin�toss con�guration
�
s
�
and the period�� con�guration

�
s
�
both result in a machine with only one state� an indication that we don�t need to

remember any information about the previous symbols to predict the values of the

next� Thus� predicting a perfectly random process and a process with a very simple

con�guration are both �easy� tasks in the sense that they require small machines�

Second� note that entropy rate h� manifests itself 	roughly
 as the degree of

branching in the machines� measured as the logarithm of the ratio of the number of

edges to the number of states� in the recurrent portion of the machines� For example�

in Fig� ��� there are two edges leaving one state� The entropy rate is � bit per symbol�

Third� note that the structure of the machines does not depend on the vari�

ables� values�all that matters are the probabilities over con�gurations� For example�

if the symbols H and T are changed to � and �� the machine of Fig� ��� will output

di�erent symbols� but its overall structure remains unchanged�

Fourth� transient states tell one how the machines synchronize� For the period�

� example� we argued that the transient state A of the machine in Fig� ��� was
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necessary so that the machine would faithfully reproduce the distribution over �nite�

size blocks� Equivalently� the transient states are necessary for synchronizing the

machine if one is reading in data from the con�guration� Before any symbols are

parsed� one does not know in which internal state the process was as it produced

symbols in the con�guration� This state of ignorance corresponds to the start state�

Transitions are then taken from the start state corresponding to the symbols observed

as the con�guration is parsed� The number and structure of the transient states

determine how di�cult it is to synchronize�i� e�� to determine in which recurrent

state the system is as it produces each symbol�

Lastly� note that we have taken care to construct minimal machines� That

is� the machines we�ve put forth are such that if one removes any state or transition

then one can no longer exactly statistically reproduce the con�guration� This notion

of minimality will be made more precise below� In complementary fashion� in each

example one gains no predictability by elaborating any of the machines by adding

states or transitions�

��� Causal States and ��Machines

The preceding section considered models capable of reproducing the distribution of

all �nite length blocks observed in several translationally invariant con�gurations�

This section presents a general procedure for constructing such models�minimal�
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optimally predictive� probabilistic state machines�

First� we need to formalize the intuitive arguments through which the �e�ec�

tive� states of the four example systems were discovered� The key step is identifying

the notion of e�ective state with the conditional probability distribution over right�

half con�gurations� And a central criterion is that the resulting model be minimal�

When constructing an optimally�predictive� minimal state�machine description� there

is no need to distinguish between di�erent left�half con�gurations that give rise to

an identical state of knowledge about the right�half con�gurations that follow it�

Maintaining a distinction between two such states adds to the model�s size without

increasing its predictive ability� Therefore� we will be looking for the smallest set of

predictive states�

To make these ideas precise� consider the probability distribution of all possible

right halves
�
s conditioned on a particular left half

�
si
L
of length L at site i Pr	

�
s j�si

L

�

� � L � �� For L � ��
�
si
L
is the empty string� denoted by �� That is� Pr	

�
s j�si

�

 �

Pr	
�
s j�
 � Pr	

�
s 
 denotes the probability of observing

�
s unconditioned on any spins

in the left half of the con�guration�

We now use this form of a conditional probability to de�ne an equivalence

relation � on the space of all left halves� We say that two left�half con�gurations

at di�erent lattice sites are equivalent 	under �
 if and only if they give rise to

distributions over right�half con�gurations� conditioned on those left�halves� that are
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identical� Formally� we de�ne the relation � by

�
si
M � �

sj
L
i� Pr	

�
s j�si

M

 � Pr	

�
s j�sj

L

 � 	���


for all
�
s � where L�M � �� �� �� � � �� The induced equivalence classes are subsets of the

set of all allowed
�
si
L
� Appendix C reviews various properties of equivalence relations�

In a setting in which the conditional probabilities Pr	
�
s j�siL
 aren�t known ex�

actly� it becomes necessary as a practical matter to introduce some tolerance into the

equivalence relation de�ned by Eq� 	���
� Implementing this is not a straightforward

task� since if one adds a tolerance � and writes

�
si
M � �

sj
L
i� Pr	

�
s j�si

M

 � Pr	

�
s j�sj

L

 � � � 	���


the equivalence relation is destroyed because � is no longer transitive� see App� C� We

will address the issues surrounding the implementation of a tolerance elsewhere� For

now� su�ce it to say that the basic di�culty this introduces is common to other infer�

ence problems that involve statistical clustering and classi�cation ����� ����� Since we

are focusing here on processes for which one can perform the necessary calculations

analytically� statistical estimation will not be a concern�

The equivalence classes over

f�siL� i � � � � ������� �� �� �� � � � � L � �� �� �� � � �g 	���
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induced by this relation are called causal states and denoted S�� � � �� �� �� � � �� The

S� are the �e�ective states� of the previous section� Two
�
s
L
belong to same causal

state if� as measured by the probability distribution of subsequent spins conditioned

on having seen each particular left�half con�guration� they give rise to the same degree

of certainty about the con�gurations that follow to the right�

We shall use the convention that causal states S� are generically indexed us�

ing Greek letters� Spin variables shall continue to be indexed with Roman letters�

The equivalence class associated with Pr	
�
s j�
 is always the start state� since this

distribution corresponds to the knowledge about right�half con�gurations before any

spins are observed� The start state is denoted S��

The causal states� as determined by the equivalence classes induced by Eq� 	���
�

give transient as well as recurrent states� Although they may be visited an in�nite

number of times� transient states are those causal states that have vanishing proba�

bility in the L�M � limit� In contrast� recurrent states are those visited in�nitely

often and have positive probability in the same limit� That is� the recurrent states

are those equivalence classes obtained when the L�M  � limit is considered in

Eq� 	���
� By considering how the process synchronizes�i�e�� how it reaches the re�

current states as successively longer blocks are generated�it is possible to construct

the transient states and their transitions from knowledge of the recurrent states alone�

The procedure by which this is done is given in App� D�

We denote the set of causal states by S � fS�� � � �� � � � � k� �g� For the pro�
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cesses considered here S is discrete and k � jSj is �nite�neither of which necessarily

holds in a general setting ���� ����� Let S�T � denote the set of transient states and

S�R� denote the set of recurrent states� Note that S � S�T � � S�R��

There is a mirror image de�nition of causal states obtained by scanning the

lattice in the opposite direction 	right to left
� which thus uses distributions condi�

tioned on right�half con�gurations� Since we will study a restricted class of systems

that respect this symmetry� the causal states will be the same regardless of the scan�

ning direction� In the general case� in which this reversal symmetry need not hold� it

is possible to �nd di�erent causal states if one scans
�
s in di�erent directions �����

As we saw above� for the period�� system there are � causal states� denoted in

Fig� ��� by A� B� and C� These causal states are subsets of the allowed
�
s
L


A � f�g � 	����


B � f�sLjs�� ��� s�� ��� si � si��� L � �g

� f�� ��� ���� ����� ������ � � �g � 	����


and

C � f�sLjs�� ��� s�� ��� si � si��� L � �g
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� f�� ��� ���� ����� ������ � � �g � 	����


Here S � fA�B�Cg� S�T � � fAg� and S�R� � fB�Cg�

Once the set S of causal states has been identi�ed� we determine the transition

probabilities T
�s�
�� between states upon seeing symbol s � A� That is� we need to �nd

T
�s�
�� � Pr	S�� sjS�
 � 	����


To understand the nature of the transition probabilities better� we rewrite Eq� 	����


Pr	S�� sjS�
 � Pr	S�js�S�
Pr	sjS�
 � 	����


Knowledge of the next spin�s value s uniquely determines the subsequent causal state

S�� To see this� note that moving one step to the right corresponds to moving from

�
s i to

�
s i�� �

�
s is� Since the causal states partition the set of left�half con�gurations�

the new left�half con�guration
�
s i�� is associated with one and only one causal state�

Hence� observing the next spin value s determines the next causal state S�� as the

chain is parsed from left to right�

This is the sense in which the causal state representation is deterministic� A

transition from state � to state 	 while outputting a symbol s is uniquely determined

by � and s� That is� Pr	S�js�S�
 � �� assuming the transition is allowed� To illustrate

this� consider the noisy period�� machine of Fig� ���� From state B� outputting a �
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leads one to state C� And from state C� seeing a � determines that the next state

will be B� Note� however� that knowledge of the initial and �nal causal states does

not determine what symbol was produced as the transition was made� For example�

either a � or a � can be produced upon a transition from state C to B�

Eq� 	����
 indicates how to obtain the transition probabilities T
�s�
�� � Pr	sjS�


from the joint probabilities over con�gurations� Let
�
s
L
� s�s� � � � sL�� be a spin block

that leads to� and belongs to� the causal state S�� Then

T
�s�
�� � Pr	sjS�
 � Pr	s�s� � � � sL��s


Pr	s�s� � � � sL��
 � 	����


where 	 indexes the causal state S� to which one is taken on s� In other words�

s�s� � � � sL��s � S��

Summing over the spin values s� we obtain the stochastic connection matrix

T �
P

s�A T
�s�� a matrix whose components T�� give the probability of a transition

from the �th to the 	th causal state�

T�� � Pr	S�jS�
 � 	����


Since the probabilities are normalized�
P

� T�� � �� and so T is a stochastic matrix�

That is� the probability of leaving a state is unity� The probability Pr	S�
 of �nding

this �internal� Markov chain in the �th causal state after the machine has been
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scanning in�nitely long is the left eigenvector of T associated with eigenvalue ��

normalized in probability� That is� Pr	S�
 is given by

k��X
���

Pr	S�
T�� � Pr	S�
 � 	����


Again� the asymptotic probability of all transient states is zero�

Pr	S�
 � �� S� � S�T � � 	����


For the period�� machine of Fig� ��� we have

T �s��� �

	BBBBBB

� ��� �

� � �

� � �

�CCCCCCA 	����


and

T �s��� �

	BBBBBB

� � ���

� � �

� � �

�CCCCCCA � 	����


where we take column and row labels to correspond to causal states in the natural

way � � A� � � B� and so on� We add Eqs� 	����
 and 	����
 to obtain the
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machine�s stochastic connection matrix

T �

	BBBBBB

� ��� ���

� � �

� � �

�CCCCCCA � 	����


Note that T is stochastic and its dominant left eigenvector� normalized in probability�

is 	�� ���� ���
� Hence� Pr	S � A
 � � and Pr	S � B
 � Pr	S � C
 � ���� The

asymptotic probability of the transient state A is zero�

The set S together with the dynamic fT �s�� s � Ag constitute a model�

referred to as an ��machine �����of the original process� The four example machines

of the previous section� Figs� ���� ���� ���� and 	���� are all ��machines� An ��machine

is the minimal representation that captures the intrinsic computation being performed

by the system under study in the sense that it explicitly lays out how information in

the left�half con�guration is stored in the causal states and determines the range of

right�halves that can be seen� In other words� an ��machine shows how much memory

a process has� how it is organized� and how it is used to generate the pattern exhibited

by the process�

The minimality of the ��machine follows immediately from the de�nition of the

equivalence relation� Eq� 	���
� The equivalence classes induced by the relation are as�

sociated with the causal states� The procedure of forming equivalence classes ensures

that we distinguish between only those states that give rise to di�erent predictive
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information� As a result�

Pr	sjS�
 �� Pr	sjS�
 � 	����


for � �� 	 and for at least one value of s� Recall that we demand that the ��machine

be capable of statistically reproducing the original con�guration� If we make our

machine smaller by merging two states� say � and 	� then it follows immediately from

Eq� 	����
 that the machine will no longer be able to exactly statistically reproduce

the original con�guration since it fails to distinguish between the di�erent conditional

probabilities of Eq� 	����
� Thus� we conclude that an ��machine is minimal�

The ��� in the ��machine signi�es that� in general� the measurement values

s � A are not direct indicators of the observed process�s internal states ����� For

example� the symbols may be discretizations of variables that are continuous in state�

space� or time� For spin systems these concerns are not at issue� since we know by

de�nition the full set of elementary measurement values� i� e�� the range of spin values

at each site�

In chapter �� we determine ��machines beginning with the Hamiltonian as�

sumed for our model spin systems� However� as mentioned above� a Hamiltonian is

not necessary� The determination of an ��machine does not depend on knowledge of

the dynamics or rule through which the con�gurations were generated� Moreover� the

causal states and their transition probabilities may be calculated within two di�erent

paradigms� one mathematical� the other empirical� In the �rst� one begins with the
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joint distribution over all the system variables� In the second� one is given con�gura�

tions from which the joint and various conditional distributions are estimated� The

overall procedure in the second setting is referred to as ��machine reconstruction� In

either case� the goal is to factor the joint distribution over spin con�gurations into

the causal state conditional distributions� The result is an ��machine that consists

of the components fS� fT �s�g�A�S�g� where S� � S is the ��machine�s unique start

state�

��� Related Computational and Statistical Model

Classes

Restricting attention to ��machines for �D �nite�range spin systems� if we strip o�

their transition probabilities� leaving just the allowed transitions� we change the ��

machine representation into a special class of deterministic discrete�state automata

���� ���� Unlike the general class of automata� these nonprobabilistic ��machines have

the following properties 	i
 a unique start state� 	ii
 all states are accepting� 	iii
 all

recurrent states form a single strongly connected component in the machine�s state

transition graph�

A further restriction on these nonprobabilistic ��machines is that there is a spe�

ci�c relationship between the structure of the transient states and the recurrent states�

	This relationship does not hold in general for discrete�state automata�
 That is� the
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nonprobabilistic ��machine�s transient states can be constructed from knowledge of

the recurrent causal states alone� Appendix D gives a procedure that determines this

relationship for the unrestricted� probabilistic case�

Unlike discrete�state automata� however� ��machine transitions are labeled

with conditional probabilities T
�s�
�� � Said di�erently� an ��machine represents a con�

�guration distribution� not just a set of allowed con�gurations� as the automata do�

Therefore� in important ways ��machines are a richer class of representations�

For the spin systems considered in subsequent chapters� ��machines can also

be viewed as a type of Markov chain� First� the stochastic connection matrix T�

which describes only the state�to�state transitions unconditioned by spin values� is a

Markov chain over the causal states� Second� and more directly� the full ��machine�

including spin labelings� is a subset of models called variously functions of Markov

chains ���� or stochastic deterministic �nite automata ���� ����� since the output 	spin


alphabet A di�ers from the internal 	causal
 state alphabet S� To be more speci�c�

an ��machine is a function of a Markov chain that has a unique start state and one

recurrent component� These� in turn� are a subclass of hidden Markov models �����

It is important to emphasize that only in some cases do ��machines reduce to

functions of a Markov chain or� similarly� to probabilistic analogs ����� of discrete�

state automata� ��machines are best considered on their own terms�a di�erent model

class that captures di�erent types of structure�
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��� What Do ��Machines Represent�

Given that ��machines can be related to this range of statistical and computational

model classes� it is important to note that an essential distinguishing feature of com�

putational mechanics is its hierarchical inductive framework� It begins by trying to

model the original process using the least powerful model class� probabilistic �nite�

memory machines are employed �rst� However� using a �nite�memory representation

may not yield a �nite�size model the number of causal states could turn out to be

countably in�nite� as noted above� or to lie in a fractal set or in a continuum ���� �����

If this is the case� a more powerful model than a �nite�state machine must be used�

One proceeds by trying to use the next most powerful model classes in a hierarchy of

machines known as the causal hierarchy ����� The latter is an analog of the Chomsky

discrete�computation hierarchy of formal language theory ���� ����

It was suggested in Sec� ��� that� in a statistical mechanics context� using the

most compact mathematical entity that provides a complete description of a system

is an important way to distinguish between systems that are structured in di�erent

ways� The determination of an ��machine may be thought of as a formalization of this

process of detection and classi�cation of structure� An ��machine� the set of causal

states and their transitions� provides a direct description of the structure present in

the joint probabilities over the system�s internal degrees of freedom� In particular� the

��machine�s organization shows how this joint distribution factors into conditionally
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independent components� Thus� determining the class of ��machine that provides

a �nite description of the original con�guration allows one to distinguish between

systems that are organized in fundamentally di�erent ways�

Furthermore� an ��machine gives a minimal description of the pattern or regu�

larities in a system in the sense that the pattern is the algebraic structure determined

by the causal states and their transitions� If� for example� the ��machine has an alge�

braic structure that is a group� then it captures a symmetry for example� translation

or spin��ip� That is� it captures the �pattern� exhibited in the system�s con�gura�

tions� Generally� though� the algebraic structure is a semigroup�and a stochastic one

at that�and so not obviously interpreted in terms of symmetries� The appropriate

mathematical descriptions are given in terms of measure semi�groups ����� Despite

a lack of familiar interpretations� the algebraic structure still captures the intrinsic

�pattern� ������ Examples will be given in Chapter � as concrete illustrations of this

algebraic view of pattern�

In summary� an ��machine is a model of a system�s allowed�con�guration en�

semble� From this model� we can proceed to de�ne and calculate macroscopic� global

properties that re�ect the characteristic average information processing capabilities

of the system� We now turn to discuss just what features are calculable from an

��machine�
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��� Global Spatial Properties from ��Machines

����� Statistical complexity

An ��machine is a model capable of statistically reproducing a process�s con�gura�

tions� How much memory is needed on average to operate this machine� Similarly�

how little internal memory could the generating process itself have used� Motivated

by these questions we now de�ne a new quantity�

To predict successive spins as one scans a con�guration from left to right�

one must track in which causal state the process is� since knowledge of the causal

state gives the required conditional distribution for optimal prediction� Thus� the

informational size of the distribution Pr	S�
 over causal states� as measured by the

Shannon entropy� gives the minimum average amount of memory needed to optimally

predict the right�half con�gurations� This quantity is the statistical complexity ����

C� � H�S� � �
k��X
���

Pr	S�
 log� Pr	S�
 � 	����


where� again� Pr	S�
 is given by Eq� 	����
� Like the excess entropy E� the statistical

complexity C� is a measure of memory and has units of bits� Note� however� that the

two measures of memory have di�erent interpretations� The excess entropy measures

the apparent memory stored in the con�gurations� since it is determined directly from

the spin con�guration distribution� that is� from the spin observables� In contrast� C�
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measures the minimal amount of 	hidden
 memory needed to statistically reproduce

the con�guration ensemble� As we shall see below� these two measures of memory�

though related� typically are not equal�

Another� coarser measure of the ��machine�s size is simply the number of re�

current causal states� This motivates the de�nition of the topological complexity C�

����

C� � log� jS�R�j � 	����


The topological complexity gives a simple �counting� upper bound on the statistical

complexity C� � C�� This follows from a basic maximization property of Shannon

entropy applied to a uniform distribution over the causal states�

����� Block distributions and entropies

We claimed above that an ��machine is a model of a con�guration in the sense that

it reproduces the spin�block distributions Pr	sL
� We now show explicitly how these

distributions follow from the recurrent portion of an ��machine� In subsequent sections

we will then be able to easily calculate the various information theoretic and statistical

mechanical quantities de�ned above�

First� note that the sequence of causal states is Markovian� The probability
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of a transition from recurrent state S� to recurrent state S� is given by T��� Hence�

Pr	S��S�
 � Pr	S�
T�� � 	����


The probability that the particular sequence S�� � � � � �S�L�� occurs is given by

Pr	S�� � � � � �S�L��
 � Pr	S��

L��Y
i��

T�i�i��
� 	����


However� we are interested in the distribution of spin blocks� as well as se�

quences of causal states� Recall that T
�s�
�� � Pr	S�� sjS�
 is the probability of making

a transition from state � to state 	 while producing the spin s� Each 	�� 	
�entry in

the word matrix

T �sL� � T �s��T �s�� � � �T �sL��� 	����


gives the probability of seeing word sL � s�s� � � � sL�� starting in state � and ending

in state 	� 	In Eq� 	����
� the matrices on the right hand side are understood to be

multiplied together�
 Using this matrix we can easily write down an expression for

the probabilities over spin blocks

Pr	sL
 �
k��X
�����

Pr	S�
T �sL�
�� � 	����


Here we sum over the probabilities of all sequences of L � � causal states� selecting
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only those for which the particular spin sequence s�� � � � � sL�� occurs�

Given the joint distribution over spins blocks� Eq� 	����
� the block entropies

H	L
 follow immediately from Eq� 	���
�

����� Two�spin mutual information and correlation function

Recall that using the translation invariance of the con�gurations� the two�spin mutual

information of Sec� ��� was given by

I	r
 � �H�S���H�S�� Sr� � 	����


The second entropy term on the right�hand side requires calculating the joint dis�

tribution Pr	s�� sr
 and the �rst requires Pr	s�
� In the previous section we derived

an expression for Pr	s�
� Eq� 	����
� Thus� to calculate I	r
 we need to develop an

expression for Pr	s�� sr
�

Pr	s�� sr
 is easy to obtain by summing over all intervening spins in Eq� 	����


Pr	s�� sr
 �
X

s��			�sr��

Pr	s�� s�� � � � � sr��� sr
 	����


�
k��X
�����

Pr	S�

X

s��			�sr��

T
�s�			sr�
�� 	����


�
k��X

���������

Pr	S�
T �s��
�� Tr��

�� T
�sr�
�� � 	����
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since Tr��
�� �

P
s��			�sr��

T
�s�			sr���
�� and where Tr denotes the rth power of the connec�

tion matrix T� The last equality follows since the summation over the ��s has the

e�ect of multiplying together the T matrices�

The Shannon entropy of Pr	s�� sr
 is H�S�� Sr� and the entropy of Pr	s�
 is

H�S�� and so I	r
� Eq� 	����
� follows immediately�

Using these same distributions it is now possible to calculate �	r
� the two�spin

correlation function of Eq� 	����
� since

�	r
 �
X
s��sr

s�srPr	s�� sr
�
�X

s�

s�Pr	s�


�

� 	����


The structure factors and susceptibility follow directly from �	r
� Thus� all of these

quantities can be readily calculated once an ��machine is in hand�

����
 ��Machine entropy rate

Recall from Eq� 	���
 that the entropy density h� can be expressed as the entropy of

one spin conditioned on all those spins preceding it� Using this� it is not hard to show

that the entropy density can be expressed as the next�spin uncertainty averaged over

the causal states

h� � �
k��X
���

Pr	S�

X
s�A

Pr	sjS�
 log� Pr	sjS�
 � 	����
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where Pr	S�
 is given by Eq� 	����
 and Pr	sjS�
 is given by Eq� 	����
�

This result is similar to� but not the same as� that originally given in App� � of

Ref� ����� for Markov chains� We derive it here in App� B� Our result is not surprising

given the de�nition of causal states� which groups together left�half con�gurations that

lead to the same conditional distribution over possible right�half con�gurations� As

a result� to calculate the entropy density h� one only need consider the entropy of a

single spin conditioned on the current causal state�

The entropy rate is invariant under a change in the direction in which the con�

�guration is scanned ����� This fact is quite general and holds for any one�dimensional

stationary process� a class of systems much broader than the spin systems considered

here�

����� ��Machine excess entropy

The excess entropy E can also be calculated from the probabilities of the causal states

and their transitions� In the most general setting there is no compact formula for E

in terms of Pr	S
 and Pr	sjS
� as there was for h�� However� we shall see in Sec� �����

that for the special case of �nite�range spin systems� it is possible to write down a

relatively simple formula for E in terms of an ��machine�
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����� Relationships between measures of memory

As remarked above� the excess entropy and the statistical complexity are di�erent

measures of a system�s memory� However� it turns out that the excess entropy sets a

lower bound on the statistical complexity

E � C� � 	����


This result holds for any translationally invariant in�nite con�guration ����� Thus�

the memory needed to perform optimal prediction of the right�half con�gurations

can exceed the mutual information between the left and right halves themselves�

This relationship re�ects the fact that� in the general setting� a process�s internal

state sequences are not in one�to�one correspondence with L�block or even ��length

con�gurations�

���� The examples analyzed quantitatively

In Table ��� we show the results of calculating 	by direct inspection
 the entropy

density h�� the excess entropy E� and the statistical complexity C� for the example

processes of Sec� ����
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Process h� E C�

Fair Coin � � �
Period � � � �
Period � � � �
Noisy Period � ��� � �

Table ��� The entropy density h�� the excess entropy E� and the statistical complex�
ity C� for the four example processes of section ����

����� Scan�direction invariance

Interestingly� one can show that for some classes of systems 	not including the �nite�

range spin systems here
 C� and C� are not scan�direction invariant ����� That is� the

causal states� and as a result C� and C�� may be di�erent depending the direction in

which the con�guration is scanned left to right or right to left� However� the values

of the entropy rate h�� the excess entropy E� and the two�spin mutual information

I	r
 are independent of the direction in which the con�guration is observed� This

scan�direction invariance derives from these quantities� de�nitions and is not a result

which is particular to spin systems�

����� Related� or not� �complexity� measures

As noted above� an ��machine is a model of the original process that uses the least

powerful computational class admitting a �nite model ����� In contrast� Kolmogorov�

Chaitin 	KC
 complexity� discussed in Sec� ���� characterizes symbol sequences by

considering their representation in terms of the most powerful of the discrete compu�
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tational model classes� the universal Turing machines 	UTMs
�

Note that C� � � and E � � do not imply that memory resources are ex�

pended trying to account for the randomness or thermal �uctuations present in a

system� Thus� these measures of structural complexity depart markedly from the KC

	deterministic UTM
 complexity� As noted above� the ensemble�averaged per�site

KC complexity is h� ���� ���� And so� the KC complexity is dominated by random

components in a process� It does not strongly re�ect the algebraic symmetries or

structural properties� unless the entropy rate is zero�

One unfortunate shortcoming of KC complexity� and its UTM�based frame�

work� is that it is in general uncomputable ���� ���� That is� unlike statistical com�

plexity and excess entropy� there exists no general algorithm for its calculation� It

should be noted� however� that in special cases such as �nite�state Markov chains ����

or continuous�state dynamical systems with an absolutely continuous invariant mea�

sure ����� the average value of the growth rate of the Kolmogorov�Chaitin complexity

can be calculated and is equal to the Shannon entropy rate h� of the process�

A quantity more closely related to statistical complexity and excess entropy is

the logical depth of Bennett ����� Whereas the Kolmogorov�Chaitin complexity of a

symbol string is de�ned in terms of deterministic�UTM program length� the logical

depth is de�ned as the time needed for the UTM� running the minimal program�

to produce the string� On the one hand� if a con�guration� like
�
s
�
� is random� the

shortest UTM program that reproduces it is the program �Print	
�
s
�

�� This is a
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relatively long program but takes very little time to run a time proportional to the

length of
�
s
�
� On the other hand� if a con�guration has a simple pattern� like

�
s
�
�s

string of all b�s� then the program to reproduce it also takes a short time to run a

time proportional to the number of b�s to print� The minimal program is also short

all the UTM needs to do is loop over the command �Print b�� counting up to the

desired string length� But if a spin con�guration has a great deal of intricacy�for

example� if the spins code for the binary expansion of ��then the minimal program

to reproduce it will involve many operations� many more than the number of desired

spins�

As a result� like excess entropy and statistical complexity� the logical depth

captures a property�being low for both simple and random con�gurations�that is

distinct from randomness and from those properties captured by the entropy rate and

Kolmogorov�Chaitin complexity� While there are super�cial similarities� however�

C� and E are measures of memory while logical depth is a measure of run time�

A shortcoming of logical depth shared with KC complexity is that it is in general

uncomputable ���� ���� That is� there exists no general algorithm for its calculation�

For other approaches to statistical complexity and correlational structure see

Refs� ��� ��� ��� ��� ��� ���� and citations therein�
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������ ��Machine thermodynamics

As a �nal note� we mention that ��machines also provide a direct way to calculate

the thermodynamic potentials for a process� These are also known as the �uctuation

spectrum� the R�enyi entropy� the spectrum of singularities� S	U
 curves� and f	�


curves ���� ��� ����� The �uctuation spectrum provides a measure of how likely a

system is to deviate from its average behavior and is closely related to more modern

methods� as found in the theory of large deviations ���� ����� to describe a process�s

behavior outside of the range of validity of the law of large numbers�

In Ref� ����� it was shown that calculating the �uctuation spectrum by �rst

determining the ��machine and then proceeding to calculate the spectrum from the

machine yields signi�cantly more accurate results than estimating the spectrum di�

rectly from con�gurations by using histograms to estimate spin�block probabilities�

Finally� one can analyze the �uctuation spectra of causal state sequences themselves

by replacing the Shannon entropy in the de�nition of statistical complexity with the

R�enyi entropy�

��� Summary and a Look Ahead

In this and the previous two chapters we have reviewed the tools used by statistical

mechanics� information theory� and computational mechanics to measure correlation

and structure� The main quantities from statistical mechanics� discussed in Chapter
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�� are correlation functions �	r
� the correlation length �� and the structure factors

S	q
� In Chapter � we saw that information theory provides a measure� h�� of the

randomness or unpredictability of a system and also provides measures of the apparent

spatial memory of a con�guration� the excess entropy E and the coarser two�spin

mutual information I	r
�

However� information theory tells us little about how a system utilizes its

memory nor whether the apparent memory 	E
 is equal to the minimum amount of

memory 	C�
 actually required internally to produce con�gurations� To help address

this concern� computational mechanics was put forth as a way to discover and quan�

tify the intrinsic computational capability of a system� By constructing a model 	an

��machine
 that statistically reproduces the system�s con�gurations� we obtain an ex�

plicit description of the architecture of the minimal information processing apparatus

needed to produce the con�guration ensemble� One consequence is that the statistical

mechanical and information theoretic quantities can be calculated directly�

Let�s now return to the theme of this dissertation discovering structure and

quantifying patterns� Do ��machines capture our intuitive notion of pattern� If so� in

what sense� And how is the architectural analysis of information processing provided

by computational mechanics related to the notion of a pattern� Addressing these

questions forms the backbone of Part II�

It is not obvious a priori that examining the intrinsic computation of a sys�

tem is a sensible approach to describing patterns� However� we will demonstrate
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in Chapter � that ��machines provide a more explicit representation of all the pat�

terns� symmetries� and regularities in a spin con�guration than is provided by either

information theory or statistical mechanics� To do so� we shall calculate statistical

mechanical� information theoretic� and computational mechanical quantities for some

short�range one�dimensional Ising systems� After a brief review of one�dimensional

spin systems and transfer matrix techniques in Chapter �� we present in Chapter � ex�

act� analytic techniques for calculating the information theoretic and computational

mechanical quantities of interest� In Chapters � � �� we then proceed to a direct

comparison of the three di�erent approaches to discovering and quantifying patterns�



Part II

Results for Finite�Range�

One�Dimensional Spin Systems

���



���

Chapter �

Brief Review of Statistical

Mechanics of One�Dimensional

Spin Systems

In this chapter we review the statistical mechanics of the one�dimensional Ising model�

The Ising model is perhaps the most�studied statistical mechanical system� A treat�

ment of the one�dimensional� nearest�neighbor 	nn
 version of the model can be found

in almost any textbook on statistical mechanics� e�g�� Refs� ���� ��� ���� ���� ����� We

begin in Sec� ��� with a brief examination of the life of Ernst Ising� the man for whom

the model is named� 	This section is not essential for the rest of the chapter� it is�

however� an interesting story�
 In Section ��� we illustrate the transfer matrix method

by using transfer matrices to calculate the partition function of the one�dimensional
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spin���� nearest�neighbor Ising model� We then discuss how the transfer matrix can

be generalized to apply to systems with longer range interactions� Finally� in Sec� ���

we state methods for determining the other statistical mechanical quantities using

transfer matrix techniques� We conclude by discussing and analyzing these results�

��� A Brief History of Ising and his Model

The following biographical comments are largely based on Ref� ����� a very brief

biography of Ising by Kobe� For a much more thorough discussion of the Ising model�s

history� the reader is referred to Ref� �����

The Ising model was originally proposed in ���� by Lenz ���� as an attempt

to understand ferromagnetism� Ernst Ising� Lenz�s student� in his ���� dissertation

solved the one�dimensional version of the model� considered in this chapter� As we

shall see� the model fails to �order��acquire a net magnetization in the absence of

an external �eld�and thus fails to account for ferromagnetism ����� 	Unknown to

Ising at the time� the two�dimensional model does order�


After receiving his doctorate� Ising taught at a high school in Strausberg� and

then in Crossen on the river Oder ����� When Hitler assumed power in January

of ����� Ising� being a Jew� lost his position as a civil servant� After a year of

unemployment� he taught at a school for Jewish children near Potsdam� He eventually

became headmaster of the school� only to witness the school�s destruction in a ����
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pogrom�

Ising and his wife Johanna then went to Luxembourg� hoping to emigrate to

the United States� However� they were unable to do so� due to U�S� emigration quotas�

the Isings endured the war in Europe� Ising was forced to work for the German army

from April ���� until the liberation by allied forces almost a year later� After the

war� Ising took a position at the State Teacher�s College in Minot� North Dakota�

After two years in North Dakota� he accepted a position as a professor of Physics at

Bradley University in Peoria� Illinois� a position which he held from ���� until �����

Kobe ���� writes that the model was �rst referred to as �The Ising Model� in

a ���� paper by Peierls ������ Amazingly� it wasn�t until ���� that Ising realized that

the model he studied for his dissertation had become an important� much�studied

system� The Ising model has now achieved the status of a canonical model of an

interacting many�body system� A keyword search using the word �Ising� in the

INSPEC database from January ����%March ���� returns ��� ��� papers& As of

����� Ernst Ising� at the age of ��� was still alive and living in Peoria�

��� The Transfer Matrix Method

We consider now one�dimensional Ising models of the following form

H	sN
 � �J�
NX
i��

sisi�� � J�

NX
i��

sisi�� � � � � B
NX
i��

si 	���
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where� for a spin�K system� s � f�K��K � �� � � � � Kg for K � ���� If K � ����

then� by convention� s � f�����g� We shall assume that the interactions are of �nite

range� That is� there is some n� such that for all i � n� Ji � ��

As is well known� the partition function ZN � Eq� 	���
� for any one�dimensional

spin system with �nite�range interactions can be expressed in terms of a �nite�

dimensional matrix� known as the transfer matrix V ����� Namely� ZN � Tr V M �

where V M is the M th power of V and M is proportional to the system size N � The

transfer matrix may be viewed as a function of the values of blocks of consecutive

spins� with the required block size depending on the interaction range� The dimen�

sionality of the transfer matrix is chosen to be large enough so that the sum over

all spin con�gurations in the partition function� in Eq� 	���
� can be reexpressed

as a product of transfer matrices� Hence� the transfer matrix approach e�ectively

decomposes a con�guration into a concatenation of contiguous spin blocks�

We will illustrate the transfer matrix method by �rst showing how the partition

function can be calculated using transfer matrices for the spin����� nearest�neighbor

model� Then� after brie�y discussing how to generalize the transfer matrix method� we

will give a few additional results of thermodynamic functions that can be calculated

using transfer matrices�
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����� Nearest�Neighbor Case

We consider now the nearest neighbor 	nn
 spin ��� case of the one�dimensional Ising

model� Ji � � in Eq� 	���
 except for i � � and si � f�����g� For convenience� we

shall assume periodic boundary conditions and identify sN�i with si� This choice of a

boundary condition does not e�ect the behavior of the model in the thermodynamic

limit� N � �����

We begin our calculation of the partition function ZN by plugging the Hamil�

tonian into the expression for the partition function� Eq� 	���


ZN �
X
sN

�
e�J�s�s�e�Bs�e�J�s�s�e�Bs� � � � e�J�sN��sNe�BsN��e�J�sNs�e�BsN

�
� 	���


The J�sNs� term in the exponential arises as a result of the periodic boundary con�

ditions� We then rewrite this expression in the following� suggestive way

ZN �
X
sN

�
e
�
�
�Bs�e�J�s�s�e

�
�
�Bs� e

�
�
�Bs�e�J�s�s�e

�
�
�Bs� � � �

� � � e �
�
�BsN��e�J�sN��sNe

�
�
�BsN e

�
�
�BsN e�J�sNs�e

�
�
�Bs�

�
� 	���


We now arrive at the crucial step that simpli�es this calculation� We de�ne
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the transfer matrix for this system by

V 	si� si��
 � exp�J�	sisi�� �
�

�
B		si � si��
� � 	���


The transfer matrix V is a � x � matrix whose row and column indices correspond

respectively to the values of a single spin and its nearest neighbor to the right� In

matrix notation� V is given by

V �

	BB
 e��J��B� e�J�

e�J� e��J��B�

�CCA 	���


We adopt the convention that the �rst 	second
 row of V corresponds to si � ��	��


in Eq� 	���
� the �rst 	second
 column corresponds to si�� � ��	��
�

It is now not hard to see that Eq� 	���
 may be rewritten using the transfer

matrix de�ned in Eq� 	���


ZN �
X
sN

h
V 	s�� s�
V 	s�� s�
 � � �V 	sN��� sN
V 	sN � s�


i
� 	���


Notice that the summation has the e�ect of multiplying the transfer matrices together

X
si��

V 	si� si��
V 	si��� si��
 � V �	si� si��
 � 	���




CHAPTER �� SPIN SYSTEM REVIEW ���

This observation enables us to rewrite Eq� 	���
 as

ZN �
X
s�

V N	s�� s�
 � Tr�VN� � 	���


Equation 	���
 is of use because the trace of a product of matrices is basis

independent� Since the V of Eq� 	���
 is symmetric� we can diagonalize V and evaluate

the trace in this basis� We obtain

ZN � �N� � �N� � 	���


where �� and �� are the eigenvalues of V �

The Perron�Frobenius theorem guarantees that the largest eigenvalue of a pos�

itive matrix whose components are �nite is always real� positive� and nondegenerate�

and that the components of the left and right eigenvectors corresponding to the

largest eigenvalue are real� We denote this largest eigenvalue by ��� 	For a physicist�s

�proof� of the Perron�Frobeinus theorem� see Ref� ���� p� ���� For a mathemati�

cian�s �proof� see Ref� ������
 Since the transfer matrix V is positive and �nite� the

Perron�Frobenius theorem applies and V �s largest eigenvalue is nondegenerate� This

nondegeneracy enables us to determine the free energy per site F � Eq� 	���
�

F � � T

N
log
�
�N� � �N�

�
� 	����
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� � T

N
log�N�

�
� � 	

��
��


N
�
� 	����


In the N � limit� the second term on the right hand side vanishes since �� � ��

and we see that

F � �T log�� � 	����


Summarizing� introducing the transfer matrix enabled us to reduce the parti�

tion function to the trace of � x � matrix� This results in Eq� 	����
� the free energy

per site is given by the product of the temperature and the logarithm of the dominant

eigenvalue of V � From the free energy� other thermodynamic functions� such as the

magnetization m� susceptibility �� and the entropy S readily follow�

����� Generalizing the Transfer Matrix Method

We have seen that for the special case of a spin���� system with nn interactions� the

partition function can be evaluated by grouping the terms in the Hamiltonian so that

the partition function can be rewritten as a product of � x � matrices� For longer

range and or higher spin models� this technique still works� but higher�dimensional

matrices become necessary� For range�R interactions the spins must be grouped into

blocks of R consecutive spins� For a spin�K system� the row and column indices then

run over the 	�K � �
R possible values the spins can assume in a block of R sites�

We shall denote the R�spin blocks by �� the composite variable � can thus assume
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	�K � �
R possible values� Only for the special case of a nearest neighbor 	R � �


interaction does � � s� a single spin� Subscripts on the spin blocks will indicate lattice

site� not the particular value of the spin block� The transfer matrix connecting the

ith and 	i � �
st spin blocks is denoted by V 	�i� �i��
�

For higher dimensional transfer matrices it turns out that the matrix is not

always symmetric� and hence we cannot guarantee that it can be diagonalized� Nev�

ertheless� an extension of the Perron�Frobenius theorem due to Ruelle ����� allows us

to conclude that Eq� 	����
 still holds� That is� the largest eigenvalue of V still domi�

nates the trace of Eq� 	���
� despite the nonexistence of a basis in which V is diagonal�

Moreover� the dominant left and right eigenvectors have nonnegative components�

As mentioned above� for longer range systems the transfer matrix grows in

size� and it is usually not possible to determine an analytic expression for V �s dom�

inant eigenvalue and eigenvectors� Instead� the transfer matrix�s eigenvalues and

eigenvectors must be found numerically� Nevertheless� the key results mentioned in

this chapter�Eq� 	����
 above and Eqs� 	����
 and 	����
 below�still hold� These

expressions for the free energy density� the two�spin correlation function and the cor�

relation lengths are valid for any system that can be described by a �nite�dimensional

transfer matrix�

For a given system there are a number of ways to construct a transfer matrix

that describes its statistical mechanics� see� e�g�� Ref� ������ A general method for

forming the transfer matrix for a one�dimensional spin system is elegantly described
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by Dobson in Ref� ����� Below� we shall assume that V has been constructed to add on

the e�ects of R spins per matrix operation� where R is again the system�s interaction

range� By uR� 	uL� 
 we denote the right 	left
 eigenvector corresponding to V �s largest

eigenvalue ��� normalized so that the inner product of uR� and uL� is unity� In the

following� we shall drop the subscript � in situations where doing so results in no

ambiguity�

��� Results for the One�Dimensional	 Nearest Neigh�

bor Model

We conclude our review of the statistical mechanics of one�dimensional spin systems

by stating some additional results obtainable via transfer matrices for the nn case� In

Sec� ����� we then discuss these results� The results mentioned below are well�known

and can be found in almost any statistical mechanics text� we recommend Yeomans

����� for a particularly clear presentation�

For the nn one�dimensional� spin���� Ising model� the transfer matrix is given

by Eq� 	���
� The eigenvalues of V are given by

���� � e�J�cosh	B �
q
e��J�sinh�	B � e���J� � 	����
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The eigenvectors of V are given by

uL� � uR� �

	BB
 a�

a�

�CCA � 	����


and�

uL� � uR� �

	BB
 a�

�a�

�CCA � 	����


where�

a
 �
�

�

�
�� e�J�sinh	Bp

e��J�sinh�	B � e���J�


� 	����


Using Eq� 	����
� one can obtain the free energy per site�

F � �T log

�
e�J�cosh	B �

q
e��J�sinh�	B � e���J�

�
	����


We see in Eq� 	����
 that the magnetization follows from F by taking the derivative

of F with respect to B� One obtains

m �
e�J�sinh	Bp

e��J�sinh�	B � e���J�
� 	����


It is also possible to obtain the two�spin correlation function �	r
� Eq�	����
 via

the transfer matrix technique� The calculation is somewhat involved� see Refs� �����
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or ���� for details� Here� we simply state the result

�	r
 �
dimVX
i��

�
�i
��

�r

	uL� � bSuRi 
 	uLi � bSuR� 
 � 	����


where 	�� �
 indicates inner product and bS is the spin operator� bS applied to uR

returns a vector whose ith component corresponds to the value of the left�most spin

of the ith particular value of the R�spin block� For the spin����� nn case� where

si � ���

bS �

	BB
 � �

� ��

�CCA � 	����


In Eq� 	����
� ui refers to the ith eigenvector� not the ith component of the dominant

eigenvector�

Using Eq� 	����
� it is not hard to obtain an expression for the structure factors

S	q
� de�ned as the discrete Fourier transform of the correlation function �	r
� To do

so� one must use the well known relation 	see� for example formula ����� of Ref������


�X
n��

an cosn� �
�� a cos�

�� �a cos� � a�
� 	����


One �nds� after some simpli�cation

S	q
 � A
�� a cos q

�� �a cos q � a�
� 	����




CHAPTER �� SPIN SYSTEM REVIEW ���

where

A �
e��J��T

	e�J��T sinh�B�T 
 � e��J��T
� 	����


and

a �
��
��

� 	����


From the expression for the two�spin correlation� Eq� 	����
� the correlation

length� the exponential decay rate of �	r
 de�ned by Eq� 	����
� follows immediately

��� � � log

�
��
��

�
� 	����


Note that a calculation of �	r
 requires a determination of all the eigenvalues and

eigenvectors of V whereas only the two largest eigenvalues are needed for a calculation

of the correlation length ��

����� Discussion of Results

What do these results tell us about the one�dimensional Ising model� Let�s begin by

considering the magnetization m� Taking the B  � limit in Eq� 	����
� we see that

the magnetization vanishes for all T � � in the absence of an external �eld B� In

other words� the system does not acquire a net magnetic moment unless there is an

external �eld to bias the spins� Hence� we see that the one�dimensional version of

this model does not admit ferromagnetism�
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In more modern language� we say that the one�dimensional �nite�range Ising

model fails to exhibit spontaneous symmetry breaking� The Ising Hamiltonian 	in

any dimension
 with zero external �eld B possesses a global spin��ip symmetry� the

energy 	i�e� the Hamiltonian
 is unchanged if all the values of the spins are �ipped�

Flipping a spin is equivalent to multiplying its value by ��� Despite this symmetry�

in the two�dimensional Ising model the magnetization assumes a nonzero value for all

temperatures below the 	nonzero
 critical temperature Tc� A nonzero magnetization

indicates an excess of either up or down spins� Hence� a system with m �� � does not

posses a spin �ip symmetry�

For the one�dimensional nearest�neighbor model� the fact that the zero��eld

magnetization vanishes for all non�zero temperatures tells us that the spin��ip sym�

metry of the Hamiltonian is not broken� As such� there is no continuous phase

transition to an ordered� ferromagnetic state� 	Phase transitions will be reviewed

in Chapter� ���
 Accordingly� the correlation length � is �nite for all T � �� This

can easily be seen by looking at Eq� 	����
� which tells us that � is proportional to

the logarithm of the ratio of the two largest eigenvalues of the transfer matrix� As

noted above� the Perron�Frobenius theorem asserts that the largest eigenvalue of the

transfer matrix will always be unique� Thus � is �nite for all positive temperatures�

This result holds for any one�dimensional �nite�range Ising system� since the transfer

matrix for any such system is �nite and positive� and hence falls under the jurisdic�

tion of the Perron�Frobenius theorem� The conclusion� then� is that no �nite�range
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one�dimensional Ising system exhibits a continuous phase transition�

The lack of a phase transition for the one�dimensional Ising model is often

cited as evidence for dismissing it as uninteresting or irrelevant� However� despite

this lack of a phase transition� the one�dimensional Ising model nevertheless does

undergo some important structural changes as system parameters are varied� Here�

we will brie�y examine the behavior of the two�spin correlation function �	r
 and the

correlation length � for the nearest neighbor one�dimensional Ising model� In chapters

�%��� the structure present in the Ising model will be discussed at length�

In Fig� ��� we have plotted the two�spin correlation function �	r
 as a function

of the spin separation r for the parameter values J� � ���� B � ����� T � ���� We can

see that �	r
 is not zero�a clear indication that there are correlations present in the

system� More importantly� note the relatively slow rate at which �	r
 decreases as the

separation r between spins increases� The correlation length �� de�ned in Eq� 	����
 as

the exponential rate of decay of �	r
 is approximately ���� lattice sites for the system

shown in Fig� ���� This indicates that the con�gurations contain ordered clusters of�

on average� around � sites�

What is particularly noteworthy about Fig� ���� however� are the questions it

leaves unanswered� What is the nature of the ordered clusters� Are the spins all

aligned� do they alternate up and down� or do they exhibit an even more complicated

pattern� Statistical mechanics typically answers these questions by appealing to the

structure factors S	q
� de�ned Eq� 	����
 as the discrete Fourier transform of the
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Figure ��� The two�spin correlation function �	r
 versus r� The parameter values
are J� � ���� B � ����� and T � ���� Note the exponential decay of �	r
� For these
parameters � � ���� lattice sites�

two�spin correlation function� However� we shall see in chapters �%��� the structure

factors do not fully describe the structure present in the one�dimensional Ising system�

To adequately capture the Ising system�s patterns� the information and computation

theoretic techniques of chapters � and � are needed� In the following chapter� we

illustrate how the transfer matrix methods can be used to calculate these information

and computation theoretic quantities for �nite�range one�dimensional spin systems�



���

Chapter 	

Calculational Methods and

Illustrative Results

In this chapter we present a technique for calculating the information theoretic mea�

sures of memory and structure presented in Chapters � and �� To do so� we shall

employ the transfer matrices introduced in the previous chapter� In Secs� ����� and

����� we determine the recurrent causal states and the state�to�state transition prob�

abilities for �nite�range� one�dimensional spin system� Then� in Secs� ����������� we

determine the spin system�s statistical complexity� entropy density� and excess en�

tropy�

We then illustrate our results for nearest�neighbor 	nn
 and next nearest�

neighbor 	nnn
 systems in Sec� ��� and ���� We discuss the nn case in considerable

detail� considering� in turn� para�� ferro� and antiferromagnetic couplings� In Chap�
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ters ���� we shall carry out a direct comparison of information theoretic� statistical

mechanical� and computational measures of structure and pattern�

��� Calculational Methods

���� Determination of recurrent causal states

We begin by determining the recurrent causal states from a range�R spin system

determined by V � To do this we will need to form conditional probabilities as in

Eq� 	���
� In particular� we must �nd an expression for the probability that L con�

secutive spins take on the particular values si� si��� � � � � si��L���� For convenience� we

let L � RL� where L� � � is an integer that indexes the contiguous R�blocks in the

lattice� that is�

�i � sRisRi�� � � � sR�i������ i � �� �� � � � � L� � � � 	���


This choice does not a�ect the results� but simpli�es the following derivations� After

constructing a transfer matrix that adds on the e�ects of R spins per matrix operation

	see Sec� ���� one can use the Boltzmann distribution of Eq� 	���
 to obtain

Pr	s�� s�� � � � � sL��
 �
uR


L�
uL
�

��L����

L���Y
i��

V 	�i� �i��
 � 	���
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That is� for a given block of L spins� the probability is a product of components of

the transfer matrix and its principal eigenvalue and eigenvectors� Each particular

con�guration s�s� � � � sL�� speci�es unique values of the contiguous R�spin blocks

��� ��� � � � � �L��� in the con�guration� To evaluate the right�hand side of Eq� 	���
� the

components of the matrices and vectors are chosen by the � variables that correspond

to the particular spin variables on the left�hand side� that is� according to Eq� 	���
�

Consider an in�nite con�guration split at s� and left� and right�half con�gu�

rations of length L on either side

�
s
L � s�Ls�L�� � � � s��s�� 	���


and

�
s
L � s�s� � � � sL��sL�� � 	���


Now�

Pr	
�
s
Lj�sL
 � Pr	

�
s
L
�
�
s
L



Pr	
�
s
L



� 	���


Using Eq� 	���
� the de�nitions of
�
s
L
and

�
s
L
� and Eqs� 	���
 and 	���
 in Eq� 	���


we have� after some simplifying�

Pr	
�
s
Lj�sL
 �

uR

L���

�L�uR
��

L���Y
i���

V 	�i� �i��
 � 	���
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Recall that we view this as a function over all possible length�L right�half con�gura�

tions
�
s
L
conditioned on a particular length�L left�half con�guration

�
s
L
� Analyzing

this equation is the key step in determining the causal states�

Notice that Eq� 	���
 indicates that of all the spin blocks in
�
s
L
� ��L� � � � � � ����

Pr	
�
s
Lj�sL
 only depends on the single spin block ���� All the other spin blocks � in

Eq� 	���
 are members of
�
s
L
� That is� the probability distribution over right�half

con�gurations depends only on the value of the left�most 	closest
 neighboring block�

This result holds for any L � R� Hence�

Pr	
�
s
Lj�sL
 � Pr	

�
s
Lj���
 � 	���


Expressed informally� the values of s�� � � � � sL�� are �shielded� from s�L� � � � � s�R��

by spin block ��� � s�R � � � s��� �s
L
�s leftmost R neighboring spins� This observation

was made in a di�erent context by Baker ����

This somewhat surprising result can be explained physically as a direct conse�

quence of the range�R interactions in the Hamiltonian� The probability of a right�half

con�guration
�
s depends only on its energy� Of all the spins in

�
s
L
� only the spins in

the ��� block�i� e�� the block that neighbors
�
s�contributes to the energy and hence

to the probability of
�
s �

Recall that two left�half con�gurations are considered equivalent if and only

if they give rise to the same distribution of right�half con�gurations conditioned on
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having seen those particular left halves� The equivalence classes induced by this

relation are identi�ed as the causal states� Thus� Eq� 	���
 tells us that for a spin�

K system with range R interactions there are at most 	�K � �
R recurrent causal

states corresponding to the 	�K ��
R possible values of a single spin block jS�R�j �

	�K � �
R� Recall that the recurrent causal states are the equivalence classes in

the limit that K�L  � in Eq� 	���
� In determining the causal states� say by

successively increasing L from �� Eq� 	���
 shows us that the set of causal states will

not change once L � R� For any L � R� the conditional distribution of Eq� 	���


depends only on ���� as indicated by Eq� 	���
�

To complete our determination of the recurrent causal states� we must make

sure that each di�erent value of ��� actually gives rise to a di�erent Pr	
�
s
Lj���
� That

is� we must check for all di�erent spin�block pairs� ��� �� ����� that

Pr	
�
s
Lj���
 �� Pr	

�
s
Lj����
 � 	���


for at least one
�
s
L � AL� Note that

�
s
L
can be decomposed into a telescoping product

over its �i�s� that is�

Pr	
�
s
Lj���
 �

L���Y
i���

Pr	�i��j�i
 � 	���


Looking at the future conditional probability distribution� Eq� 	���
� we see that the
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Eq� 	���
 may be written as

V 	���� ��


uR
��
�� V 	����� ��


uR
�
��

� 	����


for at least one ��� the next spin�block�

It should be emphasized that we are �xing two particular values for the right�

most spin block in the left half� ��� and ����� and comparing the distribution over all

possible values of
�
s
L
or its surrogate block ��� When ��� �� ����� if Eq� 	����
 holds for

at least one ��� then the conditional distributions are distinct� This� in turn� means

that the causal states are in a one�to�one relation with the values of R�spin blocks� If

this is not the case� then we�ve found two distinct blocks� ��� and �
�
��� that lead to the

same conditional distribution Pr	
�
s
Lj�
� Therefore� 	i
 ��� and ���� are in the same

equivalence class and 	ii
 there are fewer recurrent causal states than there are spin

blocks� For the Ising systems considered here� condition Eq� 	����
 is almost always

met� if system parameters are randomly chosen� Eq� 	����
 holds with probability ��

The immediate conclusion is that the set of R�spin blocks f�g is the set of recurrent

causal states� The exceptions� though� are notable� as we will see later on�

We can simplify the notation of Eq� 	����
 by dropping the R�block index

when referring to the transfer matrices and its eigenvectors� We can then express

Eq� 	����
 in terms of the components of the transfer matrix and the eigenvectors�
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That is� we change

V 	���� ��
 Vij � 	����


where i� j � �� �� � � � � 	�K ��
R� � index the rows and columns of V and correspond

to the values of ��� and ��� respectively� Using this simpler notation� the condition

for distinct conditional distributions Eq� 	����
 may be rewritten as

Vik�u
R
i �� Vjk�u

R
j � 	����


for at least one k� If this is satis�ed� then the recurrent causal state probabilities are

given by

Pr	S�R�i 
 � uRi u
L
i � i � �� �� � � � � 	�K � �
R � � � 	����


We have now determined an upper bound on C� and C� for a spin�K system

with Rth nearest neighbor interactions C� � C� � R log�	�K � �
� This result

indicates that this class of spin systems is a severely restricted subset of ��machines�

For example� the number of causal states is �nite for all parameter values�

���� Causal state transitions

Now that we have found the recurrent causal states� our task is to determine the

probabilities for transitions between them T �s�
�� � Pr	S�� sjS�
� where the indices run

over only the recurrent causal states�
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Recall that transitions between causal states are deterministic in the sense that

knowledge of the next spin determines the next causal state� that is� Pr	S�js�S�
 � �

if the transition is allowed and zero otherwise� Thus� it su�ces to know Pr	sjS�
 to

determine T
�s�
�� �

It follows from Eq� 	���
 that

Pr	��j���
 � �

�
V 	���� ��


uR
�
uR
��

� 	����


where �� � s�s� � � � sR�� is the contiguous� non�overlapping R�spin block to the right

of ��� � s�Rs�R�� � � � s��� To obtain Pr	s�j���
 from Pr	��j���
 we must sum over

all the spin variables in �� except for s�� Hence

Pr	s�j���
 �
X
s�

� � �
X
sR��

�

�
V 	���� ��


uR
�
uR
��

� 	����


For a next nearest�neighbor 	R � �
 system we have� for example�

Pr	� j���
 � Pr	�� j���
 � Pr	�� j���


�
�

�
V 	���� ��


uR��
uR
��

�
�

�
V 	���� ��


uR��
uR
��

� 	����


T
�s�
�� follows immediately from Eq� 	����
� The transient states and their tran�

sition probabilities can be determined using the method given in App� D� Taken

altogether� then� the recurrent and transient states plus their transition probabilities
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constitute an ��machine for the spin system described by the transfer matrix V � We

shall give examples of spin system ��machines in the following sections�

���� Spin system statistical complexity

In a previous section we identi�ed the recurrent causal states as the possible values

of the spin blocks �� assuming Eq� 	����
 is satis�ed� Recalling that the statistical

complexity is the Shannon entropy over the asymptotic causal state distribution� we

may use Eqs� 	����
 and 	����
 to obtain

C� � �
jS�R�j��X

i��

uRi u
L
i log�	u

R
i u

L
i 
 � 	����


Eq� 	����
 is equivalent to setting L � R in Eq� 	���
�

C� � H	R
 � 	����


That is� the statistical complexity is the Shannon entropy H	R
 of the R�spin block

distribution� As already noted� H	R
� divided by R to give a density� is not the

entropy density h�� even if R � ��
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���
 Spin system entropy density

Since the probability of a spin block depends only on the value of that block�s nearest

neighbor� Eq� 	���
 for the entropy density reduces to

h� �
�

R
H��ij�i��� � 	����


a form for h� discussed in App� B� Using Eq� 	���
 we �nd that

h� �
�

R

	
log� �� ���
jS�R�j��X
i�j��

uRi u
L
j Vji log��Vji�

�A � 	����


Although not apparent� it is straightforward to show that� for systems described by

a �nite�dimensional transfer matrix� Eq� 	����
 is equivalent to the more familiar

expression for entropy density�

h� � � lim
N��

�

�T
	� T

N
logZ
 � 	����


using Z � Tr V N � Our method for calculating the entropy density by using Eq� 	���


has also been employed by Lindgren �����
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���� Spin system excess entropy

The range�R interactions also lead to a compact expression for the excess entropy�

Recall that E may be expressed as the mutual information between the left and right

halves of a con�guration� Because only the neighboring R�spin block of one half

in�uences the distribution over the other half� it follows that

E � I�
�

S�
�

S � � I��i� �i��� � I�S��SR� � 	����


where S��S�� � � � �SR is a spatial sequence of recurrent causal states� so that SR denotes

the causal state seen R spins after seeing S�� To calculate E using Eq� 	����
� we need

the marginal distribution of S and the joint distribution of S� and SR� The former

is just the asymptotic distribution over causal states� Pr	S
� as given by Eq� 	����
�

The joint distribution follows by applying the stochastic connection matrix T�

Pr	S��SR
 �
X

S��			�SR��

Pr	S�
TS�S�TS�S� � � �TSR��SR

� Pr	S�
TR��
S�SR

� 	����


where TR�� is the 	R��
th power of T� From Eqs� 	����
� 	����
� and 	����
� E follows

readily� We should emphasize� however� that Eq� 	����
 is not completely general�it

applies only to R�range one�dimensional spin systems for which Eq� 	����
 holds�

In terms of the transfer matrix� an expression for E follows by inserting
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Eq� 	���
 into Eq� 	����
 and simplifying�

E � � log� �� ���
jS�R�j��X
i�j��

uRi u
L
j Vji log��Vji� �

jS�R�j��X
j��

uRj u
L
j log��u

R
j u

L
j � � 	����


One can also calculate E and h� by determining an expression for H	L
 in

terms of V and using Eq� 	���
� Doing this� we get formulae that agree with those

derived above�

���� Relationships between spin system memory measures

Note that these results�Eqs� 	����
� 	����
� and 	����
�establish an explicit version

of the equality in Eq� 	����
 between E and C� mentioned above� namely�

C� � E�Rh� � 	����


where R is the range of interaction and again assuming that Eq� 	����
 is satis�ed�

Eq� 	����
 is a consequence of the information theoretic identity�

H��i� � I��i� �i��� �H��i��j�i� � 	����


This result� Eq� 	����
� also applies to �nite�step Markov chains in which blocks over

the observed alphabet A are in � � � correspondence with the internal�state blocks

SR� Note that the fair coin and the noisy period�� examples violate this condition
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and so Eq� 	����
 does not hold for them� 	See Table ��


Eq� 	����
 shows us that E� C�� and h� are not independent for the �nite�

range systems considered here� As such� we will focus mostly on E and h� for the

remainder� When discussing ��machines below� we will consider mainly their detailed

structure and will not focus on the single number C��

Finally� since mutual information� and thus E� is a nonnegative quantity� we

note that

C� � h� � 	����


recalling the restrictions on Eq� 	����
� It might seem puzzling that the amount of

information carried by the ��machine��Which causal state is the process in���is

larger than the information available 	on average
 from individual spin observations�

However� C� and h� simply measure di�erent types of information�

��� Spin���� Nearest�Neighbor Systems

Starting with the transfer matrix� the preceding section developed a general method

for determining the causal states� constructing an ��machine� and calculating the

statistical complexity� entropy density� and excess entropy� The results describe all

�nite�range one�dimensional spin systems� In this section we apply these results to

the simple case of nearest�neighbor 	nn
 spin���� systems� the Hamiltonian is given

by Eq� 	���
 with all the Ji�s except for J� set to zero� The main goal of this section is
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to illustrate the use of our methods and to allow the reader to gain familiarity with the

quantities we�ve de�ned in earlier sections� In subsequent chapters we shall consider

longer range models� compare and contrast E and ��machines with the measures of

structure found in statistical mechanics� and� then� draw some general conclusions

about the behavior of these di�erent quantities�

���� ��Machines for the spin����� nearest�neighbor Ising model

For the special case of a spin���� system with nearest�neighbor interactions� and for

those parameter values where Eq� 	����
 holds� the corresponding ��machine is shown

in Fig� ���� The transition probabilities are obtained from Eq� 	����
 and the transient

state construction technique of App� D� State A is the start state and is the only

transient state� States B and C are recurrent�

The transition matrices fT �s�  s � Ag are given by

T ��� �

	BBBBBB

� Pr	�
 �

� Pr	� j �
 �

� Pr	� j �
 �

�CCCCCCA 	����


and

T ��� �

	BBBBBB

� � Pr	�


� � Pr	� j �


� � Pr	� j �


�CCCCCCA � 	����
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↓
Pr

(↓
) ↑Pr(↑)

A

B C

↓Pr(↓↓) ↑Pr(↑↑)↓Pr(↓↑)

↑Pr(↑↓)

Figure ��� The spin���� Ising ��machine� The double�circled causal state A is the
start state� It is a transient state� never visited again after the �rst transition� The
two initial transitions give the probabilities of isolated up and down spins�

The stochastic connection matrix T� being the sum of the above two matrices� is

T �

	BBBBBB

� Pr	�
 Pr	�


� Pr	� j �
 Pr	� j �


� Pr	� j �
 Pr	� j �


�CCCCCCA � 	����


The components T�� give the probability of making a transition from causal state �

to causal state 	� As before� we use the convention that the numerical values of the

index � correspond to the alphabetical indices of the causal states in the natural way�

� � � corresponds to causal state A� � � � to B� etc� For example� the probability

of making a transition from B to C is given by T �
�� � T�� � Pr	� j �
� The matrices

given by Eqs� 	����
 and 	����
 are equivalent to the ��machine shown in Fig� ����
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In terms of the system parameters J�� B� and T � the elements of the stochastic

connection matrix can be calculated explicitly via Eq� 	����
 and the transient state

construction technique of App� D� We �nd

T �

	BBBBBB

� ��m

�
��m
�

� ���e
�B�J�

T �� ���e
�B�J�

T

� �� ���e
B�J�
T ���e

B�J�
T

�CCCCCCA � 	����


The normalization factor � is given by

� � e
J�
T cosh	

B

T

 �

r
e
��J�
T � e

�J�
T sinh�	

B

T

 � 	����


and m� the magnetization� is

m �
e
J�
T sinh	B

T

q

e
��J�
T � e

�J�
T sinh�	B

T


� 	����


���� Paramagnet

We now apply these results to some particular cases� beginning with a paramagnet�

J� � �� It is easy to check that Eq� 	����
 is not satis�ed� Hence� there is only one

causal state� and C� � � for all temperatures and all values of the external �eld B�

Physically� this is because at J� � � there is no coupling at all between the spins� a

spin exerts no in�uence on the value of its neighbors� As a result� there is only one
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conditional distribution

Pr	
�
s
Ljs�� � �
 � Pr	

�
s
Ljs�� � �
 � 	����


The ��machine for the paramagnet is shown in Fig� ���� In terms of B and T �

Pr	�
 � 	���

eB�T

cosh	B�T 

� 	����


and Pr	�
 � ��Pr	�
� The start state is recurrent for this particularly simple process�

If there is no external �eld B to bias the spins� then Pr	�
 � Pr	�
 � ��� and the

��machine of Fig� ��� is identical to the the fair coin machine of Fig� ����

Since knowledge of a spin carries no information about the value of its neigh�

bors� the excess entropy also vanishes for the paramagnet� If there is no external �eld

B to bias the spins� all con�gurations are equally likely and h� � �� As B increases

from �� the con�gurations are biased toward �� and the entropy density monotoni�

cally decreases� Note that for jBj �� and T � �� h� can take on all possible values

except for �� � � h� � �� Yet for all B� C� � E � �� This simple example illustrates

how excess entropy and statistical complexity are measuring a property that is clearly

distinct from the entropy density�they are di�erent from randomness� We can also

see how the process of determining the causal states factors out the randomness in

the system�
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A↓Pr(↓) ↑Pr(↑)

Figure ��� The ��machine for a paramagnet� Pr	�
 and Pr	�
 depend on B and T �
However� C� � E � �� for T � ��

���� Ferromagnet

For ferromagnetic coupling� J� � �� Eq� 	����
 holds for all temperatures except zero

and in�nity� In this range the recurrent causal states may be identi�ed with the values

of a single spin� An ��machine for typical parameter values is shown in Fig� ����

At in�nite temperature� thermalization dominates and the spins e�ectively

decouple� all con�gurations are equally likely� Thus� as for the paramagnet� there is

only one conditional distribution�

Pr	
�
s
Ljs�� ��
 � Pr	

�
s
Ljs�� ��
 � 	����


As a result� there is only one causal state and C� and E vanish� The ��machine for

the in�nite temperature ferromagnet� shown in Fig� ���� is identical to the fair coin

machine� Fig� ����

At zero temperature there are no thermal �uctuations and the spins are locked

in their ferromagnetic ground state all spins align with the external �eld� This
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↓
0.2

7 ↑0.73

A

B C

↓0.67 ↑0.88

↑0.33

↓0.12

Figure ��� A typical ��machine for a ferromagnet� J� � ���� B � ���� and T � �����
C� � ���� bits� E � ���� bits� and h� � ���� bits per site� Note the high probability
of �self�transitions� from B to B and from C to C� a manifestation of the relatively
large ferromagnetic interaction�

A↓1/2 ↑1/2

Figure ��� The ��machine for T � �� There is no memory� of any type C� �
E � � bits� The in�nite temperature machine is identical for the ferro�� para�� and
antiferromagnets so long as J� and B remain �nite�
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A↑1

Figure ��� The ��machine for the ferromagnetic ground state� T � �� C� � E � �
bits for � � B �� and � � J��

situation is exactly the same as the period�� example considered in Sec� ������ Thus�

as shown in Fig� ���� there is only one causal state and only one transition� The

excess entropy� statistical complexity� and entropy density all vanish for this simple�

trivially predictable system�

The statistical complexity and excess entropy for a nearest�neighbor ferromag�

net are plotted as a function of temperature in Fig� ���� C� increases monotonically

as a function of temperature until T � � 	not shown
� There� as mentioned above�

the couplings between spins become negligible� causing the two causal states to merge

into one� yielding C� � �� The monotonic increase in between these two extremes is

due to the distribution over the two causal states� B and C� becoming more uniform

as the temperature is increased� Since C� is the Shannon entropy of the causal state

distribution� it is maximized when the distribution is uniform� This distribution is

approached as one nears� but is not at� T ���

In Fig� ��� we plot C� and E parametrically as a function of the randomness�

as measured by h�� This plot is referred to as the complexity�entropy diagram �����
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Figure ��� C�� h�� and E as a function of T for the nn spin���� ferromagnet� B was
held at ���� and J� � ��

The bene�t of this type of plot is that it is free of the external control parameters�

temperature� coupling strength� and external �eld� Thus� the complexity�entropy

diagram gives direct access to a system�s information processing capabilities and

provides a common set of coordinates with which to compare the information pro�

cessing properties of systems with di�erent architectures and control parameters� For

example� in Ref� ���� we used the complexity�entropy diagram to compare the con�

�gurations generated by one�dimensional Ising systems with the sequences generated

by the symbolic dynamics of the logistic map� The complexity�entropy diagram is

also discussed in Chapter ��� which was originally published as Ref� �����

For the ferromagnet� we see in Figs� 	���
 and 	���
 that E has a maximum

in a region between total randomness 	h� � �
 and complete order 	h� � �
� At low

temperatures 	and� hence� low h�
 most of the spins align with the magnetic �eld� At
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Figure ��� The complexity�entropy diagram for a ferromagnet� C� and E plotted
parametrically against h�� The coupling constant and �eld were �xed�J� � ��� and
B � �����as T was varied� At h� � � 	T ��
� C� � � bits� this is denoted by the
square token�

high temperatures� thermal noise dominates and the con�gurations are quite random�

In both regimes one half of a con�guration contains very little information about the

other half� For low h�� the spins are �xed and so there is no information to share�

For high h�� there is much information at each site� a roughly equal number of spins

point up and down� so the single spin uncertainty is quite high� However� this infor�

mation is uncorrelated with all other sites� Thus� the excess entropy is small in these

temperature regimes� In between the extremes� however� E has a single maximum

at the temperature where spin coupling strength balances the thermalization� The

result is a maximum in the system�s spatial memory�
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↓
0.3

2 ↑0.68

A

B C

↓0.05 ↑0.56

↑0.95

↓0.44

Figure ��� A typical ��machine for an antiferromagnet 	AFM
� J� � ����� B � ����
and T � ���� Giving C� � ���� bits� E � ���� bits� and h� � ���� bits per site� Note
the relatively strong interstate coupling�

���
 Antiferromagnet

An ��machine for a typical antiferromagnetic 	AFM
 coupling 	J� � �
 is shown in

Fig� ���� Note that �topologically� the AFM machine is identical to the FM machine

of Fig� ����the states and their connectivity are identical� The di�erence between

the two systems lies in the probabilities of the transitions� The FM shows a high

probability for self�transitions� Pr	B  B
 � ���� and Pr	C  C
 � ����� These

self�loops are responsible for the FM pattern aligned spins� For the AFM� the self�

loops are relatively weaker� Pr	B B
 � ���� and Pr	C C
 � ����� with the high

value of the latter being due partially to the high B	� ���
� This indicates a stronger

tendency for spins to be anti�aligned� as expected for a system with AFM couplings�

The high temperature behavior of the excess entropy is similar for both the

AFM and FM� 	See Fig� ����
 Thermal �uctuations destroy all correlations and E
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Figure ��� The complexity�entropy diagram for an antiferromagnet� The tempera�
ture was varied as J� and B were held constant at J� � ���� and B � ����� As was
the case for the ferromagnet� at h� � � 	T ��
� C� � � bits� this is denoted by the
square token�

vanishes� The low T behavior di�ers� however� as one might expect given the di�erent

ground states exhibited by models with ferro� and antiferromagnetic couplings in

the FM ground state� all the spins are aligned� while the ground state of the AFM

consists of alternating up and down spins� The latter is� of course� the period��

con�guration given by Eq� 	���
 that we considered back in Sec� ��� with Fig� ����

In Fig� ��� we chose the antiferromagnetic coupling to be strong enough so that an

antiferromagnetic ground state persists despite the presence of an external �eld� In

the antiferromagnetic ground state the spatial con�gurations thus store one bit of

information about whether the odd or even sites contain up spins� Accordingly� as

can be seen in Fig� ���� E log� � � � bit as h�  ��
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���� General remarks

For di�erent couplings and �eld strengths a range of E vs� h� relationships can be

realized but their form is similar to those shown in Figs� 	���
 and 	���
� E either

shows a single maximum or decreases monotonically� It is always the case� though�

that E is bounded from above by ��h�� which follows immediately if C� is set equal

to its maximum value� � bit� in Eq� 	����
�

We have demonstrated this upper bound explicitly in Ref� ������ where we

show a plot of the excess entropy versus entropy density for a nn Ising system with

randomly chosen system parameters� Li ���� has performed a similar study using

several probabilistic automata�

In Sec� ���� C� was presented as a measure of structure� It is perhaps surpris�

ing� then� that it behaves so di�erently from E� As h� increases� one might expect

C� to reach a maximum� as does E� and then decrease as the increased thermaliza�

tion merges causal states that were distinct at lower temperatures� However� Fig� ���

shows a monotonic increase in C� with h� for the FM� To understand this� recall that

the number of recurrent causal states does not change as T is varied between zero and

in�nity� For the nn spin�� � Ising model� the number of causal states remains �xed

at two� What does change as T is varied are the causal state probabilities Pr	S�
�

For the FM� as the temperature rises the distribution Pr	S�
 becomes more uniform

�Contained here as Chapter ��
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and so C� grows� This growth continues until T becomes in�nite� since only there do

the causal states collapse into one� at which point C� vanishes�

For the AFM the situation is a little di�erent� At T � � there are two recur�

rent causal states corresponding to the two spatial phases of the alternating up�down

pattern� The probability of these causal states is equal� Hence� we see a low tem�

perature statistical complexity of C� � � bit� At high 	but �nite
 temperatures� the

thermal �uctuations dominate� the anti�ferromagnetic order is lost� but the distribu�

tion over causal states is still relatively uniform� so the statistical complexity remains

large� 	As with the FM� at T �� the two causal states merge and C� falls to zero�


Between these extremes there is a region where the in�uence of the external �eld

dominates� biasing the con�gurations� This is re�ected in a bias in the causal state

probabilities and C� dips below �� as seen in Fig� ����

The tendency for C� to remain large for large values of h� is due to a more

general e�ect� which follows from Eq� 	����
 C� � E�Rh�� The memory needed to

model a process 	or for the process to produce its con�gurations
 depends not only on

the observed memory of the con�gurations generated� as measured by E� but also on

its randomness� as measured by h�� It is important to note� however� that C� is driven

up by thermalization not because the model attempts to account for random spins in a

con�guration and not because the process must develop substantial memory resources

to produce random spin values� Rather� C� rises with h� because Pr	S�
 becomes

more uniform as the temperature increases� This re�ects the fact that knowing in
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which causal state the process is becomes more informative in this regime�

��� Spin���� next�nearest neighbor Ising system

We now discuss the causal states and ��machines for a spin system with nearest and

next�nearest neighbor 	nnn
 interactions� That is� the Hamiltonian is given by

H	sN
 � �J�
NX
i��

sisi�� � J�

NX
i��

sisi�� � B
NX
i��

si 	����


This system� capable of richer behavior than the nn system discussed above� is an

important addition for discussing the detection of patterns and structure in subse�

quent sections� It will serve as our primary example when we compare computational

mechanical� statistical mechanical� and information theoretic approaches to structure�

For the nnn system the recurrent causal states are� assuming Eq� 	����
 is

satis�ed� in a one�to�one relation with the four possible values of a block of two spins�

A general ��machine for this system is shown in Fig� ����� The connection matrix for
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this system is given by

T �

	BBBBBBBBBBBBBBBBBBBBBB


� Pr	�
 Pr	�
 � � � �

� � � Pr	� j �
 � Pr	� j �
 �

� � � � Pr	� j �
 � Pr	� j �


� � � � Pr	� j ��
 � Pr	� j ��


� � � � Pr	� j ��
 � Pr	� j ��


� � � Pr	� j ��
 � Pr	� j ��
 �

� � � Pr	� j ��
 � Pr	� j ��
 �

�CCCCCCCCCCCCCCCCCCCCCCA

� 	����


There are several features to note about the ��machine of Fig� ����� First�

the machine has more states than the nearest�neighbor system� This is a direct

consequence of the longer�range interactions in the nnn system� Second� there are four

recurrent causal states� D through G� and thus the topological complexity Eq� 	����


is C� � log� � � � bits� As noted in Chapter ������ the topological complexity sets an

upper bound on the statistical complexity C�� hence� C� � � bits� Lastly� setting h�

to its minimum value� �� in Eq� 	����
� we also obtain a bound on the excess entropy�

E � � bits� We will discuss the behavior of E for the nnn system in the next chapter�
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Figure ���� ��machine for a next�nearest neighbor spin���� Ising model� There
are three transient states S�T � � fA�B�Cg and four recurrent states S�R� �
fD�E�F�Gg� The start state is A�



���

Chapter 


Excess Entropy is a

Wavelength�Independent Measure

of Periodic Structure

We now begin the �rst of three chapters in which we explicitly compare the di�erent

approaches to structure Information Theoretic� Computational� and Statistical Me�

chanical� In this chapter� we compare the excess entropy� an information theoretic

measure of memory� with the statistical mechanical structure factors introduced in

Chapter ��

Super�cially� it might seem that the excess entropy and the structure factors

re�ect the same feature of a con�guration� The excess entropy measures the total

mutual information between two halves of a con�guration and so may be viewed as
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the total apparent spatial memory stored in the con�guration� The structure factors

S	q
� de�ned in Eq� 	����
� are a sum over all two�point correlation functions and thus�

in a limited sense� can be viewed as a measure of the total correlation� However� we

shall see in this chapter that E and S	q
 have several important di�erences�

�� Comparing E and S�q�

In Fig� ��� we have plotted S	�
� S	���
� S	�
� and E as a function of the coupling

strength J� between nearest neighbors for the nnn Ising system just described� The

�eld� temperature� and next�nearest neighbor coupling constant were held �xed at

B � ����� T � ���� and J� � ����� The structure factors of wavenumbers �� ���� and

� correspond to wavelengths of spatial periods �� �� and �� respectively�

Let�s �rst analyze the behavior of the structure factors in Fig� ���� As J� goes

to ��� the thermal �uctuations become negligible and the system is con�ned to its

ground state� The nnn coupling constant J� is also negligible in this limit� Hence� the

system�s ground state is antiferromagnetic with period � alternating up and down

spins and� in Fig� ���� S	�
 diverges�

For J� � � the nn coupling is ferromagnetic� As J� becomes larger than J��

the system moves through a region of ferromagnetic structure similar to that re�ected

in Fig� ��� and indicated by the S	�
 peak in Fig� ���� As J�  �� the thermal

�uctuations and the nnn coupling are again negligible and the system is �xed in its
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ground state� Here� since J� � �� the ground state is ferromagnetic� All spins line up

with the external �eld� As a result� hs�sri � hsi� so all the �	r
�s vanish� yielding a

vanishing S	�
�

For jJ�j 	 T � the thermal �uctuations and the nnn coupling J� dominate and

the lattice e�ectively decouples into two non�interacting chains� That is� the even

and odd sites do not interact with each other� Since J� � �� the ground state in this

parameter regime is antiferromagnetic with period �

� � � � � � � � � � � � � � � � � � � � � � � � 	���


As a result� we see a peak in S	���
 at J� � � in Fig� ���� The wavenumber ���

corresponds to a period of �� The structure factors S	�
 and S	�
 are insensitive to

structure at this wavelength�

Fig� ��� shows that the system exhibits signi�cant structural changes� as indi�

cated by the structure factors� as the parameter J� is varied� Notice� however� that

analyzing the con�gurations using only one of the structure factors misses most of

the changes that occur in the con�gurations elsewhere� Excess entropy� however� is

not limited to a particular wavelength� As can be seen in Fig� ���� E picks up the fer�

romagnetic and both types of antiferromagnetic structure� This feature of the excess

entropy is especially noteworthy� as statistical mechanics does not possess a structure

factor that is applicable to all such situations�



CHAPTER �� E DETECTS PERIODIC STRUCTURE� ���

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-8 -6 -4 -2 0 2 4 6 8

S
(0

) 
[s

pi
ns

2 ]

0

1

2

3

4

5

6

7

-8 -6 -4 -2 0 2 4 6 8

S
(π

/2
) 

[s
pi

ns
2 ]

0

5

10

15

20

25

-8 -6 -4 -2 0 2 4 6 8

S
(π

) 
[s

pi
ns

2 ]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-8 -6 -4 -2 0 2 4 6 8

E
xc

es
s 

E
nt

ro
py

 E
 [b

its
]

J1

Figure ��� The structure factors S	�
� S	���
� and S	�
 and the excess entropy E
versus nearest�neighbor coupling J� for a next�to�nearest neighbor �D Ising system�
The parameters are B � ����� T � ���� and J� � �����
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The excess entropy is capable of detecting structure at any wavelength because

it is a much more �global� function than the structure factors� Although calculation

of the structure factor involves summing over all the variables in the chain� the cor�

relations are considered in pairs� since the two�point correlation functions �	r
 are

summed over� Excess entropy� on the other hand� is de�ned as the information that

the entire left half carries about the entire right half� The excess entropy treats the

left half and the right half of a con�guration as two 	very large
 composite variables�

it does not break them into pairs� In this sense we say that E is more global than

S	q
� Conversely� S	q
 is somewhat �myopic�� By considering only two�point corre�

lations modulated at some wavenumber q� S	q
 misses structure that occurs at other

wavenumbers and that is due to more�than�two�spin correlations�

The di�erences between E and S	q
 can be better understood by considering

the motivations behind their de�nition� Structure factors are designed to detect a

pattern of a given periodicity� For example� if one performs a numerical experiment

to determine the critical point of a paramagnet�antiferromagnet transition� then the

antiferromagnetic structure factor S	�
 is the natural quantity to use to detect the

onset of antiferromagnetic ordering� If� however� one is interested in the apparent

spatial memory of a con�guration� E is the natural quantity to use�

Simply put� excess entropy and structure factors measure di�erent things E

measures spatial memory and S	q
 detects correlations of a particular periodicity�

They behave similarly because the spatial memory of a con�guration is relatively
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large if it has a periodic pattern� In fact� E � log� P for a periodic con�guration

of period P� For the spin systems considered here� a con�guration is periodic if and

only if its entropy density h� vanishes� Thus� if a system has h� � �� this implies

that is periodic with P � �E�

Since E and S	q
 measure di�erent properties of a con�guration� they carry

di�erent units� The excess entropy is measured in bits while S	q
 has the dimensions

of spin�value squared� Note thatE is a function of the distribution of the spin variables

and� unlike S	q
� does not depend on the values or units of the spin variables� For

example� if we were to consider a model where si � f��g instead of si � f��g� S	q


would increase by a factor of � whileE would remain unchanged� This is a fairly trivial

observation but� as has been mentioned elsewhere ����� it emphasizes how mutual

information is a more �exible measure of correlation than a correlation function� In

other words� �correlation� is best interpreted to be a statement concerning the joint

distribution of two variables� not the values those variables can assume�

The fact that E and S	q
 carry di�erent units means that their numerical

values are interpreted di�erently� This is particularly clear in the J�  �� behavior

of Fig� ���� Here� S	�
 diverges� indicating exact periodicity at q � �� The excess

entropy� however� is �nite E � log� � � � bit� indicating that the con�gurations store

� bit of information�
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�� Trying to Sum S�q� over q

Looking at Fig� ���� it appears as if the sum of S	�
� S	���
� and S	�
 might behave

like E� Indeed� summing these three functions does produce a function that behaves

like E for this particular system� But summing up the relevant S	q
�s still depends

on guessing the right q�s� A response to this objection might be to sum S	q
 over all

q�s� However� if one does this the di�erent phases destructively interfere� As a result

N��X
q��

SN	q
 �
N��X
q��

N��X
r��

�	r
e��irq�N � �	�
 � 	���


All we�re left with is �	�
� a �self�correlation� term that is a function of the distribu�

tion of a single spin and� hence� clearly is no measure of spatial structure�

Summing over the absolute value of the structure factors� as in

'S �
�X
q��

jS	q
j � 	���


also yields a quantity that fails to measure the total correlation of the system� For

example� 'S fails to vanish for a paramagnet in the presence of an external �eld�

One also might be tempted to add together all the connected correlation func�

tions� That is� combine the two�spin� three�spin� four�spin� etc�� connected correlation

functions� 	For a discussion of how to extend the de�nition of connected correlation

functions to more than two spins see� e�g�� �����
 However� such a sum either diverges
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or is simply proportional to the free energy� Neither case leads to a measure of struc�

ture� More speci�cally� one can show that the connected correlation functions are� up

to factors of 	� the coe�cients in the Taylor expansion of logZ � 	F in powers of

local coupling constants J �i attached to each site i� where F � U�TS is the Helmholtz

free energy ����� Thus� a sum of the connected correlation functions corresponds to

setting J �i � � in this expansion� Since this is outside of the series� radius of conver�

gence� we conclude that this sum will fail to converge unless the series terminates�

If the series terminates� however� the resulting sum is a quantity proportional to the

free energy F �

�� Summary

In summary� Fig� ��� illustrates one the central points of this dissertation excess

entropy measures the memory stored in spatial con�gurations and as such is sensitive

to periodic structure at any period� As far as one can tell� statistical mechanics does

not possess a quantity that has these properties� The structure factors are sensitive

to periodic behavior� but only at particular wavenumbers� Furthermore� the structure

factors do not measure memory� carrying units of �spins��� whereas E carries units of

bits� which often can be usefully interpreted in terms of the pattern or structure in a

con�guration�

Since any periodic �D spin con�guration has h� � �� a vanishing entropy
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rate together with a positive excess entropy is an unambiguous indication of periodic

order� The two information processing �coordinates�� h� and E� provide a means

for detecting periodicity� But periodicity is just one type of structure� How can we

discover and describe structure that isn�t periodic� i� e�� structure that has a positive

entropy density� Moreover� di�erent structures can have the same period� For exam�

ple� � � � �������� � � � and � � � �������� � � � both have E � � bits corresponding to a

period of ��

More generally� �pattern� is not synonymous with memory as measured by

E� Knowing the amount of memory stored in spatial con�gurations does not specify

how the memory is organized or used� Put another 	obvious
 way� knowledge of E

alone does not allow one to reproduce the original con�guration ensemble� We shall

consider these issues at length now�

Lastly� note that� like E� C� serves as a measure of low�entropy memory since

since by Eq� 	����
� h� � � implies C� � E�



���

Chapter �

��Machines Reveal Structural

Features in Entropic Processes

In the previous chapter we saw that E serves to detect periodic�i� e�� h� � ��

E � ��structure� In this chapter we examine systems that have relatively large

entropy density� yet still produce highly structured con�gurations� To describe these

systems� E becomes inadequate and the full apparatus of computational mechanics

becomes necessary�

��� Discovering and Describing Entropic Patterns

To illustrate this� we consider a spin���� Ising model with next�nearest neighbor in�

teractions� as analyzed in Sec� ���� We �x the coupling constants and the temperature
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at the following values J� � ���� and J� � ���� at T � ���� The temperature is

small compared to the external parameters� Hence the system is close to its ground

state and thermal excitations are small� As B increases� the ground state for the

system changes� This can be seen by considering the excess entropy and the entropy

density� which are plotted along with C� in Fig� ����

The previous section noted that a �D spin system with h� � � is periodic

with period P � �E� For B � ���� we see in Fig� ��� that h� vanishes while E � �

indicating a periodic structure of period �� Similarly� for B � ��� E and h� vanish�

indicating periodicity of period �� For � � B � �� E � ���� and h� � �� indicating

that the system is in a con�guration with period �� since log� � � ����� Thus� as

B is varied� the system makes transitions between three di�erent spatially periodic

ground states�

The transitions between di�erent periodic regimes can also be seen in Fig� ���

which shows plots of various structure factors as a function of the external �eld B�

The period�� structure factor S	�
 diverges as B falls below �� 	Strictly speaking�

the structure factor does not diverge� Since the temperature is nonzero� the structure

factor remains �nite� �Diverging� structure factors here have values around ��
�


Above B � �� all structure factors vanish� an indication that the system is in a

ferromagnetic ground state� For B between � and �� we see in Fig� ��� that the

period�� structure factor S	����
 diverges� Note that our being able to detect these

changes in the periodic structure of the system is due to judicious choices of q for
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Figure ��� The statistical complexity C�� excess entropy E� and entropy density h�
versus external �eld B for a next�to�nearest neighbor �D Ising system� The parame�
ters are J� � ����� J� � ����� and T � ����

the S	q
�s shown� This example again illustrates the utility of E as a wavelength�

independent detector of periodicity�

We now turn our attention to the main question of this section What is

happening during the transitions between these periodic regimes� For B � � and

� we see in Fig� ��� that the entropy density h� is large� Thus� the system is not

spatially periodic in these regimes and cannot be well�described by structure factors�

Presumably the con�gurations are some mixture of the periodic ground states that

dominate on either side of each transition� But is this the case� And if they are

mixtures� how do two periodicities �mix��

The structure factors do not provide much� if any� clue� Near B � � in Fig� ���
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we see gentle peaks in S	�
� S	���
� and S	����
� the structure factors for patterns

of periods �� �� and �� respectively� And near B � �� we see peaks in the S	q
�s

for periods �� �� and �� What sort of con�guration could produce these structure

factor amplitudes� To help us answer this question� we examine the ��machines for

the con�gurations at the transition points�

Fig� ��� shows the ��machine for B � ���� Transitions that occur with a

probability of less than ���� are not shown� Note that this ��machine has only �

recurrent states� as opposed to the � recurrent causal states of the generic nnn ��

machine of Fig� ����� State F has disappeared�it is reached with a probability of

less than ���� and so is not included in Fig� ����
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As expected� the ��machine of Fig� ��� demonstrates that the transitional struc�

ture is indeed a �mixture� of periodic behaviors of periods � and �� States A� B�

and C are transient states� The self�loop on state E gives the period�� pattern ����

The E G D E loop is the period�� pattern ���� The entropy density for the

con�gurations described by the ��machine of Fig� ��� is relatively high h� � �����

bits per spin� Nevertheless� the con�gurations have considerable structure�simply

calling them random or �mostly random� is unnecessarily crude�

Note that Fig� ��� is not the only way for a period�� and a period�� pattern to

mix� For example� extra ��s could be inserted at both state E and state D� That is�

there could be an additional self�loop on state D that occurs with a di�erent proba�

bility than the self�loop on state E� Thus� the ��machine provides more information

than just showing that the con�gurations are a mixture of period�� and period��

patterns� the machine tells us how the patterns combine�

Unlike the collection of statistics plotted in Figs� ��� and ���� the ��machine

provides a complete description of the con�guration ensemble The ��machine is

capable of statistically reproducing the entire original con�guration� along with any

other realizations consistent with the ensemble�

Recall that� as explained above� the ��machine is a minimal description� First�

the procedure of equivalence classing to determine the causal states ensures that the

model has the fewest number of states while still accounting for all the causal structure

of the system� Second� the model is chosen within the least powerful class that admits
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Figure ��� The ��machine for the spin system shown in Figs� 	���
 and 	���
 with the
external �eld �xed at B � ���� The other parameters are J� � ����� J� � ����� and
T � ����
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a �nite description of the original process� Thus� in analogy with the group theoretic

description of exact symmetries� the ��machine may be viewed as the �irreducible

representation� of the approximate symmetries� In this sense we conclude that the

��machine is the pattern� Note that to discover the pattern�s structure by building

the ��machine� no assumptions are made� aside from the translational invariance of

the original con�guration� That is� determining an ��machine for a system is not a

transform for detecting an a priori given set of patterns� as is the case with Fourier

analysis and the structure factors� for example� Rather� ��machines enable one to

discover patterns and structures not assumed beforehand�

��� Detecting Entropic Patterns

The ��machine directly reveals important and useful structural information about a

con�guration� As mentioned above� the machine of Fig� ��� reveals how the period��

and period�� patterns mix to produce the con�gurations responsible for the complex�

ities and structure factors observed at B � ��� in Figs� ��� and ���� Furthermore�

the ��machine structure often can be easily translated to provide a compact descrip�

tion of the con�guration in natural language� as already attempted in the preceding

paragraphs� In the case just analyzed� con�gurations may be viewed as a background

pattern of ����s with one or more extra ��s inserted before each �� Typical con�gu�
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rations at B � � are

�������������������������������������� 	���


and

�������������������������������������� � 	���


The probability that there are M extra ��s inserted is readily gleaned from the ��

machine in Fig� ���� The probability is given by

Pr	M extra � �s
 �

�������
���� M � �

����M M � �

������� � 	���


Equivalently� the ��machine tells us how we can construct a di�erent machine

that produces similar con�gurations a machine with a single state that generates

the sequence ��� with probability ���� and � with probability ����� Note that this

is not an ��machine since each transition made by the machine does not produce one

symbol�

This alternative description lets us construct yet another machine� a trans�

ducer� that detects which sites are participating in the constituent subpatterns � � ��

or 	 � 	���
�� where w� denotes an arbitrary number of replications of w� This �l�

tering machine� illustrated in Fig� ���� de�nes a function from con�gurations of spins
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to sequences over the alphabet f�� 	g� Transitions are selected deterministically ac�

cording to which spin state is read in from the con�guration� 	See Refs� ���� and ����

for more discussion of building and using these types of transducers�


Before any symbols are read in� the transducer begins in the start state� labeled

A in Fig� ���� If the �rst symbol read in is � the transducer produces the null symbol

� and returns to state A� If the symbol is �� then transducer is synchronized to

the con�guration it �knows� what causal state the process is in and it outputs the

symbol 	� indicating that the observed � is part of the ��� pattern� The next two

symbols read in will be �� and the transducer makes transitions from G to D and D

to E� In this manner� the transducer maps the input string of ��s and ��s to a string

of ��s and 	�s� For example� the con�guration of Eq� 	���
 is mapped to

��						���			�����			�			��	 � 	���


There are several features of the transducer that give it utility� First� the

transducer can be viewed as giving �meaning� to individual spins ����� Determining

if a spin is part of the period�� or period�� pattern tells us what role that particular

site is playing in the con�guration� This is not a trivial observation since an isolated

� is a part of both of the two competing subpatterns�

Second� the transducer provides a way to recognize sequences� that is� to

determine if a candidate sequence is statistically identical to the con�guration from
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Figure ��� A transducer that detects the elemental spin subpatterns ���� � � � and
��������� � � � and labels the lattice sites with the name�� or 	� respectively�of the
subpattern in which each site participates�

which the ��machine was originally constructed� This recognition process consists of

two components� �rst we determine if the candidate con�guration is allowed and then

we check to see that the spin blocks within the candidate con�guration occur with

the correct probabilities�

If� as a transducer reads a con�guration� a spin value is encountered for which

there is no transition� then that con�guration is rejected� We conclude that it is not

a member of the con�guration ensemble� For example� the sequence ���� is rejected

since there is no transition leaving state G when a � is read�

To conclude that a con�guration
�
s is statistically consistent with the con�g�

uration from which the ��machine was built�
�
s must do more than correspond to a

path through the transducer� It must also produce the correct percentage of � and

	 subpatterns� Fig� ��� tells us that proper con�gurations are a type of a biased
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coin with probability ���� a � is generated and with probability ���� a ��� is gener�

ated� If a con�guration produced by the ��machine of Fig� ��� is used as input to the

transducer of Fig� ���� then the fraction f� of ��s in the output produced is

f� �
����

���� � �� ����
� ���� � 	���


Thus� if a con�guration is read in to the transducer and the fraction of ��s produced

approaches ����� then we conclude that it is statistically identical to the original one�

For this case� the simple form of the ��machine of Fig� ��� lets us easily compute

the �nite�size scaling of the transducer output� Thus� thinking of the ��machine as

a biased coin� it immediately follows that the number of ��s expected in a length�N

con�guration is

# of ��s � �����N �p����� ����N � 	���


or�

f� � ����� ����N���� � 	���


Here we have ignored the number of spins needed to synchronize to the pattern�

This simple calculation assumes� consistent with the law of large numbers� that the

deviations from f� are small� The correct way to estimate the �uctuations for ��

machines uses methods from large deviation theory� as done in ������

Analytically calculating 	as here
 or empirically reconstructing ��machines en�
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Figure ��� The recurrent portion of the ��machine for the system shown in Figs� 	���

and 	���
 with the external �eld �xed at B � ���� The other parameters are J� �
����� J� � ����� and T � ����

ables us to discover patterns� Analyzing the ��machine reveals what the patterns are�

And the transducer�a simple modi�cation of the ��machine�tells us how we can

detect these patterns� One can do more� such as calculate the expected error in the

transducer�s output for �nite�length input strings� as we have just outlined�

A similar structural analysis of the con�gurations in the B � � transition

region follows from the ��machine of Fig� ���� For example� we again see a mixture

of two periodic patterns� This time period�� and period�� subpatterns combine�

Con�gurations consist of a �background� of ��� with a period�� component of ���s

inserted between the two ��s of the background pattern� The probability that M

period�� blocks are inserted is given by

Pr	M �� �blocks
 �

�������
���� M � �

����M M � �

������� � 	���
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In summary� the preceding subsections illustrated how ��machines provide a

complete� minimal description of the patterns or regularities contained in 	entropic


spin con�gurations� Roughly speaking� they may be viewed as the irreducible repre�

sentations of the statistical symmetries of the system� As such� an ��machine provides

a much more complete and informative description of a pattern than is available within

information theory or statistical mechanics� In contrast� Figs� 	���
 and 	���
 do not

strike us as being structurally very informative� It�s clear from these plots that there

is a transition between periodic behaviors� but the speci�cs of the structural changes

are not at all obvious�

The dip in the excess entropy and the peak in the entropy density at the

transition regions give a general indication of high�entropy� low�apparent�memory

con�gurations� These structures are not periodic and� thus� are not compactly de�

scribed by the structure factors that implicitly assume the system has strong periodic

components� However� the con�gurations most certainly are not structureless� The

��machine analyses showed that the constituent periodic patterns mix in very par�

ticular ways� This explicit analysis of patterns is not available within the existing

frameworks of statistical mechanics or information theory�

Lastly� recall that our description of spin con�gurations began with a Hamil�

tonian with nearest and next�nearest neighbor interactions� which in turn led to a

� � � transfer matrix� The Hamiltonian and the transfer matrix both determine

all the information about the system in the sense that they can be used to calcu�
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late the probability� and thus the energy� of any con�guration� However� neither the

Hamiltonian nor the transfer matrix capture the intrinsic information processing in

the explicit way an ��machine does nor do they provide a minimal description of the

underlying patterns�



���

Chapter ��

Phenomenological Comparison of

Excess Entropy and Statistical

Mechanical Quantities

At this point we have reached the two central conclusions we wish to draw from our

comparison of information theoretic� computational� and statistical mechanical ap�

proaches to structure� First� in chapter � we have shown that the entropy density

h� and the excess entropy E together serve to detect periodic structure at any wave�

length� If h� � �� and E �� then �D spin systems are exactly periodic with period

P � �E� Second� in chapter � we have seen that the ��machine is the underlying

pattern in the sense that it is a minimal representation of all the 	group and semi�

group theoretic
 regularities produced by a process� Excess entropy and ��machines
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complement each other� E measures a system�s apparent spatial memory� while an

��machine gives direct access to how a system is organized and how it processes in�

formation� The causal states� part of an ��machine� reveal the hidden� e�ective states

of a process�

We conclude our comparison of di�erent approaches to structure by explicitly

comparing the excess entropy with some of the statistical mechanical functions de�ned

in chapter �� Speci�cally� we compare the excess entropy with the correlation length�

the speci�c heat� particular structure factors� and the nearest neighbor correlation

function� We shall see that none of these statistical mechanical measure the system�s

memory in the manner that E does�

���� Excess Entropy versus Correlation Length

We begin by comparing excess entropy with the correlation length �� de�ned by

Eq� 	����
� Qualitatively� their behavior is similar� as can be seen in Fig� ���� where

they are plotted as a function of temperature for a ferromagnetic system in an external

�eld� These two functions have di�erent units� E is measured in bits per site� while

� is a length measured as a number of lattice sites� Thus� their relative magnitudes

cannot be meaningfully compared�

However� we can compare their qualitative behavior as the temperature is

varied� Looking at Fig� ����� we see that both quantities have a single maximum as
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a function of temperature� However� their maxima occur at di�erent temperatures

� is maximized at T � ����� while E reaches a maximum at T � ����� This indicates

that they are not related to each other by a simple multiplicative constant� Note that

� is linear for small T while E vanishes exponentially�

A more important di�erence� though� is that E and � have very di�erent

physical interpretations� On the one hand� the correlation length � measures the

rate at which correlations between spins decay as a function of increasing distance�

The decay rate provides little or no information about how much total correlation

or memory is present� The excess entropy� on the other hand� measures the mutual

information between two semi�in�nite halves of the con�guration and thus provides

a measure of the total spatial memory of the system�



CHAPTER ��� PHENEMOLOGICAL COMPARISON ���

���� Excess Entropy versus Speci�c Heat

In Fig� ���� we plot the speci�c heat C and the excess entropy E as a function of

temperature� As in the comparison of E and �� they carry di�erent units and so their

numerical values can�t be compared� Qualitatively� their behavior is more similar�

However� they are maximized at di�erent temperatures� C reaches a maximum at

T � ���� while E� as above� attains its maximum value at T � �����

Nevertheless� these two quantities measure very di�erent properties of the

system� As mentioned in discussing Eq� 	����
� the speci�c heat measures the system�s

energy �uctuations� While these �uctuations may be evidence of correlations between

di�erent degrees of freedom� leading to a large E� this most certainly is not always

the case� For example� a paramagnet has a nonzero speci�c heat that shows a single

maximum just as C does in Fig� ����� Yet a paramagnet� by de�nition� has no

correlations between spins� Accordingly� the excess entropy of a paramagnet vanishes

for all values of the temperature and the external �eld� Since the speci�c heat does

not vanish for such a system� it is clear that C cannot be viewed as providing any

general indication of spatial structure�
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���� Excess Entropy versus Particular Structure

Factors

In Fig� ���� we have plotted E and S	�
 versus temperature� The system is ferromag�

netic with J � ��� and B � ���� Thus� we have chosen to plot the structure factor

for q � � since a priori we expect ferromagnetic behavior�i� e�� con�gurations with

period �� The behavior of E in this case has been discussed above�

In the low temperature limit S	�
 vanishes� Since all the spins align with

the magnetic �eld as T  �� hsi� and hs�sri approach � for all r� Hence� �	r
 �

hs�sri � hsi� � � and so S	�
 vanishes�

In contrast� the high temperature behavior of S	�
 is a little surprising�based
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on the above argument one would expect S	�
 to go to zero as T goes to in�nity and

as the correlations vanish� However� recall that S	�
 contains a �self�correlation�

term� �	�
 � hs�s�i � hsi�� At high temperatures� the spins are randomly oriented

so hsi� � �� However� hs�s�i � � for all temperatures since s� � f�����g� Thus�

�	�
 � as T �� so S	�
 � as T ��

In between these temperature extremes� there is a region where the correlation

between spins is largest� Here� the system is neither random� as it is at high temper�

atures� nor is it trivially ordered� as it is at low temperatures� Not surprisingly� both

S	�
 and E reach a single maximum in the intermediate regime�

However� note that E and S	�
 attain their maxima at di�erent temperature

values� The structure factor S	�
 is maximized at T � ����� and E is maximized at

T � ����� As discussed in chapter �� a given structure factor is designed to return a
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large signal if there are correlations present at that wavenumber� Its numerical value

does not have a direct interpretation�

The shape of the curve in Fig� ���� is unchanged if either of the two modi�ed

structure factors de�ned in Eqs� 	����
 and 	����
 are substituted for S	�
� And none

of these structure factors are maximized at the same temperature that maximizes E�

���� Excess Entropy versus ����

As our last phenomenological comparison� Fig� ���� plots the nearest�neighbor cor�

relation function �	�
 and the excess entropy E as a function of the temperature

T � Like the structure factor� �	�
 carries units of �spins��� not bits� As in the pre�

ceding examples� the two functions are maximized at di�erent temperatures �	�
 is

maximized at T � �����

That �	�
 and E reach a maximum at di�erent temperatures is especially

noteworthy since we are considering a system with only nearest�neighbor interactions�

One might reasonably expect that for a system with such local� pairwise interactions�

the nearest�neighbor two�spin correlation function would be su�cient to capture the

system�s global correlations� Fig� ���� shows that this is not the case� Even for

a system with nn interactions� the nearest�neighbor correlation function does not

measure apparent spatial memory as the excess entropy does�
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���� Summary of Phenomenological Observations

Statistical mechanics possesses several functions that are similar to the excess en�

tropy� but none can be interpreted as measures of spatial memory as E can be� We

have seen that the correlation length� speci�c heat� and the structure factors exhibit

behavior qualitatively similar to the excess entropy for the particular class of systems

studied here� However� none of these statistical mechanical quantities returns a nu�

merical value that quanti�es memory� The excess entropy� being de�ned as a mutual

information� carries units of bits� appropriate for this type of structural feature�

Moreover� we have seen in this section that each of these quantities reaches a

maximum at di�erent system parameters� This means that the statistical mechanical

functions cannot be used to determine the parameter setting at which a given system�s
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spatial memory is the largest� Simply put� to measure apparent spatial memory� one

must use E�



Part III

Additional Results

���
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Chapter ��

Measures of Statistical

Complexity� Why�

���� Statistical Complexity Measures

Theoretical physics has long possessed a general measure of the uncertainty associated

with the behavior of a probabilistic process the Shannon entropy of the underlying

distribution ���� �����a quantity originally introduced by Boltzmann over ��� years

ago� In the ����s� Kolmogorov and Sinai ���� ���� adapted Shannon�s information

theory to the study of dynamical systems� This work formed the foundation for the

statistical characterization of deterministic sources of apparent randomness in the

late ����s through the early ����s� These e�orts to describe the unpredictability of

�Co�written with J� P� Crutch�eld and published as Ref� ����
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dynamical systems were largely successful� The metric entropy� Lyapunov exponents�

and fractal dimensions now provide widely applicable quantities that can be used to

detect the presence of and to quantify the degree of deterministic chaotic behavior�

Since that time� though� it has become better appreciated that measuring the

randomness and unpredictability of a system fails to adequately capture the correla�

tional structure in its behavior� Structure here is taken to be a statement about the

relationship between a system�s components� Roughly speaking� the larger and more

intricate the �correlations� between the system�s constituents� the more structured

the underlying distribution� Structure and correlation are not completely indepen�

dent of randomness� however� It is generally agreed that both maximally random

and perfectly ordered systems possess no structure ���� ��� ���� Nevertheless� at a

given level of randomness away from these extremes� there can be an enormously wide

range of di�erently structured processes�

These realizations led to a considerable e�ort to develop a general measure

that quanti�es the degree of structure or pattern present in a process 	c�f� ���� ���

��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����
� There are many ad hoc methods for

detecting structure� but none are as widely applicable as entropy is for indicating ran�

domness� The quantities that have been proposed as general structural measures are

often referred to as �complexity measures�� To reduce confusion� it has become conve�

nient to refer to them instead as statistical complexity measures� In so doing they are

immediately distinguished from deterministic complexities� such as the Kolmogorov�
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Chaitin complexity ���� ��� ��� which requires the deterministic accounting of every

bit�random or not�in an object� In contrast� statistical complexity measures dis�

count for randomness and so provide a measure of the regularities present in an object

above and beyond pure randomness� Deterministic complexities are dominated by the

random components in an object� the result is that their average�case growth rate is

given by the Shannon entropy rate �����

A number of approaches to measuring statistical complexity have been taken�

One line of attack operates within information theory and examines how the Shannon

entropy of successively larger subsystems converges to the entropy density of the entire

system ���� ��� ��� ���� ���� ����� These quantities can be interpreted as the average

memory stored in con�gurations�

Another set of approaches appeals to computation theory�s classi�cation of de�

vices that recognize di�erent classes of formal language 	a set of strings
� Examples

include �nite memory devices 	e�g� the �nite�state machines
 and in�nite memory

devices 	e�g� push�down automata and Turing machines
 ����� One such computation�

based measure of statistical complexity is the logical depth ����� The logical depth

of 	say
 a system�s con�guration is the time required for a universal Turing machine

to run the minimal program that reproduces it� Another example of a computation

theoretic approach is found in the statistical complexity of Refs� ���� ���� a quantity

that measures the amount of memory needed� on average� to statistically reproduce a

given con�guration� Unlike logical depth� which assumes the use of a universal Tur�
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ing machine�the most powerful discrete computational model class�this statistical

complexity assumes that the simplest possible computational class is used to describe

the con�guration� A higher level class is used only if lower ones fail to admit a �nite

description� This �bottom�up� de�nition of hierarchical information processing has

been successfully applied to the symbolic dynamics of chaotic maps ���� ���� cellu�

lar automata ����� spin systems ����� and hidden Markov models ������ For other

approaches to statistical complexity see� for example� Refs� ���� ��� ���� ���� �����

���� Properties of CLMC

Recently� L(opez�Ruiz� Mancini� and Calbet proposed another measure of statistical

complexity CLMC ������ Consider a discrete random variable Y that can take on N

values y� We denote by Pr	y
 the probability that the variable Y assumes the value

y� Ref� ����� then de�nes a complexity measure

CLMC�Y � � H�Y �D�Y � � 	����


where H is the Shannon entropy�

H�Y � � �
X
fyg

Pr	y
 log� Pr	y
 � 	����
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in which the sum runs over all allowed values of y� The quantity D is the �disequi�

librium�� de�ned by

D�Y � �
X
fyg

	Pr	y
� �

N

� � 	����


which measures the departure of Pr	y
 from uniformity�

The motivation posited in Ref� ����� for the form of CLMC is that it vanishes for

distributions that correspond to perfect order and maximal randomness� Ref� �����

argues that perfect order corresponds to a vanishing Shannon entropy and notes that

for H � �� CLMC � �� Maximal randomness occurs for H � log�N � corresponding

to Pr	y
 � ��N � And so� by Eq� 	����
 D and hence CLMC equal zero� Thus� by

construction� CLMC vanishes in the extreme ordered and disordered limits�

We now proceed to discuss the behavior of CLMC in the thermodynamic limit�

Anteneodo and Plastino have already reported some of CLMC�s properties in this

limit ���� However� their line of investigation is rather di�erent from that undertaken

here� In Ref� ��� the distribution that maximizes CLMC is determined� Numerical and

analytic work there indicate that the maximizing distribution for N  � is one in

which a single event has probability ��� while all others are equally likely�

As an alternative to looking at the maximizing distribution� we suggest exam�

ining how a system�s complexity changes as parameters�e�g temperature� coupling

strength� nonlinearity� etc��are varied� This approach is in keeping with statistical

mechanics� where one typically looks at changes in the behavior of quantities in the
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thermodynamic limit as system parameters are varied� For example� rather than de�

termine the distribution that maximizes the expectation value of the speci�c heat for

a �nite�sized system� one usually determines how the speci�c heat per site behaves

in the limit of an in�nite system as� say� the temperature is varied�

Consider the class of probability distributions over discrete� �nite random vari�

ables generated by �nite�memory Markov chains� Let � � �X��� X��� X�� X�� X�� � � �

be a bi�in�nite chain of random variables where each value xi is chosen from a

discrete �nite alphabet of size k� We denote L consecutive variables by XL
i �

Xi� Xi��� Xi��� � � � � Xi�L��� X
L
i is a system of L variables with N � kL possible con�

�gurations xLi � Let Pr	xi
 be the probability that the ith random variable takes on the

particular value xi� We denote by Pr	xLi 
 the joint probability distribution over L con�

secutive random variables� We assume a shift symmetry so that Pr	xLi 
 � Pr	xL� 
 and

subsequently drop the subscript i � �� The chain of discrete random variables may

be viewed as a translationally invariant spin system or� equivalently� as a stationary

stochastic process�

As is well known� the Shannon entropy of a block of L such variables typically

grows linearly for su�ciently large L� In other words� the limit

h� � lim
L��

�

L
H�X�� X�� � � � � XL��� 	����
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exists and� in the thermodynamic 	L�
 limit�

H�XL� 
 h�L � 	����


The quantity h� is well�de�ned as the system size goes to in�nity and is known as the

entropy rate� the metric entropy� or the thermodynamic entropy density depending

on the context� In statistical mechanics parlance� Eq� 	����
 tells us that the Shannon

entropy H is an extensive quantity� so that it is possible to de�ne a meaningful entropy

density h� that characterizes the randomness per variable in the system�

The �disequilibrium� term� Eq� 	����
� is not so well behaved� In fact� under

no circumstances does it grow linearly with system size L� One can show� quite

generally� that for a system of length L described by a probability distribution over

N � kL events� D is bounded above by �� ��N � To see this� we expand the square

in Eq� 	����
 and� since the probability distribution is normalized� obtain

D�XL� �
X
fxLg

Pr	xL
� � �

kL
� 	����


The sum is understood to run over all kL possible values of XL� Since Pr	xL
 � �� it

follows that X
fxLg

Pr	xL
� �
X
fxLg

Pr	xL
 � � � 	����
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Thus�

D�XL� � �� k�L � 	����


and we see that D cannot grow linearly with the system size L� Therefore� the

�disequilibrium� is not a thermodynamically extensive quantity�

In fact� it can be shown that D vanishes exponentially with increasing system

size for a large class of systems� Let our chain of variables � � �X��� X�� X�� X�� � � �

be chosen by a one�step Markov process with transition probabilities given by Tab �

Pr	bja
� a� b � f�� �� � � � � k � �g� That is� Tab gives the probability that the variable

Xi�� takes on the bth value given that Xi takes on the ath value� 	What follows applies

to any �nite�step Markov chain� as blocks of adjacent variables can be grouped to

render the process one�step�
 Then� if we assume that the Markovian process is

regular�i�e�� there exists some K such that 	TK
ab � � for all a and b�then it

follows that the disequilibrium of a system of L variables goes to zero exponentially

fast in L� This is proved in appendix E�

As a result� CLMC vanishes in the thermodynamic limit for all regular Markov

chains� a class of systems that includes all �nite�range� one�dimensional spin systems

with �nite�strength interactions� It seems to us counterintuitive that a 	useful
 mea�

sure of complexity vanishes for all of these systems� While these models exhibit no

critical phenomena� there are considerable changes in the structure of the distribu�

tions as system parameters are varied ����� A measure of complexity� as we envision
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it� should be sensitive to these changes�

As an illustration of the nonextensivity of D� consider the special case where

the chain consists of variables that are independent and identically distributed 	iid
�

i�e�� Pr	xi� xj
 � Pr	xi
Pr	xj
 for all Xi and Xj with i� j � � � � ������� �� �� �� � � ��

For a spin system� this corresponds to the case where there is no coupling between

spins�a paramagnet� For convenience we assume that Xi can take on two values�

	say
 � and �� and we denote the probability that Xi takes on the value � by p� Then�

using the binomial theorem� we �nd that CLMC for a system of L such variables is

given by

CLMC�X
L� � LH�X�

�
	�� �p� �p�
L � ��L

�
� 	����


where H�X� is the binary entropy function

H�X� � �p log� p � 	�� p
 log�	�� p
 � 	�����


Eq� 	����
 is rather curious� In our view� the complexity of a collection of

iid binary variables should vanish regardless of their number� A set of independent

variables is statistically very simple�there is manifestly no correlational structure

whatsoever� Furthermore� it seems to us that if the complexity doesn�t vanish for

all such systems� it ought to grow linearly as a function of the number of variables�

That is� six biased coins should be twice as complex as three biased coins� Eq� 	����


shows that the size dependence of CLMC is much more complicated�
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In Ref� ��� it is found that the maximal value of CLMC goes to ���� as the

system size goes to in�nity� This is not at odds with the exponentially fast vanishing

ofD 	and hence CLMC
 for regular Markov processes noted here� since the system that

maximizes CLMC is not Markovian� To see this� recall that the maximal distribution

reported in Ref� ��� has one con�guration with probability ��� while all others have

equal probability� In the thermodynamic limit� this one con�guration is in�nitely

long� Thus� the generating process must keep track of arbitrarily long sequences in

order to assign a distinct probability to one and another probability uniformly to all

others� As a result� the distribution that maximizes CLMC cannot be generated by a

�nite�memory Markov process in the thermodynamic limit�

���� Repairing Nonextensivity

Up to this point we have seen that CLMC is not suitable for use in a statistical

mechanics context� In particular� it su�ers from two related de�ciencies it is not an

extensive quantity and it vanishes for a large variety of structured processes� The

trouble causing both of these shortcomings resides in the �disequilibrium� factor�

Perhaps if one altered the de�nition of CLMC so that D was extensive� as the Shannon

entropy H is� one would obtain a more useful measure of statistical complexity�

To this end� we seek an extensive measure of a distribution�s departure from

uniformity� As we will be multiplying this measure by the Shannon entropy H
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which carries units of bits� it also seems natural� although not necessary� to choose

a �disequilibrium�like� quantity that also carries units of bits� Information theory is

armed with just such a function the relative information �����

The relative information� also known as the information gain or the Kullback�

Leibler information distance� between two distributions Pr	y
 and cPr	y
 is de�ned

by

D	 Pr	y
 kcPr	y
 
 � X
fyg

Pr	y
 log�
Pr	y
cPr	y
 � 	�����


The relative information is not a true distance function�neither satisfying the trian�

gle inequality nor being symmetric� Nevertheless� it does provide a measure of how

much two distributions di�er and it does carry the same units 	bits
 as the Shannon

entropy� It is also an extensive quantity� since it grows linearly with the number of

variables in the distribution�s support�

So� D	 Pr	y
 kcPr	y
 
 where cPr	y
 � ��N provides an extensive measure of

Pr	y
�s departure from uniformity in units of bits� Using this in Eq� 	����
� we de�ne

a modi�ed statistical complexity measure

C ��Y � � H�Y �D	 Pr	y
 k ��N 
 � 	�����


which has units of �bits��� From here on we will focus on C �� the modi�ed CLMC� Note

that much of C ��s character is shared by CLMC�

To see how this new quantity behaves� let�s look more closely atD	 Pr	y
 k ��N 
�
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Consider again XL� a Markov chain of length L� And for convenience let the Xi be

binary variables� The total number N of con�gurations for such a system is �L� First�

note that

D	 Pr	xL
 k ��N 
 � L�H�XL� � 	�����


Since H�XL� is extensive� we have

D	 Pr	xL
 k ��N 
 
 L	�� h�
 � 	�����


Thus� C � consists of the product of two extensive quantities�H andD	 Pr	xL
 k ��N 
�

As a consequence� dividing C � by L� yields a quantity that is �nite in the L  �

limit� speci�cally�

lim
L��

�

L�
C � � h�	�� h�
 � 	�����


	See Fig� �����
 This is indeed a function that vanishes in the ordered 	h� � �
 and

disordered 	h� � �
 extremes� However� note that it is a function only of the system�s

entropy density� That is� the modi�ed statistical complexity measure Eq� 	�����
 is a

function only of the system�s randomness� The relation C � 
 L�h�	�� h�
 strikes us

as being �over�universal�� For example� it�s possible for a paramagnet and a system

at its critical point� where the correlation length diverges� to have the same value of

C �� It does not seem particularly revealing that all systems with the same entropy

density have the same statistical complexity�
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Figure ���� C � versus entropy density h�� Note that C � is a function of h��

As a contrast to the C � versus h� behavior shown in Fig� 	����
� consider

Fig� 	����
� where we show the behavior of a di�erent measure of statistical complexity�

the excess entropy E ���� ��� ��� ���� ���� ����� The excess entropy of an in�nite

con�guration may be expressed as the mutual information between two semi�in�nite

halves of the con�guration� That is� E is the amount of spatial memory embedded in

con�gurations� In Ref� ���� we show that E captures signi�cant structural changes in

the con�gurations of one�dimensional spin systems as external parameters are varied�

We have plotted the excess entropy for ��� sets of parameter values for a �D Ising

system with nearest�neighbor coupling in the presence of an external �eld� Note that

for all the Ising systems plotted in Fig� 	����
� CLMC � �� since CLMC vanishes in the

thermodynamic limit� Comparing the two �gures� it is clear that the excess entropy



CHAPTER ��� MEASURES OF STATISTICAL COMPLEXITY� WHY ���

depends on the entropy density h� in a much more subtle way than C � does�

Comparing these two plots raises another important issue� Note that the

excess entropy does not always equal zero for h� � �� an apparent violation of the

�boundary condition� requiring that a complexity measure vanish in the perfectly

ordered limit� However� h� � � corresponds to perfect asymptotic predictability�

not perfect order� A process with a vanishing entropy rate indicates that it can be

predicted without error�it says nothing� however� about how much e�ort or memory

is required to perform this prediction� Thus� a zero value of the entropy density

is too crude a measure of order� To see this� note that any periodic system has

h� � �� Yet all periodic systems aren�t equally ordered a con�guration with period

� is certainly more ordered than a con�guration of period �����which� for example�

requires more memory to produce� In fact� at the period�doubling accumulation

point of the logistic map� the symbolic dynamics produce periodic con�gurations of

diverging periodicity� Hence� the excess entropy is in�nite here� while the entropy

rate remains zero ���� ��� ����

In contrast to C �� which vanishes for any periodic system� the excess entropy

E for a con�guration of period P is log� P � Only if the period is �� indicating trivial

ordering and predictability� does the excess entropy vanish for a periodic process�

Thus� the 	h��E
 � 	�� �
 points in Fig� 	����
 correspond to the system�s ferro�

magnetic ground states of period � and the 	h��E
 � 	�� �
 points correspond to the

antiferromagnetic ground states of period � ����� Statistical complexity measures such
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Figure ���� Excess entropy E� a statistical complexity measure� versus entropy den�
sity h� for a spin���� one�dimensional Ising spin system ��� 	h�� E
 points� The
system parameters were randomly chosen from the following intervals J 	coupling
constant
 � ���� ��� T 	temperature
 � ������ ������ and B 	external �eld
 � ��� ���

as C � or� for that matter CLMC� that are zero for all h� � � con�gurations are very

blunt implements with which to detect structure� A measure of complexity should be

able to distinguish between structures of di�erent periodicities�

For maximal randomness 	h� � �
� the excess entropy E vanishes� as expected�

At h� � �� corresponding to in�nite temperature� the spins decouple and there is no

information shared between them� But the excess entropy does more than satisfy the

�boundary conditions� of vanishing for h� � � and �� The interpretation of E as the

memory stored in spatial con�gurations holds for intermediate values of h� as well�

As a result� Fig� 	����
 lets us place an upper bound on the memory stored in spatial
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con�gurations for a spin�� � nearest neighbor Ising model E � �� h�� This result�

derived analytically in Ref� ����� applies to all one�step Markov chains over a binary

alphabet�

We conclude this section by noting that there is a growing body of evidence

indicating that� aside from the requirement of vanishing at the ordered and disordered

extremes� entropy and �complexity� 	de�ned in a number of di�erent ways to re�ect

�structure�
 are more or less independent� That is� there is a vastly wider range

of complexity versus entropy relationships than indicated by Eq� 	�����
 ���� ��� ����

Fig� 	����
 is just one example of many possible statistical complexity�entropy density

relationships�

���� Conclusion

To summarize� we have shown that CLMC vanishes in the thermodynamic limit for

�nite�memory regular Markov chains� This class of systems includes� at a minimum�

all �nite�range one�dimensional spin systems� We have also shown that CLMC is not an

extensive variable� We have proposed modifying CLMC� replacing the �disequilibrium�

of Ref� ����� with the relative entropy with respect to the uniform distribution� This

results in an quantity C � that grows appropriately in the thermodynamic limit� mak�

ing it possible to de�ne a meaningful statistical complexity density that� nonetheless�

retains the spirit of CLMC� However� the product of this modi�cation is a quantity
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that is a trivial� �over�universal� function of the entropy density h�� In short� based

on the above observations� it seems to us that CLMC and C � may be of little use in

measuring the complexity of a statistical mechanical system�

We conclude by pointing out that the �boundary conditions� of vanishing

in the extreme ordered and disordered limits do not uniquely specify a measure of

complexity� an observation also made by Anteneodo and Plastino ���� In fact� if this

is the only feature one demands of a complexity measure� it�s not clear to us why one

would be motivated to devise a new statistic at all�

Statistical mechanics� for example� is replete with functions that vanish in

the high and low temperature limits� Since thermodynamic entropy� a measure of

randomness� is a monotonic function of temperature� high 	low
 temperature cor�

responds to high 	low
 randomness� Examples of quantities that vanish in these

extremes 	assuming there is not a critical point at T � �
 include the connected

correlation functions� the correlation length� and magnetic susceptibility� These func�

tions can be easily applied to any probability distribution describing a spatially or

spatio�temporally extended collection of random variables�

Information theory also comes equipped with a function that vanishes for

perfectly ordered and disordered systems the mutual information I ����� ���� If two

random variables Z and Y are independently distributed� then the mutual information

between them� I�Z�Y � vanishes� At the other extreme� if Z and Y are both known

with certainty�that is� H�Z� � H�Y � � ��then I�Z�Y � also vanishes� For statistical
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dependencies between these extremes� I�Z�Y � is positive and measures the amount

of information shared between Y and Z�

Given that there are many functions that vanish in the extreme ordered and

disordered limits� it is clear that requiring this property does not su�ciently restrict

a statistical complexity measure� What other criteria can we use� then� to guide us

as we attempt to detect structures and patterns in nature� To this question we o�er

two suggestions�

First� it is helpful if the statistical complexity measure has a clear interpreta�

tion What exactly is the statistical complexity measuring� The two English words

�statistical complexity� do not su�ciently answer the question� Many of the statisti�

cal complexity measures proposed over the last decade or so do have clear interpreta�

tions� For example� the excess entropy may be interpreted as the mutual information

between two halves of an in�nite con�guration ���� ��� ���� Logical depth is the run

time required by a universal Turing machine executing the minimal program to repro�

duce a given pattern� These unambiguous interpretations help put these statistical

complexity measures on a solid footing�

Second� it is essential to consider the motivations behind a measure of statisti�

cal complexity How is the measure to be used� What questions might it help answer�

It is possible to meaningfully assess its utility only if the motivations and goals for

de�ning a complexity measure are stated clearly� One set of issues is the detection

and quanti�cation of patterns produced by a process� It has been proposed that par�
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ticular notions of structure adapted from computation theory capture the intrinsic

�patterns� and information processing architecture embedded in a system� In this

setting� one �nds well�de�ned and easily interpreted measures of statistical complex�

ity ����� For other views on questions that a measure of statistical complexity might

help answer� see Ref� �����

Finally� Ref� ��� mentions several di�erent notions of complexity and notes that

�there is not yet a consensus on a precise de�nition�� �Complexity� has accepted

meanings in other �elds�meanings established prior to the recent attempts to use

it as a label for structure in natural systems� For example� Kolmogorov�Chaitin

complexity in algorithmic information theory means something quite di�erent from

computational complexity in the analysis of algorithms� These� in turn� are each

di�erent from the stochastic complexity used in model�order estimation in statistics

������ Though at a future date relationships may be found� at present all of these are

di�erent from the notions of statistical complexity discussed here�

Unfortunately� �complexity� has been used without quali�cation by so many

authors� both scienti�c and non�scienti�c� that the term has been almost stripped of

its meaning� Given this state of a�airs� it is even more imperative to state clearly

why one is de�ning a measure of complexity and what it is intended to capture�
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Chapter ��

Introduction� Memory and

Computation in Two Dimensions

and the Statistical Mechanics of

Critical Phenomena

���� Pattern	 Organization	 and Computation in

Two Dimensions

The central questions addressed in this dissertation concern pattern� organization� and

intrinsic computation� What are patterns� and how do we discover them� What does
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it mean to say a system is organized� Is it possible to distinguish between di�erent

levels of organization� And� how can one infer a system�s intrinsic computation�

how does it store� transmit� and manipulate historical information to produce future

behavior�

In Parts I%III we presented an approach to answering these questions in the

context of one�dimensional spin systems� In particular� we showed that the excess

entropy serves as an information theoretic measure of a system�s apparent spatial

memory and that ��machines provide a minimal representation of all the regularities�

approximate and exact�present in con�gurations� Although situated in a discussion

of one�dimensional spin systems� the excess entropy and the ��machine are de�ned

for all one�dimensional stochastic processes with a stationary measure�

We feel that the approach developed thus far�a complementary application of

information theory and computational mechanics�provides a concrete answer to the

questions of memory� pattern� and organization posed above for one�dimensional sys�

tems� There are certainly important outstanding issues most notably the question of

how one can optimally infer the structures present in in�nite memory processes� Nev�

ertheless� despite the fact that there is work yet to be done to establish an optimal set

of implementations and calculational methods for ��machine reconstruction� we feel

that the questions posed at the beginning of this chapter applied to one�dimensional

systems have been satisfactorily answered�

In the following three chapters we turn our attention to extending the formal�
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ism discussed in parts I and II to apply to two�dimensional con�gurations� We shall

see that the notion of pattern and organization is considerably more elusive in two

dimensions than it is in one� Indeed� how to de�ne pattern� organization� or memory

in a multidimensional system is� by and large� an open question�

Here� in the �nal part of this dissertation before concluding� we present some

preliminary work in this area and propose some possible directions for future research�

The present chapter contains a range of introductory material� In Sec� ���� we present

a very brief survey of some previous work that aims to address questions of struc�

ture� organization� and memory in more than one dimension� Then� in Sec� ���� we

introduce the two�dimensional Ising model and state the exact results for the mag�

netization� nearest�neighbor two�spin correlation function� and the speci�c heat� A

discussion of the behavior of the two�dimensional Ising model leads us to Secs� ����

and ����� where we discuss� in the context of the two�dimensional Ising model� the

theory of critical phenomena� including a brief mention of the important notion of

universality� Finally� in Sec� ���� we reexamine questions of memory� structure� and

computation in the context of the two�dimensional Ising model�

In chapter �� we give some exact results for the mutual information between

a pair of nearest neighbor spins for the two�dimensional Ising model� This quan�

tity� being a function of the distribution of only two spins� certainly fails to give a

complete accounting of the memory stored across the entire� two�dimensional lattice�

Nevertheless� the two�spin nearest�neighbor mutual information does provide a crude
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measure of the probabilistic structure of the system�

In chapter �� we propose several ways to extend to two dimensions the compu�

tational mechanical approach to pattern and memory developed thus far� In Sec� ����

we review one possible generalization of ��machines to two dimensions ���� ���� We

conclude chapter �� and part IV by discussing directions for future research�

���� Brief Survey of Previous Work

In this section we provide a brief survey of work that has been put forth to address

issues of pattern� memory� and computation in more than one dimension� Our purpose

here is not to provide a complete� in�depth review� Rather� the goal of this section is

to give the reader a sense of the ideas in this area and to provide references for those

wishing to pursue in greater depth�

The question of how to describe spatial patterns was considered in the early

and mid ���s by Wolfram in the context of cellular automata 	CA
 ������ In particular�

he examined the patterns produced by various one�dimensional CA as they evolved in

time� The resulting �space�time� diagram� containing one spatial and one temporal

dimension is a two�dimensional object�

In an in�uential paper ������ Wolfram proposed a qualitative classi�cation

scheme in which CAs are characterized by their asymptotic behavior� Speci�cally�

Wolfram grouped CAs into four classes those with homogeneous� periodic� �chaotic��
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and �complex� asymptotic behaviors� The �complex� group� known as class IV CA�s�

are those that exhibit �complex localized structures� sometimes long�lived� ����� p� ���

Wolfram�s distinctions between di�erent classes of behaviors are largely quali�

tative and subjective� He does� however discuss the entropy density for one�dimensional

strings extended either spatially or temporally� In Ref� ����� Wolfram explored making

his classi�cation scheme more quantitative by using a computation theoretic analysis

of the sets of con�gurations produced by a CA� when the CA operates on all initial

conditions� This work� while breaking signi�cant new ground at the time� neverthe�

less is largely one�dimensional� A collection of Wolfram�s papers from ����%����� as

well as those of several other authors� has been reprinted in Ref� ������

Motivated in part by Wolfram�s work� Grassberger ���� and Lindgren and

Nordahl ���� ���� ���� ���� ���� explored information and computation theoretic

approaches to structure and complexity� mainly as applied to the con�gurations pro�

duced by one�dimensional CA� ���� ���� ���� ���� ����� In Ref� ����� Grassberger

brie�y discusses some of the di�culties associated with extending a measure of mem�

ory to more than one dimensions� Later� in Refs� ����� ���� Lindgren put forth a

method through which the information theoretic approach to structure discussed in

Chapter � can be extended to more than one dimension� These ideas will be examined

more closely in Chapter ���

The excess entropy has been estimated for one�dimensional strings drawn from

Monte Carlo�generated con�gurations of the two�dimensional Ising model ���� 	There
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the excess entropy is called the �complexity��
 The analysis of Ref� ��� is� at root�

one dimensional the quantities calculated do not take into account the full� two�

dimensional structure possessed by the con�gurations� Furthermore� we �nd the

work presented in Ref� ��� to be less than thorough� For example� there is no attempt

to investigate the nature of the cusp 	as a function of temperature
 in the excess

entropy that is observed to occur at the critical temperature� and no mention is made

of the crucial issue of disorder averaging when Ref� ��� reports results for a spin�glass

version of the model�

Lempel and Ziv ���� and Sheinwald� Lempel� and Ziv ����� have discussed

the compression of two�dimensional con�gurations� To do so� they parse the two�

dimensional con�guration by considering the variables seen as one moves through the

lattice following a Peano�Hilbert space��lling curve� 	For a discussion of the Peano�

Hilbert curve� see� e�g�� Ref� ������
 These authors then construct an algorithm for

encoding the two�dimensional that is asympotically optimal in the sense that the

size 	in bits
 of the code can be made arbitrarily close to the entropy density of

the con�guration� This result is analogous to Shannon�s coding theorems for one�

dimensional information sources� as discussed in Secs� ����� and ���

Despite the important results of Lempel� Ziv� and Sheinwald� at present there

is not a fully�developed multidimensional information theory� In particular� little is

known about how to quantify the memory shared across a multidimensional lattice�

However� a considerable amount of recent e�ort has gone into the study of constrained
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two�dimensional codes� see� e�g�� Refs� ���� ��� ���� ���� ����� Constrained codes are

those in which all con�gurations are not allowed� For example� Ref� ����� considers

M �N binary arrays with the restriction that there must be the same number of ��s

in each row and the same number of ��s in each column�

Constrained codes are of considerable practical importance� On magnetic cod�

ing materials� such as a computer�s hard disk� all patterns of �up� and �down� mag�

netic domains can not be used� due to limits in the materials� properties and the

ability of the read device to distinguish between certain patterns� For example� the

mechanism through which the codes is read may not be able to distinguish between �

and � �up� domains in a row� The results on constrained codes in the references cited

above mainly involve 	non�trivial
 combinatorics� in all of the references a uniform

measure is assumed over all allowed con�gurations�

Turning now from information theory to computation theory� we note that the

computation theory employed in Chapter � is fundamental one dimensional� The main

items of consideration in discrete computation theory are one�dimensional symbolic

strings ���� ���� For recent results on the �state of the art� in two�dimensional formal

language theory� see Lindgren� Moore� and Nordahl ������

Finally� we note that there has been some work done on shift spaces in more

than one dimension� A brief discussion� complete with many references� may be found

in Section ����� of Lind and Marcus �����
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���� Review of the two�dimensional Ising Model

In this section we introduce the two�dimensional Ising model� This model provides a

concrete example for our discussion of pattern� organization� and computation in two

dimensions� We also introduce the model since a discussion of its properties provides

a natural setting for our review in Secs� ���� and ���� of the statistical mechanics of

phase transitions�

The discussion of the Ising model and the exact results given below are stan�

dard� they can be found in many graduate�level statistical mechanics texts� See� for

example� Refs� ����� and ������ For a much more thorough treatment of the two�

dimensional Ising model see Baxter ���� or the Ising model �bible� of McCoy and Wu

������

The Hamiltonian for the two�dimensional Ising model is given by

H � �J
X
hij�kli

si�jsk�l � 	����


where the variables si�j � ����� reside on a two�dimensional lattice� rather than

a one�dimensional chain� We label the lattice sites by i� j � 	�� �� � � �N � �
� The

angular brackets in Eq� 	����
 indicate that the sum is performed only over nearest

neighbors� For example s��� and s��� are nearest neighbors� but s��� and s��� are not�

Without loss of generality� we set J � � and use units such that kB � ��

Note that the Hamiltonian is rotationally and translationally invariant� That
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is� the Hamiltonian does not pick out a preferred direction or location� Also note

that the Hamiltonian possesses a spin��ip symmetry� the value of the Hamiltonian is

unchanged if all spins change sign�

While statistical mechanical functions can be calculated relatively easily for

the one�dimensional model� this isn�t the case for the two�dimensional model� The

mathematics involved in an exact treatment of the two�dimensional model is rather

formidable� The partition function can no longer be expressed as the dominant eigen�

value of a �nite�dimensional transfer matrix� instead� an in�nite�dimensional matrix�

i�e�� an operator� must be used ������ Another technique for approaching the two�

dimensional Ising model entails expressing the partition function as the Pfa�an of

an antisymmetric matrix and determining its behavior in the thermodynamic limit

where the size of the matrix diverges ����� ����� 	The Pfa�an is� like the determinant�

a scalar function of a matrix�


We shall not discuss either of these techniques here� Rather� we state without

derivation some essential results� We begin with the magnetization� Recall that the

magnetization per site m was de�ned in Eq� 	����
 as the expectation value of a single

spin� For the two�dimensional Ising model with the Hamiltonian of Eq� 	����
� the
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Figure ���� The magnetization m as a function of t � T�Tc for the two�dimensional�
zero��eld Ising Model� The critical temperature is t � ��

magnetization per site is given by

m �

���������������

�
�� � ��tanh����T � �

�

�� tanh����T �

���

T � Tc

� T � Tc

���������������
� 	����


The critical temperature Tc is found numerically�

Tc � ����� � 	����


The magnetization is plotted as as a function of the reduced temperature t � T�Tc
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in Fig� ����� Note that m is zero above Tc and non�zero below Tc�

The non�zero magnetization below Tc indicates that the spin��ip symmetry

possessed by the Hamiltonian no longer holds� Below the critical temperature the

spins tend to align 	say
 up� a situation that is clearly changed by a global spin

�ip� This phenomena is generally referred to as spontaneous symmetry breaking

or ergodicity breaking� The adjective �spontaneous� is used to indicate that it is

the system itself which is responsible for the broken symmetry� not some external

in�uence� For the two�dimensional Ising model it is the interaction between spins

that is responsible for the symmetry breaking� not the application of an external

�eld�

The magnetization is an example of an order parameter� a quantity that is

zero above the critical point and non�zero below� Note that this de�nition of the

order parameter does not give any indication how to determine an appropriate order

parameter for a given phenomenon� The selection of an order parameter is sometimes

not obvious� This is the case� for example� in spin glass models where a useful order

parameter is the overlap� a quantity that measures the degree to which a system fails

to be self�averaging� For details� see� e�g�� Ref� �����

Another quantity that will be of interest in the following is the expectation

value of the product of two spins

�u	m�n
 � hsi�j si�m�j�ni � 	����
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Figure ���� The nearest�neighbor two�spin correlation function �u	�� �
 � hsi�jsi���ji
as a function of t � T�Tc for the two�dimensional� zero��eld Ising Model� The critical
temperature is t � ��

sometimes called the nearest�neighbor correlation function� Note that this correlation

function is de�ned di�erently than the connected correlation function of Eq� 	����
�

The quantity de�ned in Eq� 	����
 is distinguished from the connected correlation

function through the use of the subscript �u�� 	The �u� stands for unconnected�
 By

rotational symmetry� it follows that

�u	m�n
 � �u	n�m
 � �u	jnj� jmj
 � 	����


Looking at the Hamiltonian� Eq� 	����
� observe that the nearest�neighbor two�

spin correlation function is proportional to U � the expectation value of the Hamilto�
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nian� That is

�u	�� �
 � �U � ��
N�
hHi � 	����


for an N �N lattice�

The nearest�neighbor correlation function �u	�� �
 is given by �����

hSi�j Si���ji � �u	�� �
 � tanh	��T 
 �
�� sinh�	��T 


sinh	��T 
 cosh	��T 


�
�

�
� �

�
K	


�
�

	����


where K	
 is the complete elliptic integral of the �rst kind

K	
 �
Z ���

�

d�p
�� � sin� �

� 	����


and�

 � � sinh	��T 


cosh�	��T 

� 	����


The correlation function is plotted in Fig� ���� versus reduced temperature� Note the

point of in�ection at the critical reduced temperature t � ��

The speci�c heat per site C� de�ned in Eq� 	����
� as �U��T � Thus� by

Eq� 	����
� the speci�c heat is equal to the negative slope of �u	�� �
� We see in

Fig� ���� that the slope of �u	�� �
 diverges at the critical temperature t � �� As a

result� C is in�nite at t � �� The speci�c heat is plotted as a function of t in Fig� �����
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Figure ���� The speci�c heat C as a function of t � T�Tc for the two�dimensional�
zero��eld Ising Model� The critical temperature is t � ��

Analytically� C is given by

C � �

�
�

T sinh	��T 


��

��
�K	


�

�
� � sinh�	��T 
 � sinh�	��T 


cosh�	��T 


�
� �E	


�
cosh�	��T 
� �

�
� 	�����


where E	
 is the complete elliptic integral of the second kind�

E	
 �
Z ���

�

d�

q
�� � sin� � � 	�����
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���� Phase Transitions and the Critical Behavior

of the �D Ising Model

In this section and the next� we brie�y discuss the modern theory of phase transitions�

This �eld is quite rich and well developed� the review given here is� of necessity�

rather brief� There is a range of sources the reader may consult to obtain a more

thorough account� Ref� ����� by Wilson contains a very clear� non�technical discussion

of critical phenomena� Yeomans has written an excellent� easy�to�read short text�

�Statistical Mechanics of Phase Transitions� ����� that introduces all of the key ideas

and techniques typically encountered in the study of critical phenomena� The text by

Binney et al � ���� is recommended for those seeking a more mathematically advanced

treatment�

We saw in Eq� 	����
 and Fig� ���� that the magnetizationm suddenly assumes

a non�zero value at the critical temperature Tc� the slope of m as a function of T is

in�nite� This behavior is an example of a phase transition� de�ned qualitatively as

a sharp change in a thermodynamic function� The change of state between a liquid

and a solid is a familiar example of a phase transition� At the critical temperature�

zero degrees Celsius for water under normal atmospheric conditions�the properties

of water change discontinuously�

This qualitative de�nition can be restated mathematically a phase transi�

tion occurs at parameter settings where the partition function� ZN of Eq� 	���
� is
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non�analytic in the thermodynamic limit� Recall that in Chapter � we saw that

thermodynamic variables such as m� �� and C� can be written as derivatives of the

partition function� Thus� a non�analyticity in ZN manifests itself as a discontinuity

or a divergence in one or more thermodynamic functions�

Phase transitions are grouped into two classes� A phase transition is said

to be �rst�order if the �rst derivative of the free energy per site f � � T
N
logZN

is discontinuous� First�order phase transitions that occur as the temperature T is

varied are accompanied by discontinuity in the entropy� To see this� recall that the

thermodynamic entropy density is given by

S � � �f

�T
� 	�����


So� if the phase transition is �rst order� then it follows that S is discontinuous at

the critical temperature� Thermodynamics then tells us that additional heat of�

)Q � T)S� must be added to the system in order to cause the system to move from

the low temperature to the high temperature state� This additional heat is known as

the latent heat� For example� the latent heat associated with the solid�liquid phase

change of water is ����� ��
 Joules per kilogram�

Of interest to us here are continuous phase transitions� which occur at param�

eter settings where the �rst derivative of f is continuous but higher derivatives of f

are discontinuous or in�nite� Continuous phase transitions are also known as critical
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phase transitions� a system that exhibits a continuous phase transition is an example

of a critical phenomenon�

The behavior of the magnetizationm in Fig� ���� is an example of a continuous

phase transition� The magnetization may be written as a �rst derivative of f � m �

��f��B� Note that �m��t diverges at the critical temperature t � �� Hence� the

second derivative of f diverges and this phase transition is classi�ed as as continuous�

The magnetization m is not the only thermodynamic function that is non�

analytic at the critical temperature Tc� For example� we saw in Eq� 	�����
 and

Fig� ���� that the speci�c heat diverges at Tc� The magnetic susceptibility � also di�

verges at Tc� 	No exact� closed form expression is known for � for the two�dimensional

Ising model�


At Tc the two�spin connected correlation function �	r
 decays algebraically as

a function of r� where r � p
m� � n� is the distance between the two spins� As a

result� the correlation length � diverges� This divergence is not unexpected� given

that the susceptibility � also diverges� Recall that � may be written as a sum over

two�spin connected correlation functions as in Eq� 	����
� If this sum is divergent�

then it follows that �	r
 must decay slower than exponentially and so � must diverge�

We shall return to discuss the implications of a diverging correlation length below�
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���� Critical Exponents and Universality

Summarizing the above comments� we saw that at Tc the linear response functions C

and � diverge� the magnetization m is non�analytic� the two�spin correlation function

decays algebraically� and the correlation length � diverges� In this section we examine

the nature of these divergences� Our motivation for doing so will become clear in the

following section on universality�

We ask What is the asymptotic form of these thermodynamic functions near

Tc� To answer this question is given by the critical exponents� First� de�ne

t � T � Tc
Tc

� 	�����


Note that when T � Tc� t � �� Then� we say that �����

F 	t
 � jtj� � 	�����


if

lim
t��

log jF 	t
j
log t

� � � 	�����


The constant � is known as the critical exponent�

For example� near Tc� one �nds from Eq� 	�����
� after some non�trivial anal�
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ysis� that

C � log jtj � 	�����


and thus the speci�c heat critical exponent is zero� Other critical exponents and

their de�nitions are given in Table ����� The critical isotherm exponent � will not

be discussed here� but is given in the table for completeness� For a discussion of its

de�nition see Refs� ���� �����

Why focus on critical exponents� The answer lies in their universality the

critical exponents de�ned in Table ���� are the same for many di�erent systems�

Remarkably� it turns out that the values of the critical exponents depend only on

the symmetry of the order parameter and the dimensionality of the system� For

example� the order parameter for the two�dimensional Ising model�in fact� for all

Ising models�is the magnetization� a scalar� Hence� all two�dimensional systems

with a scalar order parameter that undergo a continuous phase transition have the

same critical exponents as the two�dimensional Ising model� All of these systems are

said to belong to the two�dimensional Ising universality class�

For example� a two�dimensional Ising model with a coupling constant J � J � �

� will have a di�erent critical temperature than the system with J � �� Nevertheless�

the critical exponents for the systems will be the same� As another example� suppose

we add to the Hamiltonian of Eq� 	����
 an interaction between next�nearest vertical
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neighbors so that the new Hamiltonian is

eH � �J
X
hij�kli

si�jsk�l � J ��
X
ij

si�jsi���j � 	�����


Even this system will have the same critical exponents as those given in Table �����

Qualitatively� universality can be explained as follows� At the critical point

of a continuous phase transition symmetry is spontaneously broken as a result of the

correlations between degrees of freedom� Since the symmetry�breaking is a macro�

scopic e�ect� the correlations must be signi�cant enough to exert an in�uence on a

macroscopic scale� Thus� the two�spin correlation function must decay more slowly

than exponentially and the correlation length must diverge� The central idea is that

at the critical point all length scales are important� correlations and �uctuations at

all scales contribute to the system�s behavior� Given this� it is not surprising� that

the details of the microscopic interactions do not e�ect the critical behavior of the

system as measured by the critical exponents�

A rigorous� theoretical justi�cation for the phenomenon of universality is found

by examining how the con�gurations change under a renormalization group operation

that removes or �traces out� degrees of freedom� A discussion of the renormalization

group is beyond the scope of this review� The interested reader is urged to consult

Refs� ���� ���� ���� for a more thorough explication�

In summary� the notion of universality is one of the cornerstones of modern
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Critical Exponents

De�nition Numerical Value for
�D Ising Universality Class

Speci�c heat 	B � �
 C � jtj�� � � �
Magnetization 	B � �
 M � 	�t
� 	 � ���
Susceptibility 	B � �
 � � jtj��  � ���
Critical isotherm 	t � �
 H � jM j�sgn	M
 � � ��
Correlation length � � jtj�� � � �
Two�Spin Connected Corr� Fun� �	r
 � ��rd���
 � � ���

Table ���� De�nitions of critical exponents and their numerical values for the two�
dimensional Ising model university class� The quantity d is the dimension of the
system� t � 	T � Tc
�Tc� 	After Tables ��� and ��� of Ref� ������


statistical physics� Universality is well�justi�ed theoretically by the renormalization

group and has been thoroughly veri�ed experimentally� Universality tells us that de�

spite the enormous range of systems that undergo critical phenomena� nature is some�

how limited in the manner by which symmetry can be spontaneously broken� There

are certain features of continuous phase transitions�namely the critical exponents�

that are the same for many microscopically di�erent systems�
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	�����


Figure ���� A typical con�guration of the Ising model for T � Tc� There are ��� ���
lattice sites� ���� of which are up 	black
�

���� Pattern	 Organization	 and Computation in

Two Dimensions Revisited

Having discussed the mathematical framework used to analyze critical phenomena�

we now return to the physical picture presented by the two�dimensional Ising model�

To so do� we examine the typical con�gurations above� below� and at the critical

temperature� Typical con�gurations for these temperature regimes are plotted in

Figs� ���������� Up 	��
 spins are colored black� and down spins 	��
 were left
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Figure ���� A typical con�guration of the Ising model for T 	 Tc� There are ��� ���
lattice sites� ���� of which are up 	black
�

blank� The con�gurations were generated by a Monte Carlo simulation using standard

methods� see� e�g�� Ref� ����� Chpt� ���

First� consider the situation in the high temperature limit� Well above Tc the

magnetization m is zero� indicating that on average there are as many up 	��
 spins

as down 	��
 spins� The thermal �uctuations 	controlled by T 
 dominate� and the

tendency for neighboring spins to align 	controlled by J
 is negligible� The result is

a random arrangement of up and down spins� This can be seen in Fig� ���� where a
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Figure ���� A typical con�guration of the Ising model for T � Tc� There are ��� ���
lattice sites� ���� of which are up 	black
�

typical con�guration for T � Tc is shown�

Well below the critical temperature� m � �� almost all the spins are up� The

thermal �uctuations are weak compared to the tendency for spins to align� A typical

con�guration for low temperature is shown in Fig� �����

A typical con�guration for T � Tc is shown in Fig� ����� Like the high tem�

perature con�guration of Fig� ����� the magnetization is zero� However� the two con�

�gurations certainly are structured di�erently� In the critical con�guration� Fig� ����
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clusters of up spins of many di�erent sizes can be seen� consonant with our state�

ment above that at a critical point �uctuations at all length scales contribute to the

observed phenomena�

As discussed in the above sections� at Tc the two�spin connected correlation

function �	r
 decays algebraically with r and the correlation length diverges� Nev�

ertheless� the lattice manages to balance up and down spins so that on average the

magnetization is zero� The theory of critical phenomena describes this critical state

by using the critical exponents to answer the question What is the asymptotic form

of the diverging thermodynamic functions at T � Tc�

In keeping with the theme of this dissertation� we ask a di�erent set of ques�

tions� How does the lattice maintain m � � and have a diverging correlation length�

How much information must be shared across the lattice to achieve and maintain

this critical state� And what must be done with this information�how is informa�

tion stored and manipulated to produce clusters of spins at all lengths scales� Are

the critical con�gurations of Fig� ���� qualitatively di�erent than the low and high

temperature con�gurations of Figs� ���� and ����� If so� how to we express this

di�erence�

To answer these questions� one could examine entropy convergence and apply

computation mechanics as done in Part II when analyzing the structures exhibited

by one�dimensional spin systems� However� a complete theoretical framework to do

so is not yet in place� Preliminary work towards such a framework is discussed in
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Chapter ���



���

Chapter ��

Quasi�Two�Dimensional Results for

the Two�Dimensional Ising System

���� Introduction

The two spin mutual information I	r
 de�ned in Eq� 	����
 of Chapter � in the context

of a one�dimensional spin system can easily be extended to measure the information

shared between spins on a two�dimensional lattice� To this end� we de�ne

I	n�m
 � I�Si�j�Si�n�j�m� � 	����


where the mutual information I is given by Eq� 	����
� The quantity I	n�m
 measures

the mutual information between spins separated by n lattice sites vertically and m
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lattices sites horizontally� Note that by rotational symmetry I	n�m
 � I	m�n
 �

I	jnj� jmj
�

The nearest�neighbor two�spin mutual information I	�� �
 of the two�dimensional

Ising model has been estimated numerically via a Monte Carlo simulation by Sol�e et

al � in Ref� ������ The two�spin mutual information 	not just the nearest neighbor case


has also been numerically estimated by Matsuda et al � in Ref� ������ In this short

chapter we present exact results for the nearest�neighbor two�spin mutual information

for the two�dimensional Ising model�

���� Exact Results for Two�Spin Nearest�Neighbor

Mutual Information

We begin our calculation of the nearest neighbor two�spin mutual information I	�� �


by recalling that the mutual information can be written as the di�erence between the

marginal and the conditional entropies�

I�Si�j � Si���j� � H�Si�j� � H�Si�j Si���j� � 	����


From Eq� 	����
 and the de�nition of conditional entropy� Eq� 	����
� it is

clear that to calculate I	�� �
 we will need expressions for Pr	Si�j
 and Pr	Si�j� Si���j
�

One can obtain formulae for these in terms of the magnetization m and the nearest�
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neighbor correlation function �u	�� �
� By exploiting the rotational and translational

symmetries of the lattice and the normalization constraints on the various probabili�

ties� we �nd

Pr	��
 �
��m

�
� 	����


Pr	��j�
 �
��m

� �m

�
�� �u	�� �


��m

�
� 	����


Pr	��j � �
 �
� � �u	�� �
�m

��m
� 	����


Pr	�j�
 � � � ��m

� �m

�
�� �u	�� �


��m

�
� 	����


Pr	�j � �
 �
�� �u	�� �


��m
� 	����


Similar results have been derived independently by Matsuda et al � in Ref� ������

The details of the manipulations are shown in the Appendix F� We sketch

the derivation here� First� for the single spin distribution Pr	Si�j
 there is only one

independent quantity since there are two possible values of Si�j and the probabilities

must sum to one� Thus� Pr	Si�j
 can be expressed solely as a function of m as is done

in Eq� 	����
�

To determine the joint distribution of nearest�neighbor spins� we begin by

factoring the joint distribution into the product of a marginal and a conditional

distribution

Pr	Si�j� Si���j
 � Pr	Si�jjSi���j
 Pr	Si���j
 � 	����
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Figure ���� The single�spin entropy H�Si�j� versus the reduced temperature t �
T�Tc�

The marginal distribution Pr	Si���j
 is known� Pr	Si���j
 � Pr	Si�j
 by translation

symmetry� Thus� it su�ces to determine the conditional distribution Pr	Si�jjSi���j
�

There are four possibilities for the two spins� but two normalization conditions reduce

the number of independent quantities to two� The rotational symmetry of the lattice

implies that Pr	����
 � Pr	��� �
� From this we deduce a relation between Pr	��j�

�
 and Pr	��j��
 in terms of m� We are then able to obtain Eqs� 	����
%	����
 which

express Pr	Si�jjSi���j
 as a function of m and �u	�� �
�

As mentioned above� note that the conditional probabilities exhibit a spin��ip

symmetry above Tc but not below Tc� For example� one might expect that Pr	��j�
 �

Pr	�j � �
� However this is not the case below T � Tc where m �� � and the the spin�

�ip symmetry is spontaneously broken�

We now have all the pieces needed to calculate the mutual information between
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Figure ���� The conditional entropy H�Si�jjSi���j� as a function of reduced temper�
ature t � T�Tc�

nearest�neighbor spins using the de�nition of Eq� 	����
� The probability distributions

are given in Eqs� 	����
%	����
 and m and �u	�� �
 are given by Eq� 	����
 and 	����
�

respectively� The single spin entropy H�Si�j�� the conditional entropy H�Si�jjSi�j����

and the nearest�neighbor two�spin mutual information I	�� �
 are plotted versus re�

duced temperature t � T�Tc in Figs� ����%�����

���� Discussion of Results

We �rst examine the behavior of the single�spin entropy H�Si�j�� plotted in Fig� �����

Above Tc� the magnetization m is zero� indicating that� on average� equal numbers

of spins are are up and down� As a result� the single�spin entropy is just that of

a fair coin�� bit�and H�Si�j� � � for all T � TC � As the temperature is lowered
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Figure ���� The two�point nearest�neighbor mutual information I	�� �
 as a function
of reduced temperature� t � T�Tc�

from Tc� a bias in the spins is introduced and m approaches �� Accordingly� the

single spin entropy decreases monotonically until T � �� where the magnetization is

� indicating that all spins are up� Hence� there is no uncertainty at zero temperature

and H�Si�j� � ��

Next� consider the conditional entropy H�Si�jjSi�j��� shown in Fig� ����� At

high temperatures� thermal �uctuations dominate and the spins are distributed al�

most independently� Thus� the conditional entropy is almost one bit� Below Tc� the

conditional entropy is seen to vanish� To understand this� note that

H�Si�jjSi�j��� � H�Si�j� Si�j����H�Si�j� � 	����


Below the critical temperature the spin��ip symmetry has been broken and almost all
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the spins are up� Both terms on the right�hand side of the above equation approach

zero since there is little uncertainty associated with the value of any number of spins�

As a result� the left�hand side of Eq� 	����
 goes to zero as T goes zero�

Finally� we consider the di�erence between the single�spin and the conditional

entropies two�spin nearest�neighbor mutual information

I	�� �
 � I�Si�j � Si���j� � H�Si�j� � H�Si�j Si���j� � 	�����


The quantity I	�� �
 is plotted as a function of t in Fig� 	����
� Note the sharp

maximum in the mutual information at the critical temperature t � ��

Well above the critical temperature� the thermal �uctuations overpower the

coupling and the system is random� There are almost no correlations between neigh�

boring spins� Thus� knowledge of one spin does not reduce our uncertainty of the value

of the neighboring spins at all and the mutual information I	�� �
 vanishes� Said an�

other way� there is a lot of Shannon information at each site� but this information is

not shared�

Below the critical temperature� the spin��ip symmetry has been broken and

almost all the spins point in the same direction� As a result of this bias� there is little

uncertainty about the value of a single spin� Thus� knowledge of one spin does not

lead to a large reduction in the uncertainty of the value of its neighbors�there was

very little uncertainty in the �rst place� In short� there is little information at site to
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share�

At the critical temperature� the two�spin correlation function decays alge�

braically with distance� whereas it decays exponentially at all other temperatures�

Thus� the two�spin mutual information achieves a maximum at Tc�

Note the very rapid fall of the mutual information below Tc� This is due to the

spontaneous symmetry breaking� a bias is introduced 	measured by m
� breaking the

symmetry between up and down spins� Thus� below Tc there is less information for

the two neighboring spins to share� leading to a sharply falling mutual information�

���� Summary

In summary� we have presented exact results for the two�spin nearest�neighbor mutual

information� This quantity has be estimated in Ref� ����� and� independently in

Ref� ������ via a Monte Carlo simulation� 	A related two�spin statistic� �Distance

to Independence� was put forth and estimated in Ref� ������
 Since our results are

exact� they are a clear improvement over these numerical estimates� For example�

practically speaking� the mutual information� like all average quantities� requires a

relatively large amount of computer time to estimate with a Monte Carlo algorithm

due to critical slowing down near� For example� in both Refs� ����� and ������ the

error bars on I	�� �
 are quite large near Tc�

The two�spin mutual information is a function of the distribution of only two
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spins� As such� it does not provide a measure of global memory in the manner that

the excess entropy does for a one�dimensional systems� Nor is it su�ciently �global�

to be used as a general indicator of structure� pattern� or memory as the excess

entropy is� How can one de�ne an analogue of the excess entropy in two dimensions

that explicitly accounts for the manner in which information is shared across space�

Can the procedure through which ��machines are de�ned be generalized so that the

��machine can applied to multidimensional con�gurations� These questions will be

addressed in the next chapter�



���

Chapter ��

Toward a Fully Two�Dimensional

Generalization of Entropy

Convergence and Computational

Mechanics

In this chapter we discuss several ideas for extending our computation and infor�

mation theoretic analysis of pattern� organization� and structure to more than one

dimension� For simplicity� we shall focus on two�dimensional systems� our discussion

can easily be extended to higher dimensions if needed� The work presented here is

quite preliminary� it is not put forth as a �nal solution� Rather� our main goal is to

state clearly the issues and di�culties that arise when trying to extend our results
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to more than one dimension� In so doing� we suggest several directions for future

research�

We begin in Sec� ���� by discussing a number of di�erent� complementary ap�

proaches to de�ning an information theoretic measure of memory for two�dimensional

systems� Then� in Sec� ���� we review and extend an approach to two�dimensional

computational mechanics introduced by Crutch�eld and Hanson ���� ���� In Sec� ����

several simple two�dimensional patterns are analyzed using the techniques of the pre�

vious two sections� the results of this analysis are discussed in Sec� ����� Finally� in

Sec� ���� we mention some open questions and discuss possibilities for future work�

���� Information Theoretic Measures of Memory

in Two Dimensions

The excess entropy E of a one�dimensional stationary chain of discrete random vari�

ables was de�ned in Chapter �� There we saw that E can be interpreted as the

apparent spatial memory of the system� There are several formulae for the excess

entropy� each of which emphasizes a di�erent point of view� E can be viewed as a

mutual information� a sum of the �nite�L overestimates of the entropy density h�� or

as the constant term in the scaling form for the total entropy� Each of these views is

conceptually distinct� but all three formulations can be shown to be equivalent�

In two dimensions� these di�erent points of view lead to di�erent possible
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generalizations of the excess entropy� In this section� we explore di�erent ways of

extending our information theoretic analysis of structure to two dimensions� Before

discussing excess entropy� we �rst �x notation and state a few de�nitions�

Consider a two�dimensional array of discrete random variables Si�j where the

variables are drawn from a �nite set si�j � A� Let B�M�N�
i�j denote a rectangular

M �N con�guration whose upper left variable is Si�j� The block has N rows and M

columns� That is�

B�M�N�
i�j �

Si�j Si�j�� Si�j�� � � � Si�j�M��

Si���j Si���j�� Si���j�� � � � Si���j�M��

Si���j Si���j�� Si���j�� � � � Si���j�M��

���
���

���
���

���

Si�N���j Si�N���j�� Si�N���j�� � � � Si�N���j�M��

� 	����


We assume that the con�guration is translationally invariant� and thus

Pr	B�M�N�
i�j 
 � Pr	B�M�N�

i�K�j�L
 � Pr	B�M�N�
 	����


for all K�L�

We de�ne the block entropy H	N�M
 as the entropy of an M � N rectangle
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B�M�N�
i�j of adjoining variables

H	N�M
 � H�B�M�N� � � �
X
fBg

Pr	B�M�N�
 log� Pr	B�M�N�
 � 	����


We then de�ne the entropy density in the natural way

h� � lim
M�N��

H	N�M


NM
� 	����


Lempel and Ziv show in Ref� ���� that this limit exists� We now proceed to explore

several ways to de�ne a two�dimensional analogue of the excess entropy� We shall

apply these di�erent de�nitions to some simple two�dimensional patterns in Sec� �����

�
���� E as the intensive part�s� of the total entropy

We now consider our �rst candidate for a two�dimensional generalization of the excess

entropy� Recall that we saw in Eq� 	���
 that E is equal to the O	�
 term in the

asymptotic expression for the block entropy for large L

H	L
 � E� h�L � 	����


where H	L
 is the entropy of a block of L consecutive spins and h� is the entropy

density� This relationship was illustrated in Fig� ����

Eq� 	����
 suggests the following scaling form for the two�dimensional block
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entropy

H	M�N
 � Es � h�y�� M � h�x�� N � h�MN � 	����


The subscript s denotes that this form of the excess entropy is arrived at by consid�

ering entropy scaling� The quantities h
�y�
� and h

�y�
� measure the entropy growth rates

in the x and y directions� We shall see in Sec� ���� that h
�y�
� and h

�y�
� do not function

as a measure of memory or structure�

We emphasize that Eq� 	����
 is� like Eq� 	����
� an ansatz� these asymptotic

forms need not hold for all systems� For example� for the class of aperiodic one�

dimensional sequences considered in Ref� ����� one can show thatH	L
 � k��k� logL�

where k� and k� are constants that are independent of L� Eq� 	����
 does hold for

the simple examples considered below in Sec� �����

�
���� E as Mutual Information

In one dimension� the excess entropy can also be written as the mutual information

between the left and right halves of the string as was done in Eq� 	����


E � I�
�

S�
�

S� � 	����


This form can easily be generalized to two dimensions� However� what sets of variables

should be used in place of the one�dimensional semi�in�nite halves in Eq� 	����
� One
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possibility is to consider the mutual information between half planes� Then E would

be the information shared across a line� whereas in one dimension the excess entropy

was the information shared across a point� Another� less general approach is to

consider the mutual information between� say� upper left and lower right quadrants

or �past� and �future� light�cones� The latter alternative could be appropriate if the

two�dimensional block of variables is the space�time diagram of a one�dimensional

CA� A priori there seems to be no way to choose one of these mutual information

forms as being more natural than any other�

For use later on� we shall introduce notation for two of these mutual informa�

tion forms of the excess entropy� First� we de�ne E
�TB�
I as the mutual information

between semi�in�nite �top� and �bottom� half planes

E
�TB�
I � lim

M�N��
I�B�M�N�

i�j �B�M�N�
i�N�j � � 	����


Similarly� we de�ne E�LR�
I as the mutual information between semi�in�nite �left� and

�right� half planes

E
�LR�
I � lim

M�N��
I�B�M�N�

i�j �B�M�N�
i�j�M � � 	����


The subscript I on these two forms of the excess entropy indicates that they are

de�ned via the mutual information� The superscripts make reference to the block

variables between which we measure mutual information� By translational invariance�

Eq� 	����
� the right�hand sides of Eqs� 	����
 and 	����
 do not depend on i� j�
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�
���� E as the sum of 	nite�L h� overestimates

Our last formula for E in one dimension expresses the excess entropy as the sum of

the �nite�L h� overestimates� Recall that in Eq� 	����
 we de�ned

h�	L
 � H	L
�H	L� �
 � 	�����


We then de�ned E by summing over L

E �
�X
L��

� h�	L
� h� � � 	�����


Note that in one dimension h�	L
 may also be written as a entropy of a single

spin conditioned on L� � adjoining spins

h�	L
 � H�SLjS� � � � SL��� � 	�����


This suggests de�ning a two�dimensional analogue of h�	L
 as the entropy of a single

spin conditioned on a neighborhood of adjoining spins� But what shape neighborhood

is appropriate� Lindgren ���� ���� ���� ���� suggests the following approach�

Let LM
i�j be an M����M�� block of variables with the M�� variables deleted
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from right side of the top row� That is

LM
i�j �

Si�j�M � � � Si�j��

Si���j�M � � � Si���j�� Si���j � � � Si���j�M

Si���j�M � � � Si���j�� Si���j � � � Si���j�M

���
���

���
���

���
���

Si�M�j�M � � � Si�M�j�� Si�M�j � � � Si�M�j�M

� 	�����


We then de�ne the two�dimensional analogue of h�	L
 as

hL�	M
 � H�Si�j j LM
i�j � � 	�����


This formula is illustrated in Fig ����� For each M � hL�	M
 is the entropy of the

shaded block conditioned on all the other blocks in the �gure�

Assuming translation invariance� Eq� 	����� it turns out that ����� ����

lim
M��

hL�	M
 � h� � 	�����


where the entropy density h� is de�ned by Eq� 	����
� The L�shaped blocks de�ned

in Eq� 	�����
 are not the only shape blocks for which Eq� 	�����
 holds ����� ����

����� Consider a sequence of blocks eLM with the following properties the blocks are

increasing in size� eLM�� is included in eLM for allM � and limM��
eLM � limM��LM �
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���

���
���
���

M = 1 M = 2 M = 3
Figure ���� The construction of hL�	M
� At each M � hL�	M
 is given by the entropy
of the shaded block conditioned on all the unshaded blocks�

For such a eLM if follows that limL�� h
eL
�	M
 � h������� ���� �����

Having de�ned the �nite�size entropy density estimate hL�	M
 we now de�ne

another form for the excess entropy by analogy with Eq� 	�����


EL
r �

�X
M��

�
hL�	M
� h�

�
� 	�����


The subscript r indicates that this form for the excess entropy is de�ned by summing

up the successive redundancies hL�	M
 � h�� The superscript refers to the shape of

the neighborhood�the L of Eq� 	�����
�upon which we condition the entropy of a

single spin to obtain a �nite�size entropy density estimate�
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���� Two�Dimensional Computational Mechanics

�
���� Issues Concerning Templates and Lattice Partitioning

A question implicitly arose as we considered all of the above proposals for the excess

entropy in two dimensions What sort of �template� should one use� That is� when

building up larger and larger pieces of the lattice� as one would need to do for the

entropy convergence and entropy scaling pictures� what shapes should the pieces be�

The mutual information between what composite variables 	e�g�� blocks� quadrants


will yield a measure of the information shared across the lattice� Said another way�

how should one parsimoniously group the individual random variables on the lattice

to reduce unnecessary redundancy and focus on intrinsic features�

In one dimension� these questions concerning how to best group con�gurations

are answered by the causal states� Recall that the causal states are de�ned as the

minimal set of aggregate variables needed to perform optimal prediction� What is the

appropriate two�dimensional analogue of causal states� In our view� this unanswered

questions lies at the heart of the subtleties in generalizing the excess entropy and

computational mechanics to more than one dimension�

One approach to two�dimensional computational mechanics considers the one�

dimensional strings obtained when parsing the two�dimensional lattice along di�erent

paths� But which path should one choose and why� It seems clear that the view of

the underlying two�dimensional structure will depend strongly on the path chosen�
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This di�culty has also been articulated by Grassberger ����� Lempel and Ziv ���� and

Sheinwald� Lempel� Ziv ����� have employed a path approach as part of an encoding

scheme for two�dimensional patterns� Speci�cally� they parse the two�dimensional

pattern by observing the variables seen along a Peano�Hilbert space��lling curve�

They �nd that this path is optimal� in that they prove a constructive coding theorem

���� ���� in which the length of the code 	in bits
 is arbitrarily close to the entropy

density h�� However� they note that the Peano�Hilbert curve is not the only path for

which their result holds �����

In the following section we review one approach� suggested by Crutch�eld ����

for parsing the con�gurations into one�dimensional strings a stochastic generalization

of the �space�time� machines introduced by Crutch�eld and Hanson in Refs� ���� and

�����

�
���� One Approach to Two�Dimensional Computational Me�

chanics� Path ��Machines

Our starting point is again a two�dimensional in�nite square lattice of discrete random

variables Si�j with values drawn from a �nite set A� The subscripts i� j denote lattice

site� Imagine recording the values of the variables observed as one moves through the

lattice along some particular path� recording at each step not only the variable seen�

but also the direction of the move that takes one to that variable� We shall impose
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the signi�cant restriction that only south 	S
 and east 	E
 moves are allowed� A south

move corresponds to moving �down� from Si�j to Si�j��� An east move corresponds

to moving �right� from Si�j to Si���j� As we step through the lattice� we will indicate

south moves with the symbol S and east moves with E�

The result of stepping through the lattice and recording the direction of the

steps and the variables seen is a one�dimensional string over an expanded alphabet

that is the Cartesian product of fS�Eg with the original alphabet A� Denote this

alphabet with the added spatial information by

AS � A� fS�Eg � 	�����


For example� if the two�dimensional con�guration is binary� A � f�� �g� then AS �

f�S� �E� �S� �Eg� Note that jASj � �jAj�

As mentioned above� when parsing the two�dimensional lattice we restrict

ourselves to only down 	south
 and right 	east
 moves� In so doing� we disallow any

loops in our path� There is� of course� not a unique way to step through the lattice

in this manner� For an L�step journey there are �L possible paths� at each step one

is free to move either south S or E�

We determine a probability distribution over strings in the expanded alphabet

as follows� We choose di�erent lattice sites as our starting point� and from each

consider all the length�L� no�loop paths� We consider each possible path through the
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patch only once� i�e�� we assume each path has equal probability� We then take as

the probability of an expanded�alphabet string its relative frequency in the limit that

we consider an in�nite number of starting points in the two�dimensional lattice� This

method for generating a distribution over patches of two�dimensional variables has

also been used by Lempel and Ziv �����

We have now reduced the two�dimensional con�guration to a ensemble of

one�dimensional strings and thus can reconstruct 	analytically or empirically
 an ��

machine using this new� expanded�alphabet� one�dimensional ensemble� The result is

a path ��machine that describes the non�looping paths through the two�dimensional

con�guration� Examples of such ��machines will be given in Sec� ����� The limita�

tions of the path ��machine approach are discussed in Sec� ������� In the following� we

shall ignore the admittedly important issue of synchronization�how one determines

by observing a system what causal state a process is in 	see Appendix D
�and will

focus only on the recurrent portions of path ��machines�

�
���� Properties of Path ��Machines

As noted above� the ensemble of sequences obtained by considering non�looping paths

through the lattice can be viewed as a one�dimensional stationary stochastic process�

As a result� we can proceed to calculate E using any of the one�dimensional formulae�

all the one�dimensional formulae for E from Chapter � will yield identical numerical

values in the limit that the path length goes to in�nity� We denote the excess entropy
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calculated from the ensemble of one�dimensional non�looping paths by EP � We denote

by CP
� the statistical complexity of the path ��machine�i�e�� the Shannon entropy of

asymptotic probability of the causal states�

We denote the entropy density of the one�dimensional expanded�alphabet

strings by hP� � Note� however� that the random walk through the lattice introduces

entropy above and beyond that intrinsic to the patch� and thus hP� �� h�� This en�

tropy arises as a result of the entropy of the random walk itself� Thus� the entropy

density of our one�dimensional expanded�alphabet strings is larger than the entropy

density h� of the two�dimensional system as de�ned in Eq� 	����
� Since the entropy

density of the random walk is � bit� we might expect that hP� � �� h�� However� the

examples treated in the following section will show that this is not always correct�

The relationship between hP� and h� will be discussed again in Sec� �������

However� the additional randomness introduce by the random walk will not

a�ect EP � This can be seen most clearly by writing EP as the mutual informa�

tion between semi�in�nite �past� and �future� sequences over the expanded alphabet

strings

EP � lim
L��

I�SL
�L�S

L
� � � lim

L��

�
H�SL

� ��H�SL
� jSL

�L�
�
� 	�����


where SL � AL
S � The move through the lattice taken at a given step is independent

of the sequence of east or south moves taken previously� As a result� the entropy

of the random walk will contribute equally to both terms on the right�hand side of
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Figure ���� A two�dimensional checkerboard pattern�

Eq� 	�����
� Thus� the di�erence of these two terms� EP � will not be e�ected and will

still serve as a measure of memory�

���� Examples

�
���� Checkerboard

In this section we calculate the path ��machines and the di�erent versions of the

excess entropy for four simple con�gurations� We begin by considering a checkerboard

pattern� shown in Fig� �����

To determine the path ��machine we must form the ensemble of non�looping

paths through square patches� We begin considering all length � paths� If we choose

as our starting point a black square� then� parsing Fig� ���� we see that we will always
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see the sequence ��� regardless of the spatial moves made while moving through the

lattice� 	We denote black squares with � and empty square with ��
 Thus� we �nd

the following �� � � paths

f�E�E�E� �E�E�S� �E�S�E� �E�S�S�

�S�E�E� �S�E�S� �S�S�E� �S�S�Sg
� 	�����


We denote black squares with � and empty square with ��

If we start our path on a white square� then we obtain these paths

f�E�E�E� �E�E�S� �E�S�E� �E�S�S�

�S�E�E� �S�E�S� �S�S�E� �S�S�Sg
� 	�����


The expanded�alphabet strings of Eqs� 	�����
 and 	�����
 are the only possible length

L � � south�east paths through the con�guration� Note that it is not always the case

that all paths can be obtained by considering only two starting locations� this holds

only for particularly simple patterns� Here� that only two starting points need to

be considered to generate all possible strings is due to the fact that the pattern is

periodic with period ��

It is not hard to see that all of the paths shown above are equally likely� Using

the methods of Chapter �� we can proceed to determine the path ��machine using

these one�dimensional expanded�alphabet strings� For this simple example� it turns
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Figure ���� The path ��machine for the checkerboard con�guration of Fig� �����

out that all one needs to determine the causal states are length�� paths� No new

causal states arise if longer paths are considered�

The recurrent portion of the resulting path ��machine is shown in Fig� �����

This machine has a statistical complexity of �� there are two causal states� each visited

equally often� The properties of the path ��machines for the checkerboard pattern

and for all other examples in this section are summarized in Table �����

The excess entropy of the path ��machine is determined by investigating the

behavior of H	L
� the total entropy of length�L paths� There are � length � paths

�E� �E� �S� and �S� all equally likely� Thus� H	L
 � �� There are � length � paths�

�E�E� �E�S� �S�E� �S�S� �E�E� �E�S� �S�E� and �S�S� and again� all are equally likely
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Con�guration Path ��Machine Properties Entropy Density

hP� CP
� EP h�

Checkerboard � � � �

Coin Tosses � � � �

Period Two Stripes � � � �

Random Stripes ��� � ��� ���

Table ���� Summary of the path ��machine properties for the four example con�gu�
rations of Figs� ����� ����� ����� and �����

so H	�
 � �� In general�

Number of paths of length L � �� �L � 	�����


since there are two phases of the pattern� ���� � � � or ���� � � �� and �L paths for a

given L� All paths are equally likely� Thus�

H	L
 � � � L � 	�����
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Thus� from the scaling form for H	L
� Eq� 	����
� we see that hP� � � and EP � ��

We now calculate the forms of the excess entropy de�ned in Sec������ The

results of these calculations are summarized in Fig� ����� For the con�guration of

Fig� ���� it is not hard to see that

H	M�N
 � � � �M � �N � �MN � 	�����


As a result� it follows from Eq� 	����
 that Es � �� h�
�x� � h�

�y� � �� and h� � �� The

top�bottom and left�right mutual information forms for E each yield a value of �� To

see this observe that there are two possible values of 	say
 the top half� corresponding

to the two di�erent phases of the checkerboard pattern� Thus� the entropy of the top

half is � bit� If the bottom half is known� then this determines the value of the top

half as well� Hence� knowledge of the bottom half reduces the entropy of the top half

by � bit� so the mutual information between the two halves is � bit�

The �nite�size entropy density estimates are easily found hL�	�
 � H�Si�j� � ��

and hL�	M
 � � for all M � �� As a result� EL
r � �� In summary� these values for

the excess entropy seem reasonable� All forms of yield E � �� consistent with our

discussion in Chapters � and � where we saw that for one�dimensional processes of

period k� E � log�k�



CHAPTER ��� TOWARD A FULLY TWO
DIMENSIONAL � � � ���

Con�guration Excess Entropy Form Entropy Density

Es E
�TB�
I E

�LR�
I EL

r EP h�
�x� h�

�y� h�

Checkerboard � � � � � � � �

Coin Tosses � � � � � � � �

Period Two Stripes � � � � � � � �

Random Stripes � � � � ��� � � �

Table ���� Di�erent forms of the excess entropy E calculated for the four example
con�gurations of Figs� ����� ����� ���� and �����

�
���� Coin Flips

As our next example� consider Fig� ����� Here� the variables are independently and

identically distributed 	iid
� each variable is � with a probability of one half� It is easy

to see that the path ��machine for this con�guration has only one causal state� there

are no correlations between variables� The path ��machine is shown in Fig� ����� It

follows from the machine that hP� � � and EP � CP
� � ��
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Figure ���� A two�dimensional random con�guration� Each variable is independently
distributed and equally likely to be � 	black
 or � 	white
�

The block entropy for the con�guration of Fig� ���� is given by

H	M�N
 � � � �M � �N � �MN � 	�����


and thus Es � E
�M�
s � E

�N�
s � � and h� � �� Since the variables are identically

distributed no variables contain information about any others and E
�TB�
I � E

�LR�
I � ��

The �nite�size approximation to the entropy density HL
� 	M
 is � for all M � Thus�

EL
r � ��

As expected� all forms of the excess entropy vanish for this system� The

symbols are independently distributed� no information whatsoever is shared across

the lattice�
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E |1/40
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1 |1/4S

E1 |1/4

A

Figure ���� The path ��machine for the completely random pattern of Fig� �����

�
���� Period�� Stripes

As our next example� we consider a con�guration of alternating all�black and all�

white vertical stripes as shown in Fig� ����� Following an analysis similar to that

used for the checkerboard pattern in Sec� ������� we �nd that the path ��machine

for Fig� ���� is given by the machine shown in Fig� ����� This path ��machine has a

statistical complexity of �� There are two causal states� each visited equally often as

the ��machine is run arbitrarily long�

The entropy H	L
 of the length L expanded�alphabet strings produced by the
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Figure ���� Periodic Stripes alternating columns of all up 	black
 or down 	white
�

machine is identical to that found for the checkerboard pattern� Eq� 	�����


H	L
 � � � L � 	�����


Thus� hP� � � and EP � ��

The block entropy for the period�� stripes is given by

H	M�N
 � � � �M � �N � �MN 	�����


from which we conclude that Es � �� h�
�M� � h�

�N� � �� and h� � ��

The mutual information between the left and right halves is � bit� There are

two possible right halves corresponding to the two phases of the pattern� As a result�

the marginal entropy of the right half is �� Once the left half is known� the right half
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E |1/20
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A B

Figure ���� The path ��machine for the period�� striped con�guration of Fig� �����

is determined� Thus the entropy of the left half conditioned on the right half is zero�

Subtracting the marginal and conditional entropies to obtain the mutual information�

we see that E
�LR�
I � �� By a similar line of reasoning� one �nds the same numerical

value for the mutual information between the top and bottom half planes� E
�TB�
I � ��

The conditional entropies hL�	M
 are seen to be identical to those of the

checkerboard pattern hL�	�
 � �� and hL�	M
 � � for all M � �� Thus� EL
r � ��

As was the case for the checkerboard pattern� we �nd that all forms of the excess

entropy are �� This is not a surprise� like the checkerboard� the striped pattern of

Fig� ���� is periodic with period ��

�
���
 Random Stripes

Lastly� we consider the �random stripes� pattern of Fig� ����� Here the con�guration

consists of columns of either all�black or all�white� the columns themselves are iid
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Figure ���� A two�dimensional �random stripes� pattern� Columns of all black or
white occur independently with probability ����

with probability ��� of being all black� The path ��machine for this pattern is shown

in Fig� ����� This machine has a statistical complexity of �� since� like the machines

of Figs� ���� and ����� there are two causal states� each visited equally frequently�

The entropy density hP� is ���� To see this� recall that the entropy density is

given by the average per�step uncertainty of the machine� as discussed in Sec� ������

From each causal state� A and B� the uncertainty is the same� there is one transition

with probability ��� and two transitions with probability ���� Thus�

hP� � ��

�
log�

�

�
� �

�

�
log�

�

�
�

�

�
� 	�����


The excess entropy can be found by using Eq� 	����
� which expresses the

probability of a particular sequence of observed variables in terms of the ��machine�



CHAPTER ��� TOWARD A FULLY TWO
DIMENSIONAL � � � ���

|1/2S0

|1/4E1

0E |1/4

|1/2S1 0E |1/4|1/4E1A B

Figure ���� The path ��machine for the random stripes con�guration of Fig� �����

Using this� we �nd H	�
 � � and�

H	L
 �
�

�
�

�

�
L � L � � � 	�����


Hence� EP � ��� and hP� � ���� in agreement with Eq� 	�����
�

We now calculate the other forms for the excess entropy� The block entropy

is given by

H	M�N
 � � � �M � �N � �MN � 	�����


Thus� Es � h�
�y� � � while h�

�x� � � and h� � �� This equation indicates� as

expected� that the con�guration is random in the x 	horizontal
 direction and ordered

in the y 	vertical
 direction� Note that despite the fact that H	N�M
 diverges as M

and N go to in�nity� h� is zero�
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The behavior of the mutual information forms of the excess entropy is rather

interesting� Since the columns are independently distributed� the left half of the

con�guration contains no information about the right half and E
�LR�
I � �� This

certainly does not hold for the mutual information between the top and bottom half

con�gurations� The entropy of a particular M � N block is N bits� However� if the

variables in the block immediately below 	or above
 this block are known� then the

entropy of theM�N block is now zero� since knowing the value of one row determines

all the other variables in the lattice� Thus� the mutual information between twoM�N

blocks positioned on top of another is equal to N bits� In the limit that the block

size diverges� the mutual information diverges as well� and E
�TB�
I ���

���� Discussion of Examples

�
�
�� Di�erent forms of the excess entropy

Due to the simplicity of the examples just considered� it is di�cult to draw conclu�

sions about interpretation of the di�erent excess entropy forms� Nevertheless� some

tentative statements can be made� First� as anticipated� the linear entropy scaling

terms� h�
�x� and h�

�y� in the expression for the total block entropy� Eq� 	����
� do

appear to be sensitive to randomness� not memory or structure� A non�zero value

for h�
�x� or h�

�y� indicates that the entropy grows linearly in� respectively� the hori�

zontal or vertical direction� Accordingly� h�
�x� and h�

�y� are zero for all the examples
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we considered� except for the random stripes con�guration of Fig� ����� 	See Table

�����
 The stripes are distributed independently in the horizontal direction� leading

to a h�
�x� of �� Thus� we conclude that h�

�x� and h�
�y� measure randomness� not

memory�

Second� the examples indicate that the mutual information form of the excess

entropy is very sensitive to the shape of the regions considered top and bottom half�

planes� left and right half�planes� etc� This is seen in the random stripes example�

where E
�TB�
I �� and E

�LR�
I � �� It seems unreasonable to assign the random stripes

pattern an in�nite memory� it possesses very little structure� as re�ected in its two�

state path ��machine� Fig� ����� A possible remedy for this divergence to normalize the

mutual information forms of the excess entropy by dividing by the linear dimension

of the interface between the two blocks and then examining the limit in which the

block size goes to in�nity� The result is a mutual information density� Note� however�

that this approach will yield a zero mutual information density for the checkerboard

and period�� striped patterns� Thus� the mutual information densities complement�

rather than replace� the mutual information forms for the excess entropy� E
�TB�
I and

E
�LR�
I �

Based on the simple examples we�ve considered here� Es� E
L
I � and E

P appear

to be the most promising as a global measure of a two�dimensional con�guration�s

memory� However� it is quite clear that a single scalar function cannot adequately

capture all aspects of a system�s memory� To some extent� this bluntness of the excess
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entropy was the case in one dimension� where� for example� all periodic systems of

period p have an excess entropy of log� p�

But the situation is even more subtle in two dimensions� In one dimension� it

is natural to inquire about the memory shared between the left and the right halves

of the string� In two dimensions� there is not a unique natural way to divide up the

con�guration� As a result� in analogy with the directional derivative of a function

of two variables� it might be best to formulate the excess entropy as a directional

quantity�

�
�
�� The entropy density of the path ��machine

As noted above� the random non�looping walk through the lattice produces random�

ness above h�� the randomness intrinsic to the system as de�ned in Eq� 	����
� The

entropy density associated with this random walk is � bit� for each path of length L

there are �L possible sequences of south and east moves� Thus� it seems reasonable

to suppose that hP� � the entropy density of the path ��machine is given by � � h��

However� the examples of the previous section show that this is not the case� For the

random stripes pattern of Fig� ����� we found that h� � � while hP� � ���� Given

this� it is unclear how to interpret hP� �
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�
�
�� Path ��machine limitations

Note that the checkerboard and the period�� striped patterns have identical values for

all the quantities we calculated in the above section all the di�erent forms of E� the

entropy density h�� and the path ��machine properties hP� � C
P
� and EP � Nevertheless�

the two con�gurations are clearly di�erent�

The situation is similar in one dimension� Two di�erent period � patterns�

� � � ������������ � � � and � � � ������������ � � �� will both have E � C� � � and h� � ��

To distinguish between these patterns� we need to look at their ��machines� As

discussed in Parts I and II� the ��machine is a minimal representation of all the

regularities present in the system� Said another way� knowledge of the ��machine is

su�cient to reproduce the joint distribution of any �nite�sized block of variables�

In two dimensions� the path ��machine does distinguish between the checker�

board and striped patterns� The machines of Figs� ���� and ���� are clearly structured

di�erently� Can we conclude� as we did in one dimension for ��machines� that the path

��machine is a complete representation of the exact and approximate symmetries of

the two�dimensional con�guration� Can the path ��machine be used to determine the

joint distribution over any �nite block of variables�

The answer to these two questions is no� When constructing the path ��

machine� one e�ectively forms a histogram of the same variables seen along di�erent

paths� This means that each path is treated independently� As a result� one needs
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more than the probabilities the sequences to construct the joint distribution over

clusters of variables�

For example� suppose we wish to determine the joint distribution Pr	si�j� si�j��� si���j


over the adjoining variables Si�j� Si�j��� Si���j� Without loss of generality� we assume

a binary alphabet� There are then �� � � possible values the � variables can as�

sume� Since the probability distribution of the ��spin cluster must be normalized�

there are thus � � � � � independent degrees of freedom in Pr	si�j� si�j��� si���j
�

However� as we will now show� the path ��machine alone is not su�cient to deduce

Pr	si�j� si�j��� si���j
�

The path ��machine tells the probability distribution of the sequences seen

by making �east� and �south� moves Pr	si�j� si� j � �
 and Pr	si�j� si� �� j
� respec�

tively� We factor these probability distributions as follows

Pr	si�j� si�j��
 � Pr	si�j��jsi�j
Pr	si�j
 � 	�����


and

Pr	si�j� si���j
 � Pr	si���jjsi�j
Pr	si�j
 � 	�����


Consider� say� Eq� 	�����
� For each of the two values of Si�j there are �
� � � possible

values of Si���j� Normalization demands that the distribution sums to one� As a

result� there are 	� � �
 � � � � independent degree of freedom in the conditional

distribution Pr	si���jjsi�j
 in Eq� 	�����
�one degree of freedom for each of the two
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possible values of Si�j� Similarly� there are � degrees of freedom in Eq� 	�����
�s

Pr	si�j��jsi�j
� There is one additional degree of freedom in Pr	si�j
� there are two

values of Si�j minus one normalization constraint� Note that both of the distributions

depend on Pr	si�j
�

Thus� there are 	� � �
 � � � � independent degrees of freedom that we can

obtain from the path ��machine via the joint probability distributions of Eqs� 	�����


and 	�����
� Yet there are � independent quantities in Pr	si�j� si�j��� si���j� si���j��
�

We conclude� then� that it is not possible to determine the joint probability distri�

bution of the cluster of variables Si�j� Si�j��� Si���j given the path ��machine� some

additional information is required�

Given this� we see that the path ��machine cannot reproduce the joint dis�

tribution over patches of random variables� As a result� we cannot interpret the

path ��machine as the minimal model capable of reproducing the original con�gura�

tion� All the path ��machine can do is reproduce paths�not at all surprising given

how the machine was constructed� Thus� although the path ��machine does provide

useful structural information� as the examples of the previous section illustrate� the

particular form of the path ��machine introduced here does not provide a complete

description of the regularities of the con�guration� The Construction of an ��machine

	path or otherwise
 that is capable of reproducing the distribution over any �nite

cluster of variables from a two�dimensional con�guration remains an open challenge�
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���� Future Work

As the above discussion indicates� there is clearly much work to be done to obtain a

satisfactory set of tools to discover and quantify pattern� organization� and memory

in more than one dimension� The examples worked out in Sec� ���� are all quite

simple� Each of the four patterns may be viewed as the �direct product� of two

one�dimensional patterns� For example� the random stripes pattern of Fig� ���� is the

product of a coin �ip in the x�direction and a period�� pattern in the y�direction� An

important 	and probably straightforward
 next step is to develop a general theory

that relates the two�dimensional properties of such �direct product� patterns to the

properties of the one�dimensional patterns of which they are composed�

However� to develop an appropriate information�theoretic measure of memory�

it will be necessary to consider richer examples than those considered thus far� In a

recent paper� Lindgren� Moore and Nordahl ����� explore formal language theory as

applied to two�dimensional systems� It would be of interest to determine the di�erent

excess entropies for some of the systems they consider� 	Most of their examples are

not decomposable into two one�dimensional patterns�


As mentioned above� we feel that a single scalar measure of memory will

not adequately capture the manner in which information is shared across a two�

dimensional lattice� To formulate a directional excess entropy� it will be necessary to

understand more clearly the behavior of the derivatives of H	L
 in one dimension�
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building on the analysis of Ref� ������ An examination along these lines will be

published elsewhere �����

While the path ��machines de�ned in Sec� ���� do capture many of a two�

dimensional con�guration� we showed in Sec� ������ that they fail to provide a com�

plete description of the joint distribution over clusters of adjoining spins� Thus� a

pressing open problem is to develop a generalization of ��machines that is able to

reproduce the joint distribution of all �nite patches of variables� Unlike the above

path ��machines� such a machine would be a representation of all the regularities and

symmetries of the two�dimensional con�guration�

Further down the road� it will be of great interest to apply the techniques de�

veloped here to con�gurations generated by the two�dimensional Ising model� Do the

measures of memory diverge at the critical temperature� as one would expect� What

critical exponents describe this divergence� Is an in�nite number of causal states

needed to describe the system at all temperatures or just at the critical temperature�

How are these in�nite causal states organized� Are the causal state transitions struc�

tured similarly to those found from the symbolic dynamics of the logistic map at the

period�doubling accumulation point ���� ����

Is the intrinsic computation of the two�dimensional Ising system universal in

the way that the critical exponents of Sec� ���� are� If they are universal� do they

scale with di�erent exponents that those de�ned in Table ����� Or do computational

mechanical and information theoretic quantities fail to be universal� Memory and
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intrinsic computation re�ect rather more detailed features of the underlying distribu�

tions than typical universal quantities� such as the two�spin correlation function or

the speci�c heat� Thus� it is likely that computational mechanical and information

theoretic quantities are not universal� If so� this indicates that focusing on critical

exponents�as is widely done in statistical mechanics�is not su�cient to capture

information processing and intrinsic computation�



Part V

Conclusion

���
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Chapter ��

Conclusion

���� Summary

We began in Part I with a review of three complementary approaches to correlational

structure� This review commenced in chapter � where we brie�y recounted statistical

mechanical measures of structure the correlation length �� the two�spin correlation

function �	r
� and the structure factors S	q
� In chapters � and � we discussed an

information theoretic approach to memory and structure� �rst reviewing di�erent

forms of the Shannon entropy H and then focusing on entropy density convergence

and the excess entropy E� Lastly� in Chapter � we reviewed computational mechanics�

a computation theoretic approach to memory and structure� and introduced the ��

machine� a minimal representation of the deterministic and statistical regularities of

a system�
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In Part II we turned our attention to one�dimensional �nite�range classical spin

systems� The statistical mechanics of such spin models was reviewed in Chapter ��

In Chapter � we gave exact analytic results for the excess entropy E� ��machines� and

related quantities for this class of spin systems� The next three chapters developed a

direct comparison of statistical mechanical� information theoretic� and computational

mechanical approaches to structural complexity� There were three main conclusions

that emerged as a result of these comparisons�

First� in Chapter � we saw that the excess entropy E serves as a wavelength�

independent measure of periodic structure� This is an entirely general result� true for

any stationary stochastic process�not just �nite�range spin systems� In particular� if

a system is periodic with period P then h� � � and E � C� � log� P� We also found

that� for a spin system with range�R where the R�spin blocks are in a one�to�one

relation with the causal states� C� � E � Rh�� Thus� for any such system with a

positive entropy density h�� C�� the memory needed to statistically reproduce the

con�guration� is greater than E� the system�s apparent spatial memory�

Second� in Chapter � we showed that to fully capture the structure in en�

tropic systems� one must examine ��machines� An ��machine reveals how the memory

is organized and gives all of the system�s measure semigroup theoretic properties�

Said somewhat informally� the ��machine is an irreducible representation of all the

regularities�approximate and exact�possessed by the con�guration�

Third� in Chapter �� we explicitly compared the excess entropy to the speci�c
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heat� correlation length� nearest�neighbor correlation function� and the ferromagnetic

structure factor� We saw that these statistical mechanical functions behave similarly�

but not identically to E� More importantly� none of these functions has a numerical

value that can be directly interpreted as memory� as E can be� In short� then� our

comparison of di�erent approaches to structure has shown that information theory

and computational mechanics capture important properties of a system that statisti�

cal mechanics misses�

In Part III we presented a critical analysis of a statistical complexity measure

introduced in Ref� ����� and discussed further in Ref� ���� In so doing� we gave

a brief historical review of a variety of statistical complexity measures and argued

that it is essential that a statistical complexity measure have a clear� unambiguous

interpretation�

Finally� in Part IV we explored extensions of our approach to more than one

dimension� In Chapter �� we gave a brief sketch of some of the extant work on quan�

tifying patterns in more than one dimension� We also introduced the two�dimensional

Ising model and reviewed the modern theory of critical phenomena� An exact� analytic

result for the nearest�neighbor� two�spin mutual information for the two�dimensional

Ising model was given in Chapter ��� We consider this result to be� at best� quasi

two�dimensional in character� since the two�spin mutual information� a function of

the distribution of only two variables� certainly fails to fully account for the spatial

structure and memory shared across the two�dimensional lattice�
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In Chapter �� we presented several ways to extend the de�nition of the excess

entropy so that it may be applied to two�dimensional systems� We also introduced

the path ��machine� one possible procedure for adapting computational mechanics to

apply to multi�dimensional con�gurations� We calculated the path ��machine and the

di�erent forms of the excess entropy for several simple two�dimensional patterns�

���� Concluding Remarks

������ Measure versus Support

Several ancillary observations� based on the foregoing results� are now in order� First�

we have seen that for one�dimensional spin systems the number of causal states and

their connectivity typically does not change as spin system parameters are varied�

What does change� however� are the probabilities of the causal states and their tran�

sitions� In contrast� for deterministic dynamical systems it is typically the number

of causal states that change as the system parameters are varied ���� ���� Thus� it

is our belief that �topological� measures of structure or complexity such as those of

Refs� ��� and ������i�e�� those measures that account for con�gurations only in terms

of whether they are allowed or disallowed� and so ignore their probabilities�will not

adequately capture important structural changes in statistical mechanical systems�
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������ Limitations of Universal Turing Machine�Based Ap�

proaches to Structural Complexity

Second� approaches to structural complexity� such as those of Refs� ���� ����� ����� and

����� that are based on the Kolmogorov�Chaitin 	KC
 complexity� strike us as being

of little use for addressing the questions of pattern and organization posed here� Our

concerns about these KC complexity�based approaches are three�fold�

First� by adopting a UTM� the most powerful discrete computational model�

one loses the ability to distinguish between systems that can be described by di�erent

computational models less powerful than a UTM ���� ����

Second� and perhaps more importantly� the KC complexity is uncomputable

there exists no general algorithm for the calculation of the KC complexity� Thus�

approaches focusing on KC complexity� including logical depth ����� tend to be non�

constructive� In contrast� in the mathematical domain there are broad classes of pro�

cesses for which the excess entropy and ��machines can be determined ���� ��� �����

In the empirical domain� moreover� there exist algorithms for estimating the excess

entropy and determining an ��machine ���� ��� ���� The computational complexity

of these algorithms is determined by the class of processes analyzed� Indeed� for

the one�dimensional spin systems studied here� we gave closed�form expressions for

various complexity measures of interest�

Third� KC complexity�based approaches inherit a fundamental relativity�a
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relativity that is built into how regularity and structure are accounted for and that

derives from the UTM�s lack of uniqueness and minimality� Computational mechanics

takes a completely di�erent approach and makes a speci�c commitment to causal

states and ��machines as a fundamental representation for the intrinsic computation

embedded in a process� It also associates this computation� via the algebraic structure

of ��machines� with a system�s internal organization and the patterns the system

produces�

Thus� given the problems arising from KC complexity being based on UTMs�

it seems to us that these approaches to structure and pattern will continue to �nd

few empirical applications� Signi�cant supplemental assumptions would have to be

introduced to make these approaches viable� In contrast� due to its speci�city of

representation� computational mechanics is testable and its hypotheses�e�g�� linking

pattern� organization� and computation�are refutable�

���� Open Questions

We conclude by discussing some open questions and possible directions for future

work� It remains an interesting open question as to how the excess entropy E charac�

terizes quasiperiodic or more general h� � � aperiodic con�gurations� Unfortunately�

the simple spin systems analyzed in Part II are not rich enough to address this ques�

tion� Some signi�cant progress has been made in calculating the �nite�L entropy
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density h�	L
 for some aperiodic sequences ���� ��� ����� One can deduce from this

work that the excess entropy diverges for these systems� However� the nature of this

divergence has not been fully examined� In Refs� ���� and ����� ��machines been de�

termined for some aperiodic systems� Nevertheless� there remains some work to be

done in this area�

As discussed at length in Chapters �� and ��� another crucial set of issues con�

cerns extending the information theoretic and computational mechanical approaches

to more than one spatial dimension� As mentioned above there has been some pre�

liminary work in these areas� 	e�g�� Refs� ���� ��� ��� ��� ���� ���� ����
� but much

remains to be done� In our view� a careful� genuinely two�dimensional computational

mechanical treatment of a non�trivial two�dimensional system is still lacking�

Finally� there is a need to develop better techniques for estimating the excess

entropy and reconstructing ��machines in experimental settings� At present� there

is no complete theory of statistical error estimation for inferring ��machines from

�nite data� Some the the di�culties inherent in this task were discussed in Sec� ����

Nevertheless� some promising work has been done in this direction ���� ����

In summary� there are two� broad open questions How can an information

theoretic measure of memory and� more importantly� computational mechanics� be

extended to apply to multi�dimensional con�gurations� And how can ��machines be

optimally estimated from �nite data� We believe that answering these questions is

an essential step toward understanding how nature organizes and how its emergent
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structures take on functionality�

���� A New Walk is a New Walk

Where does the analysis and discussion of these many pages leave us� What might

the future hold for computational mechanics� Where might computational mechan�

ics �nd fruitful application� We believe that computational mechanics provides a

powerful� broadly�applicable set of tools for discovering organization and structure

in natural phenomena� We are con�dent that computational mechanics is an ap�

propriate mathematical language to use when discussing how nature organizes and

forms patterns� However� this optimism and excitement must be tempered by the

realization that nature is complicated� complex� and diverse�

There has been much recent interest in the study of �complex systems��see�

e�g�� Refs� ���� ���� as well as several popular books ���� ��� ���� In these contexts

the phrase �complex systems� typically is understood to refer to some or all of the

following ecosystems� economies� evolutionary systems such as population genetics

and genetic algorithms� social insects and other animal groups� human languages�

protein folding� nervous systems and the brain� and even human societies� Will this

research lead to a �theory of complex systems�� Will we �nd �laws of complexity�

as suggested in Ref� ����� Is it the case �that the dynamics of complex systems are

founded on universal principles� ���� p� xi��
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It is our belief that a �theory of complex systems� �if such a thing is found

at all�will be very di�erent than many existing physical theories� Mendeleev�s pe�

riodic table successfully explained many chemical phenomena that were previously

seen as unrelated� the periodic table was subsequently explained by quantum theory�

Maxwell showed that electricity and magnetism were di�erent manifestations of the

same phenomena� And the standard model of particle physics succeeded in unifying

phenomena previously viewed as unrelated�

We suspect that this trend toward uni�cation of phenomena and explanation

by appeal to uniform principles will not continue as the scope of problems considered

widens� The disparate phenomena that fall under the umbrella of �complex systems�

most likely will not be explained by a simple� uniform law�

On this subject Chomsky remarked� ���� p� ���

Collapse of the traditional uniformity hypothesis should not come as a

surprise� We �nd nothing like it in the study of other complex systems

the visual cortex� the kidney� the circulatory system� and others� Each of

these �organs of the body� has its properties� They fall together� presum�

ably� at the level of cellular biology� but no �organ theory� deals with the

properties of organs in general�

To continue with Chomsky�s analogy� there is an �organ theory� but in di�erent sense

than the word theory is often used in physics� There is not a uniform principle of

organs� but there does exist a set of tools developed to probe the structure of organs

X�rays� magnetic resonance imaging� positron emission tomography� etc� An �organ

theory�� to the extent that such a theory exists� is a theory that concerns methods�
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Likewise� we feel that a useful �complex systems theory� will primarily be

concerned with developing theoretical and experimental tools for inquiring about the

structures� patterns� and degrees of organization exhibited by complex systems� We

have presented in this dissertation one such set of tools the use of computational

mechanics to determine a system�s intrinsic computational abilities�

We close by turning again to the words of A� R� Ammons� We began this

dissertation with a passage from the beginning of Ammons� poem Corson�s Inlet ����

In the poem Ammons records his thoughts while observing the ecology of the inlet

on the New Jersey coast for which the poem is named� Ammons sees regularities

and chaos combining to produce patterns and �disorderly orders� in a range of phe�

nomena a �ock of swallows� patches of bayberries� the changing shapes of the dunes�

He concludes the poem by resisting the urge to draw �nal conclusions� to bundle

his thoughts into a simple package� In so doing� he cautions us against describing

complex systems in too simple a way� Ammons is mindful of and comfortable with

the complexities and uncertainties of nature ���

I see narrow orders� limited tightness� but will

not run to that easy victory�

still around the looser� wider forces work�

I will try

to fasten into order enlarging grasps of disorder� widening

scope� but enjoying the freedom that

Scope eludes my grasp� that there is no finality of vision�

that I have perceived nothing complete�

that tomorrow a new walk is a new walk�
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Appendix A

Summary of Information Theoretic

De�nitions

A�� Notation

Let X and Y be random variables� The variable X may take on the values x � X �

Here X is the 	�nite
 set of all possible values for X and is referred to as the alphabet

of X� Likewise� Y � y � Y�

The probability that X takes on the particular value x is written Pr	X � x
�

or just Pr	x
� We may also form joint and conditional probabilities� The probability

that X � x and Y � y is written Pr	X � x� Y � y
� or Pr	x� y
 and is referred to as

a joint probability� The conditional probability that X � x given Y � y is written

Pr	X � xjY � y
 or simply Pr	xjy
�
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Let
�

S be a bi�in�nite chain of random variables

�

S� � � � S��S��S�S� � � � � 	A��


where the Si�s that range over a �nite set A�

We divide the chain into two semi�in�nite halves by choosing a site i as the

dividing point� Denote the left half by

�

Si� � � � Si��Si��Si�� 	A��


and the right half by

�

Si� SiSi��Si��Si�� � � � � 	A��


We will assume that a spin system is described by a spatial shift�invariant

measure 
 that induces a family of distributions�

Let Pr 	si
 denote the probability that the ith random variable Si takes on

the particular value si � A and Pr	si��� � � � � si�L
 the joint probability over blocks

of L consecutive spins� Assuming spatial translation symmetry� Pr	si��� � � � � si�L
 �

Pr	s�� � � � � sL
� We denote a block of L consecutive variables by SL � S� � � � SL�
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A�� Fundamental De�nitions

The Shannon entropy of the random variable X by

H�X� � �
X
x�X

Pr	x
 log�	Pr	x
 � 	A��


The joint entropy of X and Y is de�ned

H�X� Y � � �
X
x�X

X
y�Y

Pr	x� y
 log� Pr	x� y
 � 	A��


The conditional entropy is de�ned by

H�XjY � � �
X
x�X

X
y�Y

Pr	x� y
 log� Pr	xjy
 � 	A��


The Shannon entropy obeys the following chain rule�

H�X� Y � � H�X� �H�Y jX� � 	A��


The mutual information I�X�Y � between X and Y 

I�X�Y � �
X
x�X

X
y�Y

Pr	x� y
 log�
Pr	x� y


Pr	x
Pr	y

� 	A��
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Properties of I

I�X�Y � � H�Y ��H�Y jX� 	A��


� H�Y � �H�X��H�X� Y � � 	A���


The information gain between two distributions P and Q is de�ned by

D	P jQ
 �
X

x�A	Q�x���

P	x
 log��P	x
�Q	x
� � 	A���


where we assume that if Q	x
 � �� then P	x
 � ��

A�� De�nitions of Information Theoretic Quanti�

ties Applied to a Stationary Stochastic Pro�

cess

The entropy of a block of L consecutive variables is de�ned by

H	L
 � �
X

sL�AL

Pr	sL
 log� Pr	s
L
 � 	A���
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The entropy density h� is de�ned as follows� For a stationary process� the following

three limits exist� and are equal ����

h� � lim
L��

H	L


L
	A���


� lim
L��

�H	L� �
�H	L
� 	A���


� lim
L��

H�SLjS� � � � SL��� � 	A���


The �nite�L approximation of the entropy density is de�ned by

h�	L
 � H	L
�H	L� �
� L � �� �� � � � � 	A���


The excess entropy E is de�ned by

E �
�X
L��

�h�	L
� h�� � 	A���


For a stationary stochastic process� the following two expressions are equal to the

de�nition of Eq� 	A���


E � lim
L��

�H	L
� Lh�� 	A���


� lim
L��

I�
�

Si�
�

Si� � 	A���
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Appendix B

��Machine Entropy Density

We derive Eq� 	����
� an expression for the entropy density h� in terms of the proba�

bility of the causal states and their transitions� We begin with the expression for the

entropy density� Eq� 	���


h� � lim
L��

H�SLjS� � � �SL��SL��� � 	B��


Using the de�nition of the conditional entropy� Eq� 	����
� this may be rewritten as

h� � lim
L��

�
X

sL�sL��

Pr	sL� s
L��
 log� Pr	sLjsL��
� 	B��


where sL denotes the single spin variable at site L and sL�� denotes the block of L��

spins from sites � to L� ��
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The causal states S� partition the set fsL��g� each sL�� belongs to one and

only one causal state equivalence class� 	Cf� App� C�
 As a result we may reexpress

the sum as follows

h� � lim
L��

�
X
sL��

X
sL���S�

Pr	sL� s
L��
 log� Pr	sLjsL��
 � 	B��


Causal states were de�ned in Eq� 	���
 such that two blocks of spins sL��i and sL��j

belong to the same causal state if and only if Pr	
�
s jsL��i 
 � Pr	

�
s jsL��j 
� � �

s � This

observation enables us to perform the inner sum in Eq� 	B��
� Each term in the

argument of the logarithm is identical� since all the sL���s belong to the same causal

state� As a result� we can pull this term outside the sum

h� � lim
L��

�
X
sL��

h
log� Pr	sLjS�


X
sL���S�

Pr	sL� s
L��


i
� 	B��


Note that since we are interested in the L� limit� we need only concern ourselves

with recurrent causal states� The inner summation has the e�ect of adding up the

probabilities of all the sL���s in the �th causal state

X
sL���S�

Pr	sL� s
L��
 � Pr	sL�S�
 � 	B��
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Inserting this into Eq� 	B��
� we immediately obtain

h� � �
X
�

X
s�A

Pr	s�S�
 log� Pr	sjS�
 � 	B��


where s � A are the spin values that can follow S�� This result is Eq� 	����
� A little

more explicitly we have

h� � �
X
�

Pr	S�

X
s�A

Pr	sjS�
 log� Pr	sjS�
 � 	B��


where Pr	S�
 is the left eigenvector of the stochastic connection matrix T� normalized

in probability� and the second sum is seen to be the single�spin uncertainty at each

causal state�
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Appendix C

On the Equivalence Relation �

that Induces Causal States

Consider the set
�

S of all left�half con�gurations� of any length

�

S� f�sL� sL�� � � � s��  si � A� L � �� �� � � �g � 	C��


Recall that
�
s
�
� �� the empty string� It was claimed in Eq� 	���
 that

�
si
M � �

sj
L � Pr	

�
s j�siK
 � Pr	

�
s j�sjL
 � 	C��


for all semi�in�nite
�
s� s�s�s� � � �� where M�L � �� �� �� � � �� de�ned an equivalence

relation � over
�

S� Here we show that this is indeed the case by reviewing the basic
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properties of relations� equivalence classes� and partitions� 	The proof details are

straightforward and are not included� See Ref� �����
 We will drop the length variables

M and L and denote by
�
s �

�
s
�
�
�
s
�� ��

S members of any length in the set of Eq� 	C��
�

First� � is a relation on
�

S since we can represent it as a subset of the Cartesian

product

�

S �
�

S� f	�s ��s �
 �s ��s � ��Sg � 	C��


Second� the relation � is an equivalence relation on
�

S since it is

�� re�exive
�
s��

s � � �
s��S�

�� symmetric
�
s� �

s
� � �

s
� ��

s � and

�� transitive
�
s� �

s
�
and

�
s
� � �

s
�� ��

s� �
s
��
�

Third� if
�
s��S� the equivalence class of

�
s is

�
�
s � � f�s � ��S �s � ��

sg � 	C��


The set of all equivalence classes in
�

S is denoted
�

S � � and is called the factor set of

�

S with respect to �� In Sec� ��� we called the individual equivalence classes causal

states S� and denoted the set of causal states S � fS�  � � �� �� � � � � k � �g� That

is� S �
�

S � �� 	We noted in the main text that k � jSj may or may not be in�nite�


Finally� we list several basic properties of the causal state equivalence classes�
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��
S
�

s�
�

S
�
�
s � �

�

S �

��
Sk��

��� S� �
�

S �

�� �
�
s � � �

�
s
�
���

s� �
s
�
�

�� If
�
s �

�
s
� ��S� either

	a
 �
�
s �
T

�
�
s
�
� � � or

	b
 �
�
s � � �

�
s
�
� �

�� The causal states S are a partition of
�

S� That is�

	a
 S� �� � for each ��

	b

Sk��

��� S� �
�

S� and

	c
 S� � S� � � for all � �� 	�

We denote the start state with S�� The start state is the causal state associated

with
�
s� �� That is� S� � ����

Each causal state equivalence class S� thus has several structures attached

�� The index ��the state�s �name��

�� The set of left�half con�gurations� of various lengths� comprising the equivalence

class �
�
s � � f�s� S�g�
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�� A conditional distribution over right�half con�gurations Pr	
�
s j �s 
��s� S�� We

denote this distribution more concisely by Pr	
�
s jS�
�

As noted in the text� the de�nitions and properties of the causal states obtained

by scanning in the opposite direction� i� e�� the causal states
�

S � �� follow similarly�

For general processes�
�

S � � �� �

S � ��

For completeness� we note that this construction of causal states is analogous

to Nerode equivalence� used to determine the minimal number of states for a �nite�

state machine representation of a regular language ���� ����� It is also somewhat

similar to the states estimated in Rissanen�s �context� algorithm ������ Despite these

similarities� there are important di�erences� With Nerode equivalence in�nite strings

and probability measures over them are not considered� For a random source�for

which there is a single causal state�the context algorithm estimates a number of

states that diverges 	logarithmically
 with the length of the data stream�
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Appendix D

Transient Structure from the

Recurrent ��Machine

In this appendix we show how transient states can be constructed from the recurrent

portion of an ��machine� The latter� denoted M�R�� consists of the recurrent causal

states S�R� and their transitions T
�s�
�� � where the indices � and 	 run over only the

recurrent causal states� That the transient states can be constructed in this manner is

a direct consequence of the equivalence relation �� de�ned in Eq� 	���
� that induces

the causal states�

The basic idea of the construction procedure� detailed below� is as follows�

First� we assume the generating process has been operating su�ciently long so that it

is in equilibrium in the sense that it is being controlled by its recurrent causal states�

We also assume we have a model of the process� namelyM�R�� in hand� Then we begin
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making measurements�reading in spin values from a con�guration�s�s�s� � � �� With

each measurement� we ask In which recurrent causal state is the process� Initially�

while making measurements and� of course� even before making the �rst� we are

uncertain about which recurrent causal state the process is in� Thus� we describe our

state of knowledge by a distribution over S�R�� denoted Pr	S�R�js�s�s� � � � sL��
� As

we observe successive spins� this distribution changes� The structure of the machine

M�R� determines the change when we observe an individual spin� Presumably� with

a su�cient number of spin measurements we become synchronized with the process

That is� we know with certainty in which recurrent state the process is� This procedure

of tracking how our state of knowledge Pr	S�R�js�s�s� � � � sL��
 re�nes and focuses on

smaller and smaller subsets of S�R� determines the transient causal states� From here

on we will drop the superscript 	R
 on S� when no ambiguity arises�

Since we assume the process is in equilibrium� we take the initial probability

distribution�that associated with having made no measurements�to be the asymp�

totic distribution over the recurrent causal states� which is given by Eq� 	����
� This

initial distribution is denoted Pr	Sj�
 to indicate that it is the distribution before

any spins have been observed� 	Recall that � denotes the empty string�
 After ob�

serving spin s� our state of knowledge about the recurrent causal state of the process

has improved and is now described by the distribution Pr	Sjs�
� Upon observing the

next spin s�� our state of knowledge becomes Pr	Sjs�s�
�

We may associate the recurrent causal state distributions with the causal states
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Pr(S|λ)

Pr(↑| Pr(S|λ) )Pr(↓| Pr(S|λ) )

Pr(S|↓) Pr(S|↑)

Figure D�� First steps in performing transient state construction for the case of a
spin���� system where si � f�� �g� The double oval indicates the start node n��

themselves� For example� a distribution that speci�es a recurrent causal state with

certainty�i� e�� probability � of being in that state�can be taken to be that recurrent

state� The transient states� in contrast� are those distributions in which the recurrent

causal state is not known with certainty�

The procedure through which the transient states are deduced proceeds by

constructing a tree T � fN �Lg consisting of a set of nodes N and a set of links L

connecting the nodes� A node n � N in the tree corresponds to a recurrent causal

state distribution Pr	Sjs�s� � � � sL��
� A link �s � L corresponds to a transition

between successive causal state distributions that occurs upon observing a particular

spin value s� We call a tree node for which all the outgoing links have yet to be

determined a leaf� We denote the set of leaves by �N �

The tree is constructed recursively via the following steps

�� Initialize� Given a recurrent ��machine M�R� � fS�R�� T �s�
�� g determine the

asymptotic probability of the recurrent causal states via Eq� 	����
� This dis�

tribution is the starting node for the tree n� � Pr	Sj�
 and is indicated in
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Fig� D�� by the node with the double oval� At this stage n� is a leaf� since we

have not yet determined all the links 	transitions
 that leave it� Thus� N � �

and �N � fn�g�

�� Build Transient Tree� While �N is nonempty

	a
 Determine Links� For each leaf n � Pr	SjsL
 � �N draw a link �s � L

	an outgoing transition
 for each spin value s� Label the link with the

transition probability Pr	sjn
 that starting in node n spin value s is seen

Pr	sjn
 �
X

S��S�R�

Pr	S �
Pr	sjS �
 � 	D��


If the transition has zero probability� ignore �s�

	b
 Form Node Distributions� For each link �s determine the probability

distribution Pr	SjsLs
 to which it leads using

Pr	SjsLs
 �P
S��S�R� Pr	S �jsL
Pr	Sjs�S �
P
S��S�S�R� Pr	S �jsL
Pr	Sjs�S �


� 	D��


Note that the term in the denominator is simply a normalization� The

quantity Pr	SjsLs
 gives the updated distribution over recurrent causal

states after having observed the particular spin sequence sLs� Recall that�

since the ��machine is deterministic� Pr	Sjs�S �
 � � if the transition is
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allowed and � otherwise�

	c
 Merge Duplicate Nodes� Now consider� in turn� the probability dis�

tributions just formed n � Pr	SjsLs
� Is n identical to another node

distribution n� � N �

i� If yes� then connect �s to node n��

ii� If no� add n to the set �N of tree leaves�

�� Minimize The resulting machine has a recurrent part that is identical to

M�R�� but it may not be minimal� Merge nodes pairwise under the equivalence

relation � of Eq� 	���
� The result is the complete ��machine� with all transient

and recurrent states�

We illustrate the above procedure by considering a period�� process� The

recurrent portion of its ��machine M�R� is shown in Fig� D��� The result of the �rst

several steps of the transient state construction procedure is illustrated in Fig� D���

The asymptotic probability of each recurrent causal state is ���� Thus� as per step

� above� the start node is labeled Pr	Sj�
 � 	���� ���� ���� ���
� it is shown as the

double oval of Fig� D���

From the start node� two transitions are possible�one for s �� and one for

s � �� In the �gure they are labeled with the transition probabilities as given by
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A B

D C

↑1

↓


1

↑


1

↓1

Figure D�� Recurrent portion of the period�� ��machine�

Eq� 	D��
� For example� from n� the probability of seeing s � � is given by

Pr	� jn�
 � Pr	A
Pr	� jA
 � Pr	B
Pr	� jB
 �

Pr	C
Pr	� jC
 � Pr	D
Pr	� jD
 	D��


� 	���
	�
 � 	���
	�
 �

	���
	�
 � 	���
	�
 � ��� � 	D��


The leaves 	causal state distributions
 to which the links 	transitions
 lead

are determined by Eq� 	D��
� For example� consider the � transition from n�� The

normalization factor� the denominator in Eq� 	D��
� is ��� and the probability of

being in causal state A is given by

Pr	S � Aj �
 � �
X

S��S�R�

Pr	S �
Pr	Aj ��S �
 	D��
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(1/2,0,0,1/2)

↓|1/2 ↑|1/2

(0,1/2,1/2,0)

(1,0,0,0)

↓|1/2

(0,1,0,0)

↑|1

(0,0,1,0)

↑|1

(1,0,0,0)

↓|1

(0,0,0,1)

↓|1

(0,1,0,0)

↑|1/2

(0,0,0,1)

↓|1/2

(0,0,1,0)

↑|1/2

(1/4,1/4,1/4,1/4)

Figure D�� The tree T part of the way through transient state construction for the
period�� process� To construct this tree spin blocks up to length � were examined�

� �
h
Pr	A
Pr	Aj ��A
 � Pr	B
Pr	Aj ��B


� Pr	C
Pr	Aj ��C
 � Pr	D
Pr	Aj ��D

i

	D��


� �
h
	���
	�
 � 	���
	�
�

	���
	�
 � 	���
	�

i

� ��� � 	D��


Similarly� one �nds that Pr	Dj �
 � ��� and Pr	Bj �
 � Pr	Cj �
 � �� As a result�

this node is associated with the distribution Pr	Sj �
 � 	���� �� �� ���
�

The process of adding links and nodes to the tree T is shown repeated up to

length�� spin blocks in Fig� D��� At the last level of the tree� transitions that occur

with probability � are not drawn� At this point� notice that the leaves at the bottom

level have already appeared as nodes above in the tree� For example� the lower left
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(1/4,1/4,1/4,1/4)

(1/2,0,0,1/2)

↓|1/2 ↑|1/2

(0,1/2,1/2,0)

(1,0,0,0)

↓|1/2

(0,1,0,0) (0,0,0,1)

↓|1/2

(0,0,1,0)

↑|1/2

↑|1

↑|1 ↓|1

↓|1

↑|1/2

Figure D�� The end result of transient state construction for the period�� process
after duplicate leaves are removed�

leaf is identical to the node that is second from the left� one level above� Thus� as per

step �	c
i� the link pointing to the leaf node is directed to the pre�existing node� This

reconnection step is repeated until there are no leaves left� The result is illustrated

in Fig� D���

The �nal result of the procedure� shown in Fig� D��� is the complete ��machine

with all recurrent and transient states� The recurrent states�distributions over recur�

rent causal states that determine individual causal states�are the four nodes along

the bottom of the �gure� They are identical to those we started out with in Fig� D���

The three transient states that have been constructed are the three nodes whose dis�

tributions correspond to some uncertainty about in which recurrent causal state the

process is� In this way� the structure of the transient portion of an ��machine shows

how successive measurements re�ne an observer�s knowledge about in which causal

state a process is�
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D vanishes exponentially fast for

Regular Markov Chains

We will show that D goes to zero exponentially fast with increasing system size

for a Markov chain governed by a regular transition matrix Tab � Pr	bja
� where

� � Tab � � and there exists a K �� such that 	TK
ab � � for all a and b� Since the

conditional probabilities are normalized� the matrix T is stochastic
Pk

b�� Tab � ��

The probability of a block of L consecutive variables taking on the values

x�� x�� � � � � xL is given by

Pr	x�� x�� � � � � xL
 � px�Tx�x�Tx�x� � � �TxL��xL � 	E��


where p is the stationary distribution of a single variable� as given by the left eigen�
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vector of T with eigenvalue �� The eigenvector p is chosen so as to be normalized in

probability�
Pk

a�� pa � ��

Let !T be a matrix whose components !Tab are given by 	Tab

�� Note that !T ��

T �� Similarly� let !p be a vector whose components !pa are given by 	pa

�� Eq� 	����


indicates that we are interested in

X
fxLg

Pr	xL
� �
X
fxLg

!px� !Tx�x� !Tx�x� � � � !TxL��xL� 	E��


The sum runs over all con�gurations of length L� The e�ect of the sum is to multiply

the matrices together�

X
fxLg

Pr	xL
� �
X
x�

X
xL

!px�	 !T
L��
x�xL � 	E��


We shall show that in the L� limit the above expression goes to zero exponentially

fast�

We begin by considering the vector V � !p !TL�� and its L� norm� kV k �

maxfjV�j� jV�j� � � �g� Eq� 	E��
 may be rewritten in terms of V �

X
fxLg

Pr	xL
� �
kX
i��

Vi� 	E��


Since V is �nite dimensional and all elements are nonnegative� if kV k goes to zero

exponentially fast�
P

fxLg Pr	x
L
� must also go to zero exponentially fast� To show
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the former we use some well�known properties of vector and matrix norms �����

Consider the matrix norm induced by the L� vector norm

k !Tk � max
a
f
X
b

!Tab g � 	E��


Any matrix norm is compatible with its associated vector norm

kV k � k!p !TL��k � k!pk k !TL��k � 	E��


Recall that the components of !p are the square of the components of the stationary

probability p of the Markov process� Except for the trivial case in which there is only

one symbol in our chain and T is a one�by�one matrix� the maximum component of

p is less than one� Thus� � � k!pk � � and we have

kV k � k!pk k !TL��k � k !TL��k � 	E��


By assumption� there exists a K such that � � 	TK
ab � � for all a and b�

Each element of TK is a sum of terms that are products of T �s elements� Likewise�

each element of !TK is a sum of terms that are products of !T �s elements� However�

since !Tab � 	T �
ab and � � Tab � �� it follows that each component of !TK is strictly

less than the corresponding component of TK� The product of stochastic matrices is

itself a stochastic matrix� so
Pk

b��	T
K
ab � �� Thus� since each component of !T is
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less than the corresponding component of T �
Pk

b��	
!TK
ab � �� As a result� k !Tk � ��

Now� by the consistency condition obeyed by all matrix norms� k !T �k � k !Tk k !Tk�

Rewriting eq� 	E��
� we have

kV k � k !TL��k � k !TK�L����Kk � 	E��


In the L�K  � limit�equivalent to the L  � limit since K is �nite�we then

have by the consistency condition

kV k � k !TKkL�� � 	E��


Since k !TKk � � we see that kV k is bounded above by a function that decreases

exponentially in L� Hence kV k itself also decreases exponentially in L�



���

Appendix F

Details of some Probability

Manipulations for �D Ising

Two�spin Distributions

The goal of this appendix is to determine the joint distribution over nearest�neighbor

spins as a function of the magnetizationm and the expectation value of the product of

the two spins� �u	�� �
 This will be quite straightforward� although somewhat messy�

First� we note that the magnetization is just the expectation value of a single

spin S� 	Since the system is translationally invariant� it doesn�t matter which spin�


Thus�

m � hS i � 	�
Pr	�
 � 	��
Pr	��
 � 	F��
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where Pr	�
 � Pr	s��
� As the probabilities must be normalized�

� � Pr	�
 � Pr	��
 � 	F��


Adding and subtracting the above two equations yields

Pr	��
 �
��m

�
� 	F��


We now seek the joint distribution� Pr	si�j� si���j
� We may factor this into the

product of a conditional and a marginal distribution

Pr	si�j� si���j
 � Pr	si�jjsi���j
Pr	si���j
 � 	F��


As the marginal distribution has already been determined in Eq� 	F��
� our goal will

be to obtain expressions for the conditional probabilities�

Con�gurations posses a rotational symmetry� it is unchanged by rotations of

�� degrees� Hence�

Pr	si�j� si���j
 � Pr	si���j� si�j
 � 	F��


Note that the probabilities do not necessarily possess a spin �ip symmetry� this

symmetry is spontaneously broken below Tc�
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As a particular case of Eq� 	F��
� consider

Pr	����
 � Pr	��� �
 � 	F��


We may factor this joint distribution into the product of a marginal and a conditional

distribution two di�erent ways to obtain

Pr	�j � �
Pr	��
 � Pr	��j�
Pr	�
 � 	F��


Rearranging this� and using Eq� 	F��
� we obtain

Pr	�j � �
 �
� �m

��m
Pr	��j�
 � 	F��


We now have an equation relating two of the four conditional probability

distributions we seek� To proceed further� consider the expectation value of the

product of two neighboring spins

�u	�� �
 � hSi�jSi���j i � 	�
Pr	�� �
 � 	��
Pr	��� �
 �

	��
Pr	����
 � 	�
Pr	�����
 � 	F��
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Rewriting the joint probabilities� this becomes

�u	�� �
 � Pr	�j�
Pr	�
 � Pr	��j�
Pr	�
 �

Pr	�j � �
Pr	��
 � Pr	��j � �
Pr	��
 � 	F���


Plugging Eq� 	F��
 into the above equation� we obtain

�u	�� �
 � Pr	�j�
Pr	�
 � Pr	��j � �
Pr	��
 �

Pr	��j�
 �Pr	�
 � �Pr	��
� � 	F���


where�

� � � �m

��m
� 	F���


The conditional probabilities must be normalized� Thus�

Pr	�j�
 � �� Pr	��j�
 � 	F���


Similarly�

Pr	��j � �
 � �� Pr	�j � �
 � 	F���


Using Eq� 	F��
� this may be rewritten as

Pr	��j�
 � ��� ��� Pr	��j � �
� � 	F���
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Combining Eqs� 	F���
� 	F���
� and 	F���
 and simplifying� one �nds

�u	�� �
 � Pr	�
� ��� ��� Pr	��j � �
� f�Pr	�
 � �Pr	��
g �

Pr	��j � �
Pr	��
 � 	F���


We solve for Pr	��j � �
 using Eqs� 	F��
 and 	F���
� and obtain

Pr	��j � �
 �
� � �u	�� �
�m

��m
� 	F���


Eq� 	F���
 relates Pr	��j � �
 to Pr	��j�
� from which it follows that

Pr	��j�
 �
��m

� �m

�
�� �u	�� �


��m

�
� 	F���


Using eq� 	F���
� I can then solve for Pr	�j�
�

Pr	�j�
 � � � ��m

� �m

�
�� �u	�� �


��m

�
� 	F���


Finally� we use Eq� 	F��
 to solve for Pr	�j � �
� obtaining

Pr	�j � �
 �
�� �u	�� �


��m
� 	F���


Equations 	F����F���
� together with Eq� 	F��
 complete the task of this appendix�
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