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Modeling pattern data series with cellular automata fails for a wide range of deterministic nonlinear spatial processes. If the 
latter have finite spatially-local memory, reconstructed cellular automata with infinite radius may be required. In some cases, 
even this is not adequate: an irreducible stochasticity remains on the shortest time scales. The underlying problem is illustrated 
and quantitatively analyzed using an alternative model class called cellular transducers. 

1. Introduction 

Cellular automata (CA) form one of the simplest 
model classes for spatial pattern generating pro- 
cesses. CA have been proposed as models of pattern 
formation in natural systems [1-4].  Verifying this 
has been largely a matter of comparing CA behavior, 
as revealed in (say) space-time diagrams, snapshots 
of spatial patterns, and various macroscopic statis- 
tics produced during computer simulation, with nat- 
ural patterns. More recently, several authors sug- 
gested that effective CA equations of motion, 
consisting of a look up table that maps neighborhood 
templates to next site value, could be inferred from 
pattern data time series [5-9].  The learning para- 
digm employed, however, did not take into account 
the effect of measurement distortion common in ob- 
taining experimental data. The latter, though, can 
have a fundamental effect on the success of CA es- 
timation, in particular, and spatial modeling, gen- 
erally. 

Measurements are only indirect representations of 
a process's internal states. One practical conse- 
quence of this basic physical fact is that cellular 
transducers (CT) which explicitly account for the 
measurement process, rather than cellular automata 
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(CA), should be used as the computational model 
class for reconstructing the spatio-temporal dynamic 
from pattern data series. The latter includes data 
generated by discrete-state systems and the spatio- 
temporal symbolic dynamics of continuum-state ex- 
tended systems, such as map lattices [ 10 ], oscillator 
chains, and partial differential equations. The main 
difficulty is that estimated CA look up tables (LUTs) 
misrepresent the dynamics even if the observed be- 
havior was generated by a deterministic process with 
finite local memory. Examples of nearest-neighbor 
binary alphabet CT with two local states are given 
below that require an infinite CA LUT for their de- 
terministic dynamics to be (i) effectively recon- 
structed, (ii) approximately reconstructed, and (iii) 
not reconstructed at all. In these cases any estimated 
CA is stochastic and, as such, fails to capture ob- 
vious spatio-temporal structure. This leads to an 
overestimation of the degree of intrinsic randomness 
underlying the spatial data series. 

2. Reconstructing the spatio-temporal dynamic 

The following considers the problem of recon- 
structing the governing spatio-temporal dynamic 
from a given discretized data set: the discrete-state 
spatial model inference problem. Its main goal goes 
beyond data prediction to learn a model of the gov- 
erning process. The primary task in this is to infer 
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internal states that are hidden by measurement 
distortion. 

This problem is closely allied to that of  recon- 
structing (chaotic) attractors from a single contin- 
uous-time data series, as introduced in ref. [ l l ]. The 
goal in attractor reconstruction is the discovery of a 
new state space using information only available from 
the data. I f  the resulting representation is of  suffi- 
ciently low dimension, the attractor's geometry can 
be graphically studied and various statistical meas- 
ures of information content and the degree of un- 
predictability can be estimated [ 12,13]. It has been 
shown that reconstruction from continuous-state 
noiseless time series yields an equivalent represen- 
tation in the new state space given sufficient data, a 
linear measuring instrument with infinite precision, 
and prior knowledge of the underlying process's di- 
mension [ 14 ]. 

More recently, reconstruction from continuous- 
state time series in the presence of noise has been 
considered [ 5,15,16 ]. As soon as one admits the ex- 
istence of extrinsic noise, a new question presents it- 
self: How to distinguish between it and unpredicta- 
bility due to a deterministic (chaotic) mechanism? 
The first step to addressing this is to layout the prior 
knowledge that an observer brings to the analysis of  
a data set. This includes not only the data set size 
and measurement resolution, but also biases re- 
flected in the selected model. Proper accounting of 
prior information allows one to balance model com- 
plexity against prediction error in order to estimate 
an effective noise level and effective deterministic 
nonlinear equations of motion. Contemporary model 
order selection procedures [ 5,17 ], however, do not 
address the problem of selecting an incorrect rep- 
resentation. Should one use Fourier or wavelet func- 
tions, or possibly neural networks with radial basis 
functions? Unfortunately, model class selection can 
be the overwhelming determinant in the success of  
nonlinear modeling, as will be shown below. 

In an attempt to circumvent these problems, which 
are typical of  continuum-state modeling, reconstruc- 
tion under the hypothesis of discrete-amplitude, dis- 
crete-time data series was developed for stationary 
nonlinear dynamical systems [ 18 ]. The following 
considers the spatio-temporal analog of this: mod- 
eling discrete-state, discrete-time spatial data series. 
Previous work reconstructing cellular automata from 

data, via the estimation of a LUT that maps local 
patterns to future site values, has met with mixed 
success. Difficulties in modeling with CA has been 
attributed to insufficient neighborhood probes, im- 
proper discretization of continuous observables, and 
infinite forecasting complexity [5,7,19]. Though 
these must be addressed, here I suggest that there is 
a more fundamental problem: the CA hypothesis 
leads to the misidentification of the underlying pro- 
cess since it does not directly account for measure- 
ment distortion. 

The analysis of  the problem proceeds as follows. 
The spatio-temporal model classes of  interest and a 
measure of  nondcterminism are introduced first. This 
ends with a mathematical statement of  space-time 
reconstruction. Then several formal properties of  
cellular transducers are illustrated via examples and 
space-time diagrams of CT are compared to recon- 
structed CA. This demonstrates how CA estimation 
fails and it suggests a classification of failure scen- 
arios. Finally, the conclusion outlines the solution to 
this problem and mentions a physical implication of 
this type of misidentified stochasticity. 

3. Spatio-temporal models 

The following adopts the view of an observer mak- 
ing a series of measurements. Each measurement re- 
turns a pattern consisting of discretized values over 
a set of  spatial sites. In the simplest spatial case, the 
observer obtains a one-dimensional pattern st 
=st°stm...s~ -~, s [ ~ ,  consisting of a sequence of 
symbols s~ in some measurement alphabet d ob- 
served at site i=O, 1 ..... N - 1 ,  and time t. To em- 
phasize simplicity, alphabets will be binary, ~ =  {0, 
1 }. This choice, though, in no way conditions the fol- 
lowing results: they are not essentially different for 
larger finite and countably infinite alphabets. 

A pattern's entropy density hu(st) measures its de- 
gree of  unpredictability; while its statistical com- 
plexity Cu(st) indicates the amount of information 
that must be remembered to make optimal predic- 
tions. One can estimate these from a data set and they 
give an indication of  the computational capability of 
the underlying process in terms of  its rate of  infor- 
mation production and its memory capacity, re- 
spectively [ 18 ]. An ideal random process, for ex- 
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ample, has high entropy, but zero statistical 
complexity. Several remarks later on require a pass- 
ing familiarity with these two quantities. 

The following also assumes the reader is familiar 
with deterministic CA [ 2 ]. At time t the global state 
qt of a CA is a sequence of symbols in some local state 
alphabet: o l N - -  I i q t = q t  qt ...qt , qtE -~, foran Nsite lattice. 
The global state's temporal evolution is specified by 
the CA's rule table 0: .~2,+1__,.~ that maps a neigh- 
borhood pattern p =  q-2r...q°...q2"e.~2"+ J of  radius r 
to the value of the site at the next time. That is, the 
symbols in the local state at the next time are de- 
termined by the equations of motion q~+ 

2 r - -  i i 2 r +  1 = 0 ( q ,  ...q,...q, ). The LUT 0 specifies the local 
space-time dynamics and is identified by an integer 
index, the CA rule number [2]. The temporal evo- 
lution of the entire pattern is governed by the in- 
duced global mapping, or transducer, ~ ,  from a 
global state to a global state [20] 

qt+, = (I:)•(q,) . ( 1 ) 

Now consider two additional model classes for 
discrete-state spatial systems. The first is a proba- 
bilistic generalization of CA [21 ]. A stochastic CA 
(SCA) is specified by its neighborhood conditional 
probability transition table 

i = 0  with 2r--, i 2r+, qt+ t Pr(01q, ...qv..qt ) 

= 1 otherwise, (2) 

where Pr (qlp) is the probability of  local state q con- 
ditioned on seeing neighborhood pattern p at the 
previous time. 

The degree of an SCA's nondeterminism is mea- 
sured by the indeterminacy *~ 

"~q°(r) = -- t, -E÷'~av Pr(p)  q,a~ Pr(qlP)  log2 Pr(qlP) • 

(3) 

Since the neighborhood distribution Pr(p)  depends 
on the initial condition qo, then so does .~. ---(r) 
measures the uncertainty, in bits, of  a site's value at 
the next time step given the knowledge of current 
neighborhood pattern. Note that its bounds, 
0~<--(r) ~< 1, do not depend on the radius. Further- 
more, i f -~ ( r )=0 ,  then the SCA reduces to a deter- 

s t  The prediction error, defined as the per-site rate of error and 
estimated from Pr(p)  and Pr(q[p) ,  could be used. 

ministic CA of radius r. there is no choice in the fu- 
ture site values. Finally, it is monotonically 
decreasing with radius: F,(r' ) = 0 = , 3 ( r )  =0,  Vr> r' 
and ~ ( r )  <~,~(r' ), Vr>~r'. Note that estimation of the 
indeterminacy ,~(r) requires the reconstruction of a 
radius r SCA since it uses the associated neighbor- 
hood conditional probability distribution. 

The final and new spatial model class, the (deter- 
ministic) cellular transducer (CT),  explicitly incor- 
porates the measurement act, unlike CA and SCA. A 
CT's local state is a pair (q~, s~) of symbols, one 
q~ from a set .~ of internal states and the other s~ from 
a set ~¢ of observed measurements. The global in- 
ternal state qt evolves as in a CA: there is an internal 
state update rule 0 that operates on an internal 
neighborhood pattern to produce the next internal 
state q~+~. In contrast to CA, however, an observer 
does not have direct access to the internal states, but 
instead measures symbols that are a spatially-local 
function of the internal state neighborhood. That is, 
the observed global state s t=s°s) . . . s t  N-~, s ~ d ,  is 
determined by an observation function ~', 

s,+ , - ~ / (  q~'-'...q[...q2t'+') . (4) 

The equations of  motion for a CT can be compactly 
written, using global transducers, as 

qt+~ =(1),(qt) , st+, = (l)~,(qt) . (5) 

In the following the initial condition q0 will be an 
arbitrary pattern and periodic boundary conditions, 
qO = qtN and st° =stN, will be used. 

When the number of internal states is finite, 
II -~ II < oo, one refers to a finitary cellular transducer 
(FCT).  Let ~ and ~ denote the CA rule number as- 
sociated with the ~ and ~ rule tables. Then the FCT 
considered here will be denoted 0\~, with the first 
number identifying the internal state rule table and 
the second, the observation function. Simply stated, 
then, such FCT are "cellular automata with meas- 
uring instruments" ,2 

The definitions lend themselves to a formal state- 
ment of the discrete-state spatial model inference 
problem for CA. Given a pattern data series {st: t=  

s2  Taking ¢~ and ~, to be CA LUTs is a restriction of the class of 
FCTs imposed to simplify discussion here. In general, ~ and 
~u are finite state transducers: a proper superset of transducers 
based on LUTs, since LUTs cannot store past information. 
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0, 1, 2 ..... K} produced by a deterministic process 
with a spatially-local dynamic, are the effective 
equations of motion equivalent to some CA or SCA? 
In other words, does st+,=@#, (st) for some radius 
r CA rule or SCA conditional distribution 0,? In an- 
swering these questions, the additional and very 
practical requirement is added that 0, be reconstruc- 
tible from the given data {st} ,3. 

The following will show, by way of examples here 
and more formally elsewhere, that the answer to these 
questions in general is negative. 

The consequences are direct. CA form too weak an 
inference class for modeling discretized spatio-tem- 
poral data. Except for a restricted class of spatial sys- 
tems, randomness in the underlying process is over- 
estimated. Furthermore, SCA, which add an element 
of stochasticity seemingly to compensate for CA's 
lack of a nondeterministic capacity, are similarly in- 
capable of properly modeling a wide range of spatial 
systems. 

More constructively, the following indicates that 
CT are the correct modeling class for discretized data 
series generated by deterministic spatial processes. 
This will not be established here, only made plau- 
sible. Rather the following will use FCTs to show how 
the CA modeling hypothesis fails. This will then es- 
tablish that, despite its simplicity, there is an im- 
portant problem in practice as well as in principle. 
One, in fact, that has been largely ignored to date. 

4. Generating instruments versus reconstructibility 

There are several limits on what an FCT's obser- 
vation function can do to the internal state infor- 
mation. For example, the observed patterns cannot 
be more random than the internal dynamic allows: 
h#(s,) ~<h~(qt). This refers to the global internal and 
external states. If one looks at small patches, such as 
a single site, then the observed entropy H ( M )  can be 
larger, within specified bounds, than the internal sin- 
gle site entropy H(.~): H(sd)(2rH(.~). The statis- 

'~ The following considers only "pure-space" templates, i.e. those 
with sites at the previous time step. Note that under the as- 
sumption that perturbations propagate at some finite speed, 
there is a pure-space template representation of finite radius 
for a CA governed by a temporally deep neighborhood 
template. 

tical complexity, however, may or may not be de- 
creased by a deterministic observation function. 

This brings us to the question of what character- 
izes good, or "generating", measuring instruments. 
Informally, a generating observation function ¥ pro- 
duces output symbols that allow for the reconstruc- 
tion of the internal-state equations of motion. In sta- 
tistical terms, a generating instrument produces 
patterns {s,} that have the same space-time entropy 
and statistical complexity as the internal states {q/}: 
h~,(st)=hu(qt) and C~(st)=C,(qt). A generating 
space-time instrument, in this sense, is a goal for the 
design of spatial data acquisition systems. Using such 
an instrument the effective equations of motion can 
be reconstructed, even without direct measurements 
of the internal local states. 

It is important to emphasize that the notion of 
generating instrument refers to prior knowledge of 
the equations of motion. If  one is given only a time 
series of spatial patterns, then one can only hope to 
reconstruct a dynamic consistent with the given data. 
Whether the instrument in this case was generating 
or not, cannot be answered in principle. And, al- 
though a minimal consistent model can be esti- 
mated, the "real" underlying dynamic will never be 
known. 

This leads to the notion of a reconstructible dy- 
namic, as distinguished from a generating instru- 
ment. Fix a deterministic or stochastic model class 
~'.  Given an arbitrarily long data series, the equa- 
tions of motion are reconstructible with respect to .4/ 
if, when minimized, they are finite and reproduce 
the observed data exactly, if ~ is deterministic, or 
statistically ~, if ~ '  is stochastic. 

5. Finitary cellular transducers 

Now that the context of  spatial modeling has been 
outlined, this section gives four examples of FCTs to 
illustrate their typical behavior. Typical spatial data 
series from these FCTs will then be analyzed by re- 
constructing CA and SCA models. 

Elementary CA 18 is equivalent to FCT 18\204 

Slatistical agreement here includes reproducing the entropy 
and statistical complexity, along with various moments of 
neighborhood distribution Pr(p). 
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since ¢/=204 is the nearest neighbor identity. It is 
shown in fig. 1 for reference. The most notable prop- 
erty of CA 18 is the strong spatial and temporal pe- 
riodicity. Every other cell is 0, except in those re- 
gions where one finds l (00)*l  patterns. The other 
apparent feature consists of  triangles in which con- 
tiguous 0 sequences shrink in length with time. The 
spatial entropy density was estimated to be 
h,(q,)  ~0.52 bits per site and the statistical com- 
plexity was C~,(q,) = 1.3 bits per site. 

The observed patterns s, generated by FCT 18\222 
are shown in fig. 2 in the same format as the pre- 

9g 

Thnc 

249 
0 Site 199 

Fig. I. Space-time diagram of elementary CA 18. The horizontal 
axis gives the spatial site index; the vertical, time increasing 
downward. N =  200 sites are shown for 150 iterations, after 100 
transient steps. Black cells denote q~ = 1; white ql = 0. The initial 
pattern was arbitrary. 

ceding figure. For direct comparison, the same ini- 
tial state was used in both figures. This is reflected 
in the space-time coincidence of the 0-triangles, for 
example, in the two diagrams. Other than this there 
is little superficial commonality to the space-time 
diagrams. The ~u=222 observation function ob- 
scures the period-2 structure in the CA 18 state. And, 
in contrast to CA 18, fig. 2 shows that FCT 18\222 
generates triangles with a base pattern of 
...0(i 1)"0(11)"0 .... n = l ,  2, 3, ..., that shrinks with 
time. The spatial entropy density and statistical 
complexity of  the internal states is given by CA 18, 
as noted above. The observed spatial entropy den- 
sity and statistical complexity were estimated to be 
h , (s , )~0.S1 and C , ( s t )~2 .5  bits per site, respec- 
tively. Thus, although the internal and observed pat- 
terns are equally unpredictable, more information 
must be remembered to predict the FCT's observed 
patterns. 

The observed patterns s, generated by FCT 22\222 
are shown in fig. 3. 0-triangles are apparent, along 
with a high proportion of q~ = l sites. There are oc- 
casional long temporal correlations apparent in the 
vertical lines of O's. The observed entropy and com- 
plexity were estimated to be h~(s,)~0.71 and 
C,(st)  ~ 0.55 bits per site. This should be compared 
to the internal quantities which are equivalent to 
those for CA 22: h , (q , )  ~0.78 and C~,(qt) ~0.92 bits 
per site. 

The observed patterns s, generated by FCT 90\222 

100 100 

Time 

250 
0 Site 199 

Fig. 2. Space-time diagram of FCT 18\222. Same initial pattern 
and format as in fig. I. 

Time 

) , 0 V . ,, , T ¸" 

" , l w  ~ ? .  ~ 1 ,  T m w  - 250 
0 Site 199 

Fig. 3. Space-time diagram of FCT 22\222. Same initial pattern 
and format as in fig. 1. 
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100 

. ° 
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. -  . v " ~  

, v  

Time 

0 Site 199 

Fig• 4. Space-time diagram of FCT 90\222• Same initial pattern 
and format as in fig. 1. 

are shown in fig. 4. There are few 0-triangles, a very 
high proportion of ql = 1 sites, and a number of iso- 
lated q [=0  sites• The observed entropy and com- 
plexity were h , ( s t )~0 .76  and C , ( s t )~0 .13  bits per 
site; the comparable internal quantities were 
h,(qt)  ~ 1.00 and C~,(qt)~0.00 bits per site• These 
examples illustrate a property of  deterministic in- 
struments: the observed data's unpredictability can- 
not be larger than the internal process's; but the sta- 
tistical complexity can be either increased or 
decreased. 

timatcd SCA is shown in fig. 5. The same initial con- 
dition was used as that for FCT 18\222 in fig. 2. The 
figure indicates that the estimated SCA differs sub- 
stantially from FCT 18\222. There arc, for example, 
smaller scale structures, such as the 0-triangles, and 
a higher proportion of isolated l 's  and O's. These dif- 
ferences arc reflected in a spatial entropy, h~,(qt) 

1.0, that is approximately 0.5 bits higher than 
found for FCT 18\222. The SCA's patterns are much 
less complex, C , (q t )~0 .0 ,  than those generated by 
FCT 18\222. 

But perhaps the situation will improve by esti- 
mating the next-to-nearest neighbor SCA? Figure 6 
shows the result• It has .~(r)=0.06,  r>~2, 
h~(qt) ~0.76, and C~,(q,)~ 0.90. Certainly a smaller 
indeterminacy than found with the nearest-neighbor 
SCA and so even less stochastic. 

Despite the small indcterininacy, the space-time 
structures still differ from FCT 18\222. There are 
now, in contrast to the near-neighbor SCA just shown, 
large 0-triangles, most of  which do not have flat tops. 
In fact, the size distribution has shifted so that there 
is a preponderance of larger 0-triangles than in FCT 
18\222. Additionally, there are larger space-time re- 
gions of  contiguous l's, which do not occur in FCT 
18\222. Compared to the near-neighbor SCA which 

99 

6. Reconstructed CA and SCA 

The hypothesis that the preceding spatial data se- 
ries can be modeled within the class of CA or, more 
properly, SCA can now be evaluated. Recall the first 
figures ( l  and 2) that compared CA 18 and FCT 
18\222. There were notable deviations which were 
reflected in a large difference in complexity. Perhaps 
the observed paUcrns of FCT 18\222 could be Ben- 
erated by some different, possibly larger radius CA? 
After all, fig. 2 was obtained from fig. 1 by a simple 
local function ~/= 222• 

Estimating the nearest-neighbor conditional tran- 
sition table gives an SCA with a finite indeterminacy 
of ~,(r) ~ 0.07, r >I I. The estimatcd dynamic appears 
weakly stochastic. And so, one might expect it to 
capture a very large portion of FCT 18\222's be- 
havior. For comparison, then, a simulation of the es- 

Time 

249 
0 Site 199 

Fig. 5. Simulation of the nearest neighbor SCA estimated from 
FCT 18\222 spatial data series• Same initial pattern and format 
as in fig. 2. In lexicographically increasing order of neighborhood 
pattern pc.~, the conditional transition probabilities 
Pr(q~+ t =01p) were estimated to be ( I, 0, 1, 0.0055, 0, l, 0.0058, 
0.905). The LUT estimation used spatial data series over 106 it- 
erations on an N= 500 site lattice starting from an arbitrary ini- 
tial state• 
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99 

Time 

249 
0 Site 199 

Fig. 6. Simulation of  the next-nearest neighbor estimated SCA. 
The same initial condition and simulation parameters as in the 

preceding figure. 

exhibited more decorrelation than FCT 18\222, the 
next-to-nearest SCA errs in the other direction. There 
are highly structured patterns on longer space and 
time scales than in the nearest-neighbor SCA and in 
FCT 18\222. The structures are in radically differ- 
ent locations in the diagram, as expected for a cha- 
otic system subject to even small amounts of  extrin- 
sic noise. The entropy density is now only 0.25 bits 
per site higher than FCT 18\222; the difference in 
complexities has lowered to 1.6 bits from 2.5 bits. 

The indeterminacy decays rapidly with increasing 
rule table radius, e.g. --(10) .~ 0.003, but significant 
structures observed in FCT 18\222 are still not cap- 
tured by larger radius SCA. Estimated SCA appar- 
ently never reduce to a CA. The indeterminacy may 
very well vanish at infinite radius. But the result then 
is a model of  infinite size being reconstructed from 
a process that is only nearest neighbor with four local 
states: two internal and two observed. The practical 
problem of estimating the low-indeterminacy SCA is 
exacerbated by the exponential growth in the SCA 
model's size with radius. At a minimum, exponen- 
tially more data is required to maintain the esti- 
mated transition probabilities' statistical accuracy. 

Now consider the remaining two examples, FCT 
22\222 and FCT 90\222. The indeterminacy is 
much higher and therefore their data series are even 
less well modeled by CA. FCT 22\222 has a slowly 
vanishing indeterminacy. For example, on an N =  500 
site lattice that started from an arbitrary pattern and 

that was allowed to relax for 104 iterations, an in- 
determinacy of ~ (10)  ~ 0.30 bits was estimated over 
l06 iterations. FCT 90\222 has the largest indeter- 
minacy found: ~ (10)  ~. 0.39 bits. This was estimated 
using the simulation parameters just quoted. 

The conclusion from space-time diagrams, inde- 
terminacy, entropy and complexity, is that even large 
radius SCA, let alone CA, do not capture the struc- 
tures generated by FCT. Large indeterminacy at large 
radius suggests, erroneously, that the mechanism un- 
derlying the FCT data series has, at a minimum, a 
large spatial radius dynamic coupled to a stochastic 
process. Thus, even though the FCTs considered have 
radius one, to an observer the patterns are generated 
by a relatively nonlocal SCA: important structure 
appears in neighborhoods of 21 sites rather than just 
three sites. It is also noteworthy that when the esti- 
mated dynamic is chaotic even the smallest indeter- 
minacy leads to significant prediction errors be- 
tween the given and the simulated data series. 

7. Indeterminacy 

These examples serve to illustrate an indetermi- 
nacy classification of reconstruction scenarios that 
can confront an observer. Four reconstruction types 
can be distinguished for CA; they are illustrated in 
fig. 7. 

( 1 ) Determinate. Indeterminacy vanishes at finite 
rule table radius ~. Elementary CA 18 is an example 
of this (of. crosses in fig. 7). 

(2) Effectively determinate. Indeterminacy decays 
exponentially. FCT 18\222 is an example of this (cf. 
triangles in fig. 7). As shown in the preceding space- 
time diagrams, even in this scenario very low inde- 
terminacy does not imply accurate reproduction. 

(3) Asymptotically determinate. Indeterminacy 
vanishes at infinite radius. FCT 22\222 appears to 
be an example of  this (of. circles in fig. 7), if one al- 
lows extrapolation of the downward trend to infinite 
radius. Note that a monotonic decrease in indeter- 
minacy indicates the existence of increasingly longer 
spatial correlations. 

,5 Vanishing indeterminacy does not imply, interestingly enough, 
robust deterministic reconstruction. The exceptions, though, 
appear to be of zero probability. 
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1"" C + C ' C ' C ' C ' C ' C ' C ' C ' ~  8. Concluding remarks 

I 

I 

E(r) 

0 
0 r 10 

Fig. 7. Indeterminacy -~(r) versus template spatial radius r for 
five example systems: (i) A uniformly random stochastic cellu- 
lax automaton: Pr(q~+ i IP) = 2 -2,- ~ (~  along upper boundary); 
(ii) elementary cellular automaton rule 18 ( X ), cf. fig. 1; (iii) 
finitary cellular transducer 90\222 (t3), cf. fig. 4; (iv) finitaxy 
cellular transducer 22\222 (O), cf. fig. 3; (v) finitaxy cellular 
transducer 18\222 ( A ), cf. fig. 2. ---(r) estimated from patterns 
on an N=500 site lattice over 106 iterations after 106 transient 
iterations from a random initial pattern. The same initial pattern 
was used in each case. 

(4)  Unreconstructible. Indeterminacy is finite at 
infinite radius. FCT 90 \222  appears to be an ex- 
ample o f  this case (of. squares in fig. 7). The ob- 
served patterns are unreconstructible with respect to 
CA, if one assumes the plateau from r = 7  to r =  10 
continues on to infinite radius. 

With respect to SCA, asymptotic determinacy and 
unreconstructibility were indicated for FCT 22 \222  
and FCT 90\222,  respectively, since it was found that 
the minimal stochastic L UT  grows without bound.  
Over the radius range investigated estimated SCA 
continued to reveal new variations in the condi- 
tional transition LUT Pr (q lp )  and in the neighbor- 
hood distribution Pr (p) .  And so correlations oper- 
ate over corresponding spatial scales. The data series 
never appeared to break into statistically indepen- 
dent regions which would have indicated that a min- 
imal SCA with finite radius was reconstructed. A 
simple example o f  the latter is the ideal random spa- 
tial process (cf. d iamonds  in fig. 7) which is unre- 
constructible with respect to CA, but is reconstruc- 
tible at radius zero with respect to SCA. 

These results illustrate the perils o f  working within 
an inadequate representation class for discrete-state 
spatial systems. Many nearest neighbor FCT with 
only a few states cannot be reconstructed as deter- 
ministic or stochastic CA. The overall argument here 
would be completed with the demonstrat ion o f  a 
learning paradigm for estimating cellular trans- 
ducers that, starting from the same data series, gives 
the expected and correct results for locally-finite dis- 
crete-state dynamics. In this case, the prediction er- 
ror and indeterminacy would vanish, the given data 
could be exactly reproduced, and the observer would 
have inferred the hidden process. Although this must 
wait for the sequel, it can be noted that the alleged 
learning method for FCTs is a straightforward ad- 
aptation o f  c-machine reconstruction to the context 
o f  space- and time-indexed measurements [ 18 ]. 

The preceding discussion turned on a curious 
problem: locally-deterministic behavior  viewed with 
a locally-deterministic instrument can appear ran- 
dom to all levels o f  approximation. What  might the 
physical implications be? I f  local space- t ime states 
are obscured necessarily by the act of  measurement,  
then microphysical reality would forever appear ir- 
reducibly uncertain. This would occur without in- 
voking randomness; it would be a property o f  a purely 
deterministic world. Information distortion during 
measurement could be due to some intrinsic nonlin- 
earity o f  the measurement  act on microphysical 
scales, analogous (say) to that seen in the unrecon- 
structible FCT 90 \222  or given by a measurement 
transducer more general than a LUT. Apparent  ran- 
domness, even on the shortest time scales ~6, is con- 
sistent with underlying determinism. More to the 
point, a certain class o f  nonlinear interaction oper- 
ating during measurement could underlie quantum 
indeterminacy. In a similar vein, the effective non- 
locality seen in the slow vanishing of  indeterminacy 
deserves further study. 

Irreducible indeterminacy, as illustrated above, is 
consistent with internal deterministic dynamics, even 
though the latter may never be accessible, testable, 

.6 This is not to be confused with the unpredictability appearing 
on moderate to long time scales that is due to deterministic 
chaos. 

59 



Volume 171, number 1,2 PHYSICS LETTERS A 30 November 1992 

or  ident i f iable ,  us ing  " r easonab le"  representa t ions .  
Conversely ,  more  sophis t ica ted  mode l ing  techn iques  
m ay  be requi red  for the discovery o f  in te rna l  struc- 
ture than  the es t imat ion  of  local statistics. At the very 
least, the  pa radox  cons idered  here a n d  these conjec-  
tures  on  its physical  impl i ca t ions  po in t  to an  im-  
po r t an t  role tha t  a m e a s u r e m e n t  theory  o f  n o n l i n e a r  
chaot ic  processes can play in basic  physical  theory.  
In concer t  with this, a systematic reevaluat ion  of  how 

accepted mode l  classes preclude the d iscovery  of  
na tu ra l  m e c h a n i s m s  appears  necessary. 
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