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Attractor vicinity decay for a cellular automaton 
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The temporal decay of an attractor's vicinity for a domain-wall dominated cellular automaton 
(CA) is studied. Using selected initial pattern ensembles. state space structures in this 
high-dimensional nonlinear spatial system can be identified via the resulting decay to its 
attractors. Considered over a range of lattice sizes. the decay behavior falls into three main 
classes. each of which shows a characteristic profile. The first consists of even-size lattices 
showing a decelerating decay to small nonattracted ensemble fractions. The second class. also 
for even lattices. is a catastrophic decay to very small or vanishing nonattracted fractions. The 
third class also shows catastrophic decay and contains all odd-size lattices. Stochastic models are 
constructed that mimic the behavior of typical lattices throughout their evolution until finite-size 
effects appear. Weak adqitive noise causes all states on all lattices to fall into the attractor. In the 
end we find it overwhelihingly likely that the recently proposed attractor-basin portrait captures 
the CA's qualitative dynamics. 

I. STATE SPACE GEOMETRY AND RELAXATION 
PROCESSES 

The state space geometry of large spatial systems is 
impossible to directly analyze since the dimension is far too 
high. Some method of projecting onto a space of lower 
dimension is needed. Existing indirect techniques usually 
expand with respect to some spatially global pattern func
tion basis. such as Fourier or normal modes. I- 3 These 
methods are appropriate when there is strong spatial co
herence. Localized function bases, such as solitons, can be 
used for expansion even if spatial coherence is lacking. 
assuming one knows in advance the appropriate functional 
form for the solitons"" Roughly speaking. the state space 
geometry in these cases consists of nested tori whose local 
coordinates describe the relative phase information of the 
solitons' motion. An alternative approach for studying 
high-dimensional state spaces is to design initial condition 
ensembles that probe subspace structures controlling relax
ation dynamics.6 Notably. this is independent of the pres
ence or absence of spatial coherence. In the following we 
apply this method to a very simple class of spatial systems. 
cellular automata (CA). 7 The partidular example analyzed 
exhibits strong spatial decorrelation. but is nonetheless 
highly structured. with spatial patterns consisting of cha
otic domains separated by diffusing walls. 

In an attempt to capture the state space geometry of 
high-dimensional systems. we recently proposed a compu
tation theoretic framework for investigating the qualitative 
dynamics of extended systems. The attractor-basin portrait 
of a cellular automaton was given in terms of formal lan
guages that described pattern ensembles.8 Continuing in 
this vein we investigate here various decay processes re
vealed by the relaxation of selected initial pattern ensem
bles. The focus is on the statistical properties that control 

a)Permanent address: Department of Physics. University of California, 
Berkeley, CA 94720; J.P.C.'s Internet address is 
chaos@gojira.berkeley.edu; J.E.H.'s is hanson@gojira.berkeley.edu. 

the stability of the CA's regular attractors. The primary 
goal in this and in a companion work is to quantitatively 
demonstrate that exceptions to the attractor-basin portrait 
analysis. though inevitably present. represent a vanishingly 
small fraction of initial conditions and lattice sizes. A sec
ondary motivation is to address several of the simpler is
sues that will arise in the future development of techniques 
for identifying state space structures in high-dimensional 
nonlinear spatial systems. 

II. CELLULAR AUTOMATA 

Many CA exhibit "domains" of homogeneous spatia
temporal structure that are separated by "walls." In the 
following we take the nearest-neighbor elementary CA 
(ECA) rule 18 as an exemplar of this large class. It is 
arguably the simplest nonlinear CA. The neighborhood 
patterns {001.100} at time t map to a center cell of value I 
at time t+ 1; all others map to 0, Unlike other chaotic CA 
such as ECA rule 90. ECA 18 does not obey a linear su
perposition principle, This is the sense in which it is non
linear, 

The domains of ECA 18 have a simple property: Every 
other cell is O. Between those sites are "wild-card" sites 
that can be either 0 or I. Its walls break this spatial sym
metry with a pattern of I (00)"1. n=O. 1.2 ..... which places 
a I on a site that. if it were in a domain. should have a O. 
Thus. for example. two consecutive Is separate two do
mains: One domain has Os on even sites; the other, Os on 
odd sites. We refer to these walls as dislocations, Figure I 
shows the temporal evolution ofECA 18 dislocations start
ing from an arbitrary initial pattern using a "filtered" 
space-time diagram that factors out the intervening cha
otic domains. 

The dislocations appear to move randomly: At each 
time step they must move either left or right. the choice 
being determined (ultimately) by bits in the initial condi
tion. When two dislocations are sufficiently near they can 
annihilate by merging into a 10(00)"1 pattern. a nonlinear 
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FIG. 1. The temporal evolution of dislocations 1 (00)"1 under elementary 
cellular automaton 18, starting from an arbitrary initial pattern. The 
diagram was produced using spatial transducers from Ref. 8. The chaotic 
domains have been factored out leaving the dislocations highlighted. 

and irreversible process. It gives rise to the apparent non
local annihilation seen, for example, near the center of Fig. 
\. Starting from an arbitrary initial pattern ECA 18 ap
pears as a gas of randomly diffusing, annihilating disloca
tions superposed on a chaotic background.9 The motion of 
a single dislocation between two semi-infinite (random) 
domains recently was shown to obey a random walk. 10 

Similar results for two or more dislocations are substan
tially more difficult to obtain since the dislocations' motion 
eventually becomes correlated due to the overlap of their 
reverse-time light-cones. This difficulty lies at the root of 
the problem we investigate here and is one reason the semi
empirical approach we take is a necessary complement at 
this time to the rigorous analysis. 

An algebraic analysis of CA has recently begun to ad
dress some of the robust properties due to nonlinearity and 
strong dislocation interactions. For example, it has been 
shown that ECA 18 patterns with dislocations can be lin
earized." The algebraic techniques describe much of the 
combinatorial structure of the discrete state space of CA 
on finite lattices. The number and type of periodic orbits 
for ECA 18 on a given lattice size can be determined, for 
example. 12 Not surprisingly, the detailed behavior is highly 
sensitive to the number~theoretic properties of the lattice 
size N, such as its prime factorization. This leads to large 
fluctuations in the calculable properties as a function of 
lattice size that can obscure common features of the CA's 
behavior. 

III. QUALITATIVE DYNAMICS 

The qualitative dynamics of a dynamical system is the 
description of the state space in terms of attractors, basins, 
and separatrices. 13•

14 This gives a picture of the global ar
chitecture of state space, without attempting to find closed
form solutions of an individual pattern's evolution. The 
discreteness of CA state space and the spatial nature of CA 
pose a number of problems for this type of analysis. None
theless, a general procedure for constructing attractor-
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FIG. 2. A skeletal picture of rule I8's attractor-basin portrait. The view 
is that in language space and includes both finite odd and even lattices 
along with infinite lattices. The various symbols indicate the formal lan
guages identified in the computation theoretic analysis of Ref. 8. The 
temporal evolution from One language to another goes down the page. 
The thin lines with arrows indicate the effect of perturbations 8A away 
from the attractors. Figure reproduced from Ref. 8. 

basin portraits of CA that overcomes many of the prob
lems has recently been developed and applied to the 
particular case ofECA 18 (Ref. 8) and to a wide range of 
other CAY 

One useful feature of this qualitative analysis is that it 
traces the development of spatial patterns arising in the CA 
states, rather than following the exact evolution of any 
single configuration. This allows for a qualitative charac
terization of the typical behavior of the system, avoiding 
the proliferation of details involved in tracking individual 
trajectories. In addition, it is independent of the particular 
lattice size and spatial origin. We give a brief synopsis of 
the results for ECA 18 here. 

One view of ECA 18's attractor-basin portrait is shown 
in Fig. 2. Each symbol in the figure corresponds to an 
ensemble of CA states with specific properties. On finite, 
periodic lattices of even size N, only the portion of the 
figure to the left of the left dashed line is present. For finite 
odd N, the portion to the right of the right dashed line 
exists. On infinite lattices, the entire figure is present. At 
the bottom of the figure are the two attractors, AD and A 0,0. 

These ensembles are temporally invariant and stable to 
perturbations. AD consists of states with no dislocations; 
A 0.0 is made up of states with a single dislocation due to the 
odd lattice size. The possible effects of small perturbations 
8A on states in AD and A 0.0 are shown by the thin curving 
lines. The basins of the attractors, Ii' and Ii"o, represent 
the sets of CA states that evolve to some state in AD and 
A 0.0, respectively. The global separatrix S breaks up into 
subseparatrices Seven, SOdd' and Sen' Finally, AN, with 
A ={O, I}, is the set of all CA states on the lattice. 
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IV. VICINITY CONVERGENCE 

The stability of the attractor under small perturbations 
is investigated in terms of the attractor's vicinity. Due to 
the lack of a preferred metric on discrete CA state spaces, 
there are several alternatives for the vicinity, such as (i) 
the subbasins bw with w=2 dislocations on even lattices or 
w=3 on odd lattices, or (ii) the Hamming vicinity. The 
latter, in which perturbations are spatially localized bit· 
flips, is the more physically realistic of the two if one thinks 
of the bit·flips as being due to thermal fluctuations. Typical 
states in the bw-subbasin vicinity require perturbations cor
related over long distances. For this reason, we will focus 
primarily on the Hamming vicinity in the following. The 
perturbation we consider, arguably the "smallest" one pos
sible, is a single bit-flip somewhere in the state. If the site 
flipped is not a wild-card site, this perturbation pushes the 
state off the attractor by generating a pair of dislocations, 
which then move about on the lattice and ultimately may 
or may not collide and annihilate. If and when the dislo
cations annihilate, the state falls back into the attractor. 

Under the action of ECA 18 not all of the patterns in 
this vicinity fall back into the attractor, even asymptoti
cally. Thus, on lattices with even size N, the vicinity v" 
breaks up into two disjoint subsets, determined by the two 
possible asymptotic (t~ co) behaviors: (i) the set If' of 
states that eventually evolve back into the attractor, and 
(ii) the set Ji' of states that evolve onto temporally periodic 
orbits not in AO. By definition, 1f'=Ii'n v" and Ji' 
=S",nn v". In Fig. 2, these two possible asymptotic be
haviors are indicated by the two curved lines leading away 
from A 0. For N odd, the situation is analogous, with the 
vicinity v".o breaking up into If"o and Ji"o. In the following 
we will consider {V,A,E,P} to be {v",A 0,1f',Ji'} for N 
even, and to be {v",o,A 0,0,1f"0,Ji"0} for N odd. 

The states in the Hamming vicinity are generated by a 
two step process. First, a state is produced using the ap
propriate attractor machine. 8 Second, a site is selected at 
random and its value is set randomly to 0 or 1. With prob
ability 4 this changes the state; the result mayor may not be 
in the attractor. And with probability l a pair of disloca
tions is created, knocking the pattern off the attractor into 
the vicinity. The resulting interdislocation distance d> 0 is 
distributed exponentially as 

Pr(d=x) = " , " .. 
[

2- CHi )/2 X= 135 

0, otherwise. 
(I) 

An ensemble with M members will have at t=O approxi
mately MI4 patterns off the attractor. 

A vicinity ensemble's decay can be monitored by the 
fraction IA(t) of ensemble states on the attractor as a 
function of time. For a fixed lattice size at a given time, we 
define the complementary fraction I p(t) of nonattracted 
patterns in the vicinity ensemble as 

1I<1>/( V) -All 
fp(t) = IIVII (2) 

where <I> ,( V) is the set of time t iterates of all states in the 
vicinity V under the CA rule, and IILII denotes the cardi-

nality of the set L. The set-theoretic difference <I>/( V)-A 
denotes the ensemble of states in <I>/( V) not yet in the 
attractor. Clearly, Ip(t) is monotonically nonincreasing 
with t, and I A (t) + Ip(t) = 1. The asymptotic nonattracted 
fraction is given by 

fp= limfp(t). (3) 

We define the convergence time Tc as the first time-step at 
which Ip(t) reaches its asymptotic value. Note that on any 
given finite lattice fp= IIPII/IIVII, the fraction of vicinity 
states evolving to periodic orbits not in the attractor. 

The decay profile I p(t) gives an indirect indication of 
the orbit structure of the high-dimensional state space. On 
a finite lattice with periodic boundary conditions, all states 
eventually fall onto temporally periodic orbits. In particu
lar, starting from any given initial state So in the vicinity V, 
the trajectory {Si,S2,S3''''} will at some point fall onto a 
periodic orbit either in the attractor A or in the nonat
tracted set P. If this orbit is in A, then there is a time T at 
which it first fell into A. We therefore define a transient 
starting in Vas a sequence of states {SO,SI,,,.,S7_1} such 
that (i) the initial state So lies in the vicinity, (ii) the last 
state S,_i is not in the attractor, and (iii) the iterate s, 

=<I>(S,_i) of the last state is in the attractor. Note that 
this definition excludes states in P. All states on transients 
starting in the Hamming vicinity have two dislocations if N 
is even, or three dislocations if N is odd. The transient 
length T is equal to the number of states in that part of the 
trajectory that lies outside A. The fraction of states in the 
ensemble with transient length T is given by the instanta
neous decay rate 

!:;Ip( T) =-fp( T) - fpC T-I). (4) 

In this way, the decay curve Ip(t) is the integral of the 
transient-length probability density. Furthermore, since 
Ip(t) can change only while there are states on transients, 
T c is equal to the length of the longest transient. What 
I p(t) fails to capture is the detailed architecture of the 
state space, i.e., the connectivity of the trajectories. 

V. RANDOM CLIFF WALKERS 

In ECA 18, the final decay of an arbitrary initial pat
tern to the attractor usually reduces to the annihilation of 
only two dislocations. On an even lattice two dislocations 
collide leaving a pattern in the attractor A ° with none; on 
an odd lattice two of three collide leaving a pattern in A 0,0 

with one dislocation. The stochastic analog of the net pro
cess is that the dislocations diffuse according to a random 
walk and two of them eventually annihilate when their 
paths cross, The question in this view becomes whether 
ECA 18 with patterns restricted to the vicinity behaves 
effectively like a stochastic process. 

A crude approximation of dislocation evolution, valid 
in the limit of vanishing dislocation density, was given in 
Ref. 8. That probabilistic model is inadequate for Ham
ming vicinity decay since, as just noted in Eq, (I), the 
dislocation density is weighted toward small separations. 
As an alternative, we now describe the random cliff walker 
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218 J. P. Crutchfield and J. E. Hanson: Attractor vicinity decay 

TABLE I. Stochastic evolution of the random cliff walker. The distance 
between particles evolves according to d(t) =d(t-I) +6, 

Random cliff walker 

Pr(8~ + 1) 
Pr(8~O) 

Pr(8~ -1) 

d(t-ll<O 

o 
1 
o 

d(t-l»O 

1/4 
1/2 
1/4 

(RCW), a simple stochastic process that captures the basic 
phenomenon. The RCW model, and modifications de
scribed below, are variants of a random walk with absorb
ing barriers. 16,17 

In an ideal random walk a particle moves left or right 
with equal probability. The distance d(t) between two 
such particles either stays the same or changes with equal 
probability. If the distance changes then it is increased or 
decreased by two units, again with equal probability. In the 
ReW process two particles annihilate whenever the dis
tance passes through zero. d (t) itself can be considered as 
a quasiparticle obeying a random walk on the half-line 
d> O. In effect, there is a cliff at the origin: When disloca
tions annihilate, d passes through zero and the quasiparti
cle faBs off a cliff. This is modded by stopping the evolu
tion of d(t) at that point, effectively removing one pattern 
from the ensemble. The rule for the RCW stochastic pro
cess is given by 

d(t) =d(t-l) +8, (5) 

where 8 is a random variable with the probability distribu
tion given in Table I. The lattice constant has been changed 
to t so that the possible displacements are 13E{ -1,0,+ I}. 
For convenience, we allow d(t) to take on negative values, 
but require that quasiparticles with d(t) <;0 be frozen in 
place. 

Hamming-vicinity decay is simulated by generating an 
ensemble of M RCW quasiparticles with an exponential 
distribution like that for the Hamming vicinity [Eq. (1) j, 
namely, 

(
2-X - 1, x;;.O 

P~d(O)=x)= 0 0 , x< . 
(6) 

The fraction fRCW(t) of surviving particles, i.e., those par
ticles i with d;(t) > 0, is estimated using the statistic 

M-I 

fRCW(t) =M- 1 L 0;(t) , 
i=O 

(

1, d;(t) > 0 
where 0;(t) = 0, d;(t)<; O. 

(7) 

A log-log plot of f RCW (t) vs t is shown as the solid 
line in Fig. 3. In this and all succeeding plots, the loga
rithms are base 2. The curve was computed numerically 
using an ensemble of M = 10 000 particles. The curve is of 
the form fRCW(t)=fRcw(l) ·t-a(t) with a(t)~t from 
below as t_ 00. For finite time, aCt) <~, so that fRCW(t) 
shows a slowly downward curving "backbone" whose 
slope approaches - t as t ~ co. A phenomenological model 

O~"'" 
-', 

" ~ , 
, " , '~, " ...... , .... , . ','" \ ~ ,A,. RCW 

\... \. .... '\ 
\ \ ',.........) 
\ ~ \ 
\ ~ \. 

IDRMW I : IDRMW \ • 
N~32 -..........;. ~ N=512 ~ ~ 

~: \~~ 

log(f) 

2DRMW I " 2DRMW '- : 
N=33 -I : N=S13 -, : 

r' I' 
I: I ~ 

I 

-15 +...,.-.,..,....,....,........,.:,... ...,...:,.' ..,...,,..,..........;...' ,...;. . ..+ 
o loge!) 18 

FIG. 3. Decay profiles for annihilating random walks. The random cliff 
walker decay profile fRCW(t) is the solid line. ID and 2D random mesa 
walker profiles fRMW(t) are shown for lattices Ne{32,512} and 
N e{33',513}, respectively. In this and all succeeding plots, logarithms are 
base 2. The simulations were performed with ensembles of size 
M = 10 000 for the RCW profile and M = 12 800 for each of the RMW 
profiles. 

that gives a reasonable summary of f RCW (t) uses a (t) 
=1(l-at-b

) with a=0.8, b=0.15, and fRcw(l) =0.22. 
The a(t) ~t convergence can be readily understood. 

An initial RCW ensemble equivalent to dislocation pairs 
all starting at the same separation d(O) = 1 decays like 
fRCW(t) a:r a with azt for all t. The form of fRCW(t) 
observed for the exponentially distributed vicinity ensem
ble is roughly a superposition of the individual decays 
shifted by the time it takes for the particles to first begin 
annihilating; the latter is a function of the initial disloca
tion separation. And so, the decay profile slope gradually 
decreases until a=!. 

As described, the initial fraction of "active" RCW 
pairs is fRCW(O) =1, whereas the initial fraction ofECA 18 
dislocations is f p( 0) =~. This is due to the fact that an 
ECA 18 state is perturbed off the attractor with probability 
~, and so only half of the states in the vicinity ensemble ever 
participate in the simulation. This is only a difference in 
normalization, and is corrected in all of the figureS. 

In comparing the stochastic model to ECA 18, we will 
be considering the evolution of dislocations on finite lat
tices with periodic boundary conditions. For even-size lat
tices, there are two dislocations, which may annihilate ei
ther by approaching each other or by diverging from each 
other until they wrap around the periodic boundary; for 
odd lattice size, there are three dislocations, any two of 
which may annihilate. We treat these two cases as separate 
modifications of the RCW model. A general model, appli
cable to any number of dislocations, is a straightforward 
extension. However, since the vicinities we are studying 
have only two or three dislocations, the general model is 
unnecessary and is left for development elsewhere. 

For two dislocations, the simpler case, we can include 
the finite-N effects by adding another "cliff" at lattice site 
N 12 (the factor of t comes from the RCW lattice constant, 
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which is !). The resulting model is a one-dimensional ran
dom mesa walker (ID RMW), which has an explicit de
pendence on the lattice size. The model's one-dimensional 
nature is emphasized to differentiate it from the two
dimensional random mesa walker developed below. For an 
exponential distribution of initial dislocation distances 
d(O) as above, we expect the fraction of surviving disloca
tions, fRMW(t), to show an early epoch during which it 
follows fRCW(t), followed by a gradual transition to a sec
ond epoch during which fRMW(t) decays at a faster rate. 
The transition to the second epoch occurs when the ran
dom walkers have had sufficient time to reach the second 
cliff at site N /2. Since the root-mean-square excursion 
u = .[(d'> of a single random walker evolves as u 
0: ft, the transition time T d should vary with lattice size as 
Td 0: N'. 

ID RMW decay profiles fRMW(t) vs t for lattices 
Ne{32,512} are plotted on a log-log scale as dotted lines 
in Fig. 3. For both lattice sizes, the curves were computed 
numerically using an ensemble of M = 12 800 particles. As 
the figure shows, fRMW(t) follows fRCW(t) up to a devi
ation time tz T d. Numerical experiments on lattices 
N e{2k:3<k<9} indicated that T d varies with lattice size as 

(S) 

At T d there is a gradual transition to a faster decay rate. 
The decay in the second epoch is roughly exponential, with 
a rate that decreases as N grows larger. In Fig. 3 the tran
sition to the second epoch shows up as a smooth downturn 
of fRMW(t) away from fRCW(t). 

The case with three dislocations, corresponding to 
ECA 18 on an odd-size lattice, requires a more complex 
modification, since there are three possible ways for the 
dislocations to annihilate. We can express the evolution in 
terms of any two of the three interdislocation distances, 
i.e., d,(t) and d,(t). These move according to the stochas
tic evolution equation 

(9) 

where l)t and l)2 are random variables with values in 
{ - 1,0, + I} and with a joint distribution p( 8, ,8,) given by 

p(O,O) = 1/4, p(-I,-I)=p(+I,+l)=O, 

All others: p(8,,8,) = 1/8. (10) 

The evolution is subject to the constraints 

d,(t) >0, i=I,2, d,(t)+d,(t) < (N-l)/2. (11) 

Violation of any of these constraints signifies that a pair of 
random walkers has annihilated, and so evolution stops at 
that point. In effect, this is a random walk in two dimen
sions on a triangular mesa, i.e., a 2D RMW on the simplex 
defined by Eq. (11). The initial distribution corresponding 
to Hamming-vicinity decay in ECA IS has d, (0) distrib
uted exponentially as for the ID RMW, and d,(O) uniform 
over the interval I <d,(O)<;; (N -I )/2. Note that a portion 
of this distribution lies off the simplex, so that some ran
dom walkers are already beyond the edge at time zero; this 
is the same as for ECA IS. 

The dashed lines in Fig. 3 show the 2D RMW decay 
profiles jRMW(t) vs t for lattices Ne{33,513}. As for the 
ID RMW profiles, the curves were computed numerically 
using an ensemble of M = 12 SOO particles. The curves do 
not follow the RCW backbone, but rather start some dis
tance below the backbone and curve smoothly downward. 
The time-I fraction fRMw(I) varies with lattice size 
roughly as 

(12) 

with c, =0.22 and c,= 1.0. For each N, the 2D RMW de
cay profile lies below the corresponding ID RMW curve, 
indicating a faster decay rate. As for the ID RMW case, 
the decay becomes roughly exponential after an initial ep
och. The transition to exponential decay sets in earlier and 
is much more gradual, making a divergence time more 
difficult to specify. However, the long-time behavior indi
cates that the transition has the same lattice-size depen
dence as does the ID RMW. This can be observed in Fig. 
3 by noting that the exponential tails of the ID and 2D 
decay profiles for lattices Ne{512,513} are offset by the 
same amount as for N e{32,33}. Data from lattices N e{2k 
+ 1:3<k<10} indicate that, in the exponential decay ep
och, a 2D RMW with lattice size N follows approximately 
the same curve as a I D RMW on a lattice of size N /2. 

If ECA IS Hamming vicinity decay mimics ideal dif
fusive annihilation, then its behavior should agree with the 
ID RMW stochastic process on even-size lattices, and with 
the 2D RMW process on odd-size lattices. The temporal 
decay f p(t) should follow the same curve as the appropri
ate fRMW(t). Conversely, deviations from random mesa 
walker profiles must be ascribed to other decay mecha
nisms and state space structures than diffusive annihilation 
on a finite lattice with periodic boundary conditions. As we 
show in the next section, Hamming-vicinity decay of ECA 
IS typically mimics the stochastic process quite well 
throughout most of its evolution. 

VI. ECA 18 TEMPORAL DECAY 

A. Hamming-vicinity decay 

Returning now to our investigation of the stability of 
ECA 18's attractors, we study the temporal relaxation of 
the Hamming vicinity back onto the attractor in relation to 
the stochastic decay models. As discussed above, the Ham
ming vicinity is the physically realistic vicinity to use, since 
it traces the response of the system to spatially local per
turbations. 

Hamming-vicinity decay for ECA IS was investigated 
for a number of lattice sizes N < 1000, largely chosen arbi
trarily. For each lattice, an initial vicinity ensemble was 
created as described in Sec. IV. At each time step each 
pattern in the ensemble was iterated once. The number of 
dislocations was counted using the method described in 
Ref. S. When the number fell below two, that pattern was 
removed from the ensemble, since it was in the attractor. 
States with two or more dislocations were allowed to con
tinue evolving until their dislocations annihilated or they 
were proven to be on a periodic orbit. The latter condition 
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FIG. 4. Decelerating decay (class IA): fp(t) for lattice sizes 
N e {20,22,32,34,42,46,66,94, 190,382,766}. All curves are labeled by lat
tice size and plotted to t=2Tc' For reference the dashed line gives the 
rescaled random cliff walker decay fRCW(t). 

was detected usiug a method described in Ref. 18. At each 
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sured, and the nonattracted fraction f p( t) was calculated 
according to fp(t) = 1- fA (I). Vicinity ensemble sizes of 
M 1=2X104

, M2 =IXIO', and M3=IX106 were used. 
For N> 500 the ensembles were all of the size M 1; other
wise the size was chosen arbitrariiy between M2 and M3, 

and appeared to have little effect on the results, other than 
reducing statistical fluctuations in the estimated fractions 
at large times. 

We investigated 12 lattice sizes selected to be in the 
following groups. (I) Worst case.'·19 The lattices with the 
largest asymptotic fraction fp are those with N k=3' 2k 
-2, k=O, 1,2, .... The difference in size between lattices in 
this set grows exponentially; we call such sets "sparse." We 
chose the subset N w,={22,46,94,190,382,766}. (2) Wind
ing number «)=0. The winding number w is the "rotation 
rate" of spatial patterns on temporally periodic orbits of a 
finite lattice. 12 Since the nonattracted orbits in the vicinity 
are all temporally periodic, we initially hypothesized that 
the winding number might airect the statistics of vicinity 
convergence. Of the lattices with w=o we chose the subset 
NE{20,24,36}. (3) Winding number w= I: 
NE{14,31,42}. In addition to the above groups, we col
lected the same statistics on a larger set of 22 arbitrarily 
selected lattice sizes: even lattices N, 
={32,34,66,178,530,536,598,790,840,880} and odd lat
tices N, = {27,45, 77, 95,99,213,629,693, 781, 799,879,919}. 

Not surprisingly, the decay profiles f p(t) for even-size 
l ... u ..... ""'co col. ........ ."rI <> "'h<>r'Jo,..t."r;c:<t;,, c:<'h<lo,.....:> A;ff"p".pnt f ... An1 th-::at Af 
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N odd. We label these two classes (I) even-N, and (II) 
odd-No In addition, the even-N lattices fell into two distinct 
subclasses: CIA) decelerating decay and (IB) catastrophic 
decay. Classes lA, IB, and II are shown, respectively, in 
Figs. 4, 5, and 6. 

All of the even-N lattices follow a common backbone 
for the early part of their evolution. This backbone closely 

log(f) 

o log(t) 18 

FIG. 5. Catastrophic decay (class IB): fp(!} for lattice sizes 
N E{14,24,36,62, 178,530,536,598,790,840,880}. Curves for all but the 
largest three righ tmost curves are labeled by lattice size. Lattices 
Ne{24,36,178} have nonzero fp and are plotted to t=2Tc' The three 
rightmost curves, from top to bottom Ne{840,790,880}, are plotted to 
the cutoff time [=240000. The remaining curves have fp=O and are 
plotted to t= Tc-l. For reference the upper dashed line gives the random 
cliff walker decay fRCW(t). In addition, the random mesa walker decay 
profile for N=I78 is shown as the dashed line leading off the bottom of 
the figure. 

follows the stochastic RCW decay profile fRCW(t); the 
latter is plotted as a dashed line in all three figures. For 
example, in Fig. 4, the backbone appears as a solid curve 
lying just below the dashed RCW curve. The time-I frac
tion f p( I) is the same for all lattices in classes IA and IB, 
but differs from fRcw(1) by 15%. In addition, the random 
.... 1:"' n .... 117"''' ~ ......... " •• '" "l: .... l.+l ................ "'" """ .... 1 ... 1" tl.", ... t'h"" 'Rr'A 1 Q 
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backbone, so that the difference between the two grows less 

10g(O 1 
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FIG. 6. Odd-N (class II): fpCt) for lattice sizes 
NE{27,31,45,77,95,99,213,629,693,781,799,879,919}. All curves arc la
beled by lattice size. Lattices with nonzero fpare plotted to t=2Tc; all 
others are plotted to t= Te- L The dashed line lying above all of the 
decay profiles is the random cliff walker decay fRCW(t). The 2D RMW 
curve for N = 213 is visible as a dashed line curving downward toward the 
bottom of the plot. 
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with time. Lattices in class IA remain on the backbone 
until they approach their asymptotic values. In class IB, 
each lattice shows a marked downturn away from the 
backbone before convergence. For nearly all of these 
catastrophic-decay lattices (with exceptions noted below), 
this downturn coincides with the RMW's transition to its 
second (exponential) decay epoch. The convergence of the 
curves to nonzero values of Ip(t), in Fig. 4 and subsequent 
figures, is due to periodic orbits in the vicinity that do not 
fall back into the attractor. The RCW and RMW models 
do not capture such structure, and so IRCW(t) and 
IRMW(t) continue to decay indefinitely. 

The lattices in class lA, the decelerating-decay class, 
were 

N E {20,22,32,34,42,46,66,94, 190,382, 766}. (\3) 

Figure 4 shows a log-log plot of the nonattracted fraction 
I p(t) vs t for these lattices. Lattices in this class follow the 
common backbone of class I lattices for nearly all of their 
evolution. Near the convergence time T, there is a gentle 
leveling as the decay curve makes its final approach to a 
nonzero asymptotic value. In the figure, the curves have 
been plotted up to t=2T, to show the values of Ip. Within 
the overall class, T, appears to be roughly proportional to 
lattice size, and so I p approaches ° in the limit of large N. 
The worst-case lattices Nwc ' whose asymptotic nonat
tracted fractions are maximal, fall into the decelerating
decay class. 

This class can be characterized as having early conver
gence, since T, of each lattice is less than the RMW tran
sition time T d' The asymptotic fraction is reached before 
the transition to the second stochastic epoch can occur. 
For lattices in class lA, the evolution begins to diverge 
from the stochastic model only during the final approach 
to the asymptotic limit. 

Figure 5 shows Ip(t) for class IB, catastrophic decay. 
The lattices shown are 

N E{14,24,36,62, l78,530,536,598,790,840,880}. (14) 

As for class lA, I p(t) for these lattices initially follows the 
even-N backbone. At some point there is a transition to a 
markedly higher decay rate as seen in the profiles' down
turn, which continues up to the convergence time. The 
time at which the transition occurs is within a few percent 
of the RMW transition time T d on larger lattices, and 
within a factor of 2 on the smaller ones. The asymptotic 
nonattracted fraction I p can be zero or a finite value. As 
for class lA, the lattices with nonzero I p are indicated by 
horizontal tails extending to t=2T,. The three rightmost 
curves, N E{790,840,880}, were still decaying when the ev
olution was stopped at t= 240 000. The remaining curves 
have Ip=O, and are plotted to t= T,- I. 

Two exceptional lattices, NE{14,62}, are included in 
the catastrophic-decay class, even though they converge 
before the RMW transition time T d for those lattices. 
These are the leftmost two downward-pointing curves in 
Fig. 5. These lattices are members of the sparse set for 
which all states in the vicinity evolve to the null state 0*. 
These lattices have size N=2k_ 2, k=2, 3, .... Since the 

null state is in the attractor, I p=O for these lattices. The 
sharp downturn in these curves is due to the sudden decay 
to 0* at time T,= (N +2)/2. 

Superimposed on the decay curve for N = 178 is the 
random mesa walker decay profile IRMW(t) for that lattice 
size. It is shown as the dashed line leading off the bottom 
of the plot. The agreement between the two curves is re
markable; they overlap nearly all the way to T,. This is 
typical of the larger class IB lattices. Smaller lattices tend 
to diverge from the corresponding RMW curves before T,. 
As for class lA, typical lattices in class IB closely agree 
with the RMW stochastic model for nearly all of their 
evolution. 

The odd-size, class II, lattices 

N E {27 ,31,45, 77,95,99,213,629,693, 781, 799,879,9l9}, 
(15) 

plotted in Fig. 6, show the same downward curve as the 
decelerating decay class, except that they appear to decay 
more quickly than even lattices of similar size. Some of the 
lattices have overlapping Ip(t); for example, NE{95,99} 
lie atop one another until the latter converges to I p 

=0.0035, and the lattices NE{629,693,781,799} overlap 
throughout their evolution. Those lattices with nonzero I p 

are plotted with horizontal tails to t=2T" as for classes 
IA and IB; all others have I p=O. 

The time-l fraction I p( 1) varies with lattice size with 
roughly the same form as for the 2D RMW, i.e., I p(l) 
-;::;cl-cz/N, with cI-;::;0.19, cz-;::;1.2. However, Ip(l) 
</RMW(1) for all lattices; in this, class II is similar to 
class I. In general, comparison with the 2D RMW decay 
curves shows that most lattices follow in parallel with the 
stochastic-model profiles, differing from them by a roughly 
constant factor. A typical lattice showing this effect is 
N =213, for which IRMW(t) is plotted in Fig. 6 as a dashed 
line leading off the bottom of the figure. The ECA 18 decay 
curve for N = 2 \3 runs parallel to it until the final approach 
to the asymptotic fraction. For some lattices, e.g., 
NE{95,99}, the agreement between Ip(t) and IRMW(t) is 
nearly perfect. 

In summary, then, the Hamming-vicinity decay pro
files agree well with the appropriate random mesa walker 
model, up until they reach the final approach to the as
ymptotic value I p. The agreement is increasingly good for 
larger N. Even-size lattices differ primarily in whether this 
limit is reached before or after the transition to the second 
(exponential) epoch of RMW decay. For decelerating de
cay (class IA), the convergence time T, is less than the 
RMW transition time T d , and the asymptotic fraction Ip 
is nonzero. For catastrophic decay (class IB) T,> T d , and 
I p is very small or zero. On odd-size lattices, the quanti
tative agreement with the stochastic model is less good, 
although the 2D RMW does capture the shapes of the 
decay curves. 

The fact that the decay profiles fall into only a few 
classes gives some hope to simply describing the geometry 
of the discrete state space using the qualitative dynamics of 
Ref. 8 in conjunction with statistical methods. We sketch 
the beginnings of such a description here; a detailed anal-
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ysis will require connecting the discrete state space view 
with the qualitative dynamics analysis we have used. Re
call the discussion at the end of Sec. IV above, which in
dicated that the convergence time T, is equal to the length 
of the longest transient starting in the vicinity, and the 
instantaneous decay ratel:.fp(/) is the same as the proba
bility density of transient lengths. Applying this to the ob
served decay profiles of the three classes, we see from the 
convergence times T, that lattices in class IA have rela
tively short transients, while for classes IB and II, there 
exist transients that are much longer: for example, com
pared to the class IA lattice N=766, class IB lattice 
N = 790 and class II lattice N = 78 I have transients that are 
about 500 and 100 times longer, respectively. For all lat
tices, linear plots of fp(/) vs I show that I:.fp(t) decreases 
quickly to zero with I. This is especially true of lattices in 
classes IB and II, for which I:.f p(t) decreases exponen
tially during the second epoch of their evolution. Thus the 
distribution of transient lengths is sharply peaked at small 
values; there are many more short transients than long 
ones. Furthermore, the close agreement between the 
Hamming-vicinity decay and the random mesa walker pro
files shows that for each of classes I and II, the distribution 
of transient lengths up to the cutoff at T, is well approxi
mated by a single family of functions parametrized by N. 

To get at the large-N, long-time behavior, we observe 
that the asymptotic fractions f p are maximal on a sparse 
set N we of lattices, and even within this set appear to de
crease with lattice size as jp<X.N- 1I2

•
8

,19 Beneath this up
per bound, f p fluctuates wildly with N, indicating sensitiv
ity to the number-theoretic properties of the lattice size. 
The dependence of f p on N is exactly the type of question 
the algebraic analysis should answer; we plan to discuss 
this in greater detail in the future. 

Finally, the decay profiles did not indicate any great 
dependence on lattice winding number w, except that w=O 
lattices decay more rapidly than comparable w= I lattices. 

B. Noisy lattices 

As a second method of examining the typical behavior 
of ECA 18, we added a small amount of random noise to 
the iteration rule. The extent to which this affects the vi
cinity convergence profile f p(/) gives an indication of the 
stability of the orbits under this perturbation: in particular, 
of the periodic orbits off the attractor. 

The random noise took a particular form, chosen spe
cifically to be the "minimal" perturbation to a state in the 
vicinity. At each time step, domain wild-card cells are 
flipped with i.i.d. probability Pa;p' The latter is set so that 
approximately one cell in the lattice is flipped per iteration, 
i.e., Pfiipz2/N since there are approximately N/2 wild
card cells in a vicinity state. This perturbation does not 
change the number or the positions of the dislocations. 
Instead it addresses the questions of whether such a weak 
perturbation is sufficient to destroy the nonattracted peri
odic orbits, or whether they are stable, i.e., whether they 
are themselves attractors. 

The overall expectation is that the noise should not 
affect the decay behavior in the early diffusive epoch. Dur-
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FIG. 7. The effect of noise: IP(t) vs t for representative lattices 
Ne{31,36,42,45,66,94,190,213,536,693} from each class, with minimal 
stochastic perturbations in the domains. All curves are labeled by lattice 
size. Lattices N E {536,693} were haIted at 1=30000 before they reached 
their asymptotic values; all other lattices decayed to f p=O and are plotted 
to t= Tc-l. As before, fRCW(t) is shown as a dashed line. The RMW 
decay curve for lattice N = 190, which is in the decelerating-decay class 
for noise-free evolution, is also shown as the dashed line curving down off 
the bottom of the page. 

ing the later epoch, when the statistics of the noise-free 
evolution are dominated by the periodic orbits, the stability 
of those orbits will determine the effect of the noise. If the 
periodic orbits are unstable, then the asymptotic fraction 
f p should decay to zero. Furthermore, the differences in 
the shape of f p(t) for different lattices sizes should be less 
pronounced. 

We gathered statistics for ten lattices 
N E {31,36,42,45,66,94, 190,2 13,536,693} using ensembles 
of size M = I X 104

• This group includes examples of all 
three decay classes defined above. fp(t) is plotted for these 
lattices in Fig. 7. Lattices NE{536,693} are plotted to 
1=30 000; all others are plotted to T, - I. The results can 
be summarized as follows. 

The two largest lattices, N E{536,693} were still decay
ing when the evolution was stopped at 1= 30000; since 
both of these lattices have f p= 0 for the unperturbed case, 
we expect the noisy decay to have zero asymptotic value as 
well. On all other lattices, fp(t) decayed to zero at finite t. 
There was no leveling off to a nonzero asymptotic value; 
the decay profiles for all lattices followed the appropriate 
RMW curve all the way to f p=O. This difference is most 
significant in the case of the decelerating-decay (class IA) 
lattices NE{42,66,94,190}, two of which are in the worst
case set N w,' These lattices actually took on the cata
strophic profile of class lB. The RMW decay profile 
fRMW(t) for the worst-case lattice N = 190, plotted in Fig. 
7 as the dashed line curving down off the edge of the figure, 
shows a roughly constant offset from the noisy decay pro
file fp(/); there is no trace of the decelerating-decay be
havior of the noise-free evolution. Neither the 
catastrophic-decay (class IB) lattices NE{36,536} nor the 
odd-N (class II) lattices NE{31,45,213,693} were signifi-
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cantly affected, up to the time when the unperturbed decay 
began to level off. 

We interpret these results to indicate that the periodic 
orbits nearhy, but not in, the attractors A 0 and A 0,0 are 
unstable to small perturbations. The detailed orbit struc
ture imposed by the number-theoretic properties of the 
lattice size N is washed out by weak noise. Thus, the set of 
asymptotically nonattracted orbits is sparse in the vicinity: 
small perturbations typically drive the state into the attrac
tor's basin. This is further evidence that AD and A 0,0 are 
attractors of ECA 18. 

C_ ~ubbasin decay 

As we mentioned in Sec. IV, there is more than one 
possible choice of initial vicinity ensemble. The most obvi
ous alternative to the Hamming vicinity V H is the bw sub
basin, denoted Vb' which contains all states with w=2 
dislocations on even-sized lattices and W= 3 on odd lat
ticeS, Clearly, V He Vb' The subbasin vicinity corresponds 
to the smallest "excitation" of the system, in the sense that 
the states have the minimal number of dislocations to move 
them off the attractor. In a parallel series of investigations 
on the same set oflattices as above, we calculated fpC t) for 
an initial ensemble of states drawn uniformly from b2 or b3, 

as appropriate. This induces a distribution of initial inter
dislocation distances that is uniform, rather than exponen
tially decaying, as was the case for V H' 

On all of the lattices measured, the convergence time 
T, was the same for Vb as for V H' On lattices where V H 

had a vanishing asymptotic fraction f P' Vb also gave f p 

= O. On the remaining lattices, f p was typically higher for 
Vb than for V H' Unlike the Hamming-vicinity profiles, the 
even-size lattices did not follow a common backbone. In
stead, they formed a family of similarly shaped curves pa
rametrized by the time-I fraction f p(1 ). The time-I frac
tion increased monotonically with lattice size to a limiting 
value. The profiles of the lattices fell into the same classi
fication scheme as for V H decay, but the functional forms 
were different. 

The stochastic model corresponding to the b2-subbasin 
vicinity on a lattice of size N is a random mesa walker with 
a uniform distribution of inter dislocation distances d(O) on 
the interval 0 <d(O) <N/2. The probability of a given site 
being occupied by a random walker is proportional to liN, 
so that as N grows, relatively fewer random walkers fall off 
the cliffs in the first time-step. Numerical experiments 
showed that the time-I fraction fRMw(1) varies with lat
tice size as fRMW(1) =c,(1- liN), with c, =0.25. The ob
served decay curves quickly became exponential, 
f RMW (t) - 2 - ml, and the decay rate m depended on lattice 
size as m(N) =kN-a, with k= 16.0 and a=2.0. 

Finally, when a small amount of noise was added to 
the evolution of Vb' all lattices decayed to fp=O. All of the 
decay profiles for even-size lattices were approximately ex
ponential, with a decay rate that decreased with increasing 
N. As for the RMW model, the decay rate on even-size 
lattices varied with lattice size roughly as m(NJ =kN-a, 

a",,2, k"" 16; the agreement with the RMW was better for 

larger N. Odd lattices decayed slightly faster than even 
lattices of corresponding size. 

All of these results indicate that, while the functional 
forms of the Vb decay profiles differ in details from those of 
V HJ the convergence times, instability to perturbations, 
and overall classification scheme are preserved. 

Vll, CONCLUDING REMARKS 

Stepping back then, there are at present three general 
approaches to analyzing cellular automata: empirical stud
ies using simulation, qualitative dynamics based on com
putation theory, and algebraic analysis. The preceding 
work attempted to bridge the gap between these alternative 
views by relating statistical behavior to the qualitative dy
namics, and giving pointers to the relation of those two to 
the algebraic description. We investigated the diffusive be
havior of dislocations as it controls the stability of ECA 
18's attractors. The results indicate deviations that should 
reflect structures accessible via the algebraic analysis. The 
hope is that, despite the apparent spatio--temporal com
plexity exhibited by such simple models, much of the struc
ture of nonlinear CA ---especially those dominated by do
mains and waIls---ean be understood along these lines. At 
a minimum, though, the empirical results give a quantita
tive grounding to the actual frequency of occurrence of 
various phenomena. The earlier discussion' of the qualita
tive dynamics of ECA 18 left several questions unan
swered. For example, how likely are deviations from the 
attractor-basin portrait? And, what fraction of vicinity pat
terns are not attracted back into the invariant set? The 
simulations presented here give the quantitative answers to 
these questions and the random mesa walker, an accurate 
phenomenological model. 

Much of the deterministic CA's behavior is well ap
proximated as an ideal diffusion of a gas of annihilating 
dislocations. Thus, we interpret the deviations from the 
stochastic model of temporal decay into the attractor as 
being indicative of certain state space structures not cap
tured by the attractor-basin portrait; these structures influ
ence the decay on time scales set by the system size and 
boundary conditions. We found two major types of devia
tion: (i) final convergence in finite time to a nonzero frac
tion of states off the attractor; and (ii) systematic deviation 
by a roughly constant factor throughout the evolution. 
Both of these effects grow less pronounced as lattice size 
increases. The decay profiles themselves are closely related 
to the distribution of lengths of transients starting in the 
vicinity and faIling into the attractor, We found that even
size lattices fall into two classes, one of which has a cutoff 
at short transient lengths, while for the other, much longer 
transients are present; odd-size lattices all showed long 
transients. For all lattices, there were many more short 
transients than long ones. The interesting observation is 
that the decay behavior for such a wide range of lattice 
sizes falls into so few classes. This is a result that is ob
scured in the discrete state space representation. 
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The asymptotic nonattracted fraction f p measures the 
extent to which states fail to fall into the attractor. Our 
results show that, as a function of lattice size, the maximal 
values of f p decrease as a power law. On very many lat
tices, especially large ones, f p decays to O. Thus in the limit 
of large N, the size of the nonattracted set goes to zero. A 
more detailed discussion of the lattice-size dependence of 
f p must be left for presentation elsewhere. 

In contrast to the deterministic CA, the decay profiles 
for noisy lattices indicate that the distinctions between the 
classes are destroyed by very small perturbations to the 
domains. All vicinity states collapse onto the attractor via 
a catastrophic decay whose features are captured by the 
random mesa walker. Thus even minimal noise washes out 
all deviations from the purely stochastic model. Asymptot
ically nonattracted orbits, and the state space structures 
supporting them, appear to exist only for perfectly noise
free evolution; they vanish if even the smallest amount of 
noise is present. And the latter, presumably, is the physi
cally relevant context for the evolution of ECA 18. 

The conclusion is that for moderate to large lattices, 
the Hamming and subbasin vicinities' nonattracted sets are 
both insignificant and unstable: A 0 and A 0.0 are regular 
attractors. 
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