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Abstract

A study of the various routes to chaos in dynamica systems reveals that significant
computation occurs at the onset of chaos. At first blush this is not surprising since statistical
mechanics views these as phase transitions with infinite temporal correlations. In computational
terms processes that are in a critical state, like those at the onset of chaos considered here, have
an infinite memory. Storage capacity, however, is only part of information processing. The set
of available nonlinear operations and just how the memory is organized are more important
determinants of the class of computation that can be supported. This leads directly to studies of
the architecture of information processing and to quantitative measures of complexity. There is
a universal theory, for example, that indicates how complexity trades-off against the rate at
which information is produced. This result suggests a new view of how learning and control
systems can break out of inadequate internal models to discover genuinely new representations.
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1. DYNAMICS AND COMPUTATION

How does a physical device compute? The early history of analog and digital computer
design is replete with diverse physical phenomena that implement the elements of formal
computation: the objects and operators of differential calculus and automatatheory. Inlight of the
wide-ranging success of dynamical systems theory for modeling nonlinear physical processes,
the following review asks the contemporary version of the above question — How does a
dynamical system compute? The answer given here begins with interpreting computational
devices as nonlinear dynamical systems and then explores what types of information processing
are embedded in them. The ultimate goal is not only to help build new and better computers,
but also to shed new light on the structure of dynamical systems. As a start a few words about
dynamical systems and computation are in order.

The mechanical description of a physical system is given in terms of a set of equations that
govern the change in system configuration from one time to the next. The dynamical systems
reformulation of this considers the set of all configurations — the state space — and the mapping
that takes states to states — the dynamic. An initial state under the action of the dynamic leads
to a sequence of states — an orbit of the dynamical system. What the theory of dynamical
systems contributes to the mechanistic view is an emphasis on how the dynamic induces global
geometric structures in the system’'s state space and how these structures constrain a system’s
possible behavior. It aso provides methods for analyzing behavioral stability and instability and
how the constraints on behavior can change if parameters in the equations of motion are varied.

“Computation” in the context of physics and dynamical systems theory has several possible
meanings. Unfortunately these more technical senses of the word are not often directly
comparable to its contemporary use, which is highly colored by the present dominance of
sequential digital computers. In preparation for understanding how dynamical systems might
embody information processing, the next section defines several types of computation — usable,
universal, and intrinsic computation. Subsequent sections review how several types of intrinsic
computation are embedded in nonlinear dynamical systems. It turns out that there is a close
relationship between a system being at the onset of chaos and its capacity to exhibit high levels
of computational structure. As examples, both period-doubling and quasiperiodic systems are
analyzed for intrinsic computation. The appropriate phase transition view of these systems
behavior — the renormalization group — then suggests a novel hierarchical learning method for
an observer to discover a finite representation of the infinite memory structures these systems
exhibit. The last sections consider the larger issue of how the state space of physical computing
devices must be structured for them to support significant computation.

2. EMBODIMENTS OF COMPUTATION

The list of computation types seems amost endless. discrete[1] versus continuous,[2,3]
temporal versus spatial,[4] probabilistic versus deterministic, and now classical versus quantum
computation[5]. Thetheory of discrete computation, however, isthe most highly developed. Very
roughly, it distinguishes a number of computational classes, each capable of finitely representing
arange of formal “languages’ and each instantiated by a class of automata. There are the finite
automata which recognize the “regular” languages using only a finite amount of memory; the
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more powerful pushdown automata which recognize the “context-free” languages, akin to modern
programming languages, using a last-in-first-out “stack” memory of arbitrary size; and the Turing
machines, the most powerful discrete-computation devices, which recognize the “recursive”
languages using an infinite storage tape with unrestricted access. Many decades of research
comparing variously-structured automata have led to an extensive discrete-computation road
map: a hierarchy of distinct classes spanning the range from finite memory devices to Turing
machines. Rather than assessing relative capabilities within the single broad type of discrete
computation, later sections will compare continuous and discrete computation. The results there
give concrete examples of how discrete computation can be embedded in dynamical systems. To
prepare for this, the notion of computation itself must be explored in more depth. Three kinds
of computation — usable, universal, and intrinsic — will be considered.

2.1. Usable Computation

The most common meaning of “performing a computation” isthat adynamical system carries
out some “useful” information processing task. Here, the equations of motion are interpreted
as the “program” and the initial state is interpreted as the “input”. The system runs for some
specified time until it reaches a “goal” state at which it detects the task’s completion. This final
condition must be relatively easy to detect. It might be, for example, a fixed point state. In any
case, some portion of its configuration is interpreted as the “output”. There is a correspondence
between the computation and the orbit in the system’s state space. Examples of dynamical
systems performing tasks in this way include integrating a differential equation on an analog
computer to compute =, using a cellular automaton to generate the »n** row of Pascal’s triangle,
performing image edge enhancement with video feedback[6] or an oscillating chemical reaction
in a petri dish,[7] running a recurrent neural network to “recover” a picture from an initially
corrupted version, and — considering the notion of a dynamical system rather broadly — using
a pinhole lens to estimate the Fourier transform of an image. (Further discussion of discrete
computation in cellular automata can be found in Ref. [8].)

Requiring arbitrary “programmability” of a device istoo strict, if one isinterested in devices
that are computationally useful. The dynamical system &+ = —z and y = 21/23(2 — x), starting
with 2(0) = —1 and y(0) = 0, evolves to y(co) = =. Even though it's not programmable and
requires specific initial conditions, its generation of = is a “useful” result in the sense that, in
a domain of analog computation not allowing for the explicit representation of transcendentals,
this information could only be obtained using this or a similar “algebraic” dynamical system
as a subprocess.

If atranscendental number is produced using only algebraic operations, then there has been
a “computational gain”, since transcendentals require more computational resources than do
algebraic numbers. The capability that leads to such a gain will be referred to as “usable’
computation. “Usable’ avoids the sense, implied by “useful”, that the available information
processing has some demonstrated utility.
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2.2. Universal Computation

A second meaning of computation is for a dynamical system, given specialy-crafted initial
conditions, to be capable of universal computation. The latter is arguably the most general notion
of “programmability”: any computational task can be implemented on the universal device. That
is, for each instance of atask there is an initial condition on which the system simulates, within
given resource bounds, any other system of the same computational type. There is another sense
of universality more appropriate to the comparison of discrete and continuous computation.
Thisisthat a continuous-state dynamical system mimic a programmable discrete-state computer,
complete with information storage, logical gates, control mechanisms, and so on. In either
case, the initial condition is considered to have two parts: an emulation program that makes the
universal device implement the desired task and input data that specifies a task instance. The
distinction between the underlying device, a program, and the input data is probably clearest
for universal computation.

The Game of Life cellular automaton (CA) on an infinite two-dimensional lattice is such a
universal dynamical system. One construction for universal computation in the Game of Life
— extremely complicated taken in its entirety, if not impractical — is given in [9]. Simpler
constructions have been made for one-dimensional CA.[10] The simplest is to note that any
universal Turing machine is a one-dimensional CA: its infinite tape is the spatial lattice with
a bit is added at each site to uniquely locate the read-write head. When CA are viewed as
dynamical systems, the main requirement for universality is to construct a set of equations of
motion that alows one portion of the CA’s initial pattern to specify the emulation of a device,
with the remainder of the pattern specifying the device's input.

In the domain of continuous-state computation, standard analog computers — widely used
up through the ' 70's — are universal devices. The “patching” of resistors, capacitors, operational
amplifiers, and multiplier function modules constitutes an analog computer program. The
versatility of possible patches alows analog computers to solve a wide range of integral and
differential equations. In fact, many of these devices included voltage-controlled patching to
enable self-modification of the “program” during the solution. Thus, the same ambiguity between
program and input data that holds for discrete computation also obtains in the analog domain.

It has also been shown that universal discrete computation can be embedded in continuous-
state systems. These constructions are based on establishing a “ symbolic dynamics’ equivalence
between each possible Turing machine configuration — internal control state and infinite storage
tape — and a continuous state. The equations of motion operating on the continuous states
are designed to implement a universal Turing machine's finite state control. In Ref. [11] it
was noted that a universal two-dimensional map of the plane can be constructed. A similar
construction and more extensive analysis can be found in Ref. [12].

The obvious advantage of universal computers is that only one type of device needs to be
built. Then the program portion of the input “reconfigures’ the device to the particular task
of interest. One disadvantage compared to a speciaized device is the reduction in computation
speed due to the emulation. Another isthe reduction in the volume of system state space available
for information processing, which lowers the density of computation. Conventional seria digital
computers are examples, as are the universal CA examples just mentioned, of vanishingly small
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computational density. The loci of information processing is concentrated in the control unit,
while the memory and large portions of the control mechanism sit idle. It is worth noting, in
contrast, that the discrete-in-continuous constructions just given use low-dimensional dynamical
systems and so very few degrees of freedom to implement universality. This point should be
kept in mind for the closing discussion.

2.3. Intrinsic Computation

A third meaning of computation in a dynamical system involves interpreting its behavior, or
more properly the orbits it can generate, as atype of “intrinsic’ computation. Here computation
is not the transformation of an input to produce a “useful” output. Rather, it is measured
in terms of elementary information processing structures — memory, information production,
information transfer, logical operations, and so on. In other words, intrinsic computation in a
dynamical system isan intrinsic property of its behavior that can be measured by an observer just
as (say) the dimension of the system’s attractor can be estimated. Intrinsic computation can be
detected and quantified without reference to any specific “useful” computation performed by the
dynamical system in question. In measuring it one looks at the typical information processing
over the whole state space or large subsets of it. The equations of motion in this view are
thought of as being the computational device in the sense that they determine the constraints
that guide the flow of information in the state space. This notion of intrinsic computation is
developed in Refs. [11,13,14].

Note that intrinsic computation makes no reference to the human, or other intelligent,
manipulation of the input nor to the same interpreting the output. In contrast, to properly define
usable computation one needs a theory of the semantic aspects of choosing inputs and interpreting
outputs. The result is that intrinsic computation is a simpler and implementable notion of
how systems process information. It relates more directly, for example, to how architectures
for information processing spontaneously emerge from within evolutionary and developmental
systems, since it does not rely on an outside “engineer” to handcraft computational elements, to
prepare specia initial configurations with “programs” built in, or to interpret the result.

2.4. Intrinsic versus Usable Computation

There is a key difference between computation theory and dynamical systems theory that
complicates any comparison or synthesis. (This difference is aso responsible for introducing
a distinction like “intrinsic’ computation.) On the one hand, according to computation theory,
information processing devices during their operation do not produce information. Information
is preserved though transformed, or it is lost. On the other hand, the more interesting dynamical
systems — e.g. those exhibiting chaotic attractors — robustly generate information even though
they, like the idealized devices of computation theory, are deterministic.

These considerations lead to the central question concerning the relationship between dynam-
ics and computation — What structures in a dynamical system support the various embodiments
of computation?

This question is answered for universal computation via the requirements and constructions
noted above. Therefore universal computation will not be addressed further. Instead the
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following focuses on the contrast between two views of a physical computing device. From the
dynamical systems view, the interest is what intrinsic computation indicates about the computing
device's behavior. From the computer science and engineering view, the concern is to know
what degree of usable computation the physical device is capable of. Since they concern the
same device, the contrasting views naturally suggest the question of how intrinsic and usable
computation are related. After addressing the problem in this section, the next two give an answer
to the main question as it applies to intrinsic computation in two families of dynamical systems.

Simply stated, intrinsic computation places an upper bound on what computations a dynam-
ical system can support. That is, if a dynamical system D, when observed and controlled with
instrument Z, has an intrinsic computational capacity ,,, then its useful computation capacity
(s Can be a most Cy:

Cus(D,T) < Cin(D,T) Q)

This is somewhat reminiscent of universal computation, which indicates a “possible” capac-
ity. If a system implements (say) a universal Turing machine then it can perform any discrete
computation, even if the required emulation for a given task is extremely difficult to construct
and even if the set of initial conditions employed is a vanishing fraction of the total available
states. In contrast, the upper bound set by (;, indicates a “probable’” computational capacity;
even though there may be a small set of initial conditions that can be interpreted as leading to
higher levels of computation, typically no more capacity is available than C;,. For example,
a dynamical system with an intrinsic computational capacity equivalent to a two-state machine
cannot calculate the binary expansion of =, since the latter requires (at least) an amount of
memory that grows with successive digits of =. Similarly, a finite memory device cannot check
for balanced parentheses in arithmetic expressions. Here a device's capacity is specified as an
entire class — (j, ~ finite automata — but the task’s required capacity is in aclass — (g ~
pushdown stack automata — that is strictly more powerful and so violates the bound.

3. INTRINSIC COMPUTATION IN THE PERIOD-DOUBLING CASCADE

The following two sections review how intrinsic discrete computation is embedded in two
well-known continuous-state dynamical systems. The connection between discrete computation
and the continuous states is made via symbolic dynamics. In this approach a continuous-state
orbit is observed through an instrument that produces very coarse, in fact binary, measurements.
To detect the intrinsic computation the resulting binary data stream is fed into a modeling
algorithm — ¢-machine reconstruction[13] — to produce a minima computational model of
the data stream. The resulting model, referred to as an ¢-machine, describes the intrinsic
computational capability of the observed process — dynamical system plus instrument. Due
to the choice of a particular type of instrument, the ¢-machine also describes the computational
capability of the hidden dynamica system.

The first dynamical system to be analyzed for computationa structure is the logistic map

and, in particular, its period-doubling route to chaos. The data stream used for reconstructing the
model is derived from a trajectory of the logistic map when it is started with an initial condition
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on its attractor. This makes the observed process stationary. The trgectory is generated by
iterating the map

Tp41 = f(xn) (2)

with the logistic function f(z) = rz(1 — «) in which the nonlinearity parameter r € [0, 4] and
the initial condition zy € [0,1]. Note that the map’'s maximum occurs at =, = 3. The orbit
x = xox12273 ... IS converted to a discrete sequence by observing it via the binary partition

P ={t €[0,20) = 5= 0,2y € [1o, 1] = s =1} (3)

This partition is “generating” which means that sufficiently long binary sequences come from
arbitrarily small intervals of initial conditions. Due to this, the information processing in the
logistic map can be studied using the “coarse” measuring instrument P.

Many investigations of the logistic map concentrate on how its time-asymptotic behavior,
its attractor, changes with the nonlinearity parameter ». Here, however, the interest is in how
its information processing capabilities are related to one another. There are two basic measures
of this that can be directly taken from the reconstructed ¢-machines. The first is the statistical
complexity ', which is the size of the reconstructed ¢-machine. It has units of “bits’ and,
roughly speaking, is measured by taking the logarithm base 2 of the number of ¢-machine states.
In short, the statistical complexity is the amount of memory in the process that produced the
data stream. The second measure of information processing is the entropy rate #,, which is
the rate in bits per time step at which information is produced. The net result of using just
the complexity and entropy rate is that the original equations of motion and the nonlinearity
parameter are simply forgotten. All that is of interest is how the complexity C' of the data
stream depends on the rate , of information production.

The complexity-entropy plot of Figure 1(a) summarizes this relationship by showing the
results of reconstructing e-machines from data streams produced at different parameter values.
For each data set produced, an ¢-machine is reconstructed and its statistical complexity C' and
entropy rate h, are estimated. The latter is estimated as %, (L) = H(L)/L where H(L) is
the Shannon information of length I sequences. Figure 1(a) is simply a scatter plot of the
complexity-entropy pairs.

There are a number of important features exhibited by the complexity-entropy diagram.
(Details are given in Refs. [11] and [13].) The first is that the extreme values of entropy lead
to zero complexity. That is, the simplest periodic process at H(L)/L = 0 and the most random
oneat H(L)/L =1 are statistically smple. They both have zero complexity since they are
described by ¢-machines with a single state. Between the extremes the processes are noticeably
more complex with an apparent peak about a critical entropy value denoted H.. Below this
entropy, it turns out, all of the data streams come from parameters at which the logistic map
is periodic — including parameters within the “periodic windows’ found in the map’s chaotic
regime. The data sets with H(L)/L > H, are produced at chaotic parameter values.

A theory was developed to explain the emergence of high computational capability between
the ordered and disordered regimes. For processes with H(L)/L < H,. the entropy and
complexity are equivalent

C=H (4)
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Figure 1 (a) Statistical complexity C' versus specific entropy H(L)/ L for the period-doubling route to chaos. Triangles denote
estimated (C, H(L)/L) a 193 values of the logistic map nonlinearity parameter. e-machines were reconstructed using a
subsequence length of L = 16. The heavy solid lines overlaying some of this empirical data are the analytical curves derived
for C versus H(L)/L. (After [13].) (b) At one of the critical parameter values of the period-doubling cascade in the Logistic
map the number | V| of inferred states grows without bound. Here r = r. = 3.5699456718695445 . .. and the sequence length
ranges up to L = 64 where |V| = 196 states are found. It can be shown, and can be inferred from the figure, that the per
symbol density of states |V (L)|/L does not have a limiting value as L — co. (After [11].)

This is shown as a solid straight line on the left portion of Figure 1(a). For processes with
H(L)/L > H. the dependence of complexity on entropy is more interesting. In fact, the
solution is given in terms of the dependence of the entropy on the complexity. The result is that

H(L) = C + log, (2”” . 2—1> ()

The curved solid line in Figure 1(a) shows the relevant portion of Eq. (5).

Comparing the periodic and chaotic analyses — i.e. Egs. (4) and (5) — provides a detailed
picture of the complexity-entropy phase transition. The critical entropy H. at each sequence
length L is given

H(L) = C'(L) + log, (by —27") (6)

where C'(L) = log, L — log,log, y is the complexity on the high entropy side at H., y ~
2.155535 is the solution of ylog,y —y + 271 = 0, and 1 < b < 3-277 ~ 1.06066 is a
constant. From Eq. (4) it follows immediately that the complexity C" on the low-entropy side
of the trangition is itself H. - L. The difference is a finite constant — the latent complexity
of the transition AC = " — " ~ 0.7272976 bits. The latent complexity is independent of
the sequence length.

This analysis of the interdependence of complexity and entropy is nonasymptotic in the
sense that it applies at each sequence length L. If, as done for Figure 1(a), this length is fixed



8 Critical Computation, Phase Transitions, and Hierachical Learning

at L = 16, the preceding results predict the transition’s location. The critical entropy there, for
example, is H. ~ 0.286205. But for any L the overall behavior is universal. All behaviors with
specific entropies H(L)/L < H. are periodic. All behaviors with higher entropies are chaotic.
The functional forms in Egs. (4) and (5) are general lower bounds. The statistical complexity
is maximized at the border between the predictable and unpredictable “thermodynamic phases’.
It is important to emphasize that the complexity-entropy diagram makes no explicit reference
to the system’s nonlinearity parameter. The diagram is defined this way in order to show those
properties which depend only on the intrinsic information production and intrinsic computational
structure.
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Figure 2 (a) Approximation of the critical e-machine at the period-doubling onset of chaos. (After [13].) (b) The dedecorated
version of the machine in (a). Here the deterministic state chains have been replaced by their equivalent strings. (After [11].)

Up to this point the overall interplay between complexity and entropy for the period-doubling
cascade has been reviewed. But what happens at the phase transition; i.e. at the critical entropy
density H.? One parameter value, out of the many possible, corresponding to H(L)/L = H,
is the first period-doubling onset of chaos at r» = r. &~ 3.5699456718695445 .... Figure 2(a)
shows the 47 state ¢-machine reconstructed with window size L. = 16 at this parameter setting.
An improved approximation can be attempted by increasing the window length L to take into
account structure in longer subsequences. Figure 1(b) shows the result of doing just this. at
the onset of period-doubling chaos the number |V| of states for the reconstructed e-machines
grows without bound.

The consequence is that the data stream produced at the onset of chaos leads to an infinite
machine. Thisis consonant with the view introduced by Feigenbaum that this onset of chaos can
be viewed as a phase transition at which the correlation length diverges.[15] The computational
analog of the latter is that the process intrinsically has an infinite memory capacity. But there
is more that the computational analysis yields. As will now be shown, for example, the infinite
memory isorganized in a particular way such that the logistic map is not equivalent to auniversal
Turing machine, but is instead a less powerful stack automaton.

The “explicit state” representation of Figure 2(a) does not directly indicate what type of
information processing is occurring at the phase transition. Nor does the unbounded growth of
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machine size shown in Figure 1(b) give much help. A simple transformation of the 47 state
machine in 2(a) goes some distance in uncovering what is happening. Replacing the unbranched
“chains’ in the machine with the corresponding sequences produces the “dedecorated” critical
machine of Figure 2(b). In this representation is it evident that the branching states are quite
regularly organized. Beyond the discovery of this higher-order regularity, there is an additional
element that consists of manipulating the intervening strings between the branching states.

Al1]o]1]o] |
(0.50),(1,81) - (L$)

Bl1]of1]1] | ${S.T.T.C.D.EF} — ${Tg,Tf,BA,BB,BA,0,1}
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A

(st - {st.nsDe |
($11} - {$f.1)$FC
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{$f,f} - {$f,f}$EC

¢ Bottom

${AB,¢},{AB¢} - 1 ${AB,¢}{AB,¢} - 1
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Figure 3 (a) The finite version of Figure 2(b)’s infinite critical e-machine. This is a string production machine that, when
making a transition from the square states, updates two string registers with the productions A — BB and B — BA. B’ is the
contents of B with the last bit flipped. (b) Another finite representation of the period-doubling critical ¢-machine — a one way
nondeterministic nested stack automaton — that produces symbols sequentially. (After [11].)

By following the increasing-accuracy modeling experiment shown in Figure 1(b) in detail,
one can ask how the machines in a series of successively improved models grow in size. The
result, as disclosed by the dedecorated machine, is that only the branching states and “string
productions’ are needed to describe the regularity in the growth of the machines. This, in turn,
leads to the discovery, shown in Figure 3(a), of a finite machine with two kinds of states (the
new type is denoted with squares) and two registers A and B that hold binary strings. Simple
inspection of the dedecorated machine shows that the string manipulations can be described by
appending a copy of A’s contents onto B and replacing the contents of A with two copiesof B’s
contents. These string productions are denoted A — BB and B — BA. At the outset, register
A contains “0” and B contains “1”.

One problem with the string production machine of Figure 3(a) is that the length of strings
in the registers grows exponentially fast, which contrasts sharply with the sequential production
of symbols by the logistic map. Figure 3(b) gives an aternative, but equivalent, serial machine
that produces a single symbol at a time. It is called a one-way nondeterministic nested stack
automaton. The memory in this machine is organized not as string registers, but as a pushdown
stack. The latter is a type of memory whose only accessible element is on the top. In fact,
the automaton shown has a slightly more sophisticated stack that allows the finite control to
begin a new “nested” stack within the existing one. The only restriction is that the automaton
cannot move on to higher levels in the outer stack(s) until it is finished with its most recently
created stack.
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The net effect of these constructions is that a finite representation has been discovered from
an infinite one. One of the main benefits of this, aside from producing a manageable description,
is that the type of information processing in the critical “state” of the logistic map has been
made transparent.

4. INTRINSIC COMPUTATION AT THE ONSET OF QUASIPERIODIC CHAOS

The second route to chaos of interest, which also has received extensive study, is that through
quasiperiodicity. Inthe simplest terms, this route to chaos and the models that exhibit it describe
the coupling of two oscillators whose periods are incommensurate — the ratio is not rational.
The ratio of the number of periods of one oscillator to the other in order to complete afull cycle
for both is called the winding number . Thisisakey parameter that controls the entire system’s
behavior: when rational the two oscillators are phase-locked. Quasiperiodic behavior is common
in nature and underlies such disparate phenomena as cardiac arrhythmia, the stability of the solar
system, and the puzzling synchronization of two mechanical clocks located in close proximity.

The smplest model of two “competing” oscillators is the discrete-time circle map
bny1 = f(dp) mod 1

7
where  f(¢)=w+ ¢+ % sin 27 ¢ ()

The map’s name derives from the fact that the mod 1 operation keeps the state ¢,, on the unit
circle. One thinks of ¢, then as a phase — or, more properly, the relative phase of the two
origina oscillators. There are two control parameters, w and k. The former directly sets the
phase advance and the latter the degree of nonlinearity, which can be roughly interpreted as the
coupling strength between the two oscillators.

As a function of the nonlinearity parameter the behavior makes a transition to chaos. Like
the logistic map, there is a signature to the path by which chaotic behavior is approached from
periodic behavior. Furthermore, the circle map’'s signature has the basic character of a phase
transition.[16]

The following will investigate one arc through (w, k)-space that exhibits just such a phase
transition to chaos. This is a path that includes the golden mean circle map — so-called since
its winding number is the golden mean © = 1+2—\/5 The easiest way to implement this is to set
w = w. Varying k € [0, 6] then gives a wide sample of behavior types on the quasiperiodic route
to chaos. £ =1 isthe threshold of nonlinear behavior, since the map for larger values becomes
many-to-one; £ > 1 is also a necessary, but not sufficient condition for chaos.

The measuring instrument uses three types of partition depending on the parameter range:
=0,k € (0,1], and £ > 1. Generdly, the instrument is a binary partition that labels
n € (¢/,¢"] withs =0 and ¢, = (¢",¢'] withs = 1. For k =0, ¢’ = 1 and ¢" = 0; for
€(0,1), ¢/ =L and ¢" = f71(3); and, for k > 1, ¢ isthelarger and ¢" the smaller value of
(27) "' cos™ (—k~1) on the interval. By iterating the map many times on an initial condition
atime series ¢ = ¢po1 93 ... is produced. When observed with an instrument the time series is
converted to a binary string s = sgsysy ... of coarse measurements s; € {0,1}.

Figure 4(a) shows the complexities and entropies estimated for the quasiperiodic route to
chaos at severa hundred settings along the chosen parameter arc. As with period-doubling,
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Figure 4 (a) Statistical complexity C' versus specific entropy H(L)/L for the quasiperiodic route to chaos. Triangles denote
estimated (C, H/L) at 303 values of the circle map with w = %ﬁ and nonlinearity parameter & in three different ranges: 101
values for & € [0, 2], 101 values for k¥ € [3.5,3.9], and 101 values for k£ € [4.5,6]. These are ranges in which the behavior
is more than simple periodic. ¢-machine reconstruction used a tree depth of D = 32 and a morph depth of 7. = 16 for the
first range and (D, L) = (16, 8) for the second two ranges, which typically have higher entropy rates. The entropy density was
estimated with a subsequence length of L = 16. Refer to Figure 1(a) for details of the annotations. (b) At the golden mean
critical winding number in the quasiperiodic route to chaos the number |V| of inferred states grows without bound. Here the
sequence length ranges up to . = 64 where |V| = 119 states are found.

L] L] o

the quasiperiodic behavior with entropies H(L)/L < H. are periodic. All those with higher
entropies are unpredictable. The statistical complexity is maximized at the border between the
ordered and chaotic “thermodynamic phases’. The lower bounds, Egs. (4) and (5), are shown
again as solid lines for both phases. The circle map clearly obeys them, as did the logistic
map, though the scatter differs. For example, there is a cluster of points just below H, at high
complexity. These are all due to the “irrational” quasiperiodic behavior that is predictable. The
complexity derives from the fact that the map essentially “reads out” the digits of their irrational
winding number. This leads to data streams that require large machines to model. There is also
some scatter at high entropy and low complexity. This is due to highly intermittent behavior
that results in al subsequences being observed, but with an underlying probability distribution
that is far from uniform. The result is that e-machine reconstruction approximates the behavior
as a biased coin — zero complexity, since it has a single state, and entropy less than unity.

What happens at the quasiperiodic onset at # = 1? The metric entropy is zero here,
since the number of length L subwords increases strictly linearly: N(L) = L + 1. The
single symbol entropy is high, H(1) ~ 0.959419 bits, since the frequency of isolated zeros
is lim 22 = &2 ~ 0.381966, where ', is the L'" Fibonacci number.

L—oo
e-machine reconstruction applied to this “critical” data stream does not lead to a finite
state machine. In fact, just as for the logistic map at the onset of chaos, the machine size
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keeps diverging. (See Figure 4(b).) A finite approximation to the presumably infinite “critical”
machine is shown in Figure 5(a).

Notably, the intrinsic computation in quasiperiodicity can be finitely represented at a next
higher level. When the average winding number is the golden mean, one finds the *Fibonacci”
machine shown in Figure 5(b). There is a two state finite control automaton shown at the top
portion of Figure 5(b) that determines copying operations on two registers, A and B, that contain
binary strings. The finite control is started in the left-most, double-circled state, A begins with
“1", and B with “0". The finite control machine's edges are labelled with the actions to be
taken on each state-to-state transition. The first symbol on each edge label is a zero or one read
from the input data stream that is to be recognized. The symbol read determines the edge taken
when in a given state. The backward slash indicates that a string production is performed on
registers A and B. This consists of copying the previous contents of A to B and appending the
previous contents of B to A. The string productions are denoted A — AB and B — A. They
are applied simultaneoudly. If there are two backward slashes, then two “Fibonacci” productions
are performed. The input string must match the contents of register A, when register A is read
in reverse. The latter is denoted by the left-going arrow above A in the edge label.

1A
01 01101 0110110101101 0110110101101...
) ) () > , : owi ‘_@) vy
% Hierarchical
%y, ok
Oy —
\’oJ[Q A|1|o|1|1|0|1|o|1Z

Reconstruction

s{2ofafafof | |

101 u 10101101 U 101011010110110101101

Figure5 (a) A portion of the infinite critical machine for the quasiperiodic route to chaos at the golden mean winding number.
Note that the dedecorated machine is shown — that is, the intervening states along deterministic chains have been suppressed.
(b) The Fibonacci machine: the finite representation of the infinite machine in ().

The basic computation step describing the quasiperiodic critical dynamics employs a pair
of string productions. The computational class here is quite similar to that for period-doubling
behavior — that is, nested stack automata. It is at this higher level that a finite description of
the golden mean critical behavior is found. This is demonstrated, as for period-doubling, by
noting that the productions are context-free deterministic Lindenmayer productions and that these
can be mapped first to an indexed context-free grammar and then to nested stack automaton.[1]
Thus, rather than Figure 5(b) the Fibonacci machine can be represented with a stack automaton
analogous to that shown in Figure 3(b) for the period-doubling onset of chaos.

The required length of the Fibonacci machine registers grows as a function of the number
of applications of the production at an exponentia rate which is the golden mean, since the
string length grows like the Fibonacci numbers — an observation directly following from the
productions. Thus, with very few transitions in the machine input strings of substantial length
can be recognized.

Another interpretation of the recognition performed by the Fibonacci machine in Figure 5(b)
is that it phase locks to the quasiperiodic data stream. That is, the Fibonacci machine can jump
in a any point in the “critical” string, not necessarily some special starting time, and, from that
symbol on, determine if the subword it is reading is in the language of all Fibonacci subwords.
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To close this section, let us summarize both its and the last section’s approach to intrinsic
computation. Both sections demonstrated how intrinsic discrete computation can be detected
in a continuous-state dynamical system. They both also showed that to get a ssimple model
that captures the system’s true computational capability, as determined by observations, it is
sometimes necessary to jJump up to a more powerful computational class. At both onsets of chaos
the computational analysis identified structures that were higher than finite memory devices. The
onset of chaos led to infinite memory and, just as importantly, to memory that is organized in
a particular way to facilitate some types of computation and to proscribe others. The logistic
and circle maps at their respective onsets of chaos are far less than Turing machines, especially
ones that are universal. At the onset the information processing embedded in them jumps from
the finitary level to the level of stack automata. One practical consequence of failing to change
to a more powerful representation for these critical systems is that an observer will conclude
that they are more random, less predictable, and less complex, than they actually are. More
generaly, appreciating how infinite complexity can arise at the onset of chaos leads one to
expect that highly nonlinear systems can perform significant amounts of and particular forms
of information processing.

5. TOWARDS A THEORY OF HIERARCHICAL LEARNING

But how would such high complexity computation elements be detected? Figures 1(b) and
4(b) suggest that significant difficulties arise when one tries to model a critical process using a
representation adapted to finite memory — infinite models appear. In both the critical period-
doubling and critical quasiperiodic cases a resolution to this was found by dedecorating the
machines and inferring the productions governing the successively longer strings.

One interpretation of this situation is that the initial representation selected was not appro-
priate. In each of the above cases it was not clear, until the higher level finite representation
was found, what type of information processing the dynamical systems were implementing. Is
there a way to automatically discover better model classes — i.e. to detect the emergence of
high levels of complexity and of new types of computational capability? In [17] a modeling
technique — hierarchical ¢-machine reconstruction — was introduced that begins to answer this
question. It turns out that the basic method of changing from one representation to another is
much more genera than the logistic and circle map examples would suggest. There are other
process classes — e.g. hidden Markov processes and spatio-tempora dynamics — where the
generalization has provided essential insights to discovering finite models of demonstrably com-
plex data. Hierarchical machine reconstruction gives a way to break out of weak model classes,
to learn more powerful ones.[14,17]

To be clear about this, the first step is to note the common aspects of any hierarchy of
computational models. At each level there are a number of elements:

1. Modes M, in some class M, consisting of states and transitions. These are observed only
indirectly via a measurement function.

2. Languages being the ensembles of finitely representable behaviors.
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3. Symmetries reflecting the observer’'s assumptions about a process's structure. These deter-
mine the semantic content of the model class M, which is defined by equivalence relations
~ corresponding to each symmetry.

4. Reconstruction being the procedure for producing estimated models. It factors out a
symmetry from a data stream s. Formally, reconstruction of a model M € M is denoted
asM=s/ ~.

5. Complexity of a process being the size of a reconstructed model M with respect to the
given class M: C'(s|M) = ||M]].

6. Predictability being estimated with reference to the states that are distinguished by M.

It is important that reconstructed models M € M be minimal. Thisis so that M contains no
more structure than and no additional properties beyond the underlying dynamics. The simplest
explication of thisisto note that there are many multiple state representations of an ideal random
binary string. But if the size of representation is to have any meaning, such as the amount of
memory, only the single state process can be allowed as the model from which it is computed.

With this view of individual levels in a hierarchy of model classes, hierarchical machine
reconstruction is the search for an e-machine, which is the minimal model at the least computa-
tionally powerful level yielding a finite description. This definition builds in an adaptive notion
that an observer initially might not have the correct model class. How does the observer find
a better representation? By moving up an inductive hierarchy through the innovation of new
notions of “state”.

A large part of innovating a new model class is simply a reapplication of machine recon-
struction as introduced in Ref. [13]. The central method of discovering structure is to group
lower-level states into equivalence classes that lead to the same range of future behavior. These
equivalence classes then become the notion of state at the new level. A series of increasingly
accurate lower level models are, in this sense, a data stream — M(c), M(5), M(£),M(§),...
— for reconstruction at the next higher level. The regularity, if any, between the models is
the next higher level representation. For example, at the onset of chaos hierarchica machine
reconstruction involves four levels — data stream, trees, finite automata, and stack automata —

before finding a finite representation.

There is an additional step beyond grouping states at one level according to their transition
structure. This step is seen in the deterministic modeling of recurrent hidden Markov models
as the innovation of a resettable counter,[18] at the onsets of chaos reviewed here as the
innovation of string productions,[11] and in discrete spatial processes as the innovation of
local state machines to break away from cellular automata look-up tables[19] In each case
it was quite straightforward to find the additional computational element governing the lower
level information processing. But since an exhaustive and (partially) ordered spectrum of basic
computational elements is not yet available, innovation must contain a component, albeit small,
of undetermined discovery.

6. WHAT IS A MECHANISM SUCH THAT IT COMPUTES?

With an eye toward the present technologica age and the likely improvements in microscopic
engineering, let us consider a engineering gedanken experiment. This will cast the notion
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of intrinsic computation in a higher relief — hopefully without giving a false impression of
feasibility. At the present time an integrated circuit designer in effect employs many millions, if
not trillions or more, of degrees of freedom in a physical device in order to implement a basic
computational element, such as the storage, transmission, or logical manipulation of a single bit
of information. The vast amount of available microscopic information processing is forced onto
the procrustean bed of Boolean logic by the relatively macroscopic methods of materials science.

Rather than appealing to the view of 19th century logic for acomputational paradigm, perhaps
a direct look at the nonlinear physics that governs molecular solid state interactions will yield
new efficiencies and new elementary components for information processing. Is there anything
to be gained by using the intrinsic computational capability of the microscopic physics? As
shown above there certainly can be high levels of computational structure in simple nonlinear
dynamical systems.

Holding the available physical resources constant, there are two information processing
approaches that can be compared. The first is the conventional digital computer as designed at
the present time. The second is the possibility of architecting molecular structures in as much
detail asis consistent with solid state physics. In each, given a mole of silicon molecules and a
satchel of dopants, how high a density of computation can be produced? And what, if anything,
can dynamical systems contribute to our understanding of the limitations and possibilities?

The preceding discussion has contrasted two perspectives — the state-space geometry view of
dynamical systems theory and the computation theoretic view of a process' s symbolic dynamics
in terms of automata. Figure 6 attempts to integrate these views and to provide a base for
comparing intrinsic and usable computation in a physical device.

There are two submanifolds — a grouping of the many stable and unstable manifolds that
foliate the state space. The vertical submanifold of states is that of an entropy cascade. Within
it organized, low-entropy energy enters at the top and cascades down toward the heat bath of
thermal fluctuations, in strict obeyance of the second law of thermodynamics. The horizontal
submanifold of states, vastly smaller in dimension, is the “critical” submanifold that supports
computation. There are several ways in which it does this. First, it must allow for arbitrarily
long space and time correlations — i.e. the most basic requirement of reliable computation.
Second, evolution within it must have nonlinear elements in order to do nontrivia information
processing: storage, transmission, and logical operations. Third, it must “borrow” energy from
and “return” energy to the entropy cascade in such away that the computation is not corrupted. In
effect organized energy must be introduced into the critical submanifold to drive the computation
forward, but without destroying the infinite spatio-temporal correlations. Finally, the coupling
between the submanifolds must be nonlinear in order to effect this transfer. To the extent
that an essentially unidirectional coupling of organized energy is achieved then the information
processing in the critica submanifold will be robust.

Note that the total thermodynamic entropy density can be quite high — as it is in present-
day digital and analog computers — even in the presence of substantial intrinsic and usable
computation. Thus, to support computation there is no requirement that the whole device have
zero thermodynamic entropy density or vanishingly small dynamical entropy rate or that the
system be near the onset of chaos. All that is required are the properties just delineated for
the critical submanifold.
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Organized

Critical Subspace
supporting
Computation

Figure 6 The manifolds of computation: A highly schematic view of the state space of a physical computing device. The state
space is split into an entropy-cascade submanifolds that brings in energy at low thermodynamic entropy. Typically only a small
fraction of that is garnished to drive the computation forward in the critical submanifold.

The preceding sections suggest two possible avenuesto increasing the density of computation.
The first would be to use the higher level computational processing available in nonlinear
dynamical systems. The second would be to improve the energy transfer to and isolation of
the critical submanifold with highly nonlinear coupling. Linear coupling, in contrast, is less
effective in meeting the goals of unidirectiona energy transfer and isolation. Indeed, in lieu
of nonlinearity, present designs employ a large number of degrees of freedom, relying on the
law of large numbers to reduce the net fluctuation in the critical submanifold. In any case,
both possibilities of increasing computation density necessarily take advantage of nonlinear
microscopic physics.

7. CONCLUDING REMARKS

There is an amusing difficulty in discussing “computation” at the present time. The term
evokes a strong sense of discreteness and of mathematical logic. One is given the impression
that many think “computation” only refers to discrete symbol manipulation. Such a perception
could not be further from our knowledge of physics, human neurophysiology, and the history of
computing machinery. Digital electronic technology has hijacked our scientific language. Credit
for both the introduction and the resolution of this bias perhaps lay in Turing’'s use of the phrase
“computer” to refer to a human performing calculations with pencil and paper. While he argued
that the markings made on paper are discrete symbols from a finite set, the process leading to
them being put down in the first place is initiated by and supported on an apparently continuous
process — guantum mechanics not withstanding. A thoroughgoing discreteness does not seem
justified. The relationship between the written symbols and the originating thought process
strikes one as more akin to how the symbolic dynamics stood in relation to the instrumentation-
obscured continuous-state logistic and circle maps considered above. That discrete computation
then appeared embedded in those dynamical systems is itself more like our apprehension of
meaning in written language.

It seems clear from the questions raised here that a synthesis of computation and dynamics
could be fruitful. In particular, the theories of information transformation need to be rectified
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with the theories of information creation. A synthesis would go some distance to harnessing
the dynamical and nonlinear aspects of microscopic nature to perform a much wider range of
information processing. Though this might reveal new regimes of information processing and
help us push computation closer to the limits of physical devices, we should not forget that an
equally important limitation is our own notion of what computation is.
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