
40 J. P. Crutchfield

Markov chains. The difficulty of finding the entropy rate for these processes was first noted in
the late 1950’s.[64] In fact, many questions about this class are very difficult. It is only recently,
for example, that a procedure for determining the equivalence of two such processes has been
given.[65] The awareness that this problem area bears on the complexity of observation and the
result that finite complexity processes can appear infinitely complex is also recent.[59]

The new notion of state here that needs to be innovated involves the continuity of real
variables. The causal states are no longer discrete. More precisely, an �-machine state for a
hidden Markov model is a distribution over the hidden states. Since this distribution is a vector
of real numbers, the causal states are continuous. In addition, this vector is normalized since the
components are state probabilities. The result is that the �-machine states for these processes can
be graphically represented as a point in a simplex. The simplex vertices themselves correspond
to �-distributions concentrated on one of the hidden Markov model states; the dimension of
the simplex is one less than the number of hidden states. In the simplex representation the
�-machine models are stochastic deterministic automata (SDA). Only a subset of the simplex
is recurrent. This subset corresponds to an attracting set under the dynamics of the agent’s
step-by-step prediction of the hidden state distribution based on the current data stream. Figure
17 shows the causal state simplices for three example processes.

The infinite, but countable state machine of Figure 15(a) is shown in this simplex represen-
tation in Figure 17(a) as a discrete point set in the 3-simplex. Each point, somewhat enlarged
there, corresponds to one of the states in Figure 15. Two more examples of �-machines are
given in Figures 17(b) and 17(c). They suggest some of the richness of stochastic finite pro-
cesses. In Figure 17(b), for example, the �-machine has a partial continuum of states; the causal
states lie on a “fractal”. Figure 17(c) shows an �-machine whose causal states limit on a full
continuum of states.

The different classes shown in Figure 17 are distinguished by a new complexity measure
of the �-machines’s state structure — the �-machine dimension ��� . ��� is the information
dimension of the state distribution on the simplex. In the case of the countable state �-machine
of Figure 17(a) �� is finite due to the strong localization of the state distribution over the earlier
states. But, since the states are a discrete point set, ��� � �. For the fractal and continuum
SDAs the statistical complexity diverges, but ��� � �. ��� is noninteger in the first case and
��� � � in the second. Further results will be presented elsewhere.[59]

The finitary stochastic hierarchy

The preceding examples of stochastic finitary processes can be summarized using the
computational model hierarchy of Figure 18. This hierarchy borrows the finite memory machines
of Figure 2 and indicates their stochastic generalizations. As before each ellipse denotes a model
class. As one moves up the diagram classes become more powerful in the sense that they can
finitely describe a wider range of processes than lower classes. A class below and connected to a
given one can finitely describe only a subset of the processes finitely described by the higher one.
Again, this hierarchy is only a partial ordering of descriptive capability. It should be emphasized
that “descriptive capability” above the Measure-Support line refers to finitely representing a
distribution over the sequences; not just the distribution’s supporting formal languages.
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(a)

(b) (c)

Figure 17 Stochastic deterministic automata (SDA): (a) Denumerable SDA: A denumerable �-machine for the simple
nondeterministic source of Figure 11. It is shown here in the (two-dimensional) 3–simplex defining its possible deterministic
states (indicated with enlarged dots). Since the state probability decays exponentially, the simulation only shows a very truncated
part of the infinite chain of states that, in principle, head off toward the upper vertex. Those dots correspond to the �s backbone
of Figure 15. The state on the lower lefthand vertex corresponds to the “reset” state ���� in that figure. (b) Fractal SDA: A
nondenumerable fractal �-machine shown in the 4–simplex defining the possible deterministic states. (c) Continuum SDA: A
nondenumerable continuum �-machine shown in the 3–simplex defining the possible deterministic states.

In formal language theory it is well-known that deterministic finite automata (���) are as
powerful as nondeterministic finite automata (���).[31] This is shown in the hierarchy as both
classes being connected at the same height. But the equivalence is just topological; that is, it
concerns only the descriptive capability of each class for sets of observed sequences. If one
augments these two classes, though, to account for probabilistic structure over the sequences,
the equivalence is broken in a dramatic way — as the above example for the “mismeasured”
logistic map demonstrated. This is shown in Figure 18 above the Measure-Support line. The
class of ���� is higher than that of the stochastic deterministic finite automata (����). Crudely
speaking, if a ��� has transition probabilities added to its edges, one obtains the single class
of ����. But if transition probabilities are added to an ���, then the class is qualitatively
more powerful and, as it turns out, splits into three distinct classes. Each of these classes is
more powerful than the ���� class. The new causal classes — called stochastic deterministic
automata (���) — are distinguished by having a countable infinity, a fractional continuum, or
a full continuum of causal states: the examples of Figure 17.

Initially, the original logistic map process as represented in Figure 11 was undistinguished
as an SNFA. Via the analysis outlined above its causal representation showed that it is equivalent
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Figure 18 The computational hierarchy for finite-memory nonstochastic (below the Measure-Support line) and stochastic discrete
processes (above that line). The nonstochastic classes come from Figure 2, below the Finite-Infinite memory line. Here “Support”
refers to the sets of sequences, i.e. formal languages, which the “topological” machines describe; “Measure” refers to sequence
probabilities, i.e. what the “stochastic” machines describe. The abbreviations are: A is automaton, F is finite, D is deterministic,
N is nondeterministic, S is stochastic, MC is Markov chain, HMM is hidden Markov model, RHMM is recurrent HMM, and
FMC is function of MC.

to a denumerable stochastic deterministic automaton (����). Generally, in terms of descriptive
power ���� � ���� as Figure 18 emphasizes. Recall that we interpret the SNFA as the
environment, which is a Markov chain (��), viewed through the agent’s sensory apparatus.
So the computational class interpretation of the complexity divergence is that �������
under measurement distortion. That is, �� and ���� are qualitatively different classes and,
in particular, �� � ����, as shown in the hierarchy of Figure 18. The representational
divergence that separates them is characteristic of the transition from a lower to a higher class.

5.3 The costs of spatial coherence and distortion

As an example of hierarchical structure and innovation for spatial processes this section
reviews an analysis of two cellular automata (CA). CA are arguably the simplest dynamical
systems with which to study pattern formation and spatio-temporal dynamics. They are discrete
in time, in space, and in local state value. The two examples considered have two local states
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Figure 19 (a) Elementary cellular automaton 18 evolving over 200 time steps from an initial arbitrary pattern on a lattice of
200 sites. (b) The filtered version of the same space-time diagram that reveals the diffusive-annihilating dislocations obscured
in the original. (After Ref. [66].)

at each site of a one-dimensional spatial lattice. The local state at a site is updated according to
a rule that looks only at itself and its two nearest neighbors.

Figure 19(a) shows the temporal development of an arbitrary initial pattern under the action
of elementary CA 18 (ECA 18). This rule maps all of the neighborhood patterns to 0; except
001 and 100, which are mapped to 1. A space-time diagram for elementary CA 54 (ECA 54)
is shown in Figure 20(a).

�-machine reconstruction applied to the patterns reveals much of the internal structure of
these systems’ state spaces and the intrinsic computation in their temporal development of spatial
patterns.[60] An important component of CA patterns are domains. CA domains are dynamically
homogeneous regions in space-time defined in terms of the same set of pattern regularities, such
as “every other site value is a �”. From knowledge of a CA’s domains nonlinear filters can
be constructed to show the motion and interaction of domains, walls between domains, and
particles. The result of this filtering process — shown in Figures 19(b) and 20(b) — is a higher
level representation of the original space-time diagrams in Figures 19(a) and 20(a). This new
level filters out chaotic (ECA 18) and periodic (ECA 54) backgrounds to highlight the various
propagating space-time structures — dislocations, particles, and their interactions that are hidden
in the unfiltered space-time diagrams.

In turns out that ECA 18 is described by a single type of chaotic domain — “every other
local state is 0, otherwise they are random” — and a single type of domain wall — a dislocation
that performs a diffusive annihilating random walk.[66] At the level of particles one discovers
an irreducibly stochastic description — the particle motion has vanishing statistical complexity.
Because the description of ECA 18 is finite at this level, one can stop looking further for intrinsic
computational structure. The correct �-machine level, that providing a finite description, has
been found by filtering the chaotic domains.

In ECA 54 there is a single periodic domain with a diversity of particles that move and
interact in complicated — aperiodic, but nonstochastic — ways. ECA 54 is more complex
that ECA 18, in the sense that even at the level of particles ECA 54’s description may not be
finite. Thus for ECA 54, one is tempted to look for a higher level representation by performing
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Figure 20 (a) Elementary cellular automaton 54 evolving over 200 time steps from an initial arbitrary pattern on a lattice of
200 sites. (b) The filtered version of the same space-time diagram that reveals a multiplicity of different particle types and
interactions. (From Ref. [67]. Reprinted with permission of the author. Cf. [68].)

�-machine reconstruction at this “particle” level to find further regularity or stochasticity and
ultimately to obtain a finite description.

These hierarchical space-time structures concern different levels of information processing
within a single CA. In ergodic theory terms, the unfiltered spatial patterns are nonstationary —
both spatially and temporally. With the innovation of domains and particles, the new level of
representation allows for stationary elements, such as the domains, to be separated out from
elements which are nonstationary. For ECA 18, discovering the dislocations lead to a stochastic
model based on a diffusive annihilating random walk that could be analyzed in some detail and
which explained the nonstationary aspects of the dislocation motion. For ECA 54 the description
at this level is still not completely understood.

Intrinsic computation in spatio-temporal processes raises a number of interesting problems.
Aside from the above, there is an analog for spatio-temporal processes of the apparent complexity
explosion in the stochastic nondeterministic processes. This led to the introduction of a new
hierarchy for spatial automata, in which CA are the least capable, that accounts for spatial
measurement distortion.[29] This spatial discrete computation hierarchy is expressed in terms
of automata rather than grammars.[63]

5.4 What to glean from the examples

Understanding the hierarchical structure embedded in the preceding examples required
crossing a model class boundary: from determinism to indeterminism, from finitary support
to finitary measure, from predictability to chaos, from undifferentiated patterns to domains and
particles, and from observed states to hidden internal states. Each of these transitions is a
phase transition in the sense that there is a divergence in a macroscopic observable — the
representation’s complexity — and in that the finitely-describable behaviors on either side of
the divergence are qualitatively distinct. Figure 21 attempts to summarize in a very schematic
way their relationship.

The point that the examples serve to make is that innovation of new computational structures
is required at each step. Just what needs to be innovated can be determined in very large
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measure by the state-grouping step in hierarchical �-machine reconstruction. As was stated
before, beyond the state-grouping it seems that there will always be some undetermined aspect
during the innovation step required of the agent. The undetermined aspect has been isolated by
the algorithmic portion of hierarchical �-machine reconstruction that groups lower level states
into a higher level state. To the extent it is undetermined, though, this step can be the locus of
a now highly-constrained search over a space of new mechanisms. In any evolutionary process,
such a space would be largely circumscribed by the agents’s internal structure and the search, by
how the latter can be modified. In this way, hierarchical �-machine reconstruction reduces the
search space for innovation by a substantial fraction and indicates where random search could
be most informative and effective.
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Figure 21 A schematic summary of the three examples of hierarchical learning in metamodel space. Innovation across transitions
from periodic to chaotic, from stochastic deterministic to stochastic nondeterministic, and from spatial stationary to spatial
multistationary processes were illustrated. The finite-to-infinite memory coordinate from Figure 2 is not shown. The periodic
to chaotic and deterministic to nondeterministic transitions were associated with the innovation of infinite models from finite
ones. The complexity (�) versus entropy (�) diagrams figuratively indicate the growth of computational resources that occurs
when crossing the innovation boundaries.

PART IV
OBSERVATIONS AND HYPOTHESES

1 Complexity as the Interplay of Order and Chaos
Neither order nor randomness are sufficient in and of themselves for the emergence of

complexity. Nor is their naive juxtaposition. As Alfred North Whitehead and many before
and after him knew, order and randomness are mere components in an ongoing process. That
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process is the subtlety in the problem of emergence. For Heraclitus, the persistence of change was
the by-product of an “attunement of opposite tensions”.[69] Natural language, to take one ever-
present example, has come to be complex because utility required it to be highly informative and
comprehensibility demanded a high degree of structure. For the process that is human language,
emergence is a simple question: How do higher semantic layers appear out of this tension?

As far as the architecture of information processing is concerned, these questions for natural
language have direct analogues in adaptation, evolution, and even in the development of scientific
theories.[70] While conflating these fields suggests a possible general theory of the emergence
of complexity, at the same time it reveals an ignorance of fundamental distinctions. Due to the
sheer difficulty of the nonlinear dynamics involved and to the breadth of techniques that must
be brought to bear, one must be particularly focused on concrete results and established theory
in discussing “emergence”.

In spite of receiving much popular attention, the proposals for “computation at the edge of
chaos”,[71] “adaptation toward the edge of chaos”,[72] and “life at the edge of chaos”[73] are
recent examples of the problems engendered by this sort of blurring of basic distinctions. Despite
the preceding sections’ review of the complexity versus entropy spectrum and their analyses of
processes in which higher levels of computation arise at the onset of chaos, there is absolutely
no general need for high computational capability to be near an “edge of chaos”. The infinite-
memory counter register functionality embedded in the highly chaotic hidden Markov model of
Figure 11 is a clear demonstration of this simple fact. More to the point, that stability and order
are necessary for information storage, on the one hand, and that instability is necessary for the
production of information and its communication, on the other hand, are basic requirements for
any nontrivial information processing. The trade-off between these requirements is much of what
computation theory is about. Moreover, natural systems are not constrained in some general way
to move toward an “edge of chaos”. For example, the very informativeness (�� � �) of natural
language means, according to Shannon, that natural language is very far and must stay away
from any “edge of chaos” (�� � �).

A critique of the first two “edge of chaos” proposals, which concern cellular automata, can
be found elsewhere.[74] Aside from the technical issues discussed there, all three proposals
exhibit a fatal conceptual difficulty. To the extent that they presume to address the emergence
of complexity, with reference neither to intrinsic computation nor to the innovation of new
information-processing architectures, they can provide no grounding for the key concepts —
“order”, “chaos”, “complexity”, “computation” — upon which their arguments rely.

The preceding development of statistical complexity, hierarchical �-machine reconstruction,
and various extensions to discrete computation theory is an alternative. The presentation gave a
broad overview of how three tool sets — the calculi of emergence: computation, dynamics, and
innovation — interrelate in three different problem areas: various routes to chaos, measurement
distortion and nondeterminism, and cellular automaton pattern formation. It suggested a way
to frame the question of how structure appears out of the interplay of order and randomness.
It demonstrated methods for detecting and metrics for quantifying that emergence. It showed
how the information processing structure of nonlinear processes can be analyzed in terms of
computational models and in terms of the effective information processing.



The Calculi of Emergence 47

2 Evolutionary Mechanics
The arguments to this point can be recapitulated by an operational definition of emergence.

A process undergoes emergence if at some time the architecture of information processing has
changed in such a way that a distinct and more powerful level of intrinsic computation has
appeared that was not present in earlier conditions.

It seems, upon reflection, that our intuitive notion of emergence is not captured by the
“intuitive definition” given in Part I. Nor is it captured by the somewhat refined notion of
pattern formation. “Emergence” is a groundless concept unless it is defined within the context
of processes themselves; the only well-defined (nonsubjective) notion of emergence would seem
to be intrinsic emergence. Why? Simply because emergence defined without this closure leads to
an infinite regress of observers detecting patterns of observers detecting patterns .... This is not a
satisfactory definition, since it is not finite. The regress must be folded into the system, it must be
immanent in the dynamics. When this happens complexity and structure are no longer referred
outside. No longer relative and arbitrary, they take on internal meaning and functionality.

Where in science might a theory of intrinsic emergence find application? Are there scientific
problems that at least would be clarified by the computational view of nature outlined here?

In several ways the contemporary debate on the dominant mechanisms operating in biological
evolution seems ripe. Is anything ever new in the biological realm? The empirical evidence
is interpreted as a resounding “yes”. It is often heard that organisms today are more complex
than in earlier epochs. But how did this emergence of complexity occur? Taking a long view,
at present there appear to be three schools of thought on what the guiding mechanisms are in
Darwinian evolution that produce the present diversity of biological structure and that are largely
responsible for the alteration of those structures.

The Selectionists hold that structure in the biological world is due primarily to the fitness-
based selection of individuals in populations whose diversity is maintained by genetic varia-
tion.[75] The second, anarchistic camp consists of the Historicists who hold fast to the Dar-
winian mechanisms of selection and variation, but emphasize the accidental determinants of
biological form.[76,77] What distinguishes this position from the Selectionists is the claim that
major changes in structure can be and have been nonadaptive. Lastly, there are the Structuralists
whose goal is to elucidate the “principles of organization” that guide the appearance of biological
structure. They contend that energetic, mechanical, biomolecular, and morphogenetic constraints
limit the infinite range of possible biological form.[16,73,78–81] The constraints result in a rel-
atively small set of structural attractors. Darwinian evolution serves, at best, to fill the waiting
attractors or not depending on historical happenstance.

What is one to think of these conflicting theories of the emergence of biological structure?
The overwhelming impression this debate leaves is that there is a crying need for a theory
of biological structure and a qualitative dynamical theory of its emergence.[82] In short, the
tensions between the positions are those (i) between the order induced by survival dynamics and
the novelty of individual function and (ii) between the disorder of genetic variation and the order
of developmental processes. Is it just an historical coincidence that the structuralist-selectionist
dichotomy appears analogous to that between order and randomness in the realm of modeling?
The main problem, at least to an outsider, does not reduce to showing that one or the other view
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is correct. Each employs compelling arguments and often empirical data as a starting point.
Rather, the task facing us reduces to developing a synthetic theory that balances the tensions
between the viewpoints. Ironically, evolutionary processes themselves seem to do just this sort
of balancing, dynamically.

The computational mechanics of nonlinear processes can be construed as a theory of structure.
Pattern and structure are articulated in terms of various types of machine classes. The overall
mandate is to provide both a qualitative and a quantitative analysis of natural information-
processing architectures. If computational mechanics is a theory of structure, then innovation via
hierarchical �-machine reconstruction is a computation-theoretic approach to the transformation
of structure. It suggests one mechanism with which to study what drives and what constrains
the appearance of novelty. The next step, of course, would be to fold hierarchical �-machine
reconstruction into the system itself, resulting in a dynamics of innovation, the study of which
might be called “evolutionary mechanics”.

The prototype universe of Figure 1 is the scaffolding for studying an abstract “evolutionary
mechanics”, which is distinguished from chemical, prebiotic, and biological evolution. That is,
all of the “substrates” indicated in Figure 1 are thrown out, leaving only those defined in terms of
information processing. This more or less follows the spirit of computational evolution.[83,84]
The intention is to expunge as much disciplinary semantic content as possible so that if novel
structure emerges, it does so neither by overt design nor interpretation but (i) via the dynamics
of interaction and induction and (ii) according to the basic constraints of information processing.
Additionally, at the level of this view mechanisms for genotypic and phenotypic change are
not delineated. In direct terms evolutionary mechanics concerns the change in the information-
processing architecture of interacting adaptive agents. The basic components that guide and
constrain this change are the following.

1. Modeling: Driven by the need for an encapsulation of environmental experience, an agent’s
internal model captures its knowledge, however limited, of the environment’s current state
and persistent structure.

2. Computation: Driven by the need to process sensory information and produce actions,
computation is the adaptive agent’s main activity. The agent’s computational resources
delimit its inferential, predictive, and semantic capabilities. They place an upper bound on
the maximal level of computational sophistication. Indirectly, they define the language with
which the agent expresses its understanding of the environment’s structure. Directly, they
limit the amount of history the agent can store in its representation of the environment’s
current state.

3. Innovation: Driven by limited observational, computational, and control resources, innova-
tion leads to new model classes that use the available resources more efficiently or more
parsimoniously.

The computational mechanics approach to emergence attempted to address each component in
turn, though it did not do so in the fully dynamic setting suggested by the prototype universe.
But evolutionary mechanics is concerned specifically with this dynamical problem and, as such,
it leads to a much wider range of questions.
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At the very least, the environment appears to each agent as a hierarchical process. There are
subprocesses at several different scales, such as those at the smallest scale where the agents are
individual stochastic dynamical systems and those at larger scales at which coordinated global
behavior may emerge. Each agent is faced with trying to detect as much structure as possible
within this type of environment. How can an evolutionary system adapt when confronted with
this kind of hierarchical process?
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Figure 22 Schematic diagram of an evolutionary hierarchy in terms of the changes in information-processing architecture.
An open-ended sequence of successively more sophisticated computational classes are shown. The evolutionary drive up the
hierarchy derives from the finiteness of resources to which agents have access. The complexity-entropy diagrams are slightly
rotated about the vertical to emphasize the difference in meaning at each level via a different orientation. (Cf. Table 1.)

Figure 22 gives a very schematic summary of one of the consequences following from
this framework in terms of successive changes in information-processing architecture. The
underlying representation of the entire prototype universe, of course, is the realization space
of nonlinear processes — the orbit space of dynamical systems. The figure shows instead
a temporal analog of the discrete computation hierarchy of Figure 2 in which the trade-offs
within each computational level are seen through the complexity-entropy plane. The overall
evolutionary dynamic derives from agent interaction and survival. Species correspond in the
realization space to metastable invariant languages: they are temporary (hyperbolic) fixed points
of the evolutionary dynamic. Each species is dual to some subset of environmental regularities
— a niche — whose defining symmetries some subpopulation of agents has been able to discover
and incorporate into their internal models through innovation. Innovation then manifests itself as
a kind of speciation. The invariant sets bifurcate into computationally distinct agents with new,
possibly-improved capabilities. The statistical mechanical picture of this speciation is that of a
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phase transition between distinct computational “thermodynamic” phases. Through all of this
the macro-evolutionary observables — entropy rate ��, statistical complexity ��, and innovation
� — monitor changes in the agents’ and the universe’s information-processing architecture.

Evolutionary mechanics seems to suggest that the emergence of natural complexity is a
manifestly open-ended process. One force of evolution appears in this as a movement up the
inductive hierarchy through successive innovations. This force of evolution itself is driven at
each stage by the limited availability of resources.

Some new principle of refreshment is required. The art of progress
is to preserve order amid change, and to preserve change amid
order. Life refuses to be embalmed alive.

A. N. Whitehead in Process and Reality.[1]
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