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Abstract

A concise commentary on observing and modeling complexity

within the framework of dynamical systems, information, and

computation theories. Deterministic chaos, randomness,

order, predictability, uncertainty, and complexity are

contrasted. The descriptive abstraction of state is seen

to be a natural extension of the symbolization necessary

for language and of the number concept. Philosophical

consequences of deterministic chaos are noted.
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Chaos and Complexity

Chaos is the deterministic production of behaviour that is unpredictable over

long times. Although there are a number of ways to express its defining

properties, a simple example will serve to introduce the key considerations in

deterministic chaos: the breakdown of predictability, observation of a complex

process, and the mathematical effort required to forecast. These have their

analogues in the dynamical systems theory of chaos, information theory of

measurement, and computation theory of modeling.

The weather is often considered a prime example of unpredictable be-

haviour. In fact, it is quite predictable. Over the period of one minute (say),

one can surely predict it. With a glance out the nearest window to note the

sky’s disposition, one can immediately report back a forecast. To predict over

one hour, one would search to the horizon, noting more of the sky’s prevail-

ing condition. Only then, and not without pause to consider how that might

change during the hour, would one offer a tentative prediction. If asked to

forecast two weeks in advance one would probably not even attempt the task

since the necessary amount of information and the time to assimilate it would

be overwhelming. Despite the long term unpredictability, a meteorologist can

write down the equations of motion for the forces controlling the weather

dynamics in each case. In this sense, the weather’s behaviour is symbolically

specified in its entirety. How does unpredictability arise in such a situation?

The short answer is that the governing natural laws, even though express-

ible in a compact symbolic form, can implicitly prescribe arbitrarily compli-

cated behaviour. To the extent that the natural laws are objectively understood,

they are written asequations of motion. These are a procedure that, given a

sufficient measurement of a system’s configuration, specifies how to compute

future behaviour. Often articulated in the language of differential calculus,

the equations of motion codify the interplay of the components of a system’s

configuration. They are, in fact, incremental rules, i.e. analgorithm, that

determine the configuration at the next moment in terms of the one imme-

diately preceding. Forecasting, though, requires knowing the behaviour for

any future time.
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The belief that this could be done and the assumption that it was easy to

do so was most succinctly expressed by Laplace more that two centuries ago:

The present state of the system of nature is evidently a consequence of

what it was in the preceding moment, and if we conceive of an intelligence

which at a given instant comprehends all the relations of the entities of the

universe, it could state the respective positions, motions, and general affects

of all these entities at any time in the past or future.

While Newton’s and Leibniz’s invention of the differential calculus gave a

new language with which to model natural phenomena, its direct implementa-

tion as a procedural description has only recently become feasible. Before this

time, when sequential, compounded computation could only be performed by

hand, even the simplest prediction problems demanded arduous and typically

impractical effort. Thus, mathematical techniques were developed toinvert

the equations of motion. In the limited settings for which this could be carried

out, viz. linear equations, the analytic methods yieldedclosed-form solutions

which short-cut the direct incremental computation of future behaviour. The

main characteristic of linear equations is that given two solutions a third may

be found as their sum.

A vast array of phenomena do not share this property. Despite this limi-

tation, closed-form solution has been the dominant criterion for understanding

dynamical behaviour since the time of Newton. Its range of applicability has

ceased increasing. The types of phenomena now demanding scientific atten-

tion, such as the weather and even substantially smaller systems, are explicitly

non-linear and do not, even in principle, allow for closed-form solution. That

there was a fundamental limit to finding closed-form solutions was appreciated

by Poincaré at the turn of this century. Although he despaired of this, he was

also the initiator of the alternative approach to describing complex behaviour,

qualitative dynamics, which later becamedynamical systems theory.

Dynamical Systems Theory

A central abstraction in dynamical systems theory is that the instantaneous

configuration of a process is represented as a point, orstate, in a space of
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states. Thedimension of the state space is the number of numbers required

to specify uniquely the system’s configuration at each instant. With this, the

temporal evolution of the process becomes the motion from state to state along

an orbit or trajectory in the state space.

For a simple clock pendulum the state space is the two-dimensional plane.

A state here consists of two numbers: one denoting the position, the other

the velocity. The state space of a fluid in a closed box is the collection

of all velocity fields: the space of all possible instantaneous changes in fluid

particle positions. If every particle moves independently, the dimension of the

equivalent dynamical system is exceedingly large: proportional to the number

of particles. Despite the difficulty in picturing this representation directly, the

temporal evolution of the fluid is abstractly associated with a trajectory in

this high-dimensional state space. In the fortunate case when there is strong

coherence between components of a large system or when the system itself

has only a few significant components, the trajectory can be visualized in a

much lower dimensional space.

If a temporal sequence of configurations is observed to be stable under

perturbations and is approximately recurrent, then the trajectory is said to lie on

an attractor in the state space. The attractor concept is a generalization of the

classical notion of equilibrium. One of the main contributions of (dissipative)

dynamical systems theory is the categorization of all long-term behaviour into

three attractor classes. Afixed point attractor is a single, isolated state toward

which all neighbouring states evolve. Alimit cycle is a sequence of states

that are repetitively visited. These attractors describe predictable behaviour:

two orbits starting from nearby states on such an attractor stay close as they

evolve. Unpredictable behaviour, for which the latter property is not true,

is described bychaotic attractors. In a crude approximation, these are often

defined negatively as attractors that are neither fixed points, limit cycles, nor

products of limit cycles.

There are several complementary descriptions of the basic properties of

chaotic attractors. Analytically, they consist of highly convoluted orbits. An

infinite number of unstable limit cycles and an infinite number of aperiodic

orbits can be embedded in a chaotic attractor. Topologically, chaotic attrac-
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tors often display self-similar, orfractal, structure. Geometrically, although

globally stable to perturbations off the attractor, they exhibit average local

instability. Orbits starting at close initial states on a chaotic attractor sepa-

rate exponentially fast. Physically, this local instability amplifies microscopic

fluctuations to affect macroscopic scales. Although the resulting macroscopic

behaviour may be predictable over sufficiently short times, to an observer it is

unpredictable over long times. Even in the absence microscopic fluctuations,

forecasting typical chaotic orbits requires maximal computational effort on the

part of an observer who knows the governing equations of motion. The size of

the minimal computer program to predict grows with the length of the forecast.

Aside from attractor classification, another significant contribution of

dynamical systems theory is a geometric picture oftransients: how states

off an attractor relax onto it. An attractor’sbasin of attraction is the set of all

initial states that evolve onto it. There can be multiple basins, so that radically

different behaviour may be seen depending on the initial configuration. The

complete catalogue of attractors and their basins for a given dynamical system

is called itsattractor-basin portrait.

Dynamical systems theory is also the study of how attractors and basin

structures change with the variation of external control parameters. Abifur-

cation occurs if, with the smooth variation of a control, the attractor-basin

portrait changes qualitatively.

Sources of Randomness

To summarize, dynamical systems theory has identified three sources of

unpredictability or effective randomness.

1. Sensitive dependence on initial condition: To which attractor does the

system go? The borders between basins can be highly convoluted, so

that completely different attractors can be seen with very small changes

in initial condition.

2. Deterministic chaos: This is unpredictability of long-term behaviour due

to local instability on the attractor.
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3. Sensitive dependence on control parameter: The attractor-basin portrait

can be arbitrarily sensitive to changes in control parameters.

Poincaré expressed an appreciation that such sensitivities could arise in

systems governed by known laws as follows

But even if it were the case that the natural laws had no longer any secret

for us, we could still only know the initial situationapproximately. If that

enabled us to predict the succeeding situation with thesame approximation,

that is all we require, and we should say that the phenomenon had been

predicted, that it is governed by laws. But it is not always so; it may

happen that small differences in the initial conditions produce very great

ones in the final phenomena. A small error in the former will produce an

enormous error in the latter. Prediction becomes impossible, and we have

the fortuitous phenomenon.

The remark closes with an implicit operational definition of randomness as

a phenomenon which appears fortuitous due to ignorance. This and similar

notions of uncertainty play an important role in probabilistic descriptions of

unpredictable behaviour.

In chaotic systems uncertainty and approximation are rapidly amplified.

This precludes not only the long-term prediction of their behaviour, but

also the closed-form solution of their equations of motion. Reminiscent

of quantum theory, the first difficulty necessitates, even in the classical

setting of dynamical systems, a complete accounting of the measurement

process. The second requires a computational theory of inferring models

from measurements.

Information and Measurement

An observation of a natural process entails measurement of its state. The

act of measurement is a codification of the physical configuration. But how

much do observations tell one about the process? Information theory measures

the amount of information in an observation as the negative logarithm of its

probability. Information itself is never rigorously defined; it is only quantified.

The most concise attempt, however, is due to Bateson: information is a
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difference that makes a difference. This expresses the origin of information

in the unanticipation of an event and also its essential relativity.

The average information contained in isolated measurements is called the

dimension of the underlying process: the minimum amount of information

necessary to uniquely identify a configuration. In a complementary way

the dynamical entropy quantifies how much can be predicted about the next

measurement given that one knows the entire history up to that point. It

measures the average temporal rate of information loss once a measurement

is made. If a process is chaotic a new measurement must be made after a

short time since the information about its previous state is lost. From the

observer’s viewpoint, the dynamical entropy is the rate at which a process

produces new information.

Information theory does not give a direct indication of a process’s underly-

ing geometric structure, since it is a probabilistic description of the behaviour.

The geometry of the underlying attractor can be recovered, however, even from

a single component time series produced by a multi-dimensional process. Re-

construction methods produce an equivalent state space representation from a

time series of observations. They provide a direct connection between exper-

imental data and the geometric tools of dynamical systems theory.

Complexity and Modeling

The minimal computation required to forecast and to model observed be-

haviour are two measures of its complexity. They are especially important

for deterministic chaos. Since there are no closed-form solutions for chaotic

orbits, there are no algorithmic short-cuts enabling one to avoid direct incre-

mental computation of future states from the equations of motion. Laplace

parenthetically acknowledged the importance of computation complexity for

exact prediction:

But ignorance of the different causes involved in the production of events,

as well as their complexity, taken together with the imperfection of anal-

ysis, prevents our reaching the same certainty about the vast majority of

phenomena.
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The complexity associated with forecasting dynamical systems, introduced

by Chaitin and Kolmogorov as a computational measure of randomness, is

equivalent to the dynamical entropy. A repetitive process is easy to predict,

since there are only a few measurement sequences to anticipate. An ideal

random process is difficult to predict due to the diversity of sequences.

The repetitive process produces little or no information; the random process

produces a maximal amount.

The complexity of modeling, however, is complementary to such “ran-

domness” measures. The model of the repetitive process is simple: listing

the basic pattern again and again is all that is required. The random process

is also quite simple, but from a statistical viewpoint. For a random process,

one’s model is simply to guess at successive measurements. Both repetitive

and random processes have low modeling complexity. A complex process is

an amalgam of both deterministic and random computations.

Modeling complexity is maximized in processes that are at the border

between order and chaos. This is a concise summary of the information

processing capabilities of dynamical systems. It is particularly germane to

processes at phase transitions, such as the transition between ice (order) and

water (chaos). For adaptive and evolving systems, such as found in biology,

the notion of modeling complexity captures the necessary interplay between

innovation and utility of function. Innovation allows an organism to adapt to

a changing environment. Ordered behaviour and structure are necessary as a

foundation for further evolution and in order to take advantage of regularity.

Methodology

Deterministic chaos has found its particular niche in the taxonomy of com-

plex dynamical behaviour. Indeed, research has advanced to an “engineering”

phase in which chaos is designed to control, eliminate, or enhance unpre-

dictability.

Deterministic chaos forced a change in scientific methodology away from

the emphasis on closed-form representations for single orbits. One result is

that the Baconian notion of inexorable progress in the refinement of scientific
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theories via experimentation is not strictly valid, since a model prediction will

eventually differ from observed behaviour. The error in this prediction can be

as large as the attractor itself. The refinement of a “theory” for a single chaotic

orbit cannot be improved beyond that irreducible and large error. One response

is to use probabilistic descriptions of the apparent random behaviour. This

ignores the tremendous structure in deterministic behaviour, such as the short-

term predictability and the shape of a chaotic attractor. Qualitative dynamics

is a geometric approach intermediate between exact solution and probabilistic

methods.

Chaos, though, is only a shadow of forms of complicated behaviour still

to be perceived. What will last, then, is not so much the phenomenon of

deterministic chaos, but rather the methodology,experimental mathematics,

that has been developed to explore it. The goal there is to circumvent the

analytical and expressive deficiencies of closed-form solutions in order to

directly explore the complexity of analytic models. Digital computers have

facilitated much of its development by providing access to vast amounts

of numerical computation. The basic methodology draws on the geometric

representations from dynamical systems theory, the quantitative probabilistic

descriptions of information theory, and the structural analysis of complexity

developed in computation theory.

Name, Number, State

The primary concept on which dynamical systems theory and its applications

rest is the notion ofstate. From a scientific-historical perspective, the very

recent use of the state concept is seen as only the most recent example of

a series of improved descriptive abstractions. These are modes of symbolic

representation that facilitate modeling the perceived world. The first in the

series might be taken to be the development of language, or more basically, the

naming of objects in the perceptual environment. The second was the number

concept which gave a refined precision in differentiating named objects.

In the development of descriptive abstractions, new modes do not replace

existing ones, but instead are built out of them in a procedural hierarchy:



9 J. P. Crutchfield

number is an ordering property of sets of named objects. Each mode sets

the substrate for a level of modeling and so the complexity at that level

depends on that of the lower levels. Although number is an essential aspect

of the measurement process, the state abstraction builds on it and introduces

a geometrization of procedure. Through it time and, especially, the evolution

of behaviour become objects for description.

Philosophy of Chaos

The discovery of deterministic chaos and the success of dynamical systems

theory belie a re-invigoration of mechanism. Unlike the determinant and

lifeless mechanism of a century ago, mechanical systems are now seen as

sources of effective randomness, surprise, and innovation. At one and the

same time subjectivity enters in an essential way into descriptions of complex

behaviour.

The detailed structural theory of chaos and the vast array of non-linear

systems exhibiting it make it clear thatrandomness is an ideal only approx-

imable by physical processes. It is characteristic of scientific progress that

original concepts give way to a refined understanding. Major advancements

in scientific knowledge often exact a toll in discovery of new limitations of

the explanatory reach of the existing world view. With the development of

geometric descriptions of complexity, there comes the appreciation of the

fundamental limits on their predictability.

Many problems in dynamical systems theory derive from the essential

tension between local determinism and global indeterminism. The equations

of motion specify local space-time rules and so determine the evolution from

an initial state entirely. Nonetheless, the long-term and large-scale structures

responsible for the observed properties cannot be directly inferred from them.

When observed with any finite accuracy, chaotic processes exhibit a preferred

direction of time, even though the microscopic equations do not. Via local

instability microscopic determinism leads to macroscopic irreversibility.

The behaviour of non-linear systems cannot be understood solely in terms

of their constituents’ behaviour. Indeed, it is the very interaction of the
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constituents that produces complex behaviour. The reductionist methodology

fails entirely to capture the structures that arise specifically due to interaction.

From the mechanistic viewpoint, the physical brain is the substrate sup-

porting the mind. There is now the stronger dynamic interpretation: the mind

is the dynamics of the brain. Chaos sheds no light on the literal interpretation

of the problem of a mind expressing free will. The classical universe described

by dynamical systems theory is deterministic. The existence of deterministic

chaos does, however, expand the discussion of free will to include the notion

of stability of the physical substrate. A system can appear to haveeffective

free will in the sense that no one, especially not the system itself, can decide

whether its macroscopic behaviour is completely determined, let alone fully

predict it. If deterministic chaos were found via experimental investigation to

be an essential and common behavioural mode of the physical brain, then one

could reasonably conclude that individuals express effective free will.
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