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3.11 Ratchet thermodynamic-function phase diagram: In the leftmost (red) re-
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4.9 The dashed (orange) line indicates average work production 〈W 〉 per time

step. It lies above the dotted (green) curve that indicates the IPSL entropy-

rate bound on 〈W 〉 (Eq. (4.1)), indicating a violation of the latter. The

interpretation of the violation comes from the solid (blue) curve that in-
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together. We see a violation of the entropy-rate bound since there is con-

tinuous entropy production in the ratchet’s (infinite) state space. . . . . 118
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5.1 Shannon measures for physical information transduction—general case of

nonunifilar transducers: Transducer output past
←−
Y ′ and output future

−→
Y ′

left (blue) and right (red) ellipses, respectively; shown broken since the

future and past entropies H[
←−
Y ′] and H[

−→
Y ′] diverge as hµ`, with ` being the

length of past or future, respectively. H[X0] illustrates the most general

relationship the generating transducer state X0 must have with the process

future and past. Implementation cost I[X0;
←−
Y ′] = 〈Qimpl〉min/kBT ln 2 is

highlighted by a dashed (red) outline. . . . . . . . . . . . . . . . . . . . 135
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5.2 Optimal physical information transducers–predictive and retrodictive pro-

cess generators: Process generator variables, predictive statesR and causal

states S, denoted with green ellipses. Being the minimal set of predictive

states, causal states S are contained within the set of general predictive

states R. A given process has alternative unifilar (R+
0 or S+

0 ) and co-

unifilar generators (R−0 or S−0 ). Component areas are the sigma-algebra

atoms : conditional entropies—entropy rate hµ and crypticities χ+ and

χ−—and a mutual information—the excess entropy E′. Since the state

random variables R+
0 and S+

0 are functions of the output past
←−
Y ′, their

entropies are wholly contained within the past entropy H[
←−
Y ′]. Similarly, co-

unifilar generators, denoted by the random variables R−0 and S−0 , are func-

tions of output future
−→
Y ′. Thus, their entropies are contained within the

output future entropy H[
−→
Y ′]. The ε-machine generator with causal states

S+
0 is the unifilar generator with minimal Shannon entropy (area). The

random variable R−0 realizes the current state of the minimal co-unifilar

generator, which is the time reversal of the ε-machine for the time-reversed

process [2]. Transducers taking the form of any of these generators pro-

duce the same process, but structurally distinct generators exhibit different

dissipations and thermodynamic implementation costs. . . . . . . . . . . 137
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6.1 Local computations operate on only a subset Z i of the entire information

reservoir Z = Z i ⊗ Zs. The Markov channel that describes the global

dynamic is the product of a local operation with the identity operation:

Mglobal

(zit,z
s
t)→(zit+τ ,z

s
t+τ )

= M local
zit→zit+τ

δzst ,zst+τ , such that the stationary noninter-

acting portion Zs of the information reservoir remains invariant, but the

interacting portion Z i changes. . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 Information diagram for a local computation: Information atoms of the

noninteracting subsystem H[Zs
t ] (red ellipse), the interacting subsystem

before the computation H[Z i
t] (green circle), and the interacting subsystem

after the computation H[Z i
t+τ ] (blue circle). The initial state of the inter-

acting subsystem shields the final state from the noninteracting subsystem;

graphically the blue and red ellipses only overlap within the green ellipse.

The modularity dissipation is proportional to the difference between infor-

mation atoms I[Z i
t;Z

s
t ] and I[Z i

t+τ ;Z
s
t ]. Due to statistical shielding, it sim-

plifies to the information atom I[Z i
t;Z

s
t |Z i

t+τ ], highlighted by a red dashed

outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
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6.3 Multiple physical methods for transforming the Golden Mean Process in-

put, whose ε-machine generator is shown in the far left box, into a sequence

of uncorrelated symbols. The ε-machine is a Mealy hidden Markov model

that produces outputs along the edges, with y : p denoting that the edge

emits symbol y and is taken with probability p. (Top row) Ratchet whose

internal states match the ε-machine states and so it is able to minimize

dissipation—〈Σext
∞ 〉min = 0—by making transitions such that the ratchet’s

states are synchronized to the ε-machine’s states. The transducer represen-

tation to the left shows how the states remain synchronized: its edges are

labeled y′|y : p, which means that if the input was y, then with probability

p the edge is taken and it outputs y′. The joint Markov representation on

the right depicts the corresponding physical dynamic over the joint state

space of the ratchet and the interaction symbol. The label p along an edge

from the state x⊗ y to x′⊗ y′ specifies the probability of transitioning be-

tween those states according to the local Markov channel M local
(x,y)→(x′,y′) = p.

(Bottom row) In contrast to the efficient predictive ratchet, the memoryless

ratchet shown is inefficient, since it’s memory cannot store the predictive

information within the input ε-machine, much less synchronize to it. . . 164
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uncertainty H[S+
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past. (Right) The time reversal of the reverse-time ε-machine has the

minimal set of states required to retrodictively generate the output. Its

states are a function of the output future. Thus, its uncertainty H[S−N ] is
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6.5 Alternative generators of the Golden Mean Process: (Right) The process’

ε-machine. (Top row) Optimal generator designed using the topology of

the minimal retrodictive generator. It is efficient, since it stores as little

information about the past as possible, while still storing enough to gen-

erate the output. (Bottom row) The predictive generator stores far more

information about the past than necessary, since it is based off the pre-

dictive ε-machine. As a result, it is far less efficient. It dissipates at least

2
3
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the HMM is the ε-machine, whose states are a function of the past. At

z = 1.0, the HMM is the time reversal of the reverse-time ε-machine, whose

states are a function of the future. The modularity dissipation decreases

monotonically as z increases and the hidden states’ memory of the past

decreases. (Bottom) Information diagrams corresponding to the end cases

and a middle case. Labeling as in Fig. 6.4. . . . . . . . . . . . . . . . . 173
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input YN , current ratchet state XN , and input future YN+1:∞, excluding
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Abstract

Thermodynamics of Correlations and Structure in Information Engines

Understanding structured information and computation in thermodynamics systems is

crucial to progress in diverse fields – from biology at a molecular level to designed nano-

scale information processors. Landauer’s principle puts a bound on the energy cost of

erasing a bit of information. This suggests that devices which exchange energy and

information with the environment, which we call information engines, can use information

as a thermodynamic fuel to extract work from a heat reservoir, or dissipate work to erase

information. However, Landauer’s Principle on its own neglects the detailed dynamics of

physical information processing – the mechanics and structure between the start and end

of a computation. Our work deepens our understanding of these nonequilibrium dynamics,

leading to new principles of efficient thermodynamic control. We explore a particular

type of information engine called an information ratchet, which processes a symbol string

sequentially, transducing its input string to an output string. We derive a general energetic

framework for these ratchets as they operate out of equilibrium, allowing us to exactly

calculate work and heat production. We show that this very general form of computation

must obey a Landauer-like bound, the Information Processing Second Law (IPSL), which

shows that any form of temporal correlations are a potential thermodynamic fuel. We

show that in order to leverage that fuel, the autonomous information ratchet must have

internal states which match the predictive states of the information reservoir. This leads

to a thermodynamic principle of requisite complexity, much like Ashby’s law of requisite

variety in cybernetics. This is a result of the modularity of information transducers. We

derive the modularity dissipation, which is an energetic cost beyond Landauer’s bound that

predicts the structural energy costs of different implementations of the same computation.

Applying the modularity dissipation to information ratchets establishes design principles

for thermodynamically efficient autonomous information processors. They prescribe the

ratchet’s structure such that the computation saturates the bound set by the IPSL and,

thus, achieves maximum thermodynamic efficiency.

-xix-



Acknowledgments

I am grateful for the chance to work with my Ph.D. advisor, Professor James P. Crutch-

field, because of his incredible support and vision. Without his mentorship and guidance,

and the financial support of the Army Research Office, through the Multidisciplinary Re-

search Initiative on Information Engines, this work would not be possible. The University

of California in Davis also provided a wonderful collaborative learning environment where

I could pursue my interests and work with amazing people. Professor Crutchfield fosters

a brilliant community of scientists at the University of California, Davis, and beyond,

because of his deep insight into the structure of the natural world, as well as his bold and

creative attitude towards science. He gave me, and many others, the space and means

to pursue scientific passions, all while insisting on incisive analytic precision, and guiding

the work with his impressive intuition. Studying the physics of information processing

with Professor Crutchfield has been one of the greatest adventures of my life.

The work presented in this dissertation started with a small seed, when I first met

Dr. Dibyendu Mandal at the winter Mini Stat Mech meeting at UC Berkeley in 2013. I

found his proposed model of an autonomous Maxwell’s demon fascinating but perplexing.

Dr. Mandal graciously answered my questions, helping me to better understand the

nonequilibrium thermodynamics that underly the model, but I left feeling that I still

had much more to learn. Fortunately for me, I got that opportunity when Professor

Crutchfield organized joint meetings between the three of us. Since then, we’ve taken a

deep dive into the physics of transducers presented in this dissertation.

Dr. Mandal’s thoughtful and grounded approach to physics has been an invaluable

asset to our work. He showed me how to be a diligent student of the field’s to which we

contribute. Without his deep understanding nonequilibrium statistical mechanics, this

work could have never taken off. His voice is interwoven in every part of it. I am grateful

for his integrity and all that he taught me about physics and being a scientist.

Dr. Paul Riechers, in addition to making invaluable contributions to the thermody-

namics of synchronization as a colleague, is a good friend. His tenacious work ethic,

sparkling intellect, and infectious optimism serve as inspiration for me. He challenged me

-xx-



to consider beyond what is, and imagine what can be. I’ve taken this lesson to heart, both

in my work and in my life. Through example, he shows that with hopeful confidence and

commitment, you can achieve incredible things and surprise even yourself.

Professor Crutchfield, Dr. Mandal, and Dr. Riechers are the principal collaborators

in the work presented in this dissertation, but many more people have contributed to my

six year journey at Davis.

Dr. Korana Burke is a champion, pulling me into the scientific community by inviting

me to share my findings and connect with other scientists. I am lucky to have her as a

friend and mentor. Her helpful critiques and comments refined my public voice so that

I could effectively communicate my work to my peers. Watching her commitment to

building our community of nonequilibrium dynamicists, I learned that an essential part

of being a good scientist is being a good person. I strive to pay forward the invaluable

generosity she has shown me through her mentorship.

While I don’t present the results of our efforts here, working with Greg Wimsatt is

a joy and has been an essential part of my growth. His desire to understand on the

deepest level is a constant reminder of why I choose to pursue physics. He grounds me

and challenges me to consider fundamental questions. As a friend, he helps me see the

world from new angles, which can be a struggle. However, I am always grateful for how

he expands my perspective.

My mother, Joan, showed me the value of patience and persistence. I strive to follow

the example she sets through her kindness and shining empathy. Her commitment to the

idea that everyone deserves compassion helped me see the importance of understanding

others’ contributions and cultivating humility.

My father, Wes, nurtured my curiosity and fostered my love of physics from a young

age. He wouldn’t answer many of my questions, but he encouraged them nonetheless.

He showed me that the process of inquiry is a reward in itself, even if the answers are

inaccessible. He helped me see the joy of a good question.

My sister, Robin, and cousin, Willie, are incredible friends. I am grateful that, while

we pursued our separate adventures, we stayed close. Growing with both of them has

-xxi-



been one of the great joys of my life.

My family’s unwavering love anchored me through the highs and lows of my graduate

degree. Failure, success, confusion, inspiration; my family was there for all of it. They

gave me the courage to pursue a dream that I’ve nurtured since before I knew what physics

was: to be a discoverer, searching for the fundamental laws of nature.

-xxii-



Chapter 1

Nonequilibrium Thermal Physics of

Information Processing

1.1 Introduction

In 1867 James Clerk Maxwell famously proposed that an intelligent and “neat fingered”

being, later referred to as Maxwell’s demon [3], would be able to observe and subsequently

control its environment in such a way that it could turn thermal fluctuations into useful

work. This suggested that there was a thermodynamic benefit to processing information

in the environment, but also posed a challenge to the Second Law of thermodynamics.

The demon seemed to violate fundamental tenant of thermodynamics, that the entropy

of the universe never decreases, as the demon could steadily transform disordered thermal

energy into ordered work energy, decreasing the disorder/entropy of the universe. It

wasn’t until physicists began building physical information processing devices in the past

century that they resolved this apparent and paradoxical violation of the Second Law of

thermodynamics.

Physically processing information has a thermodynamic cost. Landauer showed that,

because of state space compression, erasing a bit at temperature T requires a minimum

work investment of

〈W erase〉min = kBT ln 2, (1.1)

known as Landauer’s Principle [4]. Thus, Maxwell’s demon is limited by the thermody-
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namic cost of its own information processing or intelligence. It may measure its environ-

ment and control it to extract work, as described in Maxwell’s experiment, but Landauer’s

Principle guarantees that the cost of this information processing outweighs any benefit it

could gain from that measurement. There are costs and benefits information processing,

but the benefits are always outweighed by the costs if the demon had finite memory.

With finite memory, the demon eventually reaches the limits of its storage and must

begin erasing what it observed. But, what if, rather than erasing what it measured,

it is able to write and store that information in a memory bank. The demon would, in

theory, function as originally intended and turn thermal energy into useful work. However,

in this new picture, the demon no longer violates the Second Law of thermodynamics,

because the increase in Shannon entropy of the memory bank corresponds to an increase

in thermodynamic entropy which balances the work generation. This memory bank is

a type of thermodynamic resource, called an information reservoir, which contains the

information bearing degrees of freedom [5]. An information reservoir can be used in

conjunction with work and heat reservoirs to perform useful operations.

A device that interacts with an information reservoir, heat reservoir, and work reservoir

is called an information engine. An information engine functions much like a heat engine,

which uses the temperature difference between a hot and cold heat reservoir to move

energy into a work reservoir, as shown in Fig. 1.1. In the same way, an information

engine can use the order in an information reservoir as a thermal “fuel” [6] to produce

work.

The first example of a device that can reliably use an information reservoir as a re-

source was an exactly solvable Maxwell’s demon [7]. This demon interacted with each bit

in a semi-infinite string sequentially, making thermally activated transitions and so facil-

itating work generation. The work produced by such a device was bounded by kBT ln 2

times the Shannon entropy produced in the string, preserving the Second Law of thermo-

dynamics. This particular type of information engine, which autonomously processes the

information in a symbol string unidirectionally, transducing inputs to outputs, is known

as an information ratchet. It is the focus of this work.
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Figure 1.1. (Left) A heat engine uses the natural tendency of energy to from a hot to
cold reservoir, and syphons off some of the energy to generate useful work. The work
is bounded by the net heat dissipated from a hot thermal reservoir times the Carnot
efficiency. (Right) An information engine uses the natural tendency of an information
reservoir (shown in the bottom) to randomize in order to move energy directly from a
thermal reservoir to a work reservoir. The work production is bounded by the change
in uncertainty in the information reservoir ∆H times the temperature of the heat
reservoir T .

These devices express a wide variety of behavior—creating, destroying, and transform-

ing structured (temporally correlated) signals. They present a general thermodynamic

framework for computational devices that use internal states to map inputs to outputs.

We show that there are thermodynamic limits on the energetics of their behavior, much

like Landauer’s bound. Moreover, we show how achievable these bounds are, quantify-

ing the thermodynamic efficiency of different implementations of the same computation.

These measures lead to a general theory of thermodynamically efficient computing.
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1.2 Identifying Functional Thermodynamics

In the original work on information ratchets, it was shown that they can autonomously

use ordered inputs to turn thermal energy into work, acting as an engine. Or, they can

create order in the output using work, acting as an “eraser” [7]. These two functionalities

illustrate the interplay between information and energy in the equation for average global

entropy production 〈Σ〉 when manipulating information bearing degrees of freedom [8, 9]

〈Σ〉 = −〈W 〉 − kBT ln 2∆H, (1.2)

where 〈W 〉 is the average work produced by the system and ∆H is the change in Shannon

entropy of the information bearing degrees of freedom. Because the entropy production

must be non-negative, the work investment in a thermodynamic process must exceed the

change in uncertainty of the information bearing degrees of freedom.

However, initial investigations of information ratchets only considered the order in a

single bit of the input, independent of other inputs. It was shown [7, 10] that the change

in uncertainty of a single bit, from input to output, bounded the work production in

special cases

〈W 〉 ≤ kBT ln 2(H[Y ′N ]−H[YN ]). (1.3)

Here, H[Z] denotes the Shannon entropy of the random variable Z [11], which is expressed

H[Z] = −
∑

z∈Z

Pr(Z = z) log2 Pr(Z = z), (1.4)

where z are taken from the alphabet of possible realizations Z. However, all order in an

input is not necessarily detectible through single-symbol entropies. The true change in

accessible free energy in the input comes from considering the Shannon entropy of the

whole string Y0:∞ = Y0Y1Y2 · · · . Temporal correlations can exist within the string, such

that the uncertainty per symbol, known as the entropy rate [12]

hµ = lim
`→∞

H[Y0:`]

`
, (1.5)

diverges from the single symbol entropy. The difference H[YN ] − hµ is the length-1 re-

dundancy [12]—one useful measure of temporal correlations. This redundancy reflects
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the contribution of global correlations to the available nonequilibrium free energy in the

symbol string. We show that if you take into account the global correlations in the infor-

mation reservoir, which amount to temporal correlations in the ratchet’s input, the work

investment is asymptotically bounded by the difference in entropy rates of input hµ and

output h′µ

〈W 〉 ≤ kBT ln 2(h′µ − hµ), (1.6)

rather than by the change in single-symbol entropy H[Y ′N ] − H[YN ], as shown in Eq.

1.3. This is the Information Processing Second Law (IPSL) [13]: any form of order is

potentially a thermodynamic resource. The more ordered the input is, the smaller the

entropy rate hµ, and the more work one can potentially extract from that input. Similarly,

the more ordered and predictable the output is, the smaller the entropy rate h′µ, and the

more work you must invest to create the desired order.

Well known since the invention of communication theory, entropy rates are generally a

challenge to calculate, since this requires accounting for a process’ temporal correlations

at all time scales. Due to this, we turn to the tools of computational mechanics to evaluate

accurate thermodynamic bounds on information ratchets. The temporal correlations that

we must account for come from memory in one form or another. For the input string, its

ε-machine is the hidden Markov model (HMM) which is the minimal predictive machine

[12]. Its hidden states store the temporal correlations in the string, in that they are the

minimal amount of memory required to predict the string.

The information ratchet’s internal states also serve as a form of memory, storing

information about the past inputs and outputs. The ratchet behaves as information

transducer [13], using its internal memory to react to the structured temporal order in

the input or to create it in the output [1]. The form of this transducer is given by the

Markov process over the joint space of the ratchet states and interaction bit, as described

in Fig. 2.1, which in turn exactly specifies the form of the HMM that generates the

output. Thus, from this transducer formalism, we can exactly predict the entropy rates

in order to set better thermodynamic bounds on ratchet work generation.

Additionally, detailed balance constrains the information engine’s energetics. Specif-
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ically, the energy differences are proportional to the log ratio of forward and reverse

thermal transition probabilities

∆Ea→b = kBT ln
Mb→a

Ma→b
. (1.7)

In this way we can exactly calculate average heat and work flows for the ratchets. And

this allows us to compare to the bounds set by the IPSL.

We start our exploration with systems driven by temporally uncorrelated inputs, where

the ratchet reads the realization of a biased coin with every time step. We consider a

memoryful ratchet, which is able to take such an input, and create temporal correlations

at a thermodynamic cost. We identify the functionality of the ratchet for a variety of

parameter values, showing that it can either behave as (i) an engine, randomizing the

input string to generate work; (ii) an eraser, using work to create order in the output; or

(iii) a dud, which also uses work, but does not create any useful order in the outputs with

it.

The benefit of the computational mechanics framework, as applied to autonomous

thermodynamic information processors, is that it allows us to detect any type of order

created by the ratchet. With this, we can detect new erasure functionalities. For example,

we identify an entirely new eraser region of ratchet parameter space. This novel function-

ality is missed by past single-symbol entropy analyses, since the single-symbol uncertainty

grows. Instead, the ratchet creates order purely by generating temporal correlations in

the output string.

In this specific case, where the ratchet has memory, but the input is IID (independent

identically distributed) and thus memoryless, the IPSL is a stricter and more accurate

bound on the work production than the single-symbol bound. Thus, for memoryless input

and memoryful ratchets, the single symbol bound is still valid but a less informative bound.

This, however, changes when the inputs are temporally correlated.

1.3 Correlation-powered Information Engines

Our theory establishes that temporal correlations are a thermodynamic resource—a re-

source that can be leveraged to produce work. However, there has been disagreement
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about whether the IPSL (Eq. (1.6)) or single-symbol entropy bounds (Eq. (1.3)) are

valid for information ratchets [10, 14]. The two bounds make different predictions for an

input where all order comes in the form of temporal correlations, such as the period-2

process of alternating 0s and 1s, which has two equally likely phases

Pr(Y0:∞ = 0101...) = Pr(Y0:∞ = 1010...) = 1/2. (1.8)

The IPSL suggests that this input could be used to run an engine, which is impossible

according to the single-symbol bounds. We investigate how to make use of this resource.

To do this, we first show that there are ratchets that provably cannot make use of

temporal correlations. We show that memoryless ratchets are only sensitive to the single-

symbol bias of their input [6]. Thus, to memoryless ratchets, a temporally correlated

memoryful input is functionally equivalent to a memoryless input that has the same

single-symbol bias but no correlations. And so, if the ratchet obeys the IPSL for the

temporally uncorrelated approximation of the input, it must obey single symbol bounds,

confirming previous results for memoryless ratchets [10]. This means that we must use

ratchets with internal states if we hope to create an information engine that runs on

temporal correlations, guiding our design of information ratchets.

For concreteness, we introduce a three state engine, shown in Fig. 3.3, which runs off

the period-2 input to produce work. Thus, with memoryful ratchets, it is possible to not

only impose stricter bounds on work production with the IPSL, but also violate the single-

symbol bounds, which state that such inputs cannot produce any work. Asymptotically

we see that we’re able to produce

〈W 〉 = kBT
1− δ
e

, (1.9)

while randomizing the output, where δ is a parameter of the ratchet which determines

how quickly it transitions into synchronization states. Synchronization appears to be an

essential part of leveraging temporal correlations. For this particular ratchet, we find that

the states of the ratchet approach synchrony with the causal states of the input process,

where the ratchet is in a stationary work-producing dynamical phase.
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However, the ratchet may start out of phase with the input, in which case it will ini-

tially dissipate energy in a work-dissipating dynamical phase. The parameter δ is the rate

at which the ratchet transitions out of this phase into the aforementioned synchronization

states, which facilitate the transition to the stationary work-producing dynamical phase.

Thus, it appears that synchronization is required to produce work from temporally corre-

lated sources. This is unlike how engines use single-symbol statistical biases, which take

no synchronization to leverage.

There is, however, a cost to synchronization. Another parameter of the ratchet, γ

gives the rate of synchronization from the synchronization state

Rsync(δ, γ) = γ, (1.10)

but because of detailed balance, we find that this parameter also contributes to an energy

cost to synchronizing

Qsync(δ, γ) = kBT ln
δ

γ
. (1.11)

As a result, we see a three-way tradeoff between asymptotic work production, synchro-

nization rate, and synchronization cost

Qsync + kBT lnRsync − kBT ln

(
1− e〈W 〉

kBT

)
= 0. (1.12)

This is much like the tradeoff between the fidelity, rate, and energy cost of information

processing in finite time [15, 16].

Synchronization also allows the ratchet to cope with noisy inputs, such as phase slips

in the input which push the ratchet out of the work-producing dynamical phase. Func-

tionally, this kind of synchronization is tantamount to error correction, where the ratchet

autonomously corrects its estimate of the causal state of the input. The faster the ratchet

transitions to the synchronization state, the less time the ratchet spends in a dissipative

phase. However, because of the tradeoff with synchronization cost and asymptotic work

production, there is a sweet spot in synchronization rate, where the ratchet is able, on

average, to leverage the most work from a noisy source. We analytically calculate this
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value for different rates of phase slips, and show there is a critical frequency of phase slips

past which it is impossible for this ratchet effectively autocorrect and extract work.

Thus, we see that temporal correlations are indeed a thermal resource, but that the

ratchet must synchronize its internal states to the causal structure of its environment in

order leverage that resource. That is, an effective ratchet requires memory. This adds

credence to the IPSL, because it predicted that period-2 inputs could be used to generate

work. The emerging challenge is to find the principles of ratchet design that allow us to

take advantage of the environment.

1.4 Thermodynamics of Requisite Complexity

Up to this point, we saw that memoryless ratchets can leverage the order of temporally

uncorrelated inputs, but cannot leverage structure in the form of temporal correlations.

Instead, we require memoryful ratchets to leverage those correlations. This is in line with

the information theoretic bounds, and, because temporal correlations require memory to

generate, these bounds suggest that memoryless ratchets are best for leveraging memory-

less inputs and memoryful ratchets are best for leveraging memoryful inputs. We refer to

this matching between the structure of the input and the ratchet, where memory requires

memory, as the thermodynamic principle of requisite variety [17], much like Ashby’s law

of Requisite Variety in the field of cybernetics [18].

While the information theoretic bounds naturally suggest the matching between

ratchet and input, information ratchets fundamentally operate out of equilibrium. The

result is that they may not satisfy these bounds. For instance, we show that even when

designed optimally for memoryful inputs, memoryless ratchets fall short of the thermo-

dynamic bounds, dissipating energy and creating entropy. This is because they interact

with their input out of equilibrium. Therefore, we must consider the explicit energetic

dynamics of these ratchets to predict their behavior.

In the previous section, we already made dynamical arguments that memory is required

to take advantage of temporal correlations, and thus memoryful ratchets are better suited

than memoryless for extracting work from those information sources. However, it may
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well be that, since memoryless ratchets cannot achieve the IPSL, there are memoryful

ratchets which can do better. That is, the law of requisite variety/memory may not hold.

Fortunately, our analysis of ratchet energetic dynamics resolves the issue as one might

expect. We show that, for a ratchet driven by memoryless inputs, the dynamically-

evaluated average work production increases if the ratchet states are coarse-grained. This

gives us the exact form of a memoryless ratchet which can at least match work production

of any memoryful ratchet, confirming that memory matches memory.

However, this result is limited to finite ratchets. If we consider ratchets with infinitely

many states, then the IPSL no long holds, because the ratchet’s internal states may

not ever asymptote to a steady state distribution. Thus, the ratchet states can act as a

reservoir of free energy, much like the bit string. We show how this works with a particular

model that, through continual expansion into new ratchet states, is able to produce more

than kBT ln 2 work per cycle from a sequence of incoming bits. The ratchet is able to

extract more nonequilibrium free energy than is available within each bit, but when we

account for the expansion of the ratchet’s memory, Landauer’s principle is preserved, as

is the second law of thermodynamics.

In our exploration of ratchet memory, we see that it is of critical importance to ratchet

functionality. Memory is necessary to create temporal correlations in the output, or lever-

age temporal correlations in the input. We confirm our guess at the principle of requisite

variety with finite memory dynamical models of information ratchets, which operate out

of equilibrium, and thus are not maximally thermodynamically efficient, leaving some en-

ergy on the table. However, while these example cases illustrate principles that allow us to

distinguish between memoryless, memoryful, and infinite memory thermodynamics. We

want general principles of ratchet design that tell us explicitly how to construct thermo-

dynamic agents that optimally leverage their environment. We want a thermodynamics

of structure.
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1.5 Thermodynamics of Synchronization

As we are beginning to see, different implementations of the same computation (input to

output) can have radically different thermodynamic consequences. While we may be able

to randomize a temporally correlated input string, we will not be able to leverage that

structure without memory. The example ratchet we used to leverage the inputs was able

to produce work by synchronizing to the predictive states of its input. However, when

leveraging a memoryful input process, the presciption that one must have a memoryful

ratchet leaves much unspecified about ratchet design. The period-2 driven ratchet was

constructed with trial, error, and intuition. Fully rational design is a goal for the future.

As a first push towards information theoretic principles of design, we look more closely

at the entropic bounds on the whole state space: tape and ratchet together. The IPSL,

which predicts that temporal correlations are a thermodynamic resource, was derived

as an asymptotic approximation of such global entropy change bounds [13]. While the

asymptotic IPSL allows us to predict asymptotic energetics, memoryful ratchets take time

to synchronize to their asymptotic behavior. For instance, for the period-2 driven ratchet,

synchronizing to the input’s causal states required both time and energy. The difference

between the asymptotic and global changes in entropy gives a transient dissipation, which

accumulates as the ratchet synchronizes. This, in essence, is a bound on the synchroniza-

tion dissipation, which can be applied beyond engines, which synchronize to their input,

to generators and other information processors.

For a particular computational input-output process, we can isolate the component of

the transient cost that depends on the ratchet states, yielding the implementation cost

〈Qimpl〉min = kBT ln 2I[X0;
←−
Y ′,
−→
Y ]. (1.13)

We have shifted to the frame of the ratchet after many operations, so that X0 is the

current state of the ratchet,
−→
Y is the input future, and

←−
Y ′ is the output past [19].

The implementation cost applies to any form of transduction, but we consider the

particular case of pattern generators, because a previous analysis [20] argued that simpler

ratchets are thermodynamically more efficient for generating patterns. We see that, if you

restrict to predictive pattern generators, then, indeed, more memory does correspond to
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more transient dissipation and a greater cost to synchronization, because the implemen-

tation dissipation is proportional to the uncertainty in the ratchet. Thus, for predictive

ratchets, this dissipation is bounded by the statistical complexity of the output. However,

generators are not required to predict their outputs, in that the ratchet states need not

be a function of the output past [21]. They can, instead, neglect information about their

past, such that they store less information about the past than the statistical complexity.

It turns out that retrodictive ratchets, which minimize the information stored about the

output past, are most efficient, with zero transient dissipation. Moreover, these ratchets

need not be simple, as long as additional states do not store information about the past

and so do not induce transient dissipation. Thus, we see one of our first information

theoretic structural measures of thermodynamic efficiency. The implementation depen-

dent transient dissipation gives principles of thermodynamic design that can be used to

eliminate unnecessary energy loss as an agent adapts to its environment. However, there

are also costs that apply beyond this transient regime—costs that depend explicitly on

the modular structure of information processing.

1.6 Thermodynamics of Modularity

Delving further into the thermodynamics of structure, we find that localized modular in-

formation processing has an unavoidable thermodynamic cost that comes from dissipated

global correlations. Though the principle of thermodynamic requisite complexity/variety,

as discussed in Chapter 4, requires matching between ratchet memory and input memory,

it leaves much undetermined about the structure of thermodynamically efficient ratchets.

By recognizing that ratchets operate locally, on a single bit of the symbol sequence at time,

we see that it is a fundamentally modular information processor. Thus, the ratchet’s con-

troller is potentially unaware of the various global correlations between bits that extend

throughout the tape. As such, while the next bit may be predictable from past inputs,

unless the autonomous ratchet states are able to store those correlations within, the bit is

effectively random to ratchet controller. And the latter leverages energies as if the input

symbol is more random that it really is. As such, it dissipates global correlations, which
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are a source of global free energy. The net result is that the global entropy production is

positive:

〈Σ〉 = −〈W 〉 −∆F neq > 0. (1.14)

This phenomenon generalizes to any computation that decomposes into a sequence

localized computations over a subset of the system variables. Such computations are

modular, in that each localized computation can be performed independently of all oth-

ers. Modularity is a common property of many designed computing systems. For example,

elementary universal logic gates can be composed to implement any computation. Design-

ing the physical implementation one of these logic gates, then connecting to a collection of

others is simpler than designing the global computation from scratch. However, because

these gates are designed without considering the global correlations that may exist in

the calculation, they necessarily dissipate energy and produce entropy. For a particular

step in a modular computation, where only the subset of the information bearing degrees

of freedom Z i is changing and the rest of the system Zs is held fixed, we quantify a

bound on the global entropy production. We call this the modularity dissipation [22].

If the particular step of the computation happens over the time interval (t, t + τ), then

the modularity dissipation is proportional to the information shared between the initial

state of the interacting subsystem Zi
t and the initial state of the stationary subsystem Zs

t ,

conditioned on the final state of the interacting modular subsystem Zi
t+τ

〈Σmod
t→t+τ 〉min = kB ln 2I[Zi

t ;Z
s
t |Zi

t+τ ]. (1.15)

This is the amount of information the modularly interacting component forgets about the

non-interacting subsystem. Thus, it corresponds to the global correlations between the

two systems that are lost over the course of the operation.

Modularity dissipation applies to many different systems, from physical logical circuits

to biological organisms. Here, we only apply it to thermodynamic information ratchets.

Plugging in the ratchet and interacting bit as the interacting subsystem, we find imme-

diate results which quantify the thermodynamic efficiency of information transduction.
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Maximizing the thermodynamic efficiency, and thus minimizing the modularity dissipa-

tion, leads to interesting results for two subclasses of transducers.

For information extractors, which transform a structured input process into sequence

of uncorrelated IID outputs, we find that thermodynamic efficiency means that the ratchet

must be predictive of its input. This leads directly to the principle of requisite complexity,

because in order to be predictive, the asymptotic state uncertainty of the ratchet must at

least match the statistical complexity Cµ of the input [22]

lim
N→∞

H[XN ] ≥ Cµ. (1.16)

We find similar results for information generators, which transform unstructured IID

inputs into structured outputs. Rather than being predictors of their inputs, thermody-

namically efficient generative ratchets are retrodictive of their output, meaning that they

contain as little information about past outputs, while simultaneously containing all the

information shared between the past and future. In this way, we show how to construct

thermodynamically efficient pattern extractors and generators, such that they store all

the relevant global correlations in the ratchet states, rather than dissipating free energy

in the form of lost global correlations.

Despite this progress, there is a breadth of open questions about the thermodynamics

of transduction, such as how to implement these information processors as efficiently as

possible in finite time. We propose a method for quasistatically implementing the ratchet,

but such implementations require long times, because they are quasistatic. Also, there

are many computations/ratchets which fall outside the purview of pattern generation or

extraction. These ratchets take patterns from one form to another, rather than creating

them purely from a physical resource or completely destroying them for an energetic

benefit. More work is required to understand how to minimize the modularity dissipation

of arbitrary information transduction.
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Chapter 2

Identifying Functional

Thermodynamics

2.1 Introduction

The Second Law of Thermodynamics is only statistically true: while the entropy produc-

tion in any process is nonnegative on the average, 〈Σ〉 ≥ 0, if we wait long enough, we

shall see individual events for which the entropy production is negative. This is nicely

summarized in the recent fluctuation theorem for the probability of entropy production

∆S [23, 24, 25, 26, 27, 28, 29]:

Pr(Σ)

Pr(−Σ)
= eΣ , (2.1)

implying that negative entropy production events are exponentially rare but not impos-

sible. Negative entropy fluctuations were known much before this modern formulation.

In fact, in 1867 J. C. Maxwell used the negative entropy fluctuations in a clever thought

experiment, involving an imaginary intelligent being—later called Maxwell’s Demon—

that exploits fluctuations to violate the Second Law [3, 30]. The Demon controls a small

frictionless trapdoor on a partition inside a box of gas molecules to sort, without any

expenditure of work, faster molecules to one side and slower ones to the other. This

gives rise to a temperature gradient from an initially uniform system—a violation of the

Second Law. Note that the “very observant and neat fingered” Demon’s “intelligence”

is necessary; a frictionless trapdoor connected to a spring acting as a valve, for example,
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cannot achieve the same feat [31].

Maxwell’s Demon posed a fundamental challenge. Either such a Demon could not

exist, even in principle, or the Second Law itself needed modification. A glimmer of a

resolution came with L. Szilard’s reformulation of Maxwell’s Demon in terms of mea-

surement and feedback-control of a single-molecule engine. Critically, Szilard emphasized

hitherto-neglected information-theoretic aspects of the Demon’s operations [32]. Later,

through the works of R. Landauer, O. Penrose, and C. Bennett, it was recognized that

the Demon’s operation necessarily accumulated information and, for a repeating thermo-

dynamic cycle, erasing this information has an entropic cost that ultimately compensates

for the total amount of negative entropy production leveraged by the Demon to extract

work [4, 33, 34]. In other words, with intelligence and information-processing capabilities,

the Demon merely shifts the entropy burden temporarily to an information reservoir, such

as its memory. The cost is repaid whenever the information reservoir becomes full and

needs to be reset. This resolution is concisely summarized in Landauer’s Principle [4]:

the Demon’s erasure of one bit of information at temperature T requires at least kBT ln 2

amount of heat dissipation, where kB is Boltzmann’s constant. (While it does not affect

the following directly, it has been known for some time that this principle is only a special

case [35].)

Building on this, a modified Second Law was recently proposed that explicitly ad-

dresses information processing in a thermodynamic system [5, 36]:

〈Σ〉+ kB ln 2 ∆H ≥ 0 , (2.2)

where ∆H is the change in the information reservoir’s configurational entropy over a ther-

modynamic cycle. This is the change in the reservoir’s “information-bearing degrees of

freedom” as measured using Shannon information H [11]. These degrees of freedom are

coarse-grained states of the reservoir’s microstates—the mesoscopic states that store in-

formation needed for the Demon’s thermodynamic control. Importantly for the following,

this Second Law assumes explicitly observed Markov system dynamics [5] and quanti-

fies this relevant information only in terms of the distribution of instantaneous system

microstates; not, to emphasize, microstate path entropies. In short, while the system’s
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instantaneous distributions relax and change over time, the information reservoir itself is

not allowed to build up and store memory or correlations.

Note that this framework differs from alternative approaches to the thermodynamics of

information processing, including: (i) active feedback control by external means, where the

thermodynamic account of the Demon’s activities tracks the mutual information between

measurement outcomes and system state [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50]; (ii) the multipartite framework where, for a set of interacting, stochastic subsystems,

the Second Law is expressed via their intrinsic entropy production, correlations among

them, and transfer entropy [51, 52, 53, 54]; and (iii) steady-state models that invoke time-

scale separation to identify a portion of the overall entropy production as an information

current [55, 56]. A unified approach to these perspectives was attempted in Refs. [57, 58,

59].

Recently, Maxwellian Demons have been proposed to explore plausible automated

mechanisms that appeal to Eq. (3.10)’s modified Second Law to do useful work, by

deceasing the physical entropy, at the expense of positive change in reservoir Shannon

information [7, 60, 56, 61, 62, 63, 64]. Paralleling the modified Second Law’s develop-

ment and the analyses of the alternatives above, they too neglect correlations in the

information-bearing components and, in particular, the mechanisms by which those cor-

relations develop over time. In effect, they account for Demon information-processing by

replacing the Shannon information of the components as a whole by the sum of the com-

ponents’ individual Shannon informations. Since the latter is larger than the former [11],

using it can lead to either stricter or looser bounds than the true bound which is derived

from differences in total configurational entropies. More troubling, though, bounds that

ignore correlations can simply be violated. Finally, and just as critically, they refer to

configurational entropies, not the intrinsic dynamical entropy over system trajectories.

This Letter proposes a new Demon for which, for the first time, all correlations among

system components can be explicitly accounted. This gives an exact, analytical treatment

of the thermodynamically relevant Shannon information change—one that, in addition,

accounts for system trajectories not just information in instantaneous state distributions.
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The result is that, under minimal assumptions, we derive a Information Processing Sec-

ond Law (IPSL) that refines Eq. (3.10) by properly accounting for intrinsic information

processing reflected in temporal correlations via the overall dynamic’s Kolmogorov-Sinai

entropy [65].

Notably, our Demon is highly functional: Depending on model parameters, it acts both

as an engine, by extracting energy from a single reservoir and converting it into work, and

as an information eraser, erasing Shannon information at the cost of the external input of

work. Moreover, it supports a new and counterintuitive thermodynamic functionality. In

contrast with previously reported erasure operations that only decreased single-bit uncer-

tainty, we find a new kind of erasure functionality during which multiple-bit uncertainties

are removed by adding correlation (i.e., by adding temporal order), while single-bit uncer-

tainties are actually increased. This new thermodynamic function provocatively suggests

why real-world ratchets support memory: The very functioning of memoryful Demons

relies on leveraging temporally correlated fluctuations in their environment.

2.2 Information Ratchets

Our model consists of four components, see Fig. 2.1: (1) an ensemble of bits that acts as

an information reservoir; (2) a weight that acts as a reservoir for storing work; (3) a ther-

mal reservoir at temperature T ; and (4) a finite-state ratchet that mediates interactions

between the three reservoirs. The bits interact with the ratchet sequentially and, depend-

ing on the incoming bit statistics and Demon parameters, the weight is either raised or

lowered against gravity.

As a device that reads and processes a tape of bits, this class of ratchet model has a

number of parallels that we mention now, partly to indicate possible future applications.

First, one imagines a sophisticated, stateful biomolecule that scans a segment of DNA, say

as a DNA polymerase does, leaving behind a modified sequence of nucleotide base-pairs

[66] or that acts as an enzyme sequentially catalyzing otherwise unfavorable reactions

[67]. Second, there is a rough similarity to a Turing machine sequentially recognizing

tape symbols, updating its internal state, and taking an action by modifying the tape cell
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and moving its read-write head [68]. When the control logic is stochastic, this sometimes

is referred to as “Brownian computing” [69, and references therein]. Finally, we are

reminded of the deterministic finite-state tape processor of Ref. [70] that, despite its

simplicity, indicates how undecidability can be imminent in dynamical processes. Surely

there are other intriguing parallels, but these give a sense of a range of applications

in which sequential information processing embedded in a thermodynamic system has

relevance.

01000101 101110111 ….
input stringoutput string

Thermal 
Reservoir

ZN

Ratchet

Q MassW

XN

YN :1Y 0
0:N

Figure 2.1. Information ratchet sequentially processing a bit string: At time step N ,
XN is the random variable for the ratchet state and ZN that for the thermal reservoir.
YN :∞ is the block random variable for the input bit string and Y ′0:N that for the output
bit string. The last bit YN of the input string, highlighted in yellow, interacts with
the ratchet and is called the interaction bit. The arrow on the right of the ratchet
indicates the direction the ratchet moves along the tape as it sequentially interacts
with each input bit in turn.

The bit ensemble is a semi-infinite sequence, broken into incoming and outgoing pieces.

The ratchet runs along the sequence, interacting with each bit of the input string step

by step. During each interaction at step N , the ratchet state XN and interacting bit YN

fluctuate between different internal joint states within X ⊗Y , exchanging energy with the

thermal reservoir and work reservoir, and potentially changing YN ’s state. At the end of

step N , after input bit YN interacts with the ratchet, it becomes the last bit Y ′N of the

output string. By interacting with the ensemble of bits, transducing the input string into

the output string, the ratchet can convert thermal energy from the heat reservoir into

work energy stored in the weight’s height.
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The ratchet interacts with each incoming bit for a time interval τ , starting at the 0th

bit Y0 of the input string. After N time intervals, input bit YN−1 finishes interacting

with the ratchet and, with the coupling removed, it is effectively “written” to the output

string, becoming Y ′N−1. The ratchet then begins interacting with input bit YN . As Fig. 2.1

illustrates, the state of the overall system is described by the realizations of four random

variables: XN for the ratchet state, YN :∞ for the input string, Y ′0:N for the output string,

and ZN for the thermal reservoir. A random variable like XN realizes elements xN of its

physical state space, denoted by alphabet X , with probability Pr(XN = xN). Random

variable blocks are denoted Ya:b = YaYa+1 . . . Yb−1, with the last index being exclusive. In

the following, we take binary alphabets for Y and Y ′: yN , y′N ∈ {0, 1}. The bit ensemble

is considered two joint variables Y ′0:N = Y ′0Y
′

1 . . . Y
′
N−1 and YN :∞ = YNYN+1 . . . rather

than one Y0:∞, so that the probability of realizing a word w ∈ {0, 1}b−a in the output

string is not the same as in the input string. That is, during ratchet operation typically

Pr(Ya:b = w) 6= Pr(Y ′a:b = w).

The ratchet steadily transduces the input bit sequence, described by the input word

distribution Pr(Y0:∞) ≡ {Pr(Y0:∞ = w)}w∈{0,1}∞—the probability for every semi-infinite

input word—into the output string, described by the word distribution Pr(Y ′0:∞) ≡
{Pr(Y ′0:∞ = v)}v∈{0,1}` . A useful assumption for computational mechanics is that the

word distributions are stationary, meaning that Pr(Ya:a+b) = Pr(Y0:b) for all nonnegative

integers a and b.

A key question in working with a sequence such as Y0:∞ is how random it is. One

commonly turns to information theory to provide quantitative measures: the more infor-

mative a sequence is, the more random it is. For words at a given length ` the average

amount of information in the Y0:∞ sequence is given by the Shannon block entropy [12]:

H[Y0:`] ≡ −
∑

w∈{0,1}`
Pr(Y0:` = w) log2 Pr(Y0:` = w). (2.3)

Due to correlations in typical process sequences, the irreducible randomness per symbol

is not the single-symbol entropy H[Y0]. Rather, it is given by the Shannon entropy rate
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[12]:

hµ ≡ lim
`→∞

H[Y0:`]

`
. (2.4)

When applied to a physical system described by a suitable symbolic dynamics, as done

here, this quantity is the Kolmogorov-Sinai dynamical entropy of the underlying physical

generator of the process.

Note that these ways of monitoring information are quantitatively quite different. For

large `, hµ`� H[Y0:`] and, in particular, anticipating later use, hµ ≤ H[Y0], typically much

less. Equality between the single-symbol entropy and entropy rate is only achieved when

the generating process is memoryless. Calculating the single-symbol entropy is typically

quite easy, while calculating hµ for general processes has been known for quite some

time to be difficult [71] and it remains a technical challenge [72]. The entropy rates of the

output sequence and input sequence are h′µ = lim`→∞H[Y ′0:`]/` and hµ = lim`→∞H[Y0:`]/`,

respectively.

The informational properties of the input and output word distributions set bounds

on energy flows in the system. Appendix 2.7.1 establishes one of our main results: The

average work done by the ratchet is bounded above by the difference in Kolmogorov-Sinai

entropy of the input and output processes 1:

〈W 〉 ≤ kBT ln 2 (h′µ − hµ)

= kBT ln 2 ∆hµ . (2.5)

We refer to this as the Information Processing Second Law (IPSL), because it bounds

the transformation of structured information. In light of the preceding remarks on the

basic difference between H[Y0] and hµ, we can now consider more directly the differences

between Eqs. (3.10) and (2.5). Most importantly, the ∆H in the former refers to the in-

stantaneous configurational entropy H before and after a thermodynamic transformation.

In the ratchet’s steady state operation, ∆H vanishes since the configuration distribution

1Reference [7]’s appendix suggests Eq. (2.5) without any detailed proof. An integrated version ap-
peared also in Ref. [10] for the special case of memoryless demons. Our App. 2.7.1 gives a more general
proof of Eq. (2.5) that, in addition, accounts for memory.
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is time invariant, even when the overall system’s information production is positive. The

entropies h′µ and hµ in Eq. (2.5), in contrast, are dynamical: rates of active information

generation in the input and output giving, in addition, the correct minimum rates since

they take all temporal correlations into account. Together they bound the overall system’s

information production in steady state away from zero. In short, though often conflated,

configurational entropy and dynamical entropy capture two very different kinds of infor-

mation and they, per force, are associated with different physical properties supporting

different kinds of information processing. They are comparable only in special cases.

For example, if one puts aside this basic difference to facilitate comparison and consid-

ers the Shannon entropy change ∆H in the joint state space of all bits, the two equations

are analogous in the current setup. However, often enough, a weaker version of Eq. (3.10)

is considered in the discussions on Maxwell’s Demon [7, 60, 61, 58, 10] and information

reservoirs [36], wherein the statistical correlations between the bits are neglected, and one

simply interprets ∆ H to be the change in the marginal Shannon entropies H[Y0] of the

individual bits. This implies the following relation in the current context:

〈W 〉 ≤ kB ln 2 ∆H[Y0] , (2.6)

where ∆ H[Y0] = H[Y ′0 ] − H[Y0]. While Eq. (2.6) is valid for the studies in Refs. [7, 60,

61, 58, 36, 10], it can be violated under certain scenarios [73]. In comparison, Eq. (2.5)

is generally valid.

As an example, consider the case where the ratchet has memory and, for simplicity of

exposition, is driven by an uncorrelated input process, meaning the input process entropy

rate is the same as the single-symbol entropy: hµ = H[Y0]. However, the ratchet’s memory

can create correlations in the output bit string, so:

∆hµ = h′µ − H[Y0]

≤ H[Y ′0 ]− H[Y0]

= ∆H[Y0] . (2.7)

In this case, Eq. (2.5) is a tighter bound on the work done by the ratchet—a bound

that explicitly accounts for correlations within the output bit string generated by the
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ratchet during its operation. For example, for the particular ratchet we consider with

the parameter combination {p = 0.5, q = 0.1, b = 0.9}, the block entropies H[Y ′0:L] of the

output process do not converge to the entropy rate even when looking at block lengths

up to L = 13. This means that there are correlations within the output that are not

captured even when looking at long blocks of symbols, resulting in an over-estimate of

randomness. In short, generally the entropy rate is necessary in order to properly account

for the effects of all correlations in the output [12].

Previously, the effect of these correlations has not been calculated, but they have

important consequences. Due to correlations, it is possible to have an increase in the

single-symbol entropy difference ∆H[Y0] but a decrease in the Kolmogorov-Sinai entropy

rate ∆hµ. In this situation, it is erroneous to assume that there is an increase in the infor-

mation content in the bits. There is, in fact, a decrease in information due to correlations;

cf. Sec. 2.5. As a result, we get an unexpected eraser regime in the phase diagram of the

system (Fig. 2.7). A similar regime may be present also in the model of Ref. [7] where

the outgoing bits were observed to have small but finite correlations.

Note that a somewhat different situation was considered in Ref. [10], a memoryless

channel (ratchet) driven by a correlated process. In this special case—ratchets unable to

leverage or create temporal correlations—either Eq. (2.6) or Eq. (2.5) can be a tighter

quantitative bound on work. When a memoryless ratchet is driven by uncorrelated input,

though, the bounds are equivalent. Critically, for memoryful ratchets driven by correlated

input Eq. (2.6) can be violated. In all settings, Eq. (2.5) holds.

While we defer it’s development to a later chapter, Eq. (2.5) also has implications for

ratchet functioning when the input bits are correlated as well. Specifically, correlations in

the input bits can be leveraged by the ratchet to do additional work—work that cannot

be accounted for if one only considers single-symbol configurational entropy of the input

bits [74].
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2.3 Energetics and Dynamics

To predict how the ratchet interacts with the bit string and weight, we need to specify

the string and ratchet energies. While we developed general tools for energetic analysis

in later chapters with equivalent asymptotic results, we begin our exploration of ratchets

with a detailed description of the ratchet’s energetic interaction with the input bit. When

not interacting with the ratchet the energies, E0 and E1, of both bit states, Y = 0 and

Y = 1, are taken to be zero for symmetry and simplicity: E0 = E1 = 0. For simplicity,

too, we say the ratchet mechanism has just two internal states A and B. When the ratchet

is not interacting with bits, the two states can have different energies. We take EA = 0

and EB = −αkBT , without loss of generality. Since the bits interact with the ratchet one

at a time, we only need to specify the interaction energy of the ratchet and an individual

bit. The interaction energy is zero if the bit is in the state Y = 0, regardless of the ratchet

state, and it is −βkBT (or +βkBT ) if the bit is in state Y = 1 and the ratchet is in state

A (or B). See Fig. 2.2 for a graphical depiction of the energy scheme under “Ratchet ⊗
Bit”.

The scheme is further modified by the interaction of the weight with the ratchet

and bit string. We attach the weight to the ratchet-bit system such that when the

latter transitions from the B ⊗ 0 state to the A ⊗ 1 state it lifts the weight, doing a

constant amount wkBT of work. As a result, the energy of the composite system—Demon,

interacting bit, and weight—increases by wkBT whenever the transition B ⊗ 0 → A ⊗ 1

takes place, the required energy being extracted from the heat reservoir ZN . The rightmost

part of Fig. 2.2 indicates this by raising the energy level of A⊗1 by wkBT compared to its

previous value. Since the transitions between A⊗ 1 and B ⊗ 1 do not involve the weight,

their relative energy difference remains unaffected. An increase in the energy of A⊗ 1 by

wkBT therefore implies the same increase in the energy of B ⊗ 1. Again, see Fig. 2.2 for

the energy scheme under “Ratchet ⊗ Bit ⊗ Weight”.

The time evolution over the joint state space of the ratchet, last bit of the input string,

and weight is governed by a Markov dynamic, specified by state-transition matrix M . If,

at the beginning of the Nth interaction interval at time t = τ(N − 1) + 0+, the ratchet
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Figure 2.2. Energy levels of the Demon states, interacting bits, their joint system, and
their joint system with a weight in units of [kBT ].

is in state XN = xN and the input bit is in state YN = yN , then let MxN⊗yN→xN+1⊗y′N

be the probability Pr(XN+1 = xN+1, Y
′
N = y′N |XN = xN , YN = yN) that the ratchet is in

state XN = xN+1 and the bit is in state YN = y′N at the end of the interaction interval

t = τ(N−1)+τ−. XN and YN at the end of the Nth interaction interval become XN+1 and

Y ′N respectively at the beginning of the N + 1th interaction interval. Since we assume the

system is thermalized with a bath at temperature T , the ratchet dynamics obey detailed

balance. And so, transition rates are governed by the energy differences between joint

states:

MxN⊗yN→xN+1⊗y′N
MxN+1⊗y′N→xN⊗yN

= e
(ExN+1⊗y

′
N
−ExN⊗yN )/kBT . (2.8)

There is substantial flexibility in constructing a detailed-balanced Markov dynamic

for the ratchet, interaction bit, and weight. Consistent with our theme of simplicity, we

choose one that has only six allowed transitions: A ⊗ 0 ↔ B ⊗ 0, A ⊗ 1 ↔ B ⊗ 1, and

A⊗ 1↔ B ⊗ 0. Such a model is convenient to consider, since it can be described by just

two transition probabilities 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1, as shown in Fig. 2.3.

The Markov transition matrix for this system is given by:

M =




0 1− p 0 0

1 0 q 0

0 p 0 1

0 0 1− q 0



. (2.9)
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Figure 2.3. The Markovian, detailed-balance dynamic over the joint states of the
ratchet and interacting bit.

This allows allows us to calculate the state distribution p((N − 1)τ + τ−) at the end of

the Nth interaction interval from the state distribution p((N −1)τ + 0+) at the interval’s

beginning via:

p((N − 1)τ + τ−) = Mp((N − 1)τ + 0+) , (2.10)

where the probability vector is indexed p = (Pr(A⊗0),Pr(B⊗0),Pr(A⊗1),Pr(B⊗1))>.

To satisfy detailed balance, we find that α, β, and w should be:

α = − ln(1− p) , (2.11)

β = −1

2
ln [(1− p)(1− q)] , and (2.12)

w = ln

(
q
√

1− p
p
√

1− q

)
. (2.13)

(Appendix 2.7.2 details the relationships between the transitions probabilities and energy

levels.)

This simple model is particularly useful since, as we show shortly, it captures the full

range of thermodynamic functionality familiar from previous models and, more impor-

tantly, it makes it possible to exactly calculate informational properties of the output

string analytically.

Now that we know how the ratchet interacts with the bit string and weight, we need

to characterize the input string to predict the energy flow through the ratchet. As in
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the ratchet models of Refs. [7, 63], we consider an input generated by a biased coin—

Pr(YN = 0) = b at each N—which has no correlations between successive bits. For this

input, the steady state distributions at the beginning and end of the interaction interval

τ are:

ps(0+) =
1

2




b

b

1− b
1− b




and

ps(τ−) =
1

2




b(1− p)
b+ q − bq
bp+ 1− b

(1− b)(1− q)



. (2.14)

These distributions are needed to calculate the work done by the ratchet.

To calculate net extracted work by the ratchet we need to consider three work-exchange

steps for each interaction interval: (1) when the ratchet gets attached to a new bit, to

account for their interaction energy; (2) when the joint transitions B ⊗ 0 ↔ A ⊗ 1 take

place, to account for the raising or lowering of the weight; and (3) when the ratchet

detaches itself from the old bit, again, to account for their nonzero interaction energy. We

refer to these incremental works as W1, W2, and W3, respectively.

Consider the work W1. If the new bit is in state 0, from Fig. 2.2 we see that there is

no change in the energy of the joint system of the ratchet and the bit. However, if the

new bit is 1 and the initial state of the ratchet is A, energy of the ratchet-bit joint system

decreases from 0 to −β. The corresponding energy is gained as work by the mechanism

that makes the ratchet move past the tape of bits. Similarly, if the new bit is 1 and the

initial state of the ratchet is B, there is an increase in the joint state energy by β; this

amount of energy is now taken away from the driving mechanism of the ratchet. In the

steady state, the average work gain 〈W1〉 is then obtained from the average decrease in
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energy of the joint (ratchet-bit) system:

〈W1〉 = −
∑

x∈{A,B}
y∈{0,1}

ps
x⊗y(0

+) (Ex⊗y − Ex − Ey)

= 0 , (2.15)

where we used the probabilities in Eq. (2.14) and Fig. 2.2’s energies.

By a similar argument, the average work 〈W3〉 is equal to the average decrease in the

energy of the joint system on the departure of the ratchet, given by:

〈W3〉 = −kBT

2
β[q + b(p− q)] . (2.16)

Note that the cost of moving the Demon on the bit string (or moving the string past a

stationary Demon) is accounted for in works W1 and W3.

Work W2 is associated with raising and lowering of the weight depicted in Fig. 2.1.

Since transitions B⊗0→ A⊗1 raise the weight to give work kBTw and reverse transitions

B⊗ 0← A⊗ 1 lower the weight consuming equal amount of work, the average work gain

〈W2〉 must be kBTw times the net probability transition along the former direction, which

is [TB⊗0→A⊗1p
s
B⊗0(0+)− TA⊗1→A⊗1p

s
A⊗1(0+)]. This leads to the following expression:

〈W2〉 =
kBTw

2
[−q + b(p+ q)] , (2.17)

where we used the probabilities in Eq. (2.14).

The total work supplied by the ratchet and a bit is their sum:

〈W 〉 = 〈W1〉+ 〈W2〉+ 〈W3〉 (2.18)

=
kBT

2
[(pb− q + qb) ln

(
q

p

)

+ (1− b)q ln(1− q) + pb ln(1− p)] .

Note that we considered the total amount amount of work that can be gained by the

system, not just that obtained by raising the weight. Why? As we shall see in Sec. 2.5,

the former is the thermodynamically more relevant quantity. A similar energetic scheme

that incorporates the effects of interaction has also been discussed in Ref. [64].
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In this way, we exactly calculated the work term in Eq. (2.5). We still need to calculate

the entropy rate of the output and input strings to validate the proposed Information

Processing Second Law. For this, we introduce an information-theoretic formalism to

monitor processing of the bit strings by the ratchet.

2.4 Information

To analytically calculate the input and output entropy rates, we consider how the strings

are generated. A natural way to incorporate temporal correlations in the input string is

to model its generator by a finite-state hidden Markov model (HMM), since HMMs are

strictly more powerful than Markov chains in the sense that finite-state HMMs can gen-

erate all processes produced by Markov chains, but the reverse is not true. For example,

there are processes generated by finite HMMs that cannot be by any finite-state Markov

chain. In short, HMMs give a compact representations for a wider range of memoryful

processes which are generated by physical systems with states that are hidden to the

observer.

Consider possible input strings to the ratchet. With or without correlations between

bits, they can be described by an HMM generator with a finite set of, say, K states and

a set of two symbol-labeled transition matrices T (0) and T (1), where:

T (yN )
sN→sN+1

= Pr(YN = yN , SN+1 = sN+1|SN = sN) (2.19)

is the probability of outputting yN for the Nth bit of the input string and transitioning

to the hidden internal state sN+1 given that the HMM was in state sN .

When it comes to the output string, in contrast, we have no choice. We are forced to

use HMMs. Since the current input bit state YN and ratchet state XN are not explicitly

captured in the current output bit state Y ′N , YN and XN are hidden variables. As we

noted before, calculating HMM entropy rates is a known challenging problem [71, 72].

Much of the difficulty stems from the fact that in HMM-generated processes the effects of

internal states are only indirectly observed and, even then, appear only over long output

sequences.

We can circumvent this difficulty by using unifilar HMMs, in which the current state
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and generated symbol uniquely determine the next state. This is a key technical con-

tribution here since for unifilar HMMs the entropy rate is exactly calculable, as we now

explain. Unifilar HMMs internal states are a causal partitioning of the past, meaning that

every past w maps to a particular state through some function f and so:

Pr(YN = yN |Y0:N = w) = Pr(YN = yN |SN = f(w)) . (2.20)

As a consequence, the entropy rate hµ in its block-entropy form (Eq. (2.4)) can be re-

expressed in terms of the transition matrices. First, recall the alternative, equivalent form

for entropy rate: hµ = limN→∞H[YN |Y0:N ]. Second, since SN captures all the dependence

of YN on the past, hµ = limN→∞H[YN |SN ]. This finally leads to a closed-form for the

entropy rate [12]:

hµ = lim
N→∞

H[YN |SN ]

= −
∑

yN ,sN ,sN+1

πsNT
(yN )
sN→sN+1

log2 T
(yN )
sN→sN+1

, (2.21)

where π is the stationary distribution over the unifilar HMM’s states.

C0 : b 1 : 1� b

Figure 2.4. Biased coin input string as a unifilar hidden Markov model with bias
Pr(Y = 0) = b.

Let’s now put these observations to work. Here, we assume the ratchet’s input string

was generated by a memoryless biased coin. Figure 2.4 shows its (minimal-size) unifilar

HMM. The single internal state C implies that the process is memoryless and the bits are

uncorrelated. The HMM’s symbol-labeled (1 × 1) transition matrices are T (0) = [b] and

T (1) = [1− b]. The transition from state C to itself labeled 0 : b means that if the system

is in state C, then it transitions to state C and outputs Y = 0 with probability b. Since

this model is unifilar, we can calculate the input-string entropy rate from Eq. (2.21) and
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see that it is the single-symbol entropy of bias b:

hµ = H(b)

≡ −b log2 b− (1− b) log2(1− b) , (2.22)

where H(b) is the (base 2) binary entropy function [11].

The more challenging part of our overall analysis is to determine the entropy rate of

the output string. Even if the input is uncorrelated, it’s possible that the ratchet creates

temporal correlations in the output string. (Indeed, these correlations reflect the ratchet’s

operation and so its thermodynamic behavior, as we shall see below.) To calculate the

effect of these correlations, we need a generating unifilar HMM for the output process—a

process produced by the ratchet being driven by the input.

When discussing the ratchet energetics, there was a Markov dynamic M over the

ratchet-bit joint state space. Here, it is now controlled by bits from the input string and

writes the result of the thermal interaction with the ratchet to the output string. In this

way, M becomes an input-output machine or transducer [1]. In fact, this transducer is

a communication channel in the sense of Shannon [75] that communicates the input bit

sequence to the output bit sequence. However, it is a channel with memory. Its internal

states correspond to the ratchet’s states. To work with M , we rewrite it componentwise

as:

M
(y′N |yN )
xN→xN+1 = MxN⊗yN→xN+1⊗y′N (2.23)

to evoke its re-tooled operation. The probability of generating bit y′N and transitioning

to ratchet state xN+1, given that the input bit is yN and the ratchet is in state xN , is:

M
(y′N |yN )
xN→xN+1 = (2.24)

Pr(Y ′N = y′N , XN+1 = xN+1|YN = yN , XN = xN) .

This allows us to exactly calculate the symbol-labeled transition matrices, T ′(0) and T ′(1),

of the HMM that generates the output string:

T
′(y′N )
sN⊗xN→sN+1⊗xN+1

=
∑

yN

M
(y′N |yN )
xN→xN+1T

(yN )
sN→sN+1

. (2.25)
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The joint states of the ratchet and the internal states of the input process are the internal

states of the output HMM, with xN , xN+1 ∈ {A,B} and sN , sN+1 ∈ {C} in the present

case. This approach is a powerful tool for directly analyzing informational properties of

the output process.

By adopting the transducer perspective, it is possible to find HMMs for the output

processes of previous ratchet models, such as in Refs. [7, 63]. However, their generating

HMMs are highly nonunifilar, meaning that knowing the current internal state and output

allows for many alternative internal-state paths. And, this precludes writing down closed-

form expressions for informational quantities, as we do here. Said simply, the essential

problem is that those models build in too many transitions. Ameliorating this constraint

led to the Markov dynamic shown in Fig. 2.3 with two ratchet states and sparse transi-

tions. Although this ratchet’s behavior cannot be produced by a rate equation, due to

the limited transitions, it respects detailed balance.

Figure 2.5 shows our two-state ratchet’s transducer. As noted above, it’s internal

states are the ratchet states. Each transition is labeled y′|y : p, where y′ is the output,

conditioned on an input y, with probability p.

A B

0|0:1
0|1:q

1|1:(1−q)

0|0:(1−p)
1|0:p
1|1:1

Figure 2.5. The Maxwellian ratchet’s transducer.

We can drive this ratchet (transducer) with any input, but for comparison with previ-

ous work, we drive it with the memoryless biased coin process just introduced and shown

in Fig. 2.4. The resulting unifilar HMM for the output string is shown in Fig. 2.6. The
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corresponding symbol-labeled transition matrices are:

T ′(0) =


 0 (1− p)b
b+ q(1− b) 0


 , and (2.26)

T ′(1) =


 0 1− (1− p)b

(1− q)(1− b) 0


 . (2.27)

C ⌦A C ⌦B

0:b+q(1�b)
1:(1�q)(1�b)

0:(1�p)b
1:1�(1�p)b

Figure 2.6. Unifilar HMM for the output string generated by the ratchet driven by a
coin with bias b.

Using these we can complete our validation of the proposed Second Law, by exactly

calculating the entropy rate of the output string. We find:

h′µ = lim
N→∞

H[Y ′N |Y ′0:N ]

= lim
N→∞

H[Y ′N |SN ]

=
H(b(1− p))

2
+

H((1− b)(1− q))
2

. (2.28)

We note that this is less than or equal to the (unconditioned) single-symbol entropy for

the output process:

h′µ ≤ H[Y ′0 ]

= H ((b(1− p) + (1− b)(1− q))/2) . (2.29)

Any difference between h′µ and single-symbol entropy H[Y0] indicates correlations that the

ratchet created in the output from the uncorrelated input string. In short, the entropy

rate gives a more accurate picture of how information is flowing between bit strings and

the heat bath. And, as we now demonstrate, the entropy rate leads to correctly identifying

important classes of ratchet thermodynamic functioning—functionality the single-symbol

entropy misses.
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2.5 Thermodynamic Functionality

Let’s step back to review and set context for exploring the ratchet’s thermodynamic

functionality as we vary its parameters. Our main results are analytical, provided in

closed-form. First, we derived a modified version of the Second Law of Thermodynamics

for information ratchets in terms of the difference between the Kolmogorov-Sinai entropy

of the input and output strings:

〈W 〉 ≤ kBT ln 2 ∆hµ , (2.30)

where ∆hµ = h′µ − hµ. The improvement here takes into account correlations within the

input string and those in the output string actively generated by the ratchet during its

operation. From basic information-theoretic identities we know this bound is stricter for

memoryless inputs than previous relations [76] that ignored correlations. However, by

how much? And, this brings us to our second main result. We gave analytic expressions

for both the input and output entropy rates and the work done by the Demon. Now, we

are ready to test that the bound is satisfied and to see how much stricter it is than earlier

approximations.

We find diverse thermodynamic behaviors as shown in Figure 2.7, which describes

ratchet thermodynamic function at input bias b = 0.9. We note that there are analogous

behaviors for all values of input bias. We identified three possible behaviors for the ratchet:

Engine, Dud, and Eraser. Nowhere does the ratchet violate the rule 〈W 〉 ≤ kBT ln 2 ∆hµ.

The engine regime is defined by (p, q) for which kBT ln 2 ∆hµ ≥ 〈W 〉 > 0 since work is

positive. This is the only condition for which the ratchet extracts work. The eraser regime

is defined by 0 > kBT ln 2 ∆hµ ≥ 〈W 〉, meaning that work is extracted from the work

reservoir while the uncertainty in the bit string decreases. In the dud regime, those (p, q)

for which kBT ln 2 ∆hµ ≥ 0 ≥ 〈W 〉, the ratchet is neither able to erase information nor is

it able to do useful work.

At first blush, these are the same behavior types reported by Ref. [7], except that we

have stronger bounds on the work now with kBT ln 2 ∆hµ, compared to the single-symbol

entropy approximation. The stricter bound gives deeper insight into ratchet functionality.

To give a concrete comparison, Fig. 2.8 plots the single-symbol entropy difference ∆ H[Y0]
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1
Figure 2.7. Information ratchet thermodynamic functionality at input bias b = 0.9:
Engine: (p, q) such that 0 < 〈W 〉 ≤ kBT ln 2 ∆hµ. Eraser: (p, q) such that 〈W 〉 ≤
kBT ln 2 ∆hµ < 0. Dud: (p, q) such that 〈W 〉 ≤ 0 ≤ kBT ln 2 ∆hµ.

and the entropy rate difference ∆hµ, with a flat surface identifying zero entropy change,

for all p and q and at b = 0.9.

In the present setting where input symbols are uncorrelated, the blue ∆H[Y0] surface

lies above the red ∆hµ surface for all parameters, confirming that the single-symbol en-

tropy difference is always greater than the entropy rate difference. It should also be noted

for this choice of input bias b and for larger p, ∆H[Y0] and ∆hµ are close, but they diverge

for smaller p. They diverge so much, however, that looking only at single-symbol entropy

approximation misses an entire low-p region, highlighted in orange in Fig. 2.8 and 2.7,

where ∆hµ dips below zero and the ratchet functions as eraser.

The orange-outlined low-p erasure region is particularly interesting, as it hosts a new

functionality not previously identified: The ratchet removes multiple-bit uncertainty, ef-

fectively erasing incoming bits by adding temporal order, all the while increasing the
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Figure 2.8. Exact entropy rate difference ∆hµ (red) is a much stricter bound on
work than the difference in single-symbol entropy ∆ H[Y0] (blue). The zero surface
(light green) highlights where both entropies are greater than zero and so is an aid to
identifying functionalities.

uncertainty in individual incoming bits. The existence of this mode of erasure is highly

counterintuitive in light of the fact the Demon interacts with only one bit at a time. In

contrast, operation in the erasure region at high p, like that in previous Demons, simply

reduces single-bit uncertainty. Moreover, the low-p erasure region lies very close to the

region where ratchet functions as an engine, as shown in Fig. 2.7. As one approaches

(p, q) = (0, 0) the eraser and engine regions become arbitrarily close in parameter space.

This is a functionally meaningful region, since the device can be easily and efficiently

switched between distinct modalities—an eraser or an engine.

In contrast, without knowing the exact entropy rate, it appears that the engine region

of the ratchet’s parameter space is isolated from the eraser region by a large dud region

and that the ratchet is not tunable. Thus, knowing the correlations between bits in the

output string allows one to predict additional functionality that otherwise is obscured

when one only considers the single-symbol entropy of the output string.

As alluded to above, we can also consider structured input strings generated by mem-

oryful processes, unlike the memoryless biased coin. While correlations in the output
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string are relevant to the energetic behavior of this ratchet, it turns out that input string

correlations are not. The work done by the ratchet depends only on the input’s single-

symbol bias b. That said, in the next chapter we will explore more intelligent ratchets

that take advantage of input string correlations to do additional work.

2.6 Conclusion

Thermodynamic systems that include information reservoirs as well as thermal and work

reservoirs are an area of growing interest, driven in many cases by biomolecular chemistry

or nanoscale physics and engineering. With the ability to manipulate thermal systems

on energy scales closer and closer to the level of thermal fluctuations kBT , information

becomes critical to the flow of energy. Our model of a ratchet and a bit string as the

information reservoir is very flexible and our methods showed how to analyze a broad

class of such controlled thermodynamic systems. Central to identifying thermodynamic

functionality was our deriving Eq. (2.5), based on the control system’s Kolmogorov-Sinai

entropy, that holds in all situations of memoryful or memoryless ratchets and correlated or

uncorrelated input processes and that provides the tightest quantitative bound on work for

memoryless inputs. This improvement comes directly from tracking Demon information

production over system trajectories, not from time-local, configurational entropies.

Though its perspective and methods were not explicitly highlighted, computational

mechanics [77] played a critical role in the foregoing analyses, from its focus on structure

and calculating all system component correlations to the technical emphasis on unifilarity

in Demon models. Its full impact was not fully explained here, but is further explored

in later chapters. Two complementary computational mechanics analyses of information

engines come to mind, in this light. The first is Ref. [78]’s demonstration that the chaotic

instability in Szilard’s Engine, reconceived as a deterministic dynamical system, is key to

its ability to extract heat from a reservoir. This, too, highlights the role of Kolmogorov-

Sinai dynamical entropy. Another is the thorough-going extension of fluctuation relations

to show how intelligent agents can harvest energy when synchronizing to the fluctuations

from a structured environment [74].
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This is to say, in effect, the foregoing showed that computational mechanics is a

natural framework for analyzing a ratchet interacting with an information reservoir to

extract work from a thermal bath. The input and output strings that compose the

information reservoir are best described by unifilar HMM generators, since they allow

for exact calculation of any informational property of the strings, most importantly the

entropy rate. In fact, the control system components are the ε-machines and ε-transducers

of computational mechanics [77, 1].

By allowing one to exactly calculate the asymptotic entropy rate, we identified more

functionality in the effective thermodynamic ε-transducers than previous methods can re-

veal. Two immediate consequences were that we identified a new kind of thermodynamic

eraser and found that our ratchet is easily tunable between an eraser and an engine—

functionalities suggesting that real-world ratchets exhibit memory to take advantage of

correlated environmental fluctuations, as well as hinting at useful future engineering ap-

plications.

2.7 Appendices

2.7.1 Derivation of Eq. (2.5)

Here, we reframe the Second Law of Thermodynamics, deriving an expression of it that

makes only one assumption about the information ratchet operating along the bit string:

the ratchet accesses only a finite number of internal states. This constraint is rather mild

and, thus, the bounds on thermodynamic functioning derived from the new Second Law

apply quite broadly.

The original Second Law of Thermodynamics states that the total change in entropy of

an isolated system must be nonnegative over any time interval. By considering a system

composed of a thermal reservoir, information reservoir, and ratchet, in the following we

derive an analog in terms of rates, rather than total configurational entropy changes.

Due to the Second Law, we insist that the change in thermodynamic entropy of the

closed system is positive for any number N of time steps. If X denotes the ratchet, Y the
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bit string, and Z the heat bath, this assumption translates to:

4S[X, Y, Z] ≥ 0 . (2.31)

Note that we do not include a term for the weight (a mechanical energy reservoir),

since it does not contribute to the thermodynamic entropy. Expressing the thermody-

namic entropy S in terms the Shannon entropy of the random variables S[X, Y, Z] =

kB ln 2 H[X, Y, Z], we have the condition:

4H[X, Y, Z] ≥ 0 . (2.32)

To be more precise, this is true over any number of time steps N . If we have our

system X, we denote the random variable for its state at time step N by XN . The

information reservoir Y is a semi-infinite string. At time zero, the string is composed

entirely of the bits of the input process, for which the random variable is denoted Y0:∞.

The ratchet transduces these inputs, starting with Y0 and generating the output bit string,

the entirety of which is expressed by the random variable Y ′0:∞. At the Nth time step,

the first N bits of the input Y have been converted into the first N bits of the output Y ′,

so the random variable for the input-output bit string is YN :∞ ⊗ Y ′0:N . Thus, the change

in entropy from the initial time to the Nth time step is:

4HN [X, Y, Z] = H[XN , YN :∞, Y
′

0:N , ZN ]

− H[X0, Y0:∞, Z0] (2.33)

= H[XN , YN :∞, Y
′

0:N ] + H[ZN ]

− I[XN , YN :∞, Y
′

0:N ;ZN ]

− H[X0, Y0:∞]− H[Z0]

+ I[X0, Y0:∞;Z0] . (2.34)

Note that the internal states of an infinite heat bath do not correlate with the environment,

since they have no memory of the environment. This means the mutual informations

I[XN , YN :∞, Y
′

0:N ;ZN ] and I[X0, Y0:∞;Z0] of the thermal reservoir Z with the bit string

Y and ratchet X vanish. Also, note that the change in thermal bath entropy can be
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expressed in terms of the heat dissipated QN over the N time steps:

4H[Z] = H[ZN ]− H[Z0]

= QN/kBT ln 2 . (2.35)

Thus, the Second Law naturally separates into energetic terms describing the change in

the heat bath and information terms describing the ratchet and bit strings:

4HN [X, Y, Z] =
QN

kBT ln 2
(2.36)

+ H[XN , YN :∞, Y
′

0:N ]− H[X0, Y0:∞] .

Since 4H ≥ 0, we can rewrite this as an entirely general lower bound on the dissipated

heat over a length Nτ time interval, recalling that τ is the ratchet-bit interaction time:

QN ≥ kBT ln 2 (H[X0, Y0:∞]− H[XN , YN :∞, Y
′

0:N ]) . (2.37)

This bound is superficially similar to Eq. (2.6), but it’s true in all cases, as we have not

yet made any assumptions about the ratchet. However, its informational quantities are

difficult to calculate for large N and, in their current form, do not give much insight.

Thus, we look at the infinite-time limit in order tease out hidden properties.

Over a time interval Nτ , the average heat dissipated per ratchet cycle is QN/N .

When we classify an engine’s operation, we usually quantify energy flows that neglect

transient dynamics. These are just the heat dissipated per cycle over infinite time 〈Q〉 =

limN→∞QN/N , which has the lower bound:

〈Q〉 ≥ lim
N→∞

kBT ln 2
H[X0, Y0:∞]−H[XN , YN :∞, Y

′
0:N ]

N
. (2.38)

Assuming the ratchet has a finite number of internal states, each with finite energy,

then the bound can be simplified and written in terms of work. In this case, the average

work produced is the opposite of the average dissipated heat: 〈W 〉 = −〈Q〉. And so, it
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has the upper bound:

〈W 〉 ≤ kBT ln 2 lim
N→∞

(
H[YN :∞, Y

′
0:N ]−H[Y0:∞]

N

+
H[XN ]−H[X0]

N
(2.39)

+
I[X0;Y0:∞]− I[XN ;YN :∞, Y

′
0:N ]

N

)
,

where the joint entropies are expanded in terms of their single-variable entropies and

mutual informations.

The entropies over the initial X0 and final XN ratchet state distributions monitor the

change in ratchet memory—time-dependent versions of its statistical complexity Cµ(N) =

H[XN ] [77]. This time dependence can be used to monitor how and when the ratchet

synchronizes to the incoming sequence, recognizing a sequence’s temporal correlations.

However, since we assumed that the ratchet has finite states, the ratchet state-entropy

and also mutual information terms involving it are bounded above by the logarithm of

the number states. And so, they go to zero as N →∞, leaving the expression:

〈W 〉 ≤ kBT ln 2 lim
N→∞

(
H[YN :∞, Y

′
0:N ]−H[Y0:∞]

N

)
. (2.40)

With this, we have a very general upper bound for the work done by the ratchet in terms

of just the input and output string variables.

Once again, we split the joint entropy term into it’s components:

〈W 〉 ≤ kBT ln 2 lim
N→∞

(
H[YN :∞]−H[Y0:∞]

N
(2.41)

+
H[Y ′0:N ]

N
− I[YN :∞;Y ′0:N ]

N

)
.

In this we identify the output process’s entropy rate h′µ = limN→∞H[Y ′0:N ]/N . While

limN→∞
(

H[YN :∞]−H[Y0:∞]
)
/N looks unfamiliar, it is actually the negative entropy rate

hµ of the input process, so we find that:

〈W 〉 ≤ kBT ln 2

(
h′µ − hµ − lim

N→∞

I[YN :∞;Y ′0:N ]

N

)
. (2.42)

To understand the mutual information term, note that Y ′0:N is generated from Y0:N ,

so it is independent of YN :∞ conditioned on Y0:N . Essentially, Y0:N causally shields Y ′0:N
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H[YN :1]

H[Y0:N ]

H[Y 0
0:N ]

I[Y 0
0:N : YN :1]

I[Y0:N : YN :1|Y 0
0:N ]

Figure 2.9. The N most recent variables of the input process shield the N variables of
output from the rest of the input variables.

from YN :∞, as shown in information diagram [79] of Fig 2.9. This means:

I[YN :∞;Y ′0:N ] = I[YN :∞;Y0:N ]− I[YN :∞;Y0:N |Y ′0:N ] . (2.43)

This, in turn, gives: I[YN :∞;Y0:N ] ≥ I[YN :∞;Y ′0:N ] ≥ 0. Thus, we find the input process’s

excess entropy E [12]:

lim
N→∞

I[YN :∞;Y ′0:N ] ≤ lim
N→∞

I[YN :∞;Y0:N ]

= E . (2.44)

However, dividing by N it’s contribution vanishes:

lim
N→∞

I[YN :∞;Y0:N ]

N
= lim

N→∞

(
H[Y0:N ]

N
− H[Y0:N |YN :∞]

N

)

= hµ − hµ
= 0 . (2.45)

Thus, we are left with the inequality of Eq. (2.5):

〈W 〉 ≤ kBT ln 2
(
h′µ − hµ

)
; (2.46)

derived with minimal assumptions. Also, the appearance of the statistical complexity and

excess entropy, whose contributions this particular derivation shows are asymptotically
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small, does indicate the potential role of correlations in the input for finite time—times

during which the ratchet synchronizes to the incoming information [80].

One key difference between Eq. (2.46) (equivalently, Eq. (2.5)) and the more com-

monly used bound in Eq. (2.6), with the change in single-variable configurational entropy

H[Y ′0 ]−H[Y0], is that the former bound is true for all finite ratchets and takes into account

the production of information over time via the Kolmogorov-Sinai entropies hµ and h′µ.

There are several special cases where the single-variable bound of Eq. (2.6) applies.

In the case where the input is uncorrelated, it holds, but it is a weaker bound than

Eq. (2.5) using entropy rates. Also, in the case when the ratchet has no internal states

and so is memoryless, Eq. (2.6) is satisfied. Interestingly, either it or Eq. (2.46) can

be quantitatively stricter in this special case. However, in the most general case where

the inputs are correlated and the ratchet has memory, the bound using single-variable

entropy is incorrect, since there are cases where it is violated [14]. Finally, when the

input-bit-ratchet interaction time τ grows the ratchet spends much time thermalizing.

The result is that the output string becomes uncorrelated with the input and so the

ratchet is effectively memoryless. Whether by assumption or if it arises as the effective

behavior, whenever the ratchet is memoryless, it is ignorant of temporal correlations and

so it and the single-symbol entropy bounds are of limited physical import. These issues

will be discussed in detail in sequential sections, but as a preview see Ref. [14].

2.7.2 Designing Ratchet Energetics

Figure 2.3 is one of the simplest information transducers for which the outcomes are

unifilar for uncorrelated inputs, resulting in the fact that the correlations in the outgoing

bits can be explicitly calculated. As this calculation was a primary motivation in our

work, we introduced the model in Fig. 2.3 first and, only then, introduced the associated

energetic and thermodynamic quantities, as in Fig. 2.2. The introduction of energetic

and thermodynamic quantities for an abstract transducer (as in Fig. 2.3), however, is not

trivial. Given a transducer topology (such as the reverse “Z” shape of the current model),

there are multiple possible energy schemes of which only a fraction are consistent with all

possible values of the associated transition probabilities. However, more than one scheme
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is generally possible.

To show that only a fraction of all possible energetic schemes are consistent with all

possible parameter values, consider the case where the interaction energy between the

ratchet and a bit is zero, as in Ref. [7]. In our model, this implies β = 0, or equivalently,

p = q = 0 (from Eq. (2.12)). In other words, we cannot describe our model, valid for all

values 0 < p, q < 1, by the energy scheme in Fig. 2.2 with β = 0. This is despite the fact

that we have two other independent parameters α and w.

To show that, nonetheless, more than one scheme is possible, imagine the case with

α = β = 0. Instead of just one mass, consider three masses such that, whenever the

transitions A⊗ 0→ B ⊗ 0, B ⊗ 0→ A⊗ 1, and A⊗ 1→ B ⊗ 1 take place, we get works

kBTW̃1, kBTW̃2, and kBTW̃3, respectively. We lose the corresponding amounts of work

for the reverse transitions. This picture is consistent with the abstract model of Fig. 2.3

if the following requirements of detailed balance are satisfied:

1

1− p =
MA⊗0→B⊗0

MB⊗0→A⊗0

= e−W̃1 , (2.47)

p

q
=
MB⊗0→A⊗1

MA⊗1→B⊗0

= e−W̃2 , and (2.48)

1− q =
MA⊗1→B⊗1

MB⊗1→A⊗1

= e−W̃3 . (2.49)

Existence of such an alternative scheme illustrates the fact that given the abstract model

of Fig. 2.3, there is more than one possible consistent energy scheme. We suggest that

this will allow for future engineering flexibility.

44



Chapter 3

Correlation-powered Information

Engines

3.1 Introduction

Intriguing connections between statistical mechanics and information theory have emerged

repeatedly since the latter’s introduction in the 1940s. Thermodynamic entropy in the

canonical ensemble is the Shannon information of the Boltzmann probability distribution

[81]. Average entropy production during a nonequilibrium process is given by the rela-

tive entropy [82, 83], an information-theoretic quantity, of the forward trajectories with

respect to the time-reversed trajectories [27]. Perhaps the most dramatic connection,

though, appears in the phenomenon of Maxwell’s demon, a thought experiment intro-

duced by James C. Maxwell [84]. This is a hypothetical, intelligent creature that can

reverse the spontaneous relaxation of a thermodynamic system, as mandated by the Sec-

ond Law of thermodynamics, by gathering information about the system’s microscopic

fluctuations and accordingly modifying its constraints, without expending any net work.

A consistent physical explanation can be obtained only if we postulate, following Szi-

lard [32], a thermodynamic equivalent of information processing: Writing information

has thermodynamic benefits whereas erasing information has a minimum thermodynamic

cost, kBT ln 2 for the erasure of one bit of information. This latter is Landauer’s celebrated

principle [4, 34].

The thermodynamic equivalent of information processing has the surprising impli-
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cation that we can treat the carrying capacity of an information storage device as a

thermodynamic fuel. This observation has led to a rapidly growing literature exploring

the potential design principles of nanoscale, autonomous machines that are fueled by in-

formation. References [60, 7], for example, introduced a pair of stochastic models that can

act as an engine without heat dissipation and a refrigerator without work expenditure,

respectively. These strange thermal devices are achieved by writing information on a tape

of “bits”—that is, on a tape of two-state, classical systems. A more realistic model was

suggested in Ref. [63]. These designs have been extended to enzymatic dynamics [85],

stochastic feedback control [86], and quantum information processing [87, 73].

The information tape in the above designs can be visualized as a sequence of symbols

where each symbol is chosen from a fixed alphabet, as shown in Fig. 2.1 for binary

tape symbols. There is less raw information in the tape if the symbols in the sequence

are statistically correlated with each other. For example, the sequence . . . 101010 . . .,

consisting of alternating 0s and 1s, encodes only a single bit of information on the whole

since there are only two such sequences (differing by a phase shift). Whereas, a sequence of

N random binary symbols encodes N bits of information. The thermodynamic equivalent

of information processing, therefore, says that we can treat the former (ordered) sequence

as a thermodynamic fuel. This holds even though it contains equal numbers of 0s and 1s

on average as in the fully random sequence, which provides no such fuel.

The design principles of information engines [78] explored so far, however, are not gen-

erally geared towards temporally correlated information tapes [7, 60, 56, 61, 62, 63, 64, 10]

since, by and large, only a tape’s single-letter frequencies have been considered. However,

the existence of statistical correlations among the symbols—that is, between environ-

mental stimuli—is the rule, not an exception in Nature. Even technologically, produc-

ing a completely correlation-free (random) sequence of letters is a significant challenge

[88, 89, 90]. The thermodynamic value of statistical correlations [8, 49] and quantum en-

tanglement [91, 92, 93, 94, 95, 96, 97, 98, 99] have been discussed widely in the literature.

Our goal here is to extend the design of tape-driven information engines to accommo-

date this more realistic scenario—information engines that leverage temporally correlated
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environments to convert thermal energy to useful work.

Other studies have taken a somewhat different approach to the description and uti-

lization of the thermodynamic equivalent of information processing. References [37, 38,

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 64, 17] explored active feedback control of

a stochastic system by external means, involving measurement and feedback or measure-

ment, control, and erasure. While Refs. [51, 52, 53, 54] explored a multipartite framework

involving a set of interacting, stochastic subsystems and Refs. [55, 56] studied steady-state

models of Maxwell’s demon involving multiple reservoirs. And, finally, Refs. [57, 58, 59]

indicated how several of these approaches can be combined into single framework.

Here, we use computational mechanics [77] for thermal information ratchets [13] to

derive a general expression for work production that takes into account temporal correla-

tions in the environment as well as correlations created in the output by the information

engine’s operation. The functional form of the work expression establishes that memory-

less information ratchets cannot leverage anything more than single-symbol frequencies

in their input and are, therefore, insensitive to temporal correlations. Thus, to the extent

that it is possible to leverage temporally correlated environments, memoryful information

engines are the only candidates. This indicates, without proof, that the memory of an

information engine must reflect the memory of its environment to most efficiently leverage

structure in its input.

Adding credence to this hypothesis, we introduce an ergodic information engine that is

driven solely by temporal correlations in the input symbols to produce work. The states of

the engine wind up reflecting the memory states of the generator of the input process. This

makes good on the conjecture [13] as to why one observes thermodynamically functional

ratchets in the real world that support memory [13]: Only Demons with memory can

leverage temporally correlated fluctuations in their environment.

Similar behavior was demonstrated by Maxwell’s refrigerator [60], when Ref. [73]

showed it to be a nonergodic refrigerator when driven by a nonergodic process that is

statistically unbiased over all realizations. However, we focus on our ergodic engine, since

ergodicity leads to robust and reliable work production. This contrast is notable. Without
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ergodicity, an engine does not function during many realizations, from trial to trial. In

this sense, a “nonergodic engine” is unreliable in performing its intended task, such as

being an engine (converting thermal energy to work), generating locomotion, and the like.

During one trial it functions; on another it does not.

If one is willing to broaden what one means by “engine”, then one can imagine con-

structing an “ensemble engine” composed of a large collection of nonergodic engines and

then only reporting ensemble-averaged performance. Observed over many trials, the large

trial-by-trial variations in work production are masked and so the ensemble-average work

production seems a fair measure of its functionality. However, as noted, this is far from the

conventional notion of an engine but, perhaps, in a biological setting with many molecular

“motors” it may be usefully considered functional.

Our design of an ergodic engine that can operate solely on temporal correlations should

also be contrasted with a recent proposal [100] that utilizes mutual information between

two tapes, i.e., spatial correlations, as a thermodynamic fuel.

The overarching thermodynamic constraints on functioning at all are analyzed in a

companion work [17]. The following, in contrast, focuses on the particular functionality of

self-correcting Demons in the presence of temporally correlated environments and on an-

alyzing the thermodynamic regimes that support them. First, we review the information

engine used and give a synopsis of our main results so that they are not lost in the more

detailed development. Second, the technical development begins as we introduce the nec-

essary tools from computational mechanics and stochastic thermodynamics. Third, using

them, we analyze the engine’s behavior and functioning in the presence of a correlated

input, calling out the how the Demon recognizes (or not) correlations in the input and

either (i) responds constructively by using them to convert thermal energy to work or (ii)

dissipates energy as it attempts to re-synchronize and regain engine functioning. Fourth,

we note how these two dynamical modes represent a type of dynamical nonergodicity over

the ratchet’s state space when the ratchet cannot re-synchronize, which leads to tempo-

rary nonergodicity in the work production. However, with re-synchronization, these two

dynamical modes become accessible from each other, which leads to ergodicity of the
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engine and its work production. And, finally, we derive the physical consequences for the

costs of self-correction and its operational limits.

3.2 A Self-Correcting Information Engine: Synopsis

Figure 2.1 shows our model [7, 13] of an information engine implemented as a thermal

ratchet consisting of four elements: a thermal reservoir, a work reservoir (mass in a

gravitational field), an information tape (or reservoir), and a ratchet controlled by the

values in the input tape cells. The ratchet acts as the communication medium between the

three reservoirs as it moves along the tape and transforms the input information content.

In the process, it mediates energy exchange between the heat and work reservoirs.

To precisely specify the kinds of temporal correlation in the ratchet’s environment, we

represent the generator of the sequences on the information tape via a hidden Markov

model (HMM), a technique introduced in the last chapter and Ref. [13]. This has several

advantages. One is that the full distribution over infinite sequences of the input tape

Pr(
←→
Y ) is represented in a compact way. The most extreme case of this comes in recalling

that finite-state HMMs can finitely represent infinite-order Markov processes [101]. And

so, HMMs give a desirable flexibility in the kinds of environments we can analyze, from

memoryless to finite- and infinite-order Markovian. Another is that many statistical and

informational properties can be directly calculated, as we discuss shortly. In this setup,

the ratchet is a transducer in the sense of computational mechanics [1]. And this, in turn,

allows exact analysis of informational bounds on work production [13, 10]. Here, though,

in Sec. 3.3.3 we go further, expanding the toolset of the HMM-transducer formalism by

deriving a general work production expression for any finite-state input HMM driving a

finite-state thermal ratchet.

With this powerful new expression for work production, Sec. 3.4.1 then considers the

case of a perfectly correlated information tape. Though nominally simple, this case is of

particular interest since previous single-symbol entropy bounds erroneously suggest this

class of input should generate nonpositive work. Our entropy rate bounds, in contrast,

suggest it is possible to generate net positive work. And, indeed, we see that the single-
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symbol bounds are violated, as our ratchet produces positive work. In examining this

concrete model, moreover, we realize that the ratchet’s synchronizing to the correlations

in its input is an essential part of work production: Synchronization is how the ratchet

comes to leverage the thermodynamic “fuel” in a memoryful input process.

This result emphasizes a key feature of our ratchet design: Useful thermodynamic

functioning is driven purely by the temporal correlations in the input tape. That is, if the

symbols are perfectly correlated—a sequence with temporal memory, e.g., with 1s always

following 0s and vice versa—the ratchet acts as an engine, writing new information on

the output tape and transferring energy from the heat to the work reservoir. However, if

the correlation is not perfect, depending on engine parameters, the ratchet can act as an

information-eraser or dud, converting work into heat. Thus, there exists a critical level

of corrupted input correlation beyond which engine functionality is no longer possible.

Our tools allow us to give explicit expressions for work in all these cases, including the

parameter limits of thermodynamic functioning.

Perhaps most importantly, the analysis reveals a novel mechanism underlying the

functioning and its disappearance. This can be explained along the following lines. An

exclusive feature of the ratchet design is the presence of a synchronizing state, denoted C

in the (state ⊗ bit)-transition diagram of Fig. 3.3. Absent C and for perfectly correlated

input, the ratchet is equally likely to be in two stable dynamical modes: “clockwise” in

which heat is converted into work and “counterclockwise” in which work is converted into

heat. (See Fig. 3.5.) Since the counterclockwise mode dissipates more per cycle than

can be compensated by the clockwise mode, without C the ratchet cannot function as an

engine. With C, though, the counterclockwise mode becomes a transient and the clockwise

mode an attractor, making possible the net conversion of heat into work (engine mode).

The phenomenon of an observer (ratchet) coming to know the state of its environment

(phase of the memoryful input tape) is referred to as synchronization [12]. (For a rather

different notion of synchronization and its thermodynamic interpretation see Ref. [102].)

In contrast, when the input symbols are not perfectly correlated due to phase slips, say,

the ratchet is randomly thrown into the dissipative counterclockwise mode. Nonetheless,
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repeated re-synchronization may compensate, allowing the engine mode, if the transition

probabilities into C are enhanced, up to a level. This is a form of dynamical error correc-

tion. Beyond a certain level of corruption in the input correlations, however, dynamical

error correction is not adequate to resynchronize to the input phase. The Demon cannot

act as an engine, no matter how large the transition probabilities into C. This critical

corruption level is shown in the thermodynamic-function diagram of Fig. 3.11 by the ver-

tical dotted line, where the horizontal axis denotes level of corruption as the frequency of

phase slips.

The current situation must be contrasted with the usual error correction schemes

in communication theory and biological copying. In the former context, redundancy

is built into the data to be transmitted so that errors introduced during transmission

can be corrected by comparing to redundant copies, up to a certain capacity. In the

biological context of copying, as in DNA replication [103], error correction corresponds

to the phenomenon of active reduction of errors by thermodynamic means [104, 105,

106]. In the current context, we use the term self-correction to refer to the fact the

proposed information engine can predict and synchronize itself with the state of the

information source to produce positive work even when the engine is initiated in or driven

by fluctuations to a dissipative mode. Section 3.5 discusses this self-correcting behavior

of the engine in detail.

To analyze how dynamical error correction operates quantitatively, the following shows

how the presence of state C renders the counterclockwise phase transient. This reveals

a novel three-way tradeoff between synchronization rate (transition probability from C

to the clockwise phase), work produced during synchronization, and average extracted

work per cycle. Section 3.5 then turns to analyze re-synchronization, considering the

case of imperfectly correlated information tape with phase slips. It demonstrates how the

ratchet dynamically corrects itself and converts heat into work over certain parameter

ranges. The section closes by giving the expression for maximum work and the parameter

combinations corresponding to achieving optimum conversion.

Throughout the exploration, several lessons stand out. First, to effectively predict
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bounds on a input-driven ratchet’s work production, one must consider Shannon entropy

rates of the input and output strings; and not single-variable entropies. Second, the ex-

pression for the work production shows that correlations coming from memoryful environ-

ments can only be leveraged by memoryful thermodynamic transformations (Demons).

While it remains an open question how to design ratchets to best leverage memoryful

inputs, the particular ratchet presented here demonstrates how important it is for the

ratchet’s structure to “match” that of the input correlations. In short, the ratchet only

produces work when its internal states are synchronized to the internal states of the input

sequence generator. Otherwise, it is highly dissipative. And last, synchronization has

energetic consequences that determine the effectiveness of dynamical error correction and

the tradeoffs between average work production, work to synchronize, and synchronization

rate.

3.3 Thermal Ratchet Principles

As described in Chapter 2 and shown in Fig. 2.1, our ratchet moves along the information

tape unidirectionally, interacting with each symbol sequentially. The ratchet interacts

with each symbol for time τ and possibly switches the symbol value contained in the cell.

We refer to time period τ as the interaction interval and the transitions that happen in the

joint state space as interaction transitions. Through this process, the ratchet transduces

a semi-infinite input string, expressed by random variable Y0:∞ = Y0Y1 . . ., into an output

string Y ′0:∞ = Y ′0Y
′

1 . . .. Here, the symbols YN and Y ′N realize the elements yN and y′N ,

respectively, over the same information alphabet Y .

For example, as in Fig. 2.1, the alphabet consists of just 0 and 1. Consider the case in

which the ratchet was initiated at the leftmost end at time t = 0. At time t = Nτ the en-

tire tape is described by the random variables Y ′0:NYN∞ = Y ′0Y
′

2 . . . Y
′
N−2Y

′
N−1YNYN+1 . . .,

because in N time-steps N input symbols have been transduced into N output symbols.

The state of the ratchet at time t = Nτ is denoted by the random variable XN , which

realizes an element xN ∈ X , where X is the ratchet’s state space.

Since we chose the input alphabet to consist of just two symbols 0 and 1, we refer
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Figure 3.1. Computational mechanics of information engines: The input tape values
are generated by a hidden Markov model (HMM) with, say, three hidden states—A, B,
and C. Specifically, transitions among the hidden states produce 0s and 1s that form
the input tape random variables Y0:∞. The ratchet acts as an informational transducer
that converts the input HMM into an output process, that is also represented as an
HMM. That is, the output tape Y ′0:∞ can be considered as having been generated by an
effective HMM that is the composition of the input HMM and the ratchet’s transducer
[1].

to the values in the tape cells as bits. That this differs from the information unit “bit”

should be clear from context. Tape generally refers to the linear chain of cells and string

to the stored sequence of symbols or cell values.

Finally, the ratchet is connected with two, more familiar reservoirs—a thermal reser-

voir and a work reservoir. The state of the thermal reservoir at time t = Nτ is denoted

by ZN . We assume that the thermal reservoir is at absolute temperature T K. The work

reservoir consists of a mass being pulled down by gravity, but kept suspended by a pulley.

Certain, specified ratchet transitions lower and raise the mass, exchanging work.

To set up the analysis, we must first review how to measure information, structure,

and energy as they arise during the ratchet’s operation.

3.3.1 Ratchet Informatics: Computational Mechanics

To monitor information generation and storage, computational mechanics views the se-

quence of symbols from the left of the input tape Y0:∞ as the temporal output of a kind of

HMM, called an ε-machine [77]. The latter provides the most compact way to represent

the statistical distribution of symbol sequences. In particular, many types of long-range
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correlation among the symbols are encoded in the ε-machine’s finite-state hidden dynam-

ics. The correlations appear as the memory, characterized by its internal-state entropy or

statistical complexity Cµ. Specifically, if the input can be produced by an HMM with a

single hidden state, the input generator is memoryless and there cannot be any correlation

among the symbols 1.

The ratchet functions as a memoryful communication channel that sequentially con-

verts the input symbols into values in Y ′0:∞, the output tape. Naturally, the output tape

itself can be considered in terms of another HMM, as emphasized by the schematic in

Fig. 3.1. There, the ratchet acts as an information transducer between two information

sources represented by respective input and output HMMs [1].

These choices make it rather straightforward to measure ratchet memory. If the size

of its state space is unity (|X | = 1), then we say it is memoryless. Otherwise (|X | > 1),

we say it is memoryful. With memory, the ratchet at time t = Nτ can store information

about the past input symbols y0:N with which it has interacted, as well as past outputs

y′0:N . Similarly, the output HMM can have memory (its own positive statistical complexity

Cµ > 0) even when the input HMM does not. This was the case, for example in Refs.

[7, 60, 63, 13]. Critically, the transducer formalism has the benefit that we can exactly

calculate the distribution Pr(Y ′0:∞) of output tapes for any finite-memory ratchet with a

finite-memory input process. Shortly, we add to this set of tools, introducing a method to

calculate the work production by any finite-memory ratchet operating on a finite-memory

input.

3.3.2 Ratchet Energetics: The First Law of Thermodynamics

Interactions between ratchet states and input symbols have energetic consequences. The

internal states and symbols interact with a thermal reservoir at temperature T , whose

configuration at time step N is denoted by the random variable ZN , and with a work

reservoir, that holds no information and so need not have an associated random vari-

able. Through its operation, the current input symbol facilitates or inhibits energy flows

1Thus, in our use of the descriptor “correlated”, the all 0s sequence and the all 1s sequence have no
temporal correlation. Since their internal memory Cµ = 0, they have no information to correlate. This
is analogous to autocorrelation in which the zero frequency offset is subtracted.
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between the work and thermal reservoirs.

The joint dynamics of the ratchet and incoming symbol occur over two alternating

steps: a switching transition and an interaction transition. At time t = Nτ , the ratchet

switches the tape cell with which it interacts from the (N − 1)th output symbol y′N−1

to the Nth input symbol yN . This is followed by the interaction transition between the

ratchet, which is in the xN state, and the symbol yN . Together, they make a stochastic

transition in their joint state space according to the Markov chain:

MxN⊗yN→xN+1⊗y′N =

Pr(XN+1 = xN+1, Y
′
N = y′N |XN = xN , YN = yN) .

M has detailed balance, since transitions are activated by the thermal reservoir. Energy

changes due to these thermal interaction transitions are given by the Markov chain:

∆ExN⊗yN→xN+1⊗y′N = kBT ln
MxN+1⊗y′N→xN⊗yN

MxN⊗yN→xN+1⊗y′N
.

These energies underlie the heat and work flows during the ratchet’s operation. Through

interaction, the input symbol yN is converted into the output symbol y′N and written to

the output tape cell as the ratchet switches to the next input bit yN+1 to start the next

interaction at time t = (N + 1)τ .

Notably, previous treatments [7, 60, 13] of information engines associated the energy

change during an interaction transition with work production by coupling the interaction

transitions to work reservoirs. While it is possible to construct devices that have this

work generation scheme, it appears to be a difficult mechanism to implement in practice.

We avoid this difficulty, designing the energetics in a less autonomous way, not attaching

the work reservoir to the ratchet directly.

So, instead of the ratchet effortlessly stepping along the tape unidirectionally on its

own, it is driven. (And, an energetic cost can be included for advancing the ratchet without

loss of generality.) In this way, heat flow happens during the interaction transitions and

work flow happens during the switching transitions. Appendix 3.7.1 shows how this
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strategy gives an exact asymptotic average work production per time step:

〈W 〉 =
∑

x,x′∈X
y,y′∈Y

πx⊗yMx⊗y→x′⊗y′∆Ex⊗y→x′⊗y′ , (3.1)

where πx⊗y is the asymptotic distribution over the joint state of the Demon and interaction

cell at the beginning of any interaction transition:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y) . (3.2)

It is important to note that π is not M ’s stationary distribution and, moreover, it is

highly dependent on the input HMM. Despite calculating work production for a different

mechanism, the asymptotic power calculated here is the same as in previous examinations

[7, 13, 10].

From the expression of work given in Eq. (4.13), we see that memoryless ratchets have

severe limitations in their ability to extract work from the heat reservoir. In this case,

the ratchet state space X consists of a single state and π in Eq. (3.2) is just the single

symbol distribution of the input string:

πx⊗y = Pr(Y0 = y) .

As a result, the calculation of work depends only on the single-symbol statistics of the

input string, producing work from the string as if the input were independent and iden-

tically distributed (IID). Regardless of whether there are correlations among the input

symbols, the work production of a memoryless ratchet is therefore the same for all inputs

having the same single-symbol statistics. For example, a memoryless ratchet cannot dis-

tinguish between input strings 01010101 . . . and 00110011 . . . as far as work is concerned.

Thus, for the ratchet to use correlations in the input string to generate work, it must have

nonzero memory. This is in line with previous examinations of autonomous information

engines [10, 13]. In any case, the general form for the work production here allows one

to calculate it for any finite memoryful channel operating on any input tape generated by

a finite HMM.
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3.3.3 Ratchet Entropy Production: The Second Law of Ther-

modynamics

Paralleling Landauer’s Principle [4, 34] on the thermodynamic cost of information era-

sure, several extensions of the Second Law of thermodynamics have been proposed for

information processing. We refer to them collectively as the thermodynamic equivalents

of information processing. For ratchets, these bounds on the thermodynamic costs of

information transformation can be stated either in terms of the input and the output

HMMs’ single-symbol entropy (less generally applicable) or entropy rate (most broadly

applicable). Let’s review their definitions for the sake of comparison.

Consider the probability distribution of the symbols {0, 1} in the output sequence of

an HMM. If the single-symbol probabilities are {p, 1− p}, respectively, the single-symbol

entropy H1 of the HMM is given by the binary entropy function H(p) [11]:

H1 = H(p) (3.3)

≡ −p log2 p− (1− p) log2 (1− p) .

By definition, single-symbol entropy ignores sequential symbol-symbol correlations.

The entropy rate, as discussed in Chapter 2, is the asymptotic per-symbol uncertainty.

To define it, we need to first introduce the concept of a word in the output sequence

generated by an HMM. A word w is a subsequence of symbols of length ` over the space

Y`. For example, a binary word of length ` = 2 consists of a pair of consecutive symbols;

an event in the space Y2 = {00, 01, 10, 11}. Thus, there are 2` possible length-` words or

elements in Y`. The Shannon entropy rate of the process generated by an HMM is then

given by [11]:

hµ = − lim
`→∞

1

`

∑

w∈Y`
Pr(w) log2 Pr(w) , (3.4)

where Pr(w) denotes the probability of w ∈ Y`. Entropy rate hµ captures the effects of

correlations in the symbols at all lengths.

For memoryless processes, H1 = hµ. Otherwise, H1 > hµ, with hµ being the correct

measure of information per symbol and H1 being an overestimate. One relevant extreme
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case arises with exactly periodic processes with period greater than 1: hµ = 0; whereas

H1 > 0, it’s magnitude being determined by the single-symbol frequencies.

Again we’re presented with the two specific forms of the thermodynamic equivalent of

information processing for information engines:

〈W 〉 ≤ kBT ln 2 ∆ H1 (3.5)

〈W 〉 ≤ kBT ln 2 ∆hµ , (3.6)

where ∆ H1 and ∆hµ denote, respectively, the change in single-symbol entropy and in

entropy rate from the input HMM to the output HMM [7, 60, 61, 5, 58, 36, 10, 13].

Let’s compare them. Equation (3.5) says that correlations in the input string beyond

single symbols cannot be used to produce work, while Eq. (3.6) suggests that it is possible.

This follows since, if we keep the single-symbol probabilities constant while increasing

the temporal correlations in the input, all while keeping the output fixed, ∆ H1 remains

constant, but ∆hµ increases.

To resolve this seeming ambiguity, we appeal to the general expression of Eq. (3.1) for

calculating work production. The expression says that work production depends on the

memory of both the ratchet and the input HMM; see App. 3.7.1. In this way, temporal

correlations in the input string can influence the ratchet’s thermodynamic behavior. Only

when the ratchet is memoryless is there no relevance of the correlations, so far as the

average work is concerned. In the memoryless case, Eq. (3.5) as well as Eq. (3.6) are

valid.

This observation suggests that, in contrast, for a ratchet to use correlations in the

input string to generate work, it must have more than one internal state [17]. In addition,

to generate correlations in the input string, its generating HMM must have memory. This

leads to the intuitive hypothesis that to leverage work from the temporal order in the

input string (correlations created by the input HMM’s memory), the ratchet must also

have memory.

We test this hypothesis by analyzing the specific example of a perfectly correlated

environment—a periodic input process. As we do, keep in mind that, on the one hand,

Eq. (3.5) says that no work production is possible, regardless of the binary output process
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statistics. On the other hand, Eq. (3.6) suggests the opposite. As long as the output

process has some uncertainty in sequential symbols, then ∆hµ > 0. We also introduce

a ratchet with three memory states that produces positive work and even appears to be

nearly optimal for certain parameter ranges [17]. In short, a memoryful ratchet with a

memoryful input process violates Eq. (3.5), demonstrating that bound’s limited range of

application.

3.4 Functional Ratchets in Perfectly Correlated En-

vironments

Let’s consider the case of a correlated environment and then design a thermal ratchet

adapted to it.

3.4.1 The Period-2 Environment

Take the specific case of a period-2 input process. The state transition diagram for its

HMM is given in Fig. 3.2. There are three internal states. D is a transient state from

which the process starts. From D, the process transitions to either E or F with equal

probabilities. If the system transitions to E, a 0 is emitted, and if the system transitions

to F , a 1 is. Afterwards, the process switches between E and F with E → F transitions

emitting 1 and F → E transitions emitting 0. As a result, the input HMM generates two

possible sequences that drive the ratchet: y0:∞ = 010101 . . . or y0:∞ = 101010 . . .. Note

that these two sequences differ by a single phase shift.

The period-2 process is an ideal base case for analyzing how ratchets extract work out

of temporal correlations. First, its sequences have no bias in the frequencies of 0’s and 1’s,

as they come in equal proportions; thereby removing any potential gain from an initial

statistical bias. And, second, the symbols in the sequence are perfectly correlated—a 0 is

followed by 1 and a 1 by 0.

More to the point, previous information engines cannot extract work out of such peri-

odic sequences since those engines were designed to obtain their thermodynamic advantage

purely from statistical biases in the inputs [7, 60, 61, 13, 10]. By way of contrast, we now

introduce and analyze the performance of a ratchet design that extracts work out of such
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0 : 1.0

1 : 1.0

1 : 0.5 0 : 0.5

Figure 3.2. Period-2 process hidden Markov model with a transient start state D and
two recurrent causal states E and F . Starting from D, the process makes a transition
either to E or to F with equal probabilities while emitting y = 0 or y = 1, respectively.
This is indicated by the transition labels from D: y : p says generate symbol y when
taking the transition with probability p. On arriving at states E or F , the process
alternates between two states, emitting y = 0 for transitions E → F and y = 1 for
transitions F → E. In effect, we get either of two infinite sequences, y0:∞ = 0101 . . .
and y0:∞ = 1010 . . ., with equal probabilities.

perfectly correlated, unbiased input sequences. The following section then considers the

more general case in which input correlations are corrupted by environmental fluctuations.

Let’s explain the information-theoretic reasoning that motivates this. For a period-2

process, the single-symbol entropy H1 is maximal: H[YN ] = 1. However, its entropy rate

hµ = 0 due to its perfect predictability as soon as any symbol is known. This, on the one

hand, implies ∆ H1 ≡ H[Y ′N ]−H[YN ] ≤ 0. Equation (3.5), in turn, says that work cannot

be extracted regardless of the realizations of the output string; no matter the design of

the information engine. For the period-2 input, though, ∆hµ = h′µ ≥ 0. And, Eq. (3.6)

indicates that work can be extracted as long as the output string has nonzero entropy

rate h′µ. This is achievable with appropriate thermal ratchet design. In other words,

Eq. (3.5) suggests that it is impossible to extract work from input correlations beyond

single-symbol bias, while Eq. (3.6) suggests it is possible. We resolve this disagreement

in favor of Eq. (3.6) by explicit construction and exact analysis.

3.4.2 Memoryful Ratchet Design

Figure 3.3 gives a ratchet design that can extract work out of a period-2 process. As

explained above in Sec. 3.3, the ratchet interacts with one incoming symbol at a time. As
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A⊗ 1

A⊗ 0 B ⊗ 0

B ⊗ 1

C ⊗ 0

C ⊗ 1
(1− δ)/e

1− δ

1− δ

(1− δ)/e

1− (1− δ)/e

1− (1− δ)/e

δ

γ

δ

γ

1− γ

1− γ

Figure 3.3. State transition diagram of a ratchet that extracts work out of environment
correlations: A, B, and C denote the ratchet’s internal states and 0 and 1 denote the
values of the interacting cell. The joint dynamics of the Demon and interacting cell take
place over the space of six internal joint states: {A⊗0, . . . , C⊗1}. Arrows indicate the
allowed transitions and their probabilities in terms of the ratchet control parameters
δ and γ. Note that e here refers to the base of natural logarithm, not a variable.

a result, the ratchet’s transducer specifies both ratchet internal states and the states of

the input tape cell being read. In the figure, A, B, and C denote the ratchet’s internal

states and x ⊗ y denotes the joint transducer state of the ratchet state and interacting

cell value, with the ratchet being in state x ∈ {A,B,C} and the interacting cell with

value y ∈ {0, 1}. Arrows denote the allowed transitions and their labels the transition

probabilities in terms of ratchet control parameters, that we now introduce. For example,

if the Demon is in state A and the input symbol has value 0, they make a transition to

the joint state B ⊗ 0 with probability (1− δ) or to the joint state C ⊗ 0 with probability

δ. Due to conservation of probability, the sum of transition probabilities out of any joint

state is unity. After the transition, the old symbol value in the tape cell is replaced by

a new value. If the joint state made a transition to B ⊗ 0 and the incoming symbol had

value 1, the joint state is switched to B ⊗ 1. Then, a transition from joint state B ⊗ 1

takes place according to the rule described above.
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The parameters δ and γ satisfy the following constraint: 0 ≤ δ, γ ≤ 1. The Markov

chain matrix M corresponding to the transition dynamics depicted in Fig. 3.3 is given

in App. 3.7.2. Due to the repetitive nature of the dynamics, the transducer reaches an

asymptotic state (App. 3.7.1) such that its probability distribution does not change from

one interaction interval to another.

Now, consider the transducer’s response when driven by a period-2 input process.

Appendix 3.7.2 calculates the work and entropy changes in the asymptotic limit, finding:

〈W 〉 =
1− δ
e

kBT ln 2 , (3.7)

∆ H1 = 0 , and (3.8)

∆hµ = H

(
1− δ
e

)
. (3.9)

The work expression follows from the definition in Eq. (4.13). The single-symbol entropy

difference ∆ H1 vanishes since the output tape consists of random, but still equal, mixtures

of 0’s and 1’s, as did the input tape. The entropy rate change ∆hµ, though, is generally

positive since, although the input entropy rate vanishes, the ratchet adds some randomness

to the output.

From Eq. (3.9), we have a clear violation of Eq. (3.5). Whereas, Eq. (3.6) still holds:

0 = ∆ H1 <
〈W 〉

kBT ln 2
≤ ∆hµ . (3.10)

Since Ref. [13] established Eq. (3.6) for all finite ratchets, this difference in the bounds is

expected. Nonetheless, it is worth calling out in light of recent discussions in the literature

[14]. In any case, these results confirm the conclusion that to properly bound all finite

information ratchets, including memoryful ratchets driven by memoryful inputs, we must

use Eq. (3.6) rather than Eq. (3.5).

3.4.3 Dynamical Ergodicity and Synchronization

To provide intuition behind the work expression of Eq. (3.7), let’s now analyze the

ratchet’s operation. This reveals a novel synchronization mechanism that’s responsible

for nonzero work production. First, consider the case in which the engine parameters δ

and γ are zero; that is, the state C is disconnected from A and B. This effectively deletes
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A⊗ 1

A⊗ 0 B ⊗ 0

B ⊗ 1
1/e

1

1

1/e

1− 1/e

1− 1/e

Figure 3.4. Ratchet dynamics absent the synchronizing state: Assuming system pa-
rameters δ and γ are set to zero, state C becomes inaccessible and the ratchet’s joint
state-symbol dynamics become restricted to that shown here—a truncated form of the
dynamics of Fig. 3.3.

C from the joint dynamic, as shown in Fig. 3.4. This restricted model has the topology

considered in our previous work [13].

It turns out that the ratchet has two equally likely dynamical modes, let’s call them

clockwise and counterclockwise. When in each mode, the ratchet behavior is periodic in

time. The modes are depicted in Fig. 3.5, with the counterclockwise mode on the left and

the clockwise mode on the right. The dashed (red) arrows show the paths taken through

the joint state space due to an interaction transition followed by a switching transition

when the switching transition is driven by input 0. And, the solid (blue) arrows show

the paths taken when the switching transition is driven by input 1. The labels on the

arrows indicate the amount of work done in the associated transitions. The clockwise

mode extracts kBT/e amount of work per bit, while the counterclockwise mode expends

kBT amount of work per bit.

There is a simple way to understand the existence and work performance of the two

modes. Consider the counterclockwise mode first. The left state-transition diagram in

Fig. 3.5 shows this mode arises when A⊗ 0 or B⊗ 1 happens to be the initial joint state.

First, there is a horizontal interaction transition to a lower energy state. The energy

difference kBT is fully dissipated in the thermal reservoir with no exchange of energy with
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Figure 3.5. Two dynamical modes of the ratchet while driven by a period-2 input
process: (a) Counterclockwise (left panel): ratchet is out of synchronization with the
input tape and makes a steady counterclockwise rotation in the composite space of
the Demon and the interacting cell. Work is steadily dissipated at the rate −kBT per
pair of input symbols and no information is exchanged between the ratchet and the
information reservoir. (b) Clockwise (right panel): ratchet is synchronized with the
input correlated symbols on the tape, information exchange is nonzero, and work is
continually accumulated at the rate kBT/e per pair of input symbols.

the work reservoir. Then, there is a vertical switching transition to a higher-energy state.

The required energy kBT is taken from the work reservoir with no exchange of energy

with the thermal reservoir. This energy is then dissipated as heat in the thermal reservoir

at the next horizontal transition. The net amount of work produced per symbol—the net

amount of energy supplied to the work reservoir—is 〈W 〉 = −kBT .

Similarly, consider the clockwise mode. The righthand state-transition diagram in

Fig. 3.5 shows that this mode arises when A⊗1 orB⊗0 is the initial joint state. First, there

is an interaction transition along either the horizontal or diagonal paths of the Markov

chain. (The horizontal transitions are opposite to those of the counterclockwise mode.)

From microscopic reversibility, the horizontal interaction transitions lead to kBT energy

taken from the thermal reservoir in order to move into higher energy states. No energy

is exchanged with the work reservoir. On the diagonal transitions, on the other hand, no

energy is exchanged with either reservoir. Then, there is a switching transition, which
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corresponds to a vertical transition to a lower energy state if the horizontal interaction

transition was made just before. The energy difference kBT is given to the work reservoir.

However, if the diagonal transition was made, then the switching transition does not

change the state and there is no work done. As shown in the figure, there are two possible

paths the system can take between A⊗ 1 and B⊗ 0 in one operation cycle of the ratchet:

{A⊗1→ B⊗1→ B⊗0} and {A⊗1→ B⊗0→ B⊗0}. The same is true of transitions

from B⊗0 to A⊗1: {B⊗0→ A⊗0→ A⊗1} and {B⊗0→ A⊗1→ A⊗1}. Averaging

over the probabilities of the two fundamental paths, the net average work produced is

〈W 〉 = kBT/e. (See App. 3.7.2 for details.)

If the initial ratchet state is uncorrelated with the input HMM state, the clockwise

and the counterclockwise modes occur with equal probability. Once in a particular mode,

the ratchet cannot switch over to the other mode. In this sense, the two modes act as

two different attractors for the Demon’s joint state-symbol dynamics. In other words, the

system is dynamically nonergodic, leading to nonergodic work production: either time

averaged −kBT or kBT/e. In this case, the ratchet dissipates on average kBT (1− 1/e)/2

units of energy from the work reservoir into the thermal reservoir as heat.

Comparing this ergodic ratchet, in which nonergodicity plays a dynamic and transient

role, to the nonergodic engine discussed earlier is in order. Nonergodic engines (those

driven by nonergodic input processes) can exhibit functional behavior when averaged

over an ensemble of input realizations. As shown in Ref. [73], Maxwell’s refrigerator

[60] can refrigerate when driven by the nonergodic process consisting of two infinitely

long realizations, one of all 0s and the other of all 1s. Similar to our ratchet driven

by (ergodic) period-2 sequences, the refrigerator has two principal modes: the ratchet

is driven by all 0s and refrigerates versus the ratchet is driven by all 1s and dissipates.

However, one of these two modes is chosen at random in the beginning of a ratchet trial

and remains fixed. This yields refrigeration that differs from the ensemble average (over

the nonergodic input realizations). However, we can achieve robust and functional work

production in our period-2 ratchet, by coupling modalities dynamically via the C state.

Then, on every trial, the engine functions.
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Figure 3.6. Crossover from the dissipative, counterclockwise mode to the generative,
clockwise mode via synchronizing state C: Even though the microscopic dynamics
satisfy time-reversal symmetry, a crossover is possible only from the counterclockwise
mode to the clockwise mode because of the topology of the joint state space. With
transitions between C and the other two modes, the engine becomes ergodic among its
dynamic modes. The heats and transition probabilities are shown above each arrow.

Let’s explain how its emergent nonergodicity makes this function robust. For δ 6= 0

and γ 6= 0, state C becomes accessible to the ratchet, changing the stability of the

counterclockwise attractor. And, this allows positive work production. (From here on we

consider the original, full ratchet in Fig. 3.3.) We make a heuristic argument as to why

the ratchet can generate positive net work using state C.

C’s addition creates a “path” for the ratchet to shift from the dissipative, counter-

clockwise mode to the generative, clockwise mode. And, the latter becomes the only

attractor in the system. In other words, the counterclockwise dynamical mode becomes

a purely transient mode and the system becomes dynamically ergodic. The situation

is schematically shown in Fig. 3.6, where the arrows denote allowed transitions in the

dynamical sense. Heat and probability values of the transitions are shown there along

each arrow. Recall that in the counterclockwise mode, the joint state is either A ⊗ 0 or

B⊗1 at the beginning of each interaction interval. According to the Markov model, both

these states have probability δ of transitioning to a C state during interaction transitions.

Thus, as depicted, δ is the probability of transitioning from the counterclockwise mode

to C.

Once in state C, the ratchet cannot return to the counterclockwise mode, despite the

fact there is probability γ of transitioning back to either A⊗ 0 or B ⊗ 1 in an interaction

transition. This is because the following switching transition immediately changes A⊗ 0

to A⊗1 and B⊗1 to B⊗0. That is, the system is in the clockwise mode at the beginning
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of the next interaction interval. Thus, with probability γ the system makes a transition

to the clockwise mode. After this transition, the system is necessarily synchronized,

and it is impossible to transition out of the synchronized dynamic. In this way, the

ratchet asymptotically extracts a positive amount of average heat from the environment,

〈Q〉 = kBT (1 − δ)/e per symbol. Asymptotic heat extraction is the same as the work

production for finite ratchets, confirming Eq. (3.7). Since the ratchet must move through

C to arrive at the recurrent, clockwise, work-producing dynamic, we decide to start the

ratchet in C. C serves as a synchronization state in that it is necessary for the ratchet

state to synchronize to the input tape: once the ratchet transitions out of the C state, its

internal states are synchronized with the input HMM states such that it produces work.

3.4.4 Trading-off Work Production Against

Synchronization Rate and Work

With Fig. 3.6 in mind, we can define and calculate several quantities that are central to

understanding the ratchet’s thermodynamic functionality as functions of its parameters

δ and γ: the synchronization rate Rsync and the synchronization heat Qsync absorbed

during synchronization. Rsync is the inverse of the average number of time steps until

transitioning into the clockwise mode. It simplifies to the probability γ of transitioning

into the clockwise mode:

Rsync(δ, γ) =
1

〈t/τ〉
=

1

γ
∑∞

i=0(i+ 1)(1− γ)i

= γ .

The heat Qsync absorbed when synchronizing is the change in energy of the joint state

as the ratchet goes from the synchronizing states (C ⊗ 0 or C ⊗ 1) into the recurrent

synchronized states (A⊗ 0 or B ⊗ 1):

Qsync(δ, γ) = kBT ln
δ

γ
.

This is minus the energy dissipation required for synchronization.
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Much like the speed, energy cost, and fidelity of a computation [107, 108, 15, 16], these

two quantities and the average extracted work per symbol obey a three-way tradeoff in

which each pair is inversely related, when holding the third constant. This is expressed

most directly by combining the expressions above into a single relation that is independent

of δ and γ:

Qsync + kBT lnRsync − kBT ln

(
1− e〈W 〉

kBT

)
= 0 . (3.11)

Figure 3.7 illustrates this trade-off. Analytically, the same interdependence appears when

taking the partial derivatives of the quantities with respect to each other:

∂Qsync

∂〈W 〉 = − −kBTe
kBT − e〈W 〉

,

∂Qsync

∂Rsync

= −−kBT
Rsync

, and

∂〈W 〉
∂Rsync

= −kBT − e〈W 〉
eRsync

.

These all turn out to be negative over the physical range of parameters: 〈W 〉 ∈ (−∞, 1/e],
Rsync ∈ [0, 1], and Qsync ∈ (−∞,∞).

The ratchet’s successful functioning derives from the fact that it exhibits a dynamical

mode that “resonates” with the input process correlation in terms of work production and

that this mode can be made the only dynamical attractor. In other words, an essential

element in constructing our ratchet its ability to synchronize its internal states with the

effective states of the input process. This appears to be a basic principle for leveraging

memoryful input processes and, more generally, correlated environments.

3.5 Fluctuating Correlated Environments

The preceding development considered a perfectly correlated environment that generates

an input to the ratchet in which a 0 is always followed by 1 and a 1 by 0. Of course,

this is an artificial and constrained input. It’s purpose, though, was to isolate the role of

structured, correlated environment signals and how a thermodynamic ratchet can leverage

that order to function as an engine. Practically, though, it is hard to come by such

perfectly correlated sequences in Nature. One expects sequences to involve errors, say
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Figure 3.7. Trade-off between average work production, synchronization rate, and syn-
chronization heat: Contour plot of average extracted work per symbol 〈W 〉 as a func-
tion of rate of synchronization Rsync and synchronization heat Qsync using Eq. (3.11).
Work values are in the unit of kBT . Numbers labeling contours denote the average
extracted work 〈W 〉. If we focus on any particular contour, increasing Rsync leads to
a decrease in Qsync and vice versa. Similarly, restricting to a fixed value of Rsync, say
the vertical Rsync = 0.4 line, increasing Qsync decreases values of 〈W 〉. Restricting to
a fixed vale of Qsync, say the horizontal Qsync = 0.5 line, increasing Rsync going to the
right also decreases 〈W 〉.

where a 0 is sometimes followed by a 0 and a 1 by 1. Such phase slips are one kind of

error with which a thermodynamically functioning ratchet must contend.

In particular, whenever a phase slip occurs the ratchet is thrown out of its synchro-

nization with the input, possibly into the dissipative, counterclockwise dynamical mode.

Due to the presence of the synchronizing mechanism, shown in Fig. 3.6, the ratchet can

recover via transiting through the synchronizing state C. If the frequency of phase slips

is sufficiently low, then, the ratchet can still produce work, only at a lower rate. If the

phase slip frequency is high enough, however, the ratchet does not have sufficient time

in the clockwise mode to recover the work lost in the counterclockwise mode before it

relaxed to the clockwise mode. At this error level the ratchet stops producing work; it
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Figure 3.8. Noisy phase-slip period-2 (NPSP2) process: As with the exact period-2
process of Fig. 3.2, its HMM has a transient start state D and two recurrent causal
states E and F . Starting from D, the process makes a transition either to E or F with
equal probabilities while outputting 0 or 1, respectively. Once in state E, the process
either stays with probability c and outputs a 0 or makes a transition to state F with
probability 1−c and outputs a 1. If in state F , the process either stays with probability
c and outputs a 1 or makes a transition to state E with probability 1− c and outputs
a 0. For small nonzero c, the output is no longer a pure alternating sequence of 0s
and 1s, but instead randomly breaks the period-2 phase. For c = 1/2, the generated
sequences are flips of a fair coin. The process reduces to that in Fig. 3.2, if c = 0.

dissipates work even on average. This suggests there is a critical level of input errors where

a transition from a functional to nonfunctional ratchet occurs. This section analyzes the

transition, giving an exact expression for the critical phase-slip frequency at which the

ratchet stops producing work.

To explore the ratchet’s response to such errors, we introduce phase slips into the

original period-2 input process. They occur with a probability c, meaning that after

every transition, there is a probability c of emitting the same symbol again and remaining

in the same hidden state rather than emitting the opposite symbol and transitioning to the

next hidden state. An HMM corresponding this period-2 phase-slip dynamics is shown

in Fig. 3.8—the noisy phase-slip period-2 (NPSP2) process. It reduces to the original,

exactly periodic process generated by the HMM in Fig. 3.2 when c = 0.

It is now straightforward to drive the ratchet (Fig. 3.3) inputs with the NPSP2 process

(Fig. 3.8) and calculate exactly the average work production per symbol using Eq. (3.1).

Appendix 3.7.2 does this for all values of δ, γ, and c. Here, let’s first consider the special

case of γ = 1. This is the regime in which the ratchet is most functional as an engine

since, if the ratchet produces positive work, then γ = 1 maximizes that work production.

With γ = 1, once the ratchet is in state C, it immediately synchronizes in the next
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upper and lower bounds on work production: It is bounded above by kBT/e and below
by kBT (1− e)/(2e). (See text.)

interaction interval. In this case, δ parametrizes the relationship between the average work

done when synchronized and the rate of synchronization. The higher δ is, the less work the

ratchet extracts while synchronized, but the more often it transitions to the synchronizing

state—recall Fig. 3.6—allowing it to recover from phase slips. The calculation for γ = 1

yields an average work rate (App. 3.7.2):

〈W 〉(δ, c) =
(1− δ)[δ + c− c(2δ + e)]

2ec+ δe(1− c) . (3.12)

Thus, over the whole parameter space c, δ ∈ [0, 1], the average work varies over the range:

〈W 〉(δ, c) ∈ kBT
e

[
−e− 1

2
, 1

]
.

Figure 3.9 shows how the work production varies with δ for different values of c. No

matter the value of c, at δ = 0 the average work attains its lower limit of −kBT (e−1)/2e,

which is the average work produced when both clockwise and counterclockwise modes

have equal probability. As δ increases, there is an increase in the the average work until it

reaches 0 at a particular value δ∗(c). Below δ∗(c)—i.e., within the range 0 ≤ δ ≤ δ∗(c)—

the system consumes work; whereas above δ∗(c), the system acts as an engine, producing

net positive work. Figure 3.9 shows that δ∗(c) is an increasing function of c, starting with

0+ as c tends to 0 and ending up at 1 as c tends to unity.
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The dependence is nonlinear, with sharp changes near c = 0 and saturating near c = 1.

Since the average work vanishes as δ tends to 1 independent of c, there is a value of δmax(c)

where the engine’s work production is maximum. This maximum work Wmax(c) is closer

to its upper limit kBT/e for smaller values of c. As we increase c, there is a decrease in

Wmax(c) until it vanishes at δ = 1.

Figure 3.10 shows the dependence of Wmax(c) as a function of error rate c, revealing a

critical value c∗ = 1/1 + e beyond which Wmax vanishes. Thus, if the phase-slip frequency

is too high, the ratchet cannot produce net positive work regardless of how quickly it

synchronizes. This special value c∗ actually partitions the expressions for δ∗(c), δmax(c),

and Wmax(c) into piecewise functions:

δ∗(c) =





(1−e)c
2c−1

if c ≤ 1
1+e

1 if c > 1
1+e

(3.13)

δmax(c) =





4c2+α−2c
2c2−3c+1

if c ≤ 1
1+e

1 if c > 1
1+e

(3.14)

Wmax(c) =




kBT

−2α+c(e−(5+e)c)+1
e(c−1)2

if c ≤ 1
1+e

0 if c > 1
1+e

, (3.15)

where α =
√
c (2c2 + c− 1) ((3 + e)c− e− 1).

The results in Fig. 3.10 should not be applied too broadly. They do not imply that

positive net work cannot be extracted for the case c > c∗ for any information ratchet.

On the contrary, there exist alternatively designed ratchets that can extract positive

work even at c = 1. However, the design of such ratchets differs substantially from the

current one. Sequels will take up the task of designing and analyzing this broader class

of information engines.

Figure 3.11 combines the results in Figs. 3.9 and 3.10 into phase diagram summa-

rizing the ratchet’s thermodynamic functionality. It illustrates how the δ-c parameter

space splits into two regions: the leftmost (red) region where the ratchet produces work,

behaving as an engine, and the lower right (gray) region where the ratchet consumes

work, behaving as either an information eraser (using work to erase information in the bit

72



c

c =
1

1 + e

hW i =
kBT

e

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

hW
i m

a
x
(c

)/
k

B
T

Figure 3.10. Maximum work production versus phase-slip rate c: Maximum work
production decreases with c from kBT/e at c = 0 to 0 when c ≥ c∗ = 1/(1 + e).

string) or a dud (dissipating work without any erasure of information). It also shows that

c∗ = 1/(1 + e) corresponds to both the point at which δmax(c) reaches 1 and the point at

which it is no longer possible to extract work from the input, independent δ. This is the

point where phase slips happen so often that the ratchet finds it impossible to synchronize

for long enough to extract any work.

3.6 Conclusion

We extended the functionality of autonomous Maxwellian Demons by introducing a new

design for information engines that is capable of extracting work purely out of temporal

correlations in an information source, characterized by an input HMM. This is in marked

contrast with previous designs that can only leverage a statistically biased information

source or the mutual, instantaneous correlation between a pair of information sources

[7, 60, 61, 13, 10]. Our new design is especially appropriate for actual physical construction

of information engines since physical, chemical, and biological environments (information

sources) almost always produce temporally correlated signals.

The new design was inspired by trying to resolve conflicting bounds on the work

production for information engines. On the one hand, Eq. (3.5) for monitoring information

content only of isolated symbols suggests that no work can be produced from temporal

73



c

�

Engine

Dud/Eraser

1

1 + e

Figure 3.11. Ratchet thermodynamic-function phase diagram: In the leftmost (red)
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correlations in input string; whereas, on the other, using entropy rates Eq. (3.6) indicates

these correlations are an excellent resource. We showed, in effect, that this latter kind of

correlational information is a thermodynamic fuel.

To disambiguate the two bounds, we described the exact analytical procedure to cal-

culate the average work production for an arbitrary nonequilibrium memoryful channel

and a HMM input process. The result is that it is now abundantly clear which bounds

hold for correlated input processes.

We considered the specific example of a period-2 process for the input tape (Fig. 3.2),

since it has structure in its temporal correlations, but no usable single-symbol information

content. The ratchet we introduced to leverage this input process requires three memory

states (Fig. 3.3) to produce positive work. This memoryful ratchet with a memoryful input

process violates Eq. (3.5), establishing Eq. (3.6) as the proper information processing

Second Law of thermodynamics.

It is intuitively appealing to think that ratchet memory must be in consonance with

the input process’ memory to generate positive work. In other words, the ratchet must be

memoryful and be able to synchronize itself to the structured memory of the input HMM

to be functional. We confirmed that this is indeed the case in general with our expression

for work. If the ratchet has no memory, the only “structure” of consequence in the input

process is simply, provably, the isolated-symbol statistical bias.

We see this nascent principle more concretely in the operation of the ratchet as it

responds to the period-2 process. Critical to its behaving as an engine is the presence of

state C (Fig. 3.3) through which the ratchet synchronizes itself to the input. As shown

in Fig. 3.6, the synchronizing state C allows the system to make an irreversible transi-

tion from the counterclockwise, dissipative mode into the generative, clockwise mode. It

demonstrates how key it is that the ratchet’s effective memory match that of the input

process generator.

We also discovered an intriguing three-way tradeoff (Fig. 3.7) between synchronization

rate, synchronization heat (that absorbed during synchronization), and asymptotic aver-

age work production. For example, if the Demon keeps the synchronization rate fixed and

75



increases the synchronization heat, there is a decrease in the average work production. In

other words, if the Demon becomes greedy and tries to extract energy from the thermal

reservoir even during synchronization, on the one hand, it is left with less work in the

end. If, on the other hand, the Demon actually supplies heat during the synchronization

step, it gains more work in the end! Similarly, if it keeps the synchronization heat fixed,

a slower rate of synchronization is actually better for the average work production. If the

Demon waits longer for the ratchet to synchronize with its environment, it is rewarded

more in terms of the work production. Thus, the Demon is better off in terms of work, by

being patient and actually supplying more energy during synchronization. This three-way

tradeoff reminds one of a recently reported tradeoff between the rate, energy production,

and fidelity of a computation [15].

We then considered the robustness of our design in a setting in which the input pro-

cess is not perfectly periodic, but has random phase slips (Fig. 3.8). As a result, the

dissipative regime is no longer strictly transient. Every so often, the ratchet is thrown

into the dissipative regime induced by the phase slips, after which the ratchet attempts

to resynchronize to the generative mode. Thus, the ratchet seems remarkably robust with

respect to the phase-slip errors, being able to dynamically correct its estimation of the

input’s hidden state due to the synchronization mechanism. This is true, however, only

up to a certain probability of phase slips, beyond which the dissipative regime is simply

too frequent for the ratchet to generate any work. For the region in which the ratchet is

capable of generating work, we found the parametric combination for its optimal function-

ality for a given probability of phase slips (Fig. 3.9). We also determined the maximum

net work that the ratchet can produce (Fig. 3.10). Finally, we gave a phase diagram of

the ratchet’s thermodynamic functionality over the control parameter space formed by δ

and c for γ = 1 (Fig. 3.11).

In this way, we extended the design of information engines to include memoryful

input processes and memoryful ratchets. The study suggests, via synchronization and

dynamical self-correction, there are general principles that determine how autonomous

devices and organisms can leverage arbitrary structure in their environments to extract
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thermodynamic benefits.

Physical systems that demonstrate the thermodynamic equivalent of information pro-

cessing are by now numerous. Most, in contrast to the present design, restrict themselves

to single-step information processing. Moreover, many only consider information pro-

cessing comprising the erasure of a single bit, staying within the setting of Landauer’s

Principle. The information-processing equivalence principle strongly suggests a much

wider set of computational possibilities that use the capacity of stored information as a

thermodynamic resource.

Practically implementing an information engine on the nanoscale, say, will require

delicate control over system and materials properties. To achieve this in a convincing way

will demand an unprecedented ability to measure heat and work. This has become pos-

sible only recently using single-electron devices [109], nanoelectronic mechanical systems

(NEMS) [110, 111], and Bose-Einstein Condensates (BECs) [112, 113, 114]. The results

and methods outlined here go some distance to realizing these possibilities by pointing

to designs that are functionally robust and resilient, by identifying efficient information

engines and diagnosing their operation, and by giving exact analytical methods for the

quantitative predictions necessary for implementation.

3.7 Appendices

3.7.1 Ratchet Energetics: General Treatment

Here, we lay out the detailed calculations of the thermodynamic contributions made by

the ratchet’s transducer and the environmental input process.

3.7.1.1 Transducer Thermodynamic Contributions

We consider the case where the ratchet exchanges energy only with the work reservoir

during the switching transitions and only with the heat reservoir during the interaction

transitions. During the N -th switching transition, the ratchet “exhausts” the N -th input

bit YN as the N -th output bit Y ′N and couples with the input bit YN+1. The joint state

of the ratchet and the interacting bit changes from XN+1 ⊗ Y ′N to XN+1 ⊗ YN+1. The

corresponding decrease in energy is supplied to the work reservoir. So, the work output
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at the N -th switching transition WN is given by:

WN = ExN+1⊗y′N − ExN+1⊗yN+1
, (3.16)

where Ex⊗y denotes the energy of the joint state x⊗ y. Via a similar argument, we write

the heat absorbed by the ratchet during the N -th interaction transition QN :

QN = ExN+1⊗y′N − ExN⊗yN .

The main interest is in determining the asymptotic rate of work production:

〈W 〉 = lim
N→∞

WN Pr(WN)

= lim
N→∞

∑

xN+1,
yN+1,y

′
N

(ExN+1⊗y′N − ExN+1⊗yN+1
) (3.17)

× Pr(XN+1 = xN+1, YN+1 = yN+1, Y
′
N = y′N)

=
∑

x′,y′

Ex′⊗y′ lim
N→∞

Pr(XN+1 = x′, Y ′N = y′)

−
∑

x,y

Ex⊗y lim
N→∞

Pr(XN+1 = x, YN+1 = y) ,

where the second line uses Eq. (3.16) and the third relabels the realizations in the sum x

and x′, since these are dummy variables in separate sums.

Assuming the stationary distribution over the input variable and ratchet variable

exists, the asymptotic probability limN→∞ Pr(XN+1 = x, YN+1 = y) is the same as the

asymptotic probability limN→∞ Pr(XN = x, YN = y), which was defined as πx⊗y. In

addition, note that the Markov matrix M controlling the joint ratchet-bit dynamic is

stochastic, requiring
∑

x′,y′Mx⊗y→x′⊗y′ = 1 from probability conservation. As a result,
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the second summation in Eq. (3.17) is equal to:

−
∑

x,y

Ex⊗y lim
N→∞

Pr(XN+1 = x, YN+1 = y)

= −
∑

x,y

Ex⊗yπx⊗y

= −
∑

x,y

Ex⊗yπx⊗y
∑

x′,y′

Mx⊗y→x′⊗y′

= −
∑

x,x′,
y,y′

Ex⊗yπx⊗yMx⊗y→x′⊗y′ .

To compute the first term in Eq. (3.17), we do a similar decomposition. Note that XN+1

and Y ′N are determined from XN and YN by iterating with the joint Markov dynamic M ,

and so:

Pr(XN+1 = x′, Y ′N = y′)

=
∑

x,y

Pr(XN = x, YN = y)Mx⊗y→x′⊗y′ . (3.18)

Using Eq. (3.18) we rewrite the first summation in Eq. (3.17) as:

∑

x′,y′

Ex′⊗y′ lim
N→∞

Pr(XN+1 = x′, Y ′N = y′)

=
∑

x,y,x′,y′

Ex′⊗y′ lim
N→∞

Pr(XN = x, YN = y)Mx⊗y→x′⊗y′

=
∑

x,y,x′,y′

Ex′⊗y′πx⊗yMx⊗y→x′⊗y′ .

Combining the above, the resulting work production rate is:

〈W 〉 =
∑

x,x′,y,y′

(Ex′⊗y′ − Ex⊗y)πx⊗yMx⊗y→x′⊗y′ .

The same logic leads to the average heat absorption, which turns out to the same as

the work production:

〈Q〉 = 〈W 〉 .

The intuition for this is that these equalities depend on the existence of the stationary

distribution πx⊗y over the ratchet and bit. This is guaranteed for a finite ratchet with
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mixing dynamics. Only a finite amount of energy can be stored in a finite ratchet, so

the heat energy flowing in must be the same as the work flowing out, on the average, to

conserve energy. This, however, breaks down with infinite-state ratchets—an important

and intriguing case which is addressed in the next chapter.

3.7.1.2 Input Process Contributions

The results above are expressed in terms of the ratchet, except for the stationary joint

distribution over the input variable and ratchet state:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y) .

This quantity is dependent on the input process, as we now describe. We describe the

process generating the input string by an HMM with transition probabilities:

T (yN )
sN→sN+1

= Pr(YN = yN , SN+1 = sN+1|SN = sN) , (3.19)

where si ∈ S are the input process’ hidden states [13]. Given that the input HMM is in

internal state sN , T
(yN )
sN→sN+1 gives the probability to make a transition to the internal; state

sN+1 and produce the symbol yN . The dependence between XN and YN is determined by

hidden state SN . So, we rewrite:

Pr(XN = x, YN = y) =
∑

s

Pr(XN = x, YN = y, SN = s)

=
∑

s

Pr(YN = y|SN = s) Pr(XN = x, SN = s)

=
∑

s,s′

Pr(YN =y, SN+1 =s′|SN =s) Pr(XN =x, SN =s)

=
∑

s,s′

T
(y)
s→s′ Pr(XN = x, SN = s) ,

The second line used the fact that YN depends on only SN , as illustrated in Fig. 3.12.

The last line used Eq. (3.19).
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Combining the above equations gives:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y)

= lim
N→∞

∑

s,s′

T
(y)
s→s′ Pr(XN = x, SN = s)

=
∑

s,s′

T
(y)
s→s′π

′
x⊗s , and

π′x⊗s = lim
N→∞

Pr(XN = x, SN = s) .

Thus, evaluating πx⊗y requires knowing the input process T
(y)
s→s′ , which is given, and the

stationary joint distribution πx⊗s over the hidden states and the ratchet states.

To calculate πx⊗s, we must consider how XN+1 and SN+1 are generated from past

variables. We notice that the output process is specified by an HMM whose hidden

variables are composed of the hidden variable of the input HMM and the states of the

transducer. In other words, the output HMM’s hidden states belong to the product space

X ⊗ S. As a result, the transition probability of the output HMM is:

T
′(y′)
x⊗s→x′⊗s′ = Pr(Y ′N = y′, XN+1 = x′, SN+1 = s′|XN = x, SN = s)

=
∑

y

Pr(Y ′N = y′, XN+1 = x′, YN = y, SN+1 = s′|XN = x, SN = s)

=
∑

y

Pr(Y ′N = y′, XN+1 = x|YN = y, SN+1 = s′, XN = x, SN = s)

× Pr(YN = y, SN+1 = s′|XN = x, SN = s)

=
∑

y

Pr(Y ′N = y′, XN+1 = x|YN = y,XN = x) Pr(YN = y, SN+1 = s′|SN = s)

=
∑

y

Mx⊗y→x′⊗y′T
(y)
s→s′

=
∑

y

M
(y′|y)
x→x′ T

(y)
s→s′ ,

where the fourth used the facts that Y ′N and XN+1 are independent of SN and SN+1, if

YN and XN are known, and YN and SN+1 are independent of XN , if SN is known [1, 13].
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Thus, summing over the output variable Y ′ yields a Markov dynamic over X ⊗ S:

T ′x⊗s→x′⊗s′ =
∑

y′

T
′(y′)
x⊗s→x′⊗s′ (3.20)

=
∑

y,y′

Mx⊗y→x′⊗y′T
(y)
s→s′ .

The stationary distribution π′x⊗s is this dynamics’ asymptotic distribution:

∑

x,s

π′x⊗sT
′
x⊗s→x′⊗s′ = π′x′⊗s′ . (3.21)

π′ existence—that is, for a finite state Markov process like T ′—is guaranteed by the

Perron-Frobenius theorem and it is unique when T ′ is ergodic [115]. In short, we see that

πx⊗y is computable given the ratchet Mx⊗y→x′⊗y′ and the input process generator T
(y)
s→s′ .

In this way, we derived an expression for the asymptotic work production of an ar-

bitrary memoryful ratchet with an arbitrary memoryful input process in terms of HMM

generator of the input and the Markovian dynamic over the input bit and ratchet state.

Only a single assumption was made: there is an asymptotic distribution over the the input

bit and ratchet state πx⊗y. In summary, there are three steps to calculate the average

work production:

1. Calculate the stationary distribution π′x⊗s over the hidden states of the output pro-

cess T
′(y′)
x⊗s→x′⊗s′ . The latter which is calculated from the operation of Mx⊗y→x′⊗y′ on

T
(y)
s→s′ ;

2. Use π′ and T
(y)
s→s′ to calculate the stationary distribution over the ratchet and input

bit at the beginning of the interaction interval πx⊗y;

3. Using this and the transducer’s Markov dynamic, calculate the work production:

〈W 〉 = kBT
∑

x,x′,
y,y′

πx⊗yMx⊗y→x′⊗y′ ln
Mx′⊗y′→x⊗y

Mx⊗y→x′⊗y′
. (3.22)

The following Appendix shows how to use this method to calculate average work

production for the specific cases of the period-2 environment with and without phase-

slips.
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Figure 3.12. State variable interdependence: Input HMM has an autonomous dynamics
with transitions SN → SN+1 leading to input bits YN . That is, YN depends only on
SN . The joint dynamics of the transducer in state XN and the input bit YN leads to
the output bit Y ′N . In other words, Y ′N depend on XN and YN or, equivalently, on XN

and SN . Knowing the joint stationary distribution of XN and SN , then determines the
stationary distribution of Y ′N . However, if YN and XN are known, Y ′N is independent
of SN .

3.7.2 Ratchet Energetics: Specific Expressions

The symbol-labeled transition matrices for the noisy period-2 input process are given by:

T (0) =




0 0 0

.5 c 1− c
0 0 0




D

E

F

T (1) =




0 0 0

0 0 0

.5 1− c c


 .
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The transducer form of the ratchet M shown in Fig. 4 is given by the four conditional

symbol-labeled transition matrices:

M (0|0) =




0 1−δ
e

γ

1− δ 0 0

δ 0 1− γ




A

B

C

M (1|0) =




0 1− 1−δ
e

0

0 0 0

0 0 0




M (0|1) =




0 0 0

1− 1−δ
e

0 0

0 0 0




M (1|1) =




0 1− δ 0

1−δ
e

0 γ

0 δ 1− γ


 ,

where we switched to the transducer representation of the joint Markov process

Mx⊗y→x′⊗y′ = M
(y′|y)
x→x′ [1, 13].

To find the stationary distribution over the causal states of the input bit and the

internal states of the ratchet (step 1), we calculate the output process T
′(y′)
x⊗s→x′⊗s′ =

∑
yM

(y′|y)
x→x′ T

(y)
s→s′ and sum over output symbols to get the Markov dynamic over the hidden
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states:

T ′ = T ′(0) + T ′(1) =




0 0 0 0 0 0 0 0 0

0 0 0 0.5 c c̄ 0.5γ cγ γc̄

0 0 0 0.5δ̄ c̄δ̄ cδ̄ 0 0 0

0 0 0 0 0 0 0 0 0

0.5δ̄ cδ̄ c̄δ̄ 0 0 0 0 0 0

0.5 c̄ c 0 0 0 0.5γ γc̄ cγ

0 0 0 0 0 0 0 0 0

0.5δ cδ δc̄ 0 0 0 0.5γ̄ cγ̄ c̄γ̄

0 0 0 0.5δ δc̄ cδ 0.5γ̄ c̄γ̄ cγ̄




A⊗D
A⊗ E
A⊗ F
B ⊗D
B ⊗ E
B ⊗ F
C ⊗D
C ⊗ E
C ⊗ F

,

where c̄ = 1− c, δ̄ = 1− δ, and γ̄ = 1− γ.

Then, we find the stationary state π′ over the joint hidden states (step 2), which solves

T ′π′ = π′:

π′ =




π′A⊗D

π′A⊗E

π′A⊗F

π′B⊗D

π′B⊗E

π′B⊗F

π′C⊗D

π′C⊗E

π′C⊗F




=




0

γ(δ + c− δc)/ν
γ(c− δc)/ν

0

γ(c− δc)/ν
γ(δ + c− δc)/ν

0

δc/ν

δc/ν




,

where ν = 2(cδ + γ(δ + 2c− 2δc)).

And, we find the stationary distribution over the ratchet state input bit by plugging
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in to the equation πx⊗y =
∑

s,s′ T
(y)
s→s′π

′
x⊗s. The result is:

π =




πA⊗0

πA⊗1

πB⊗0

πB⊗1

πC⊗0

πC⊗1




=




γc/ν

γ(δ + c− 2δc)/ν

γ(δ + c− 2δc)/ν

γc/ν

δc/ν

δc/ν




.

Substituting this stationary distribution into the work expression (step 3) in Eq.

(3.22), we find an explicit expression for the ratchet’s work production rate:

〈W 〉 = kBT
(1− δ)(δ + c− 2δc− ec)
ecδ/γ + e(δ + 2c− 2δc)

. (3.23)

3.7.2.1 Period-2 Input

To restrict to period-2 input sequences with no phase slips we set c = 0. Then, T ′ has

the stationary distribution:

π′A⊗E = π′B⊗F = 0.5 ,

and all other elements vanish. The ratchet is fully synchronized to the internal states of

the input process. Substituting c = 0 into Eq. (3.23) gives the work production rate when

synchronized:

〈W 〉 = kBT
1− δ
e

.

3.7.2.2 Noisy Period-2 Input

What happens when the environment fluctuates, generating input sequence phase slips

with probability c? Consider the optimal parameter settings at which the ratchet gener-

ates work. When the ratchet behaves as an engine, the optimal setting is γ = 1, which

follows from the partial derivative of the work production:

∂〈W 〉
∂γ

= 〈W 〉 ecδ

γ2(ecδ/γ + e(δ + 2c(1− δ)) ,

86



which is always positive when the engine produces work. This means that it is always

possible to enhance our engine’s power by increasing γ to its maximum value at γ = 1.

And so, to build an optimal engine that leverages the noisy period-2 input process, we

set γ = 1, yielding:

〈W 〉(δ, c, γ = 1) = kBT
(1− δ)[δ + c− c(2δ + e)]

2ec+ δe(1− c) . (3.24)

3.7.2.3 Period-2 Input Entropy Rates

To check that the period-2 input process obeys Eq. (3.6), we calculate the entropy rate:

∆hµ = h′µ − hµ .

The entropy rate hµ of a period-2 process is:

hµ = lim
N→∞

H[Y0:N ]

N

= lim
N→∞

1

N

= 0 .

The entropy rate h′µ of the output process generated by T ′ can be calculated using the

uncertainty in the next symbol given the hidden state since T ′ is unifilar [12]:

h′µ = lim
N→∞

H[Y ′N |S ′N ]

= lim
N→∞

∑

s′

H[Y ′N |S ′N = s′] Pr(S ′N = s′) .

(No such general expressions hold for nonunifilar transducers.)

For the period-2 process, c = 0, and we see that the stationary state consists of two

states with nonzero probability: π′A⊗E = π′B⊗F = 0.5. These states transition back and

forth between each other periodically, so the current hidden state and output uniquely

determine the next hidden state, meaning this representation is unifilar. Thus, we can

use our calculated output HMM for the entropy rate h′µ.

A⊗E has probability 1−δ
e

of generating a 1 and B⊗F has probability 1−δ
e

of generating
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a 0. Thus, the uncertainty in emitting the next bit from either causal state is:

H[Y ′N |S ′N = A⊗ E] = H[Y ′N |S ′N = B ⊗ F ]

= H

(
1− δ
e

)
.

Thus, their entropy rates are the same and we find:

∆hµ = H

(
1− δ
e

)
. (3.25)
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Chapter 4

Leveraging Environmental

Correlations:

The Thermodynamics of Requisite

Variety

The mid-twentieth century witnessed an efflorescence in information and control and,

in particular, the roles they play in biological adaptation [116]. Norbert Wiener’s linear

prediction theory [117, 118] and Claude Shannon’s mathematical theory of communication

[75, 119, 120, 121] stood out as the technical underpinnings. It was Wiener, though,

who advocated most directly for a broad development of a new calculus of control and

adaptation, coining the term “cybernetics” [122, 123]. The overall vision and new methods

of information theory and linear stochastic processes stimulated a tremendous enthusiasm

and creativity during this period.

It must be said that, despite substantial efforts throughout the 1950s and 1960s to

develop “general systems” theories and the like [124, 125], at best, only modest successes

transpired which addressed Wiener’s challenges for cybernetics [126]. Historians of science

claimed, in fact, that progress was inhibited by the political tensions between the West

and East during the Cold War [127]. More practically, one cause was the immodest

complicatedness of the systems targeted—weather control, the brain, and social design. In

short, there simply were not the powerful computational and mathematical tools required
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to understand such large-scale, complex systems. This all said, we must not forget that

the intellectual fallouts from this period—the development of communication, coding,

computation, and control theories—substantially changed the landscape of the engineering

disciplines and irrevocably modified modern society.

Now, at the beginning of the 21st century, it seems time to revisit the broad and am-

bitious goals these early pioneers laid out. For, indeed, the challenges they introduced are

still with us and are evidently starting to reveal dire consequences of our failure to under-

stand the dynamics and emergent properties of large-scale complex systems, both natural

and man-made. Optimistically, very recent developments in nonlinear dynamics [77] and

nonequilibrium thermodynamics [128] give hope to finally achieving several of their goals,

including reframing them in ways that will facilitate physical implementation. Here, we

elucidate cybernetics’ Law of Requisite Variety in light of these recent advances.

W. Ross Ashby was one of cybernetics’s best expositors [18], having an impact that

rivaled Wiener’s advocacy. Principle to Ashby’s approach was his concept of requisite

variety. The requisite variety that confronts an adaptive system is the set of accessi-

ble, detectable, and controllable states in its environment. In its most elementary form,

Ashby re-interpreted Shannon’s notion of information-as-surprise, retooling it for broader

application to biological and cognitive systems [125]. In this, though, he was anticipated

by 30 years by Leo Szilard’s successful purging of Maxwell Demon [32, 3]: “... a simple

inanimate device can achieve the same essential result as would be achieved by the inter-

vention of intelligent beings. We have examined the ‘biological phenomena’ of a nonliving

device and have seen that it generates exactly that quantity of entropy which is required

by thermodynamics”. In laying out the thermodynamic costs of measurement, and so

showing any demon is consistent with the Second Law of Thermodynamics, Szilard not

only anticipates by two decades Shannon’s quantitative measure of information but also

Wiener’s conception of cybernetics in which stored information plays a functional role.

The conceptual innovation in Szilard’s analysis, still largely underappreciated, is his

identifying two distinct kinds of information. On the one hand, there is surprisal; Shan-

non’s notion that later on lead to an algorithmic foundation for randomness and prob-
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ability [129, 130, 131, 132]. Its parallel in physics is a system’s thermodynamic entropy

[81]. The Demon monitors statistical fluctuations in its heat-bath environment. On the

other hand, there is information stored as historical contingency and memory. It is this

latter kind that explains the thermodynamic functionality of Maxwell’s Demon, as it uses

stored information about the thermal fluctuations to convert them to useful work [42].

This recognition handily resolves Maxwell’s Second Law paradox. This information di-

chotomy was recently laid bare by mapping Szilard’s single-molecule engine to chaotic

dynamical system; a mapping so simple that all questions can be analytically addressed

[78]. The role of both informative measurement and its use, when stored, for control illus-

trates the complementary role and functional consequences of both kinds of information

in an adaptive system.

In this way, the now-familiar physical setting of Maxwell’s paradox highlights how the

distinction between information-as-surprise and stored actionable-information motivated

Ashby’s emphasizing requisite variety in adaptation. Detecting environmental fluctua-

tions and acting on their structure (such as temporal correlations) are critical to the

Demon’s functioning. Appealing to new results in nonlinear dynamics and nonequilib-

rium thermodynamics, the distinction similarly motivates our re-addressing this central

concern in cybernetics, so basic to the operation of adaptive systems, but in a fully ther-

modynamic setting: What requisite variety (range of historical contexts) must an adaptive

agent recognize in its environment to realize thermodynamic benefits?

In the following, we first give an overview of our contributions (Sec. 4.1). We mention

how Ashby’s law of requisite variety is faithfully reflected in the behavior of information

engines—autonomous versions of Maxwell’s Demon. This close connection follows from

the bounds set by the Second Law of Thermodynamics for information processing [7, 13, 6].

Important for engineered and biological implementations, we note that these bounds, and

so those specified by Landauer’s Principle [4, 34], are not generally achievable. The

subsequent sections form the technical components of the development, key to which is

representing an information reservoir in terms of the outcomes of a hidden Markov process.

Section 4.2 considers (i) the meaning of memory for the input processes of information
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engines and for the engines themselves, (ii) their energetics, and (iii) the role of memory in

information thermodynamics more generally [5, 36]. It is the thermodynamics of memory

that establishes the correspondence between Ashby’s law and the behavior of information

engines. Section 4.3 addresses the limits on information engines achieving the informa-

tional Second Law bounds. We see that the bounds are not saturated even by optimal,

finite-state engines. We also mention the curious case of infinite-memory information en-

gines that can achieve and then go beyond these bounds, essentially by leveraging their

internal infinite “negentropy” to generate work [133]. These results bear directly on the

description of Maxwell’s original Demon and, more contemporarily, stochastic universal

Turing machines built out of information engines. Finally, we conclude with a summary

of our results and their implications for biological physics and engineering.

4.1 Synopsis of main results

Szilard’s Engine and related Maxwellian Demons are instances of thermal agents process-

ing environmental information in order to convert thermal energy into work. Turning

disordered thermal energy into work (ordered energy) was long thought to violate the

Second Law of Thermodynamics [134]. However, the past century resolved the apparent

violation by recognizing that information processing has unavoidable energy costs. Rolf

Landauer was one of the first to set bounds on information processing—specifically, eras-

ing a bit—such that the work production over a thermodynamic cycle cannot be positive,

satisfying the Second Law of thermodynamics [4, 34].

However, if the Demon accesses an information reservoir in its environment, it can use

the reservoir’s statistics as a resource to convert thermal energy into work. This view of a

Demon taking advantage of a structured environment connects back to cybernetics. Just

as Ashby asked how a controller’s variety should match that of its inputs, we ask how the

Demon’s internal structure should match the structure of an input process, which char-

acterizes the information reservoir, in order to generate work. In contrast to cybernetics,

though, we consider the variety inherent in “information ratchets” viewed as thermody-

namic systems and, by implication, the variety they can detect and then leverage in their
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environments.

An information ratchet is an explicit construction of an autonomous Maxwellian De-

mon that uses an input symbol sequence to turn thermal energy into work energy [7, 63].

The ratchet steadily transduces the input symbols into an output sequence, processing

the input information into an output while effecting thermodynamic transformations—

implementing a physically embedded, real-time computation. This is accomplished by

driving the ratchet along the input symbol sequence unidirectionally, so that the ratchet

(with states in set X ) interacts once with each symbol (with values in alphabet Y). This

is described by a thermally activated Markov transition matrix

Mx⊗y→x′⊗y′

= Pr(XN+1 = x′, Y ′N = y′|XN = x, YN = y) ,

from x ⊗ y ∈ X ⊗ Y to x′ ⊗ y′, which has detailed balance, as described in the previous

chapters. The transition matrix M determines the energetics as well as the ratchet’s

information processing capacity.

Recent work introduces a general computational mechanics [77, 1] framework for an-

alyzing thermodynamic devices that transduce an input process into an output process

[13, 1]. Figure 4.1 depicts the relative roles of the input process specified by a finite-state

hidden Markov model (HMM), the ratchet as transducer operating on the input process,

and the resulting output process, also given by an HMM.

The tools of computational mechanics were developed to quantitatively analyze how

a ratchet’s structure should match that of its input for maximum efficacy, since they use

a consistent notion of structure for general processes and transformations. In particular,

using them we recently established a general information processing Second Law (IPSL)

for thermodynamically embedded information processing by finite ratchets that bounds

the asymptotic work per cycle 〈W 〉 in terms of the difference in entropy rates of the input

and output processes, hµ and h′µ, respectively [13] (see App. 4.4.2 for an alternate proof

to that presented in Chapter 2):

〈W 〉 ≤ kBT ln 2
(
h′µ − hµ

)
. (4.1)
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Input HMM Transducer

Output HMM
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⌘

DA
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0:1�p
1:p

0:q
1:1�q

0:1.0

1:1.0

0:q/2
1:(1�q)/2

0:0.5 1:0.5

0:(1�p)/2
1:p/2
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D

0 : 1.0

1 : 1.0

1 : 0.5 0 : 0.5
A B

0|0:1�p
1|0:p
1|1:1

1|1:1�q
0|1:q
0|0:1

Figure 4.1. Computational mechanics view of an information ratchet: The input signal
(environment) is described by a hidden Markov model (HMM) that generates the input
symbol sequence. The ratchet itself acts as a transducer, using its internal states or
memory to map input symbols to output symbols. The resulting output sequence
is described by an HMM that results from composing the transducer with the input
HMM. The current internal state of the input HMM, transducer, and output HMM
are each highlighted by a dashed red circle. These are the states achieved after the last
output symbol (highlighted by a red box) of each machine. We see that the internal
state of the output HMM is the direct product of the internal state of the transducer
and the input HMM.
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(Definitions are given shortly in Sec. 4.2.) Employing entropy rates—the Shannon entropy

rate of the symbol sequence or, equivalently here, the Kolmogorov-Sinai entropy of its

generative dynamical system—the bound accounts for all temporal correlations in the

input and output processes as well as the single-symbol biases. While this bound appears

similar to that 〈W 〉 ≤ 〈I〉 − ∆F [39] on work production in a system with feedback

control, 〈I〉 quantifies correlations between the controller and environment rather than

temporal correlations induced in the environment.

Two uses of Eq. (4.1)’s IPSL suggest themselves. First, it sets an informational upper

bound on the maximum average work production 〈W 〉 per thermodynamic cycle. Here,

W is the flow of work from the ratchet to an external driver. Second, and complemen-

tarily, it places an energetic lower bound on the minimal work 〈Wd〉 required to drive a

given amount (∆hµ) of computation forward. Here, Wd = −W is the flow of work from

the driver into the ratchet. In this second use, the IPSL is a substantial extension of

Landauer’s Principle. The latter says that erasing a bit of information requires a mini-

mum energy expenditure of kBT ln 2 while the IPSL applies to any kind of computational

processing that transforms an input process to an output process, not simply erasure.

The first use appears, in this light, as a rough converse to Landauer’s limit: There is a

potential thermodynamic benefit of “destroying variety” in the form of work [4, 34].

Practically, computational mechanics gives a means to partition the ratchet and input

process into different cases: memoryful and memoryless. Whether or not the input process

or ratchet have memory substantially changes the bound on work production. And so,

we can examine how environmental and demon varieties interact. For example, in the

case in which temporal correlations (varieties) vanish, the difference between the input’s

single-symbol entropy H1 and the output’s H′1 gives an analogous bound [10]:

〈W 〉 ≤ kBT ln 2 (H′1−H1) , (4.2)

Using the single-symbol approximation H1 of the true entropy rate hµ can be quite con-

venient since H1 is much easier to calculate than hµ, as the latter requires asymptotic

(long-range) sequence statistics. (Again, definitions are given shortly in Sec. 4.2.) Likely,

this is why the H1-bound has appeared frequently to describe ratchet information pro-
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cessing [7, 60, 61, 58, 36]. Also, Eq. (4.2) is a rather direct generalization of the Landauer

limit, since the input entropy H1 = 1 bit and the output H′1 = 0 bits saturate the bound

on the work required to drive erasing a binary symbol. However, a key difference is that

Eq. (4.1)’s entropy rates are dynamical invariants; unchanged by smooth transformations

[135, 136]. The single-symbol Shannon entropies are not dynamical invariants. In addi-

tion, the single-symbol bound does not properly account for the temporal correlations in

the input process or those created by the ratchet in the output process and so leads to

several kinds of error in thermodynamic analysis. Let us explore these.

First, the average total temporal correlation in a process can be quantified by the

difference between the single-symbol entropy and the entropy rate, known as a process’

length-1 redundancy [12]:

H1−hµ ≥ 0 . (4.3)

This is the extent to which single-symbol entropy-rate estimates (H1) exceed the actual

per-symbol uncertainty (hµ); and it is always nonnegative. This measure describes a

type of structure distinct from statistical autocorrelations. Unless stated otherwise, going

forward, the informational temporal correlations quantified in Eq. (4.3) are what we mean

by correlations.

How inputs or ratchets create or destroy these correlations determines the relative

strength and validity of the Eq. (4.1) and Eq. (4.2) work bounds. These bounds, in turn,

suggest that memoryless ratchets are best for leveraging memoryless inputs and memoryful

ratchets are best for leveraging memoryful inputs and generating work. However, it is not

clear if and when the bounds are achievable. So, more effort is required to establish this

thermodynamic version of Ashby’s Law of Requisite Variety.

To address achievability, we turn to a general energetic framework for calculating

ratchet work production [6]. There it was shown that memoryful ratchets can leverage

temporal correlations which memoryless ratchets cannot. In short, memoryful ratchets

are indeed best for leveraging memoryful inputs. This gives an explicit violation of Eq.

(4.2). However, for memoryless ratchets both Eqs. (4.2) and (4.1) are valid bounds [10].

We show, with proof given in App. 4.4.1, that memoryless ratchets are the best among
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all finite ratchets at leveraging statistical biases in memoryless inputs to produce work.

Notably, these ratchets do not achieve the derived upper bounds on work production,

demonstrating fundamental inefficiencies in the information-to-work conversion in this

class of an autonomous Maxwellian Demon.

To approach the bounds described by Eqs. (4.1) and (4.2) it is necessary to go beyond

the information processing paradigm of a single finite-memory ratchet that interacts with

a single symbol at a time. For instance, consider a “swarm” of finely tuned ratchets that

work in a sequence, the output of one acting as the input of the next, and each ratchet

being optimized with respect to its own input. This stepwise, sequential processing of

the information reservoir is more efficient than the single-ratchet paradigm and is able to

approach the upper bounds on information processing as the number of ratchets in the

army grows. (This is reminiscent of the higher efficiency of quasistatic thermodynamic

processes compared to finite-time, irreversible processes.) We reserve the detailed analysis

of this phenomenon for a later work since the framework for collective thermodynamics

is less developed than the single-ratchet setting we focus on here.

While the IPSL and related bounds on work are suggestive of how the structure of

the input matches the output, the fact that they are unachievable for single information

ratchets means we must reach further to solidify the relationship between input statistics

and ratchet thermodynamics. Exact calculations here for the work production verify

the intuition that the memory of an optimal ratchet must match the memory of the

input. This leads to a variation on Ashby’s Law of Requisite Variety: “memory leverages

memory”.

In this way, the transducer framework for information ratchets gives insight into how

adaptive agents leverage structure. Its importance extends far beyond, however, to general

computation. On the one hand, transducers describe mappings from input sequences to

distributions over output sequences [1, 137] and do so in real time. Turing machines,

on the other, map individual input sequences to individual output sequences with no

particular reference to physical time. In this sense, Turing machines are a subclass of

transducers, emphasizing that transducers are a general model for physical computation
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and information processing. However, to do universal computation, as properly configured

Turing machines can, requires infinitely many states [137]. And, this suggests examining

the thermodynamics of infinite-memory ratchets.

It turns out that infinite ratchets with states having finite energy differences are patho-

logical in that they violate both the IPSL and its single-symbol sister bounds on work

production—Eqs. (4.1) and (4.2), respectively. The proof of Eq. (4.1) assumes a sta-

tionary distribution over the ratchet state and input symbol. This need not exist for

infinite ratchets [13]. In this case structure in the ratchet’s memory, rather than structure

in the information reservoir, can be used as an additional thermodynamic resource to

produce work. And, this means that a framework for general computation requires more

detailed analysis to set bounds on work production that account for the ratchet’s memory.

While we leave this for upcoming work, it does call into question any discussion of the

thermodynamics of universal computation.

Following are the major contributions:

1. To address the role of memory in ratchets, we introduce thermodynamically predic-

tive definitions of memory for both the input string and the ratchet which performs

a computation on the input.

2. The validity of IPSL bounds changes depending on whether or not the input or

ratchet are separately or together memoryful or memoryless.

3. The memory dependence of IPSLs implies that, if the IPSL derived in our previous

work [13] is achievable, then we arrive at a thermodynamic Law of Requisite Variety

[125].

4. However, our exact analysis of memoryless ratchets driven by memoryless inputs

tells us that to achieve IPSL bounds we must go beyond the class of individual

autonomous ratchets that operate on a single bit at a time. The Law of Requisite

Variety may not hold for such generalized ratchets.

5. Fortunately, we also complete a suite of results about information ratchets that show

memoryful ratchets are best for leveraging memoryful inputs and memoryless ratch-
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Figure 4.2. Ratchets and input and output signals can be either memoryful or memory-
less. For the input or output signal to be memoryless, the generating (minimal) HMM
must have more than one internal state. The action of a ratchet can be represented in
two different ways: either by a detailed Markov model involving the joint state space
of the ratchet and an input symbol or by a symbol-labeled Markov dynamic on the
ratchet’s state space. We call the latter the transducer representation [1]. Similar to
the input and output signals, if the (minimal) transducer has more than one internal
state, then the ratchet is memoryful.

ets are best for leveraging memoryless inputs. This confirms the Law of Requisite

Variety from a dynamical perspective, independent of IPSLs.

6. While the results hold for finite ratchets, for the potentially unphysical case of

infinite ratchets, both IPSLs and the Law of Requisite Variety fail: an infinite

ratchet can violate IPSL bounds, extracting more energy than a memoryless input

allows.

With this overview laid out, with the goals and strategy stated, we now are ready to

delve into memory’s role in information-engine thermodynamics and the achievability of

the IPSL and its related bounds.

4.2 Memory

To explore how a ratchet’s structure “matches” (or not) that of an environmental signal

requires quantifying what is meant by structure. In terms of their structure, both ratch-

ets and environmental inputs can be either memoryless or memoryful and this distinction
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delineates a ratchet’s thermodynamic functioning via the IPSL. This section introduces

what we mean by the distinction, describes how it affects identifying temporal correla-

tions, and shows how it determines bounds on work production and functionality. The

results, though, can be concisely summarized. Figure 4.2 presents a tableau of memoryless

and memoryful ratchets and inputs in terms of example HMM state-transition diagrams.

Figure 4.3 then summarizes IPSL bounds for the possible cases.

4.2.1 Process memory

The amount of memory in the input or output processes is determined by the number

of states in the minimal representative dynamics that generates the associated sequence

probability distributions. We make this definition clear in the following section and show

that it is relevant to predicting thermodynamic bounds.

While there are many ways to generate a process, HMMs are a particularly useful

representation of generating mechanisms. For example, they describe a broader class of

processes than finite-order Markov models, since they can generate infinite Markov-order

processes using only a finite number of hidden states [12].

Here, we use the Mealy representation of HMMs [138, 139, 140, 141], which consists

of a set S of internal states and an alphabet A of symbols that are emitted. As with a

Markov chain, transitions between hidden states in S are made according to conditional

probabilities. However, the generated symbols in Y are emitted during transitions between

hidden states, rather than when entering states [142]. The Mealy HMM dynamic is

specified by a set of symbol-labeled transition matrices:

T (yN )
sN→sN+1

= Pr(YN = yN , SN+1 = sN+1|SN = sN) ,

which give the joint probability of emitting yN and transitioning to hidden state sN+1

given that the current hidden state is sN . For the special class of unifilar HMMs the

current hidden state s and emitted symbol y uniquely determine the next hidden state

s′(s, y). Helpfully, for unifilar HMMs the generated process’ entropy rate hµ is exactly

given by the state-averaged uncertainty in the emitted symbols given the current state
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[12]:

hµ = lim
N→∞

H[YN |Y0:N ]

= lim
N→∞

H[YN |SN ]

=
∑

s∈S

πs lim
N→∞

H[YN |SN = s]

= −
∑

s∈S

πs
∑

y∈Y

T
(y)
s→s′(s,y) log2 T

(y)
s→s′(s,y) ,

where πs is the steady-state distribution over the hidden states. A process’ ε-machine

is its minimal unifilar HMM generator, where minimality is determined by having the

smallest internal-state Shannon entropy [77]:

lim
N→∞

H[SN ] = − lim
N→∞

∑

s∈S

Pr(SN = s) log2 Pr(SN = s)

= −
∑

s∈S

πs log2 πs

≡ Cµ .

where Cµ in the last line is the process’ statistical complexity Cµ. Since hµ gives an exact

expression for process entropy rate and Cµ a unique definition of process memory [143],

throughout we represent processes by their ε-machines. An ε-machine’s internal states

are called causal states.

Broadly, the memory of an ε-machine refers to its hidden states. As shown in Fig.

4.2, memoryless input processes have ε-machines with a single state: |S| = 1. The

sequence distributions for such processes are given by a product of single-symbol marginal

distributions. For a stationary process, the single-symbol marginal entropy H1 is the same

for every symbol:

H1 ≡ H[YN ] for all N ∈ N. (4.4)
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For memoryless processes, the entropy rate is the same as the single-symbol entropy:

hµ = lim
N→∞

H[YN |Y0:N ]

= lim
N→∞

H[YN ]

= H1 .

This means that their difference vanishes:

H1−hµ = 0 . (4.5)

Thus, there are no temporal correlations in the symbol string, since H1−hµ quantifies the

informational correlation of individual input symbols with past inputs:

H1−hµ = lim
N→∞

(H[YN ]− H[YN |Y0:N ])

= lim
N→∞

I[YN : Y0:N ] , (4.6)

where I[W : Z] is the mutual information of random variables W and Z [11].

For memoryful input processes, as shown in Fig. 4.2, there are multiple causal states

for the ε-machine: |S| > 1. In other words, sequence probabilities cannot be broken into

a product of marginals. And so, in general, we have:

H1 > hµ .

Thus, there are temporal correlations in the input process:

H1−hµ > 0 . (4.7)

This means that individual symbols of the input sequence share information with past

inputs. In the maximally correlated case, every symbol is exactly predictable from its

past. As a result the entropy rate vanishes and the temporal correlation measure in Eq.

(4.6) is equal to the single-symbol entropy.

To summarize, memoryless input signals have a single causal state and, thus, do

not exhibit temporal correlations, since they have no way to store information from the

past. Meanwhile, memoryful inputs have multiple hidden states that are used to transmit

information from the past to the present and so express temporal correlations.
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4.2.2 Ratchet memory

From the perspective of information processing, the ratchet is a transducer that interacts

with each symbol in the input sequence in turn, converting it into a output symbol stored

in the output sequence [1, 13]. The ratchet is a form of communication channel [11]. One

that is determined by a detailed-balanced Markov dynamic:

MxN⊗yN→xN+1⊗y′N

= Pr(Y ′N = y′N , XN+1 = xN+1|XN = xN , YN = yN)

over the ratchet’s state space X and a symbol alphabet Y . This is the probability that the

ratchet ends in state xN+1 and writes a symbol y′N to the output sequence, given that the

input symbol was yN and the ratchet’s state was xN before the symbol-state interaction

interval.

The Markovian dynamic describes the behavior of the joint event (ratchet-state ⊗
symbol-value) during the interaction transition and leads to the transducer representation

of the ratchet’s functionality, illustrated in Fig. 4.2. As we use the terms, the ratchet refers

to the physical device implementing the Markovian dynamic, whereas transducer refers

to the computational mechanics state-transition machine (ε-transducer) that captures its

information-theoretic functionalities in a compact way [1]. The form of the transducer

is:

M
(y′N |yN )
xN→xN+1 = MxN⊗yN→xN+1⊗y′N . (4.8)

The distinction between the Markov dynamic and the transducer representation is best

illustrated graphically, as in the second column of Fig. 4.2.

The definition of a ratchet’s memory involves its ε-transducer representation. In other

words, memory is related to the size of the ratchet’s causal state space |X | in its ε-

transducer representation. (The very definition of ε-machines and ε-transducers entails

that they have the minimal set of states for a given input, output, or input-output process.)

As seen in the top middle of Fig. 4.2, memoryless ratchets have only a single internal

(hidden) state: |X | = 1. Thus, the ratchet behaves as a memoryless channel from input
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to output [11]. And, in this, it reduces temporal correlations in the input signal:

H′1−h′µ ≤ H1−hµ , (4.9)

according to the Data Processing Inequality [11]. As shown by Eq. (4.6) the difference

between the single symbol entropy and the entropy rate is the mutual information between

the infinite past symbols and the current symbol. If the channel is memoryless, then

YN → Y ′N and Y0:N → Y ′0:N , so by applying the Data Processing Inequality twice, we find

I[Y ′N ;Y ′0:N ] ≤ I[YN ;Y0:N ]. Thus, the change in single-symbol entropy is a lower bound

for the change in entropy rates [10]. In contrast, a memoryful ratchet has more than one

state, |X | > 1, and behaves as a memoryful channel [1]; bottom right of Fig. 4.2.

How the ratchet transduces the current input to the current output depends on in

which state it is. As a result, the ratchet can create correlations in the output such that,

regardless the input process:

H′1−h′µ ≥ 0 . (4.10)

Several explicit constructions of the output process based on given input and ratchet are

shown in the last column of Fig. 4.2.

4.2.3 Thermodynamics of memory

This section considers the role of memory in the thermodynamic efficacy of information

engines. In particular, we consider the average work production per cycle 〈W 〉. The

role can be explored in two complementary ways: either following the IPSL and related

bounds, Eqs. (4.1) and (4.2), or from the exact expression of 〈W 〉.
4.2.3.1 Information Processing Second Law bounds

The thermodynamics of memory is summarized in Fig. 4.3’s table, where each row

considers a different combination of input process and ratchet. This section addresses

each cell in the table individually.

Consider the case of memoryless input and a memoryless ratchet. In Eq. (4.9), we saw

that the temporal correlations in the input signal cannot be increased by such ratchets.

Since the input signal is memoryless, the output signal must also be memoryless. For

104



memoryless input

memoryful ratchet

memoryless input

memoryful input

memoryful input

memoryless ratchet

memoryless ratchet

memoryful ratchet

Input Process Ratchet Transducer Output Process

H 0
1 � h0

µ
?
= H1 � hµ

0 = H1 � hµ = H 0
1 � h0

µ

0 = H1 � hµ  H 0
1 � h0

µ

0  H 0
1 � h0

µ  H1 � hµ

hW i  �hµ = �H1

hW i  �hµ  �H1

hW i  �H1  �hµ

hW i  �H1

hW i  �hµ

Thermal Relations

F E

D

0 : 1.0

1 : 1.0

1 : 0.5 0 : 0.5

F E

D

0 : 1.0

1 : 1.0

1 : 0.5 0 : 0.5

D 0:b
1:1�b

D 0:b
1:1�b A

0|0:1�q
1|0:q
0|1:p

1|1:1�p

A

0|0:1�q
1|0:q
0|1:p

1|1:1�p

A B

0|0:1�p
1|0:p
1|1:1

1|1:1�q
0|1:q
0|0:1

A B

0|0:1�p
1|0:p
1|1:1

1|1:1�q
0|1:q
0|0:1

DA

FB

EB

DB

FA

EA

0:1�p
1:p

0:q
1:1�q

0:1.0

1:1.0

0:q/2
1:(1�q)/2

0:0.5 1:0.5

0:(1�p)/2
1:p/2

FA EA

DA

0:1�q
1:q

0:p
1:1�p

0:p/2
1:(1�p)/2

0:(1�q)/2
1:q/2

DA
0:b(1�q)+(1�b)p
1:bq+(1�b)(1�p)

DA DB

0:b(1�p)
1:pb+1�b

0:b+q(1�b)
1:(1�b)(1�q)

Figure 4.3. The informational (IPSL) bounds on work that use ∆hµ or ∆ H(1) depend
critically on input signal and ratchet memory. In all finite memory cases, ∆hµ is a
valid bound on 〈W 〉/kBT ln 2, but the same is not true of ∆ H1, as indicated in the far
right column on thermal relations. The bounds shown in column have kBT ln 2 set to
unity, so that the relations can be shown in compact form. If the ratchet is memoryless,
then ∆ H1 is a valid and stronger bound than ∆hµ, because these channels decrease
the temporal temporal correlations in transducing input to output. For a memoryless
input with memoryful ratchet, ∆ H1 is still a valid bound, but it is a weaker bound
than ∆hµ, because a memoryful ratchet typically creates temporal correlations in its
output. However, in the case where both input and output are memoryful, the ∆ H1

bound is invalid. It is violated by systems that turn temporal correlations into work
by using ratchet memory to synchronize to the input memory.

memoryless signals, however, we saw via Eq. (4.5) that the entropy rate hµ is the same as

the single-symbol entropy H1. We conclude that the temporal correlations vanish in both

the input and output and, thus, that the single-symbol entropy input-to-output difference

difference is the same as the entropy-rate difference:

H′1−h′µ = H1−hµ .

As a result both Eqs. (4.1) and (4.2) give the same bound on the the average rate of work
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production:

〈W 〉 ≤ kBT ln 2 ∆ H1 (4.11)

= kBT ln 2 ∆hµ , (4.12)

This is noted at the right column in the table’s first row.

Consider now the case of memoryful input with, again, a memoryless ratchet. A mem-

oryful input contains temporal correlations that are decreased by the memoryless ratchet,

from Eq. (4.9). The same equation implies that the single-symbol entropy difference is

an upper bound on the entropy-rate difference. As a result, Eq. (4.2) provides a quanti-

tatively tighter bound on the work production compared to the IPSL of Eq. (4.1) [10]:

〈W 〉 ≤ kBT ln 2 ∆ H1

≤ kBT ln 2 ∆hµ ,

These observations suggest that memoryless ratchets cannot leverage temporal cor-

relations, since the stricter bound (single symbol) on work production stays fixed as we

hold the single-symbol entropy fixed but vary the temporal correlations in the input. It

appears that to leverage temporal correlations, one must use a memoryful ratchet.

We now address the case of memoryful ratchets. First, consider the case of memoryless

inputs (no temporal correlations: hµ = H1). From Eq. (4.10), we know that memoryful

ratchets can create correlations in the output. In other words, the output signal is gen-

erally memoryful, implying H′1−h′µ ≥ 0. As a result, H′1−h′µ ≥ H1−h′µ, which implies

∆hµ ≤ ∆ H1. And so, the change in entropy rate is a stricter bound than the change in

single-symbol entropy:

〈W 〉 ≤ kBT ln 2 ∆hµ

≤ kBT ln 2 ∆ H1 ,

as seen in Table 4.3’s second row. We explored this in some detail in Chapter 2 [13]. By

calculating ∆hµ, we found a novel type of functionality in which the ratchet used stored

work energy to increase temporal correlations in the input while simultaneously increasing
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the single-symbol uncertainty. The above relations also imply that memoryless ratchets

may be best suited for leveraging memoryless input processes, since the bounds on work

production for memoryless ratchets are higher than the bounds for memoryful ratchets.

Consider now a memoryful input driving a memoryful ratchet. In this case, memory in

the ratchet is useful for work production. Chapter 3 [6] considers a maximally correlated,

period-2 input process, that has no single-symbol negentropy to leverage (H1 = 1 bit of

information), but that has maximal temporal correlations (H1−hµ = 1 bit). Notably, the

single-symbol bound indicates that no work can be produced, since ∆ H1 ≤ 0 regardless of

the output. Critically, though, the IPSL bound indicates that work production is possible,

since h′µ − hµ > 0 as long as the output has some uncertainty in each sequential symbol.

Indeed, Ref. [6] constructs a ratchet that produces positive work: 〈W 〉 = kBT
1−δ
e

, where

δ ∈ (0, 1). Thus, the single-symbol bound is violated, but the IPSL bound is satisfied, as

shown in Fig. 4.3’s last row.

The final case to consider, in fact, is left out of Fig. 4.3: infinite-memory ratchets.

This is because infinite memory ratchets do not necessarily have a steady state, so the

IPSL bound in Ref. [13] does not hold. There are, as yet, no predictions for infinite-

memory ratchets based on the information measures of the input or output processes.

However, this is an intriguing case. And so, we turn to infinite ratchets in Sec. 4.3.3.

Stepping back, Fig. 4.3’s table details a constructive thermodynamic parallel to

Ashby’s Law of Requisite Variety: Memory can leverage memory. However, the bounds

do not constitute existence proofs, since it is not yet known if the specified bounds are

achievable. Though, we constructed an example of a temporally correlated process that

is best leveraged by memoryful ratchets, it is possible that there is an alternative tempo-

rally correlated input process that is best leveraged by a memoryless ratchet. Similarly,

we see that the bounds on memoryless inputs are stricter for memoryful ratchets than

for memoryless ratchets. If these bounds are not achievable, however, then this does not

translate into a statement about the ratchet’s actual efficiency in producing work.

Before addressing the puzzle of achievability, we need to determine the work produc-

tion.
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4.2.3.2 Exact work production

An exact expression for the average work production rate was introduced in Ref. [6], as

discussed in Chapter 3:

〈W 〉 = kBT
∑

x,x′∈X
y,y′∈Y

πx⊗yMx⊗y→x′⊗y′ ln
Mx′⊗y′→x⊗y

Mx⊗y→x′⊗y′
, (4.13)

where {πx⊗y} is the steady-state joint probability distribution of the ratchet and the

input symbol before interaction. Heuristically, the formula can be understood in the

following way. At the beginning of the interaction interval, the ratchet and the incoming

bit have probability πx⊗y to be in state x⊗ y. Thus, the joint system has the probability

πx⊗yMx⊗y→x′⊗y′ to make the transition x ⊗ y → x′ ⊗ y′. Since M specifies a detailed-

balanced thermal dynamic, the amount of energy extracted from the reservoir in each

transition is given by the log-ratio ln(Mx′⊗y′→x⊗y/Mx⊗y→x′⊗y′). The right-hand side of

Eq. (4.13) therefore gives the average energy extracted from the heat reservoir every

thermodynamic cycle. From the First Law of Thermodynamics, this must be the ratchet’s

average work production, since its energy is fixed in the steady state. Not only does the

expression confirm our physical law of requisite memory, it also expands our understanding

of the validity of IPSL-like bounds, as we see below.

Irrespective of the nature of the input, consider the case of memoryless ratchets for

which we have:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y)

= lim
N→∞

Pr(YN = y)

= Pr(YN = y) ,

simply the single-symbol probabilities of the input process. This follows since there is

only a single ratchet state x. Thus, from Eq. (4.13), the only dependence the work has

on the input process is on the latter’s single-symbol distribution. In short, memoryless

ratchets are insensitive to correlations in the inputs. To leverage correlations beyond

single symbols in the input process it is necessary to add memory to the ratchet, as

discussed in the previous section and in our companion work [6].
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Conversely, as App. 4.4.1 establishes, if the input process is memoryless, there is no

energetic advantage of using finite memoryful ratchets for binary input processes. For

any finite memoryful ratchet that extracts work using the input process, there exists a

memoryless ratchet that extracts at least as much work.

These two results confirm the intuition that to be thermodynamically optimal a

ratchet’s memory must match that of the input: Memoryful ratchets best leverage mem-

oryful inputs and memoryless ratchets best leverage memoryless inputs.

4.3 Achievability of Bounds

The IPSL bound on average work production rate was derived based on the Second

Law of Thermodynamics applied to the joint evolution of the ratchet, the input-output

symbol sequence, and the heat reservoir. Since the Second Law is merely an inequality,

it does not guarantee that the bounds are actually achievable for the nonequilibrium

class of information engines considered here. In point of fact, we saw that the bound

cannot be saturated by memoryless ratchets. A somewhat opposite picture is presented

by infinite-memory ratchets. And, understanding these is a necessity if we wish to build a

thermodynamics of general computation; that is, of physically embedded universal Turing

machines. As we will show shortly, infinite-memory ratchets can violate the IPSL bound

since they can leverage the steady increase in their own entropy to reduce the entropy of

the heat reservoir, in addition to the contributions from an input signal. The following

analyzes these cases individually.

4.3.1 Memoryless ratchets

This section applies the work expression of Eq. (4.13) to find optimal memoryless non-

equilibrium ratchets, which operate through a sequence of driven and thermally activated

transitions as described in Chapter 3, and then compares their optimal work production

to the preceding information thermodynamics bounds to determine their achievability.

Understanding the relationships between the memory of the ratchet and that of the input

process, as discussed above, deepens the interpretation of the analysis. Since memoryless

ratchets are insensitive to correlations, our calculated work productions are not only the
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A⊗ 1 A⊗ 0

p

q

1− p 1− q

Figure 4.4. All possible memoryless ratchets that operate on a binary input, which are
parametrized by transition probabilities p and q.

work productions for memoryless inputs, but the work productions for all inputs with the

same single-symbol statistical biases.

A memoryless ratchet’s memory consists of a single state. As a result, the Markovian

dynamic M acts only on individual input symbols. Thus, the work for any input process

is a function only of its single-symbol distribution πy = Pr(YN = y) (given M):

〈W 〉 = kBT
∑

y,y′∈Y

πyMy→y′ ln
My′→y

My→y′
.

Here, we discuss in detail the particular case of a memoryless ratchet driven by binary

inputs. The relevant class of transducers comprises all two-state HMMs over the state

space {A}⊗ {0, 1}, where A is the ratchet’s sole state. Since the transducers’ state space

is two-dimensional, the Markovian dynamic M is guaranteed to be detailed balanced.

Moreover, we can parametrize this class by two transition probabilities p and q, as shown

in Fig. 4.4. This, then, allows us to optimize over p and q to maximize work production.

For the ratchet shown in Fig. 4.4 driven by a process with single-symbol probabilities

Pr(YN = 0) = b and Pr(YN = 1) = 1− b, the average work done is a function of b, p, and

q:

〈W 〉(b, p, q) = kBT (b− b′) ln
p

q
, (4.14)

where b′ = b′(b, p, q) = (1 − q)b + (1 − b)p is the probability Pr(Y ′N = 0) of symbol 0 in

the output. The expression for b′ follows from the dynamic depicted in Fig. 4.4, whereas

Eq. (4.14) follows from the fact that work ln(p/q) is gained for each transformation 0→ 1.

For a given input bias b, optimization of the ratchet’s transducer dynamic to produce

maximal work yields ratchet parameters pmax(b) and qmax(b):

[qmax(b), pmax(b)] =





[ 1−b
bΩ(e(1−b)/b) , 1], 1/2 ≤ b ≤ 1

[1, b
(1−b) Ω(eb/(1−b)) ], 0 ≤ b < 1/2

,
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Figure 4.5. Optimal ratchet parameters pmax(b) (solid orange line) and qmax(b) (dashed
blue line) are mirror images about b = 1/2. For b < 1/2, we set pmax(b) < 1 and
qmax = 1 so that the interaction transition 1→ 0 has a positive energy change ∆E1→0 =
kBT ln(q/p) and, thus, absorbs heat from the thermal reservoir. The same reasoning
applies to b > 1/2, where pmax(b) = 1 and qmax < 1. In the unique case where the
input is all 1s, the most effective ratchet for generating work has pmax = 1/e. Both
functions realize a minimum value of 1/e, as shown.

where the function Ω(·) is defined implicitly as Ω(zez) = z. To confirm that these are

indeed the maximal parameters for a given input b ∈ [0, 1], note that 〈W 〉(b, p, q) is

concave down over the physical parameter range p, q ∈ [0, 1]. For b < 1/2, plugging q = 1

and p = b/(1 − b)Ω(eb/(1 − b)) into partial derivatives of the work yields ∂〈W 〉/∂q ≥ 0

and ∂〈W 〉/∂p = 0. However, since q is already at its maximum, this a local maximum

for the allowed parameter range. And, since the work is concave down, we know that this

local maximum is the global maximum. The same can be shown for b ≥ 1/2 by using the

symmetry with respect the simultaneous exchanges {p↔ q, b↔ 1− b}. Figure 4.5 shows

how the optimal parameters depend on input bias Pr(YN = 0) = b.

Substituting qmax and pmax into the work production expression, we find the maximum:

〈W 〉max(b) = 〈W 〉(b, pmax(b), qmax(b)) ,

yielding the solid (blue) curve in Fig. 4.6. The curve is the maximum work production

〈W 〉max(b) of a memoryless ratchet for an input with bias b. This may seem like a limited

result at first, since it was calculated by driving a memoryless ratchet with memoryless

inputs. However, memoryless ratchets are insensitive to temporal correlations, and finite
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Figure 4.6. Maximum work production 〈W 〉max for any input bias b is kBT/e (hor-
izontal dashed line) and so ratchets do not achieve the IPSL upper bound 〈W 〉 ≤
kBT∆hµ(b, pmax, qmax) that derives from pure informational properties of the input
and output processes. Also, ∆hµ(b, pmax, qmax) itself is slightly less than the absolute
maximum possible change in entropy ∆hmax(b) given an input bias b. This means that
a memoryless ratchet does not leverage all of the single-symbol statistical order in the
input. This is also true of memoryful ratchets when driven by memoryless processes
of the same input bias. Appendix 4.4.1 tells us that the blue curve is also the maximal
work production for these ratchets with memoryless inputs.

memory ratchets are no better than memoryless ratchets when driven by memoryless

inputs, as discussed in the next section. Thus, the blue curve also represents the maximum

work production of memoryless ratchets with memoryful inputs as well as of memoryful

ratchets with memoryless inputs, as long as the probability of an input 0 is b.

To compare work production directly with the IPSL and related bounds, Eqs. (4.1)

and (4.2), we need to calculate the changes in single-symbol entropy difference ∆ H1 and

entropy-rate difference ∆hµ. Reminding ourselves that the ratchet is memoryless, these

differences are the same if we assume the input to be memoryless. We find:

∆ H1 = ∆hµ(b, p, q)

= HB(b′)− HB(b) ,

with HB(z) = H({z, 1 − z}) for z ∈ [0, 1], the binary entropy function [11]. We obtain

the bounds for an optimal ratchet, for a given input bias b, by substituting pmax and

qmax for p and q, respectively. We plot this optimal bound as the dashed line (orange) in

Fig. 4.6. Even though we maximized over the memoryless ratchet’s parameters (p and
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q), the output work 〈W 〉max(b) falls far short of the bounds set on it, as the solid (blue)

curve lies below the dashed (orange) curve except exactly at b = 1/2, where there is zero

work production. This demonstrates that there are inherent inefficiencies in memoryless

information ratchets.

There is a second source of inefficiency for memoryless ratchets. The maximum pos-

sible bound for the generated work comes from the case where there are no statistical

biases and no correlations left in the output sequence, so that the output has maximum

Shannon entropy. In this case we have b′ = 1/2, the maximal entropy change being:

∆hmax(b) = 1− HB(b) .

Figure 4.6 plots the corresponding bound as a dashed line (green), showing that it lies

above the actual change in entropy for an optimal ratchet. Thus, not all of the order in the

input sequence is being leveraged to generate work. In fact, the output bias b′(b, pmax, qmax)

for a nonequilibrium optimal ratchet is generally not equal to 1/2, meaning that another

ratchet could use its output as fuel.

4.3.2 Optimal memoryless ratchets versus memoryful ratchets

At this point we may ask: Is it possible to surpass the optimal memoryless ratchet in

terms of work production with a memoryful ratchet? The answer seems to be negative

for memoryless inputs. More to the point, Appendix 4.4.1 proves the following statement:

For memoryless, binary inputs work production by the optimal memoryless

ratchet cannot be surpassed by any memoryful ratchet.

Thus, by optimizing over memoryless ratchets, we can actually determine the optimum

work production over all finite memoryful ratchets. Appendix 4.4.1 proves that for se-

quences of binary symbols, memoryless ratchets are optimal for producing work.

This has a number of implications. First of all, it means that the dashed (blue) curve

in Fig. 4.6 is not only a bound on the work production of a memoryless ratchet for any

input with bias b, but it is also a bound on the work production of any finite memory

ratchet with a memoryless input with the same bias. Second, in particular, the work

production is at most kBT/e, as shown by the dashed (red) horizontal line.
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Third, importantly, this line is less than the conventional Landauer bound of kBT ln 2.

It may seem counterintuitive that no single ratchet can autonomously achieve the Lan-

dauer bound, but this is a natural result of dynamics of this class of autonomous

Maxwellian Demon. Between each interaction interval, as the ratchet switches between

inputs, the Hamiltonian changes instantaneously and discontinuously. As a result, the

ratchet and bit exist in a nonequilibrium distribution, which dissipates unrecoverable

heat as it relaxes towards the Boltzmann distribution.

Finally, to achieve entropic bounds, the joint state of the ratchet and bit should fol-

low the Boltzmann distribution during the interaction. However, to do this while also

performing meaningful computation, it is necessary to implement some form of adiabatic

isothermal protocol [144]. The latter can be implemented either by dynamically control-

ling the ratchet’s energies over the interaction interval, as we discuss in Chapters 5 and 6,

or by stringing together a series of ratchets, each one gradually updating the distribution

of it’s input infinitesimally.

Appendix 4.4.1’s observation also suggests that multiple ratchets in series—the output

sequence of one is input to the next—cannot be represented as a single finite-memory

ratchet that interacts with one bit at a time and only once. This is because we can

surpass the work production of an optimal memoryless ratchet with multiple ratchets

interacting with multiple symbols at a time, as we noted already. Ratchets composed

in series form a fundamentally different construction than a single memoryful ratchet; a

topic of some biological importance to which we will return elsewhere.

4.3.3 Infinite-memory ratchets

We emphasized that the very general IPSL bound on information processing based on

input-output entropy rate change holds for finite-state ratchets. What happens if infi-

nite memory is available to a ratchet? This section constructs infinite-memory ratchets

that can violate both Eqs. (4.1) and (4.2) and, by implication, Landauer’s bound. The

intuition behind this is that, due to the infinite memory, the ratchet can continue indefi-

nitely to store information that need not be written to the output. In effect, an apparent

violation of the IPSL bound arises since the hidden degrees of freedom of the ratchet’s
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memory are not accounted for.

Nonetheless, infinite-memory ratchets offer intriguing possibilities for thermodynamic

and computational functionality. While finite-memory ratchets can do meaningful com-

putations and can even be appropriate models for, say, biological organisms that have

finite information-processing capacities and response times, they cannot be computation-

ally universal in the current architecture [145, 68]. More precisely, a one-way universal

Turing machine (UTM), like our ratchet, that reads its input once and never again, re-

quires an “internal” infinite work tape to read from and write on. So, an infinite-state

ratchet of our type is needed to emulate the infinite bidirectional read-write tape of the

usual UTM [137].

Appendix 4.4.1 shows that memoryless ratchets are able to extract the most work from

memoryless binary input processes, under the assumption that the ratchet’s memory is

finite. Without finiteness the proof breaks down, since an asymptotic state distribution

may not exist over infinite states [146]. In addition, the proof of Eq. (4.1) fails for the

same reason. Thus, we turn to other tools for understanding the behavior in this case.

The expression for work production still holds, so despite not having general informa-

tional bounds on work production, we can still calculate the exact work production for a

prototype infinite ratchet.

Here, we present an infinite-state ratchet with finite energy-differences between all

states. Our main result is that it produces more work than any finite memory ratchet

for a given input. More to the point, it violates both the bounds in Eqs. (4.1) and (4.2).

This demonstrates the need for the finite-memory assumption in developing Landauer and

IPSL bounds. Consider, for example, an input process of all 1s. According to Sec. 4.3.1,

the maximum amount of work that can be extracted from this input by a memoryless

ratchet is given by:

〈W 〉max =
kBT

e
.

The discussion in App. 4.4.1 indicates that this should be the maximum amount of work

that can be extracted by any finite-memory ratchet (for the same input). However, the
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Figure 4.7. Infinite-state ratchet that violates the IPSL and single-symbol bounds,
Eqs. (4.1) and (4.2), respectively. The ratchet state-space is given by X =
{A0, A1, A2, . . .}: all states effectively have the same energy. The symbol values
Y = {0, 1} differ by energy ∆E = kBT , with 0 having higher energy. The black arrows
indicate the possible interaction transitions among the shown joint states of the ratchet
and symbol during the interaction interval. For example, transitions A0 ⊗ 1↔ A1 ⊗ 1
are allowed whereas transitions A0⊗ 0↔ A1⊗ 0 are not. The dashed black lines show
interaction transitions between the shown joint states and joint states that could not
be shown. Briefly, for i ≥ 1, there can be only the following interaction transitions:
Ai ⊗ 1 → {Ai±1 ⊗ 1, A2i ⊗ 0, A2i+1 ⊗ 0} and Ai ⊗ 0 → Aj(i) ⊗ 1 with j(i) = i/2 for
even i and (i − 1)/2 for odd i. For the i = 0 transitions, see the diagram. Every
interaction transition is followed by a switching transition and vice versa. The red
dotted lines are the possible paths for driven switching transitions between the joint
states, which correspond to the production or dissipation of work. During the switch-
ing interval, the only allowed transitions are the vertical transitions between energy
levels Ai⊗ 0↔ Ai⊗ 1. The probability of these transitions depends on the input bias.

infinite-state ratchet shown in Fig. 4.7 produces twice as much work, as we now show:

〈W 〉∞ =
2kBT

e
.

The infinite-state ratchet also violates both of the IPSL and single-symbol bounds,

Eqs. (4.1) and (4.2), since kBT ln 2 is an upper bound for the work generation in all binary

input processes according to these bounds, whereas 2/e > ln 2.

Let’s describe the structure and dynamics of the infinite-state ratchet in Fig. 4.7 in

detail. This ratchet has a countably infinite number of states Ai, with i ∈ {0, 1, 2, . . .}.
In other words, the ratchet state space is X = {A0, A1, A2, . . .}. The joint dynamic of the

ratchet and the interacting symbol is shown in Fig. 4.7, where the arrows indicate allowed

transitions and the number along the arrow, the associated transition probabilities. Apart
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from the case i = 0, only the following transitions are allowed: Ai⊗ 1→ {Ai±1⊗ 1, A2i⊗
0, A2i+1 ⊗ 0} and Ai ⊗ 0 → Aj ⊗ 1 with j = i/2 for even i and (i − 1)/2 for odd i. If

the incoming symbol is 0, the only transition allowed involves a simultaneous change in

the ratchet state and symbol, switching over to state Aj(i) if it started in state Ai and

the symbol switching to 1. If the incoming symbol is 1, there are generally four possible

transitions: Ai ⊗ 1 → Ai±1 ⊗ 1, Ai ⊗ 1 → A2i ⊗ 0, and Ai ⊗ 1 → A2i+1 ⊗ 0. The

first two transitions occur with equal probabilities 1/2− 1/e, while the third and fourth

transition occurs with probability 1/e. For i = 0, there are four transitions possible:

A0 ⊗ 1 → {A0 ⊗ 1 (self-loop), A1 ⊗ 1, A0 ⊗ 0, A1 ⊗ 1}. The transition probabilities are

shown in the figure.

We can assign relative energy levels for the joint states Ai ⊗ {0, 1} based on the

transition probabilities. Since the (horizontal) transitions Ai ⊗ 1 ↔ Ai+1 ⊗ 1 have equal

forward and reverse transition probabilities, all the joint states Ai ⊗ 1 have the same

energy. Any state Ai ⊗ 0 is higher than the state Aj(i)⊗1 by an energy:

∆EAi⊗1→Aj⊗0 = kBT ln
1

1/e

= kBT .

As a result, all states Ai⊗0 have the same energy, higher than that of the states Ai⊗1 by

kBT . This energy difference is responsible for producing the work. When the ratchet is

driven by the all-1s process, if it is in an Ai⊗0 state after the previous interaction transi-

tion, then the switching transition changes the state to Ai⊗1 gaining ∆EAi⊗0→Ai⊗1 = kBT

in work. The probability of being in a YN = 0 state after an interaction interval is 2/e,

so the work production is 〈W 〉 = 2kBT/e, as stated above.

The reason this infinite-state ratchet violates the information-theoretic bounds is that

those bounds ignore the asymptotic entropy production in the ratchet’s internal state

space. There is no steady state over the infinite set of states and this leads to continual

entropy production within the ratchet’s state space X . For the specific case of the all-1s

input process note that, before the interaction interval, the joint state-space distribution

of the ratchet and the incoming symbol must be positioned over only Ai ⊗ 1 states.
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Figure 4.8. Evolution of infinite-ratchet state distribution starting from an initial
distribution peaked over the set X , whose states are indexed Ai. The state distribution
curves are plotted over 15 time steps, starting in red at time step N = 1 and slowly
turning to blue at time step N = 15. With each sequential step, the support of
the ratchet state distribution doubles in size, leading to increasing uncertainty in the
ratchet state space and so increasing state entropy.

This is due to the fact that the switching transition always changes the symbol value

to 1. From a distribution {Pr(XN = Ai, YN = 1)}i∈{0,1,...} over the Ai ⊗ 1 states at

time N , the interaction interval spreads the joint distribution to both Ai ⊗ 0 and Ai ⊗ 1

states. However, they are reset to a new distribution over the Ai ⊗ 1 states {Pr(XN+1 =

Ai, YN+1 = 1)}i∈{0,1,...} after the following switching transition. This leads to a spreading

of the probability distribution—and, therefore, to an increase in entropy—in the ratchet

space X after each time step.

Figure 4.8 demonstrates the spreading by setting the initial joint ratchet-symbol state

X0 ⊗ Y0 to A0 ⊗ 0 and letting the distribution evolve for N = 15 time steps over the

ratchet states. The ratchet states are indexed by i and the time steps are indexed by N ,

going from 1 to 15. The curves show the probabilities Pr(XN = Ai) of the ratchet at time

step N being in the ith ratchet state. By filling the area under each distribution curve

and plotting the ratchet-state index in logarithm base 2, we see that the distribution’s

support doubles in size after every time step. This indicates an increase in the ratchet’s

internal entropy at each time step. This increase in internal entropy is responsible for the

violation of the IPSL bounds in Eqs. (4.1) and (4.2).

We have yet to discover a functional form for a steady state that is invariant—that
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Figure 4.9. The dashed (orange) line indicates average work production 〈W 〉 per
time step. It lies above the dotted (green) curve that indicates the IPSL entropy-rate
bound on 〈W 〉 (Eq. (4.1)), indicating a violation of the latter. The interpretation of the
violation comes from the solid (blue) curve that indicates the joint entropy production
of the input process and the ratchet together. We see a violation of the entropy-rate
bound since there is continuous entropy production in the ratchet’s (infinite) state
space.

maps to itself under one time-step. We made numerical estimates of the ratchet’s entropy

production, though. From the distributions shown in Fig. 4.8, we calculated the ratchet’s

state entropies at each time step N . The entropy production ∆ H[XN ] = H[XN+1]−H[XN ]

at the Nth step is shown in Fig. 4.9. We see that the sum ∆ H[XN ] + ∆hµ of the changes

in ratchet entropy and symbol entropy upper bounds the work production. Note that only

the ∆hµ curve lies below the work production. Thus, while this infinite ratchet violates

the IPSL bounds of Eqs. (4.1) and (4.2), it still satisfies a more general version of the

Second Law of Thermodynamics for information ratchets—Eq. (A7) of Ref. [13]:

〈WN〉 ≤ kBT ln 2 (HN+1−HN) , (4.15)

where WN is the work gain at the Nth time step and HN = H[XN , YN :∞, Y
′

0:N ] is the joint

Shannon entropy of the ratchet and the input and output symbol sequences YN :∞ and

Y ′0:N , respectively, at time t = N . As we can see, this bound is based on not only the

input and output process statistics, but also the ratchet memory. We will explore how the

memory of the ratchet plays a role in thermodynamic bounds in the next two chapters.
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Conclusion

How an agent interacts with and leverages it’s environment is a topic of broad interest,

from engineering and cybernetics to biology and now physics [18, 106]. General princi-

ples for how the structure of an agent must match that of its environment will become

essential tools for understanding how to take thermodynamic advantage of correlations

in structured environments, whether the correlations are temporal or spatial. Ashby’s

Law of Requisite Variety—a controller must have at least the same variety as its input so

that the whole system can adapt to and compensate that variety and achieve homeosta-

sis [18]—was an early attempt at such a general principle of regulation and control. In

essence, a controller’s variety should match that of its environment. Above, paralleling

this, we showed that a near-optimal thermal agent (information engine) interacting with

a structured input (information reservoir) obeys a similar variety-matching principle.

For an efficient finite-state information ratchet, the ratchet memory should reflect the

memory of the input process. More precisely, memoryless ratchets are optimal for lever-

aging memoryless inputs, while memoryful ratchets are optimal for leveraging memoryful

inputs. This can be appreciated in a two different ways.

On the one hand, the first comes from information processing properties of the ratchet

and input and the associated IPSL bounds on work. The operation of memoryless ratchets

can only destroy temporal correlations. These ratchets’ work production is still bounded

by single-symbol entropy changes, as in Eq. (4.2). And, since memoryless input pro-

cesses only produce single-symbol correlations (statistical biases), the memoryless ratchet

bound of Eq. (4.2) allows for maximal work production. Thus, according their bounds,

memoryless ratchets and inputs produce the most work when paired.

On the other hand, in the second view memoryful input processes exhibit multiple-

symbol temporal correlations. And, the entropy rate bound of Eq. (4.1) suggests that the

memoryful input processes can be used to produce work in a memoryful ratchet, but not

a memoryless one. More precisely, we can conceive of memoryful input processes whose

single-symbol statistics are unbiased (equal proportions of 0s and 1s, in case of binary

alphabet) but the entropy rate is smaller than the single-symbol entropy: hµ < H1. In
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this case, since the single-symbol entropy is already at its maximum possible value, mem-

oryless ratchets are unable to extract any work. Since the memoryful ratchets satisfy the

IPSL bound of Eq. (4.1), however, they can extract work from such memoryful processes.

One such example is studied in detail by Ref. [6]. (For a quantum-mechanical ratchet,

compare Ref. [73].) Thus, memoryful ratchets are best paired with memoryful inputs.

This and its complement result—memoryless inputs are optimally used by memoryless

ratchets—is biologically suggestive. If one observes memory (temporal correlations) in the

transduction implemented by a biomolecular assembly, for example, then it has adapted

to some structured environment.

We summarized the role of memory in thermodynamic processes in Fig. 4.3 which

considers each of the four possible combinations of memoryful or memoryless ratchets

with memoryful or memoryless input.

While the Second Law of Thermodynamics determines the IPSL and related bounds

discussed here, it does not follow that the bounds are achievable for the class of non-

equilibrium information ratchets considered. Based on an exact method for calculating the

average work production [6], we saw that there are indeed situations where the bounds are

not achievable (Fig. 4.6). In Sec. 4.3.1, we saw that memoryless ratchets cannot generally

saturate their bound (Eq. (4.2)). Furthermore, based on the results of App. 4.4.1 we could

prove that finite memoryful ratchets fare no better than memoryless ratchets at leveraging

memoryless inputs. Thus, not even memoryful ratchets can extract the maximum amount

of work possible from a memoryless input. There are some hints, though, as to what the

architecture of information engines should be to extract the maximum possible work

allowed by the Second Law. We alluded to one such situation in Sec. 4.3.1 involving

isothermal or adiabatic control of the energy landscape, which we discuss more in the

following chapters.

Another path to addressing the unattainability of the IPSL bound observed above

pertains to the architecture of the nonequilibrium information engines where there is only

a single ratchet that interacts with one environmental signal value at a time. This leads

one to speculate that multiple ratchets interacting with different signals—say, chained
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together so that the output of one is the input of another—will lead to a closer approach

to the bound. Simply having multiple copies of the optimal memoryless ratchets one after

another, however, will not necessarily address unattainability. Interestingly, depending on

input bias b, there may be oscillations in the amount of work that is gained per cycle. And,

even with infinitely many ratchets chained together sequentially, we may still be far from

the IPSL bound. Based on our intuition about thermodynamically reversible processes, we

postulate that to approach the bound more closely we need increasingly many memoryless

ratchets, each optimized with respect to its own input. We leave the verification of this

intuition for a future investigation. This does suggest, though, architectural trade-offs

that should manifest themselves in evolved biological thermodynamic processes.

To complete our exploration of the role of memory in thermodynamic processes, we

considered infinite-state ratchets, which are necessary if we wish to physically implement

universal Turing machines with the unidirectional information ratchets. Infinite ratchets,

however, pose a fundamental challenge since the IPSL entropy-rate bound on work pro-

duction does not apply to them. The proof of the bound (Eq. (4.1) [6]) is based on the

assumption that the ratchet reaches a steady state after interacting with sufficiently many

input symbols. This need not be the case for infinite-state ratchets. In fact, the numerical

investigations of Sec. 4.3.3 indicate that the probability distribution in the state space

of an infinite ratchet can continue to spread indefinitely, without any sign of relaxing

to a steady state; recall Fig. 4.8. By calculating both the average work production per

time step and the amount of change in the entropy rate, Fig. 4.9 showed that there is a

violation of the IPSL and related bounds. This necessitates a modification of the IPSL

for infinite-state ratchets. The appropriate bound, though, has already been presented in

a previous work [6], which we quoted in Eq. (4.15). This relation shows that the work

production is still bounded by the system’s entropy production; only, we must include the

contribution from the ratchet’s internal state space on top of the entropy-rate difference

of the input and the output HMMs.

We close by highlighting the close correspondence between information ratchets and

biological enzymes. Most directly, it is possible to model the biomimetic enzymes following
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the design of information ratchets [85]. The correspondence goes further, though. In

Sec. 4.1, we discussed how a swarm of ratchets acting cooperatively may be more efficient

than individual information ratchets, even if they are quite sophisticated. A similar

phenomenon holds for enzymes where the enzymes along a metabolic pathway assemble

to form a multi-enzyme complex—a “swarm”—to affect faster, efficient reaction turnover,

known as substrate channeling [147].

4.4 Appendices

4.4.1 Optimally Leveraging Memoryless Inputs

It is intuitively appealing to think that memoryless inputs are best utilized by memoryless

ratchets. In other words, the optimal ratchet for a memoryless input is a memoryless

ratchet. We prove the validity of this intuition in the following. We start with the

expression of work production per time step:

β〈W 〉 =
∑

x,x′,y,y′

πx⊗yMx⊗y→x′⊗y′ ln
Mx′⊗y′→x⊗y

Mx⊗y→x′⊗y′

=
∑

x,x′,y,y′

πx⊗yMx⊗y→x′⊗y′ ln
πx′⊗y′Mx′⊗y′→x⊗y

πx⊗yMx⊗y→x′⊗y′

−
∑

x,x′,y,y′

πx⊗yMx⊗y→x′⊗y′ ln
πx′⊗y′

πx⊗y
,

with β = 1/kBT . The benefit of the decomposition in the second line will be clear in the

following. Let us introduce several quantities that will also be useful in the following:

p(x, y, x′, y′) = πx⊗yMx⊗y→x′⊗y′ ,

pR(x, y, x′, y′) = πx′⊗y′Mx′⊗y′→x⊗y ,

πXx =
∑

y

πx⊗y ,

πYy =
∑

x

πx⊗y ,

pX(x, x′) =
∑

y,y′

p(x, y, x′, y′) , and

pY (y, y′) =
∑

x,x′

p(x, y, x′, y′).
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For a memoryless input process, sequential inputs are statistically independent. This

implies YN and XN are independent, so the stationary distribution πx⊗y can be written

as a product of marginals:

πx⊗y = πXx π
Y
y . (4.16)

In terms of the above quantities, we can rewrite work for a memoryless input process as:

β〈W 〉 = −DKL(p‖pR)

−
∑

y,y′

pY (y, y′) ln
πYy′

πYy
−
∑

x,x′

pX(x, x′) ln
πXx′

πXx
,

where DKL(p‖pR) is the relative entropy of the distribution p with respect to pR [11].

Note that the last term in the expression vanishes, since the ratchet state distribution is

the same before and after an interaction interval:

∑

x

pX(x, x′) =
∑

x

pX(x′, x) = πXx′ , (4.17)

and so:

∑

x,x′

pX(x, x′) ln
πXx′

πXx

=
∑

x,x′

pX(x, x′) lnπXx′ −
∑

x,x′

pX(x, x′) lnπXx

=
∑

x′

πXx′ ln π
X
x′ −

∑

x

πXx lnπXx

= 0 .

Thus, we find find the average work production to be:

β〈W 〉 = −DKL(p‖pR)−
∑

y,y′

pY (y, y′) ln
πYy′

πYy
. (4.18)

Let us now use the fact that the coarse graining of any two distributions, say p and q,

yields a smaller relative entropy between the two [11, 148]. In the work formula, pY is a

coarse graining of p and pYR is a coarse graining of pR, implying:

DKL(pY ‖pYR) ≤ DKL(p‖pR) . (4.19)
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Combining the above relations, we find the inequality:

β〈W 〉 ≤ −DKL(pY ‖pYR)−
∑

y,y′

pY (y, y′) ln
πYy′

πYy
.

Now, the marginal transition probability pY (y, y′) can be broken into the product of

the stationary distribution over the input variable πYy and a Markov transition matrix

MY
y→y′ over the input alphabet:

pY (y, y′) = πYy M
Y
y→y′ ,

which for any ratchet M is:

MY
y→y′ =

1

πYy
pY (y, y′)

=
1

πYy

∑

x,x′

πx⊗yMx⊗y→x′⊗y′

=
1

πYy

∑

x,x′

πXx π
Y
y Mx⊗y→x′⊗y′

=
∑

x,x′

πXx Mx⊗y→x′⊗y′ .

We can treat the Markov matrix MY as corresponding to a ratchet in the same way as

M . Note that MY is effectively a memoryless ratchet since we do not need to refer to the

internal states of the corresponding ratchet. See Fig. 4.2. The resulting work production

for this ratchet 〈W Y 〉 can be expressed as:

β〈W Y 〉 =
∑

y,y′

πYy M
Y
y→y′ ln

MY
y′→y

MY
y→y′

= −DKL(pY ‖pYR)−
∑

y,y′

pY (y, y′) ln
πYy′

πYy

≥ β〈W 〉 .

Thus, for any memoryful ratchet driven by a memoryless input we can design a memoryless

ratchet that extracts at least as much work as the memoryful ratchet.

There is, however, a small caveat. Strictly speaking, we must assume the case of

binary input. This is due to the requirement that the matrix M be detailed balanced
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(see Sec. 4.1) so that the expression of work used here is appropriate. More technically,

the problem is that we do not yet have a proof that if M is detailed balanced then so

is MY , a critical requirement above. In fact, there are examples where MY does not

exhibit detailed balance. We do, however, know that MY is guaranteed to be detailed

balanced if Y is binary, since that means MY only has two states and all flows must be

balanced. Thus, for memoryless binary input processes, we established that there is little

point in using finite memoryful ratchets to extract work: memoryless ratchets extract

work optimally from memoryless binary inputs.

4.4.2 An IPSL for Information Engines

Reference [13] proposed a generalization of the Second Law of Thermodynamics to in-

formation processing systems (IPSL, Eq. (4.1)) under the premise that the Second Law

can be applied even when the thermodynamic entropy of the information bearing degrees

of freedom is taken to be their Shannon information entropy. This led to a consistent

prediction of the thermodynamics of information engines. It was also validated through

numerical calculations. This appendix proves this assertion for the class of information

engines considered here. The key idea is to use the irreversibility of the Markov chain

dynamics followed by the engine and by the information bearing degrees of freedom to

derive the IPSL inequality.

For the sake of presentation, we introduce new notation here. We refer to the engine

as the demon D, following the original motivation for information engines. We refer to

the information-bearing two-state systems as the bits B. According to our set up, D

interacts with an infinite sequence of bits, B0B1B2 . . . as shown in Fig. 4.10. The figure

also explains the connection of the current terminology to that in the main text. In

particular, we show two snapshots of our setup, at times t = N and t = N + 1. During

that interval D interacts with bit BN and changes it from (input) symbol YN to (output)

symbol Y ′N . The corresponding dynamics is governed by the Markov transition matrix

MD⊗BN which acts only on the joint subspace of D and BN .

Under Markov dynamics the relative entropy of the current distribution with respect

to the asymptotic steady-state distribution is a monotonically decreasing function of time.
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Y’0	 Y’1	 Y’2	 …	 Y’N-1	 YN	 YN+1	 …	

Y’0	 Y’1	 Y’2	 …	 Y’N-1	 Y’N	 YN+1	 …	

B0	 B1	 B2	 …	 BN-1	 BN	 BN+1	 …	

Time	t	=	N	

Time	t	=	N+1	

MD⌦BN

D	

Figure 4.10. The demon D interacts with one bit at a time for a fixed time interval;
for example, with bit BN for the time interval t = N to t = N + 1. During this,
the demon changes the state of the bit from (input) YN to (output) Y ′N . There is an
accompanying change in D’s state as well, not shown. The joint dynamics of D and
BN is governed by the Markov chain MD⊗BN .

We now use this property for the transition matrix MD⊗BN to derive the IPSL. Denote the

distribution of D’s states and the bits B at time t by PDB0:∞(t). Here, B0:∞ stands for all

the information-bearing degrees of freedom 1. The steady-state distribution corresponding

to the operation of MD⊗BN is determined via:

lim
n→∞

Mn
D⊗BN

PDB0:∞(N) = πeq
DBN

PB0:∞/N (N) (4.20)

≡ πs(N) , (4.21)

where πeq
DBN

denotes the steady-state distribution:

MD⊗BNπ
eq
DBN

= 0

and PB0:∞/N (N) the marginal distribution of all the bits other than the N -th bit at time

t = N . We introduce πs(N) in Eq. (4.21) for brevity.

1Probability distributions over infinitely many degrees of freedom ultimately require a measure-
theoretic treatment. This is too heavy a burden in the current context. The difficulties can be bypassed
by assuming that the number of bits in the infinite information reservoir is a large, but positive finite
integer L. And so, instead of infinities in B0:∞ and B0:∞/N we use B0:L and B0:L/N , respectively, and
take the appropriate limit when needed.
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The rationale behind the righthand side of Eq. (4.20) is that the matrix MD⊗BN acts

only on D and BN , sending to their joint distribution to the stationary distribution πeq
DBN

(on repeated operation), while leaving intact the marginal distribution of the rest of B.

The superscript eq emphasizes the fact the distribution πeq
DBN

is an equilibrium distri-

bution, as opposed to a nonequilibrium steady-state distribution, due to the assumed

detailed-balance condition on MD⊗BN . In other words, πeq
DBN

follows the Boltzmann dis-

tribution:

πeq
DBN

(D = x,BN = y) = eβ[FDBN
−EDBN

(x,y)] (4.22)

for inverse temperature β, free energy FDBN , and energy EDBN (x, y). In the current

notation we express the monotonicity of relative entropy as:

D(PDB0:∞(N)‖πs(N)) ≥ D(PDB0:∞(N + 1)‖πs(N)), (4.23)

where D(p‖q) denotes the relative entropy of the distribution p with respect to q:

D(p‖q) =
∑

i

p(i) ln

[
p(i)

q(i)

]

over D’s states i. The IPSL is obtained as a consequence of inequality Eq. (4.23), as we

now show 2.

First, we rewrite the lefthand side of Eq. (4.23) as:

D(PDB0:∞(N)‖πs(N))

= −HDB0∞(N) ln 2−
∑

DB0:∞

PDB0:∞(N) lnπs(N)

= −HDB0∞(N) ln 2−
∑

DBN

PDBN (N) lnπeq
DBN

−
∑

DB0:∞/N

PDB0:∞/N (N) lnPB0:∞/N (N)

= −HDB0∞(N) ln 2− βFDBN + β〈EDBN 〉(N)

+ HB0:∞/N (N) ln 2 . (4.24)

2For a somewhat similar approach see N. Merhav. J. Stat. Mech.: Th. Expt. (2017) 023207.

128



The first line applies the definition of relative entropy. Here, HX denotes the Shannon

entropy of random variable X in information units of bits (base 2). The second line

employs the expression of πs(N) given in Eq. (4.21). The final line uses the Boltzmann

form of πeq
DBN

given in Eq. (4.22). Here, 〈EDBN 〉(N) denotes the average energy of D and

the interacting bit BN at time t = N .

Second, in a similar way, we have the following expression for the righthand side of

Eq. (4.23):

D(PDB0:∞(N + 1)‖πs
N)

= −HDB0:∞(N + 1) ln 2 + HB0:∞/N (N) ln 2

+ β〈EDBN 〉(N + 1)− βFDBN . (4.25)

Note that the marginal distribution of the noninteracting bits B0:∞/N does not change over

the time interval t = N to t = N + 1 since the matrix MD⊗BN acts only on D and BN ,

and the Shannon entropy of the noninteracting bits remains unchanged over the interval.

Third, combining Eqs. (4.23), (4.24), and (4.25), we get the inequality:

ln 2∆ HDB0;∞ −β∆〈EDBN 〉 ≥ 0 , (4.26)

where ∆ HDB0;∞ is the change in the Shannon entropy of D and B and ∆〈EDBN 〉 is the

change in the average energy of D and B over the interaction interval.

Fourth, according to the ratchet’s design, D and B are decoupled from the work

reservoir during the interaction intervals. (The work reservoir is connected only at the

end points of intervals, when one bit is replaced by another.) From the First Law of

Thermodynamics, the increase in energy ∆〈EDBN 〉 comes from the heat reservoir. In

other words, we have the relation:

∆〈EDBN 〉 = 〈∆Q〉 , (4.27)

where ∆Q is the heat given to the system. (In fact, Eq. (4.27) is valid for each realization

of the dynamics, not just on the average, since the conservation of energy holds in each

realization.)
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Finally, combining Eqs. (4.26) and (4.27), we get:

ln 2∆ HDB0:∞ −β〈∆Q〉 ≥ 0 , (4.28)

which is the basis of the IPSL as demonstrated in Ref. [13]; see, in particular, Eq. (A7)

there.
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Chapter 5

Transient Structural Costs of

Physical Information Processing

5.1 Introduction.

Classical thermodynamics and statistical mechanics appeal to various reservoirs–reservoirs

of heat, work, particles, and chemical species–each characterized by unique, idealized

thermodynamic properties. A heat reservoir, for example, corresponds to a physical

system with a large specific heat and short equilibration time. A work reservoir accepts

or gives up energy without a change in entropy. Arising naturally in recent analyses of

Maxwellian demons and information engines [30, 39, 42, 7, 60, 56, 61, 62, 63, 78, 73, 10, 64,

109, 9, 149, 6], information reservoirs have come to play a central role as idealized physical

systems that exchange information but not energy [5, 150, 36]. Their inclusion led rather

directly to an extended Second Law of Thermodynamics for complex systems: The total

physical (Clausius) entropy of the universe and the Shannon entropy of its information

reservoirs cannot decrease in time [151, 7, 5, 34, 4]. We refer to this generalization as the

Information Processing Second Law (IPSL) [17].

A specific realization of an information reservoir is a tape of symbols where infor-

mation is encoded in the symbols’ values 1. To understand the role that information

processing plays in the efficiencies and bounds on thermodynamic transformations, we

have thoroughly explored information ratchets in the previous chapters. By increasing

1See Appendices: Information reservoir implementations.
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the tape’s Shannon entropy, the ratchet can steadily transfer energy from the heat to

the work reservoirs [7]. This violates the conventional formulation of the Second Law of

Thermodynamics but is permitted by the IPSL.

These transducers are memoryful communication channels from input to output sym-

bol sequences [1]. Information transducers are also similar to Turing machines in de-

sign [69], except that a Turing machine need not move unidirectionally. More impor-

tantly, an information transducer is a physical thermodynamic system and so is typically

stochastic 2. Despite this difference, like a Turing machine a transducer can perform any

computation, if allowed any number of internal states.

Previous analyses on the thermodynamics of information processing largely focused

on the minimal asymptotic entropy production rate for a given information transduction;

see Eq. (5.2) below. The minimal rate is completely specified by the information trans-

duction; there is no mention of any cost due to the transducer itself. In contrast, the

Letter [19] first derives an exact expression for the minimal transient entropy production

required for information transduction; see Eq. (5.3). This transient dissipation is the

cost incurred by a system as it adapts to its environment. It is related to the excess

heat in transitions between nonequilibrium steady states [152, 153, 154]. Moreover, hid-

den in this minimal transient dissipation, we identify the minimal cost associated with

the transducer’s construction; Eq. (5.4) below. Among all possible constructions that

support a given computational task, there is a minimal, finite cost due to the physical

implementation.

We go on to consider the specific case of structured pattern generation from a struc-

tureless information reservoir—a tape of independent and identically distributed (IID)

symbols. While the transducer formalism for information ratchets naturally includes

inputs with temporal structure, most theory so far has considered structureless inputs

[20, 13, 7, 60, 61, 58]. This task requires designing a transducer that reads a tape of

IID symbols as its input and outputs a target pattern. Employing the algebra of Shan-

non measures [79] and the structure-analysis tools of computational mechanics [155, 77],

2See Appendices: Turing machines versus transducers.
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we show that the minimum implementation-dependent cost is determined by the mu-

tual information between the transducer and the output’s “past”—that portion of the

output tape already generated. The result is that a maximally efficient implementation

is achieved with a “retrodictive” model of the structured pattern transducer. Since the

retrodictor’s states depend only on the output future, it only contains as much informa-

tion about the output’s past as is required to generate the future. As a result it has a

minimal cost proportional to the tape’s excess entropy [77]. Such thermodynamic costs

affect information processing in physical and biological systems that undergo finite-time

transient processes when adapting to a complex environment.

5.2 Information Processing Second Law.

Consider a discrete-time Markov process involving the transducer’s current state XN and

the current state of the information reservoir YN it processes. The latter is a semi-

infinite chain of variables over the set Y that the transducer processes sequentially. As

discussed in previous chapters YN is the Nth tape element, if the transducer has not yet

processed that symbol; it is denoted Y ′N , if the transducer has. We call YN an input and

Y ′N an output. The current tape YN = Y ′0:NYN :∞ concatenates the input tape YN :∞ =

YNYN+1YN+2 . . . and output tape Y ′0:N = Y ′0Y
′

1 . . . Y
′
N−2Y

′
N−1. The information ratchet

performs a computation by steadily transducing the input tape process Pr(Y0:∞) into the

output tape process Pr(Y ′0:∞).

The IPSL sets a bound on the average heat dissipation Q0→N into the thermal reser-

voir over the time interval t ∈ [0, N ] in terms of the change in state uncertainty of the

information ratchet and information reservoir [13, App. A]:

〈Q0→N〉
kBT ln 2

≥ H[X0,Y0]− H[XN ,YN ]. (5.1)

Until now, our studies of such information engines developed the IPSL’s asymptotic-

rate form:

lim
N→∞

1

N

〈Q0→N〉
kBT ln 2

≥ −(h′µ − hµ) , (5.2)

where h′µ (hµ) is the Shannon entropy rate of the output (input) tape 3 and, in addition,

3See Supplementary Materials: Information generation in physical systems.
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we assume the transducer has a finite number of states [13].

The asymptotic IPSL in Eq. (5.2) says that thermal fluctuations from the environment

can be rectified to either perform work or refrigerate (on average) at the cost of ran-

domizing the information reservoir (〈Q〉 < 0 when h′µ > hµ). Conversely, an information

reservoir can be refueled or ‘charged’ back to a clean slate by erasing its Shannon-entropic

information content at the cost of emitting heat.

Equation (5.2), however, does not account for correlations between input and output

tapes nor those that arise between the transducer and the input and output. As we now

show, doing so leads directly to predictions about the relative effectiveness of transducers

that perform the same information processing on a given input, but employ different phys-

ical implementations. Specifically, the retrodictive generator is the thermodynamically

simplest implementation, not computational mechanics’ optimal predictor—the ε-machine

[155], which lies in contrast with Ref. [20]’s optimality claim for the ε-machine.

Subtracting the IPSL’s asymptotic-rate version (Eq. (5.2)) from the IPSL’s original

(Eq. (5.1)) leads to a lower bound on the transient thermodynamic cost 〈Qtran〉 of infor-

mation transduction, this chapter’s central result:

〈Qtran〉min

kBT ln 2
≡ lim

N→∞

[〈Q0→N〉min

kBT ln 2
+N(h′µ − hµ)

]

= −E′ + I[
←−
Y ′;
−→
Y ] + I[X0;

←−
Y ′,
−→
Y ] . (5.3)

Here, E′ is the output sequence’s excess entropy [12], which is the mutual information

I[
←−
Y ′;
−→
Y ′] between the output past and output future. In these expressions we use arrows

to describe past and future random variables.
←−
Y ′ is the random variable for output past—

the sequence of output symbols that have been produced by the transducer—and
−→
Y ′ is

the output future—the sequence of output symbols that have not yet been produced.

Similarly, the input past random variable
←−
Y is the sequence of input variables that have

already interacted with the transducer and have been transformed into an output. While

the input future random variable
−→
Y is the sequence of input variables that have yet to

interact. Finally, X0 is the random variable for the transducer’s state after sufficiently

long time, such that
←−
Y ′ and

←−
Y are both effectively semi-infinite. The expression itself
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comes from shifting to the ratchet’s reference frame, so that at time N state XN becomes

X0 and the currently interacting tape symbol is relabeled Y0, rather than YN . (Equation

(5.3) is proved in the Appendices.)

From it we conclude that the minimum transient cost has three components. How-

ever, they are subtly interdependent and so we cannot minimize them piece-by-piece to

maximize thermodynamic efficiency. For instance, the first term in the transient cost is

a benefit of having correlation between the output past and output future, quantified by

E′. Without further thought, one infers that outputs that are more predictable from their

past, given a fixed entropy production rate, are easier to produce thermodynamically.

However, as we see below when analyzing process generation, the other terms cancel this

benefit, regardless of the output process. Perhaps counterintuitively, the most important

factor is the output’s intrinsic structure.

The remaining two terms in the transient cost are the cost due to correlations be-

tween the input and the output, quantified by I[
←−
Y ′;
−→
Y ], and the cost due to correlations

between the transducer and the entire input-output sequence, quantified by I[X0;
←−
Y ′,
−→
Y ].

The last term, which through X0 depends explicitly on the transducer’s structure, shows

how different implementations of the same computation change energetic requirements.

Said differently, we can alter transducer states as well as their interactions with tape

symbols, all the while preserving the computation—the joint-input output distribution—

and this only affects the last term in Eq. (5.3). For this reason, we call it the minimal

implementation energy cost Qimpl given a transducer:

(kBT ln 2)−1〈Qimpl〉min = I[X0;
←−
Y ′,
−→
Y ] . (5.4)

This bound on the cost applies beyond predictively generating an output process [33]

to any type of input-output transformation. The minimum implementation energy cost

is not guaranteed to be achievable, but, like Landauer’s bound on the cost of erasure

[4, 34], it provides a guidepost for an essential physical cost of information processing. By

choosing an implementation with the least information shared between the transducer’s

state and the joint state of the output past and input future, we minimize the unavoidable

cost of computation. Moreover, we discuss how to achieve the minimum dissipation with
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H[
 �
Y 0]

H[
�!
Y 0]

/ h0
µ` / h0

µ`

hQimplimin

kBT ln 2

E0

H[X0]

Figure 5.1. Shannon measures for physical information transduction—general case of

nonunifilar transducers: Transducer output past
←−
Y ′ and output future

−→
Y ′ left (blue)

and right (red) ellipses, respectively; shown broken since the future and past en-

tropies H[
←−
Y ′] and H[

−→
Y ′] diverge as hµ`, with ` being the length of past or future,

respectively. H[X0] illustrates the most general relationship the generating trans-
ducer state X0 must have with the process future and past. Implementation cost

I[X0;
←−
Y ′] = 〈Qimpl〉min/kBT ln 2 is highlighted by a dashed (red) outline.

the physical implementations of pattern generators developed in Ref. [20].

5.3 Generating Structured Patterns.

Paralleling Ref. [13], we now consider the thermodynamic cost of generating a sequential

pattern of output symbols from a sequence of IID input symbols. Since the latter are

uncorrelated and we restrict ourselves to nonanticipatory transducers (i.e., transducers

with no direct access to future input [1]), the input future is statistically independent

of both the current transducer state and the output past: I[X0;
←−
Y ′,
−→
Y ] = I[X0;

←−
Y ′] and

I[
←−
Y ′;
−→
Y ] = 0. As a result, we have the following simplifications for the minimal transient

dissipation and implementation costs (from Eq. (5.3)):

(kBT ln 2)−1〈Qtran〉min = I[X0;
←−
Y ′]− E′ (5.5)

(kBT ln 2)−1〈Qimpl〉min = I[X0;
←−
Y ′] . (5.6)

The fact that the input is IID tells us that the transducer’s states are also the internal

states of the hidden Markov model (HMM) generator of the output process [1, 13]. This

means that the transducer variable X0 must contain all information shared between the

output’s past
←−
Y ′ and future

−→
Y ′ [156, 12], as shown in the information diagram in Fig. 5.1.

(Graphically, the E′ atom is entirely contained within H[X0].) There, an ellipse depicts a
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variable’s Shannon entropy, an intersection of two ellipses denotes the mutual information

between variables, and the exclusive portion of an ellipse denotes a variable’s conditional

entropy. For example, E′ = I[
←−
Y ′;
−→
Y ′] is the intersection of H[

←−
Y ′] and H[

−→
Y ′]. And, the

leftmost crescent in Fig. 5.1 is the conditional Shannon entropy H[
←−
Y ′|X0] of the output

past
←−
Y ′ conditioned on transducer state X0. The diagram also notes that this information

atom, which is in principle infinite, scales as hµ`, where ` is the sequence length.

As stated above, Fig. 5.1 also shows that the ratchet state statistically shields past

from future, since the ratchet-state entropy H[X0] (green ellipse) contains the information

E′ shared between the output past and future (overlap between (left) blue and right (red)

ellipses). Thus, the implementation cost I[X0;
←−
Y ′], highlighted by dashed (red) outline,

necessarily contains the mutual information between the past and future. As discussed in

the Appendices, both the transient and asymptotic bounds (Eqs. 5.2 and 5.5, respectively)

are achievable through an alternating adiabatic and quasistatic protocol. This is distinct

from the local isothermal protocol we discuss in the next chapter, though similar in

principle. We are now ready to find the most efficient thermodynamic implementations

for a given computation in the transient regime.

Consider first the class of predictive, unifilar information transducers; denote their

states R+
0 . Unifilarity here says that the current state R+

0 is restricted to be a function of

the semi-infinite output past: the ratchet’s next state R+
0 is unambiguously determined

by
←−
Y ′. It should be noted that the alternating adiabatic and quasistatic protocol de-

scribed in the Appendices is not local, and thus allows unifilar generators to not dissipate

asymptotically, as discussed in the next chapter. Instead, there are information theoretic

properties of the global distribution that leads to additional energetic costs.

A unifilar information transducer corresponds to the case where the transducer state

entropy H[X0 = R+
0 ] has no area outside that of the output past’s entropy H[

←−
Y ′].

(See Fig. 5.2.) As evident there, the implementation cost I[X0;
←−
Y ′] is the same as the

transducer’s state uncertainty—the Shannon entropy H[X0 = R+
0 ]. Thus, according to

Eq. (5.6) the thermodynamically most efficient unifilar transducer is that with minimal

state-uncertainty H[X0 = S+
0 ]—the entropy of the ε-machine causal states S+

0 of com-
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Figure 5.2. Optimal physical information transducers–predictive and retrodictive pro-
cess generators: Process generator variables, predictive states R and causal states S,
denoted with green ellipses. Being the minimal set of predictive states, causal states
S are contained within the set of general predictive states R. A given process has
alternative unifilar (R+

0 or S+
0 ) and co-unifilar generators (R−0 or S−0 ). Component

areas are the sigma-algebra atoms: conditional entropies—entropy rate hµ and cryp-
ticities χ+ and χ−—and a mutual information—the excess entropy E′. Since the state

random variables R+
0 and S+

0 are functions of the output past
←−
Y ′, their entropies are

wholly contained within the past entropy H[
←−
Y ′]. Similarly, co-unifilar generators, de-

noted by the random variables R−0 and S−0 , are functions of output future
−→
Y ′. Thus,

their entropies are contained within the output future entropy H[
−→
Y ′]. The ε-machine

generator with causal states S+
0 is the unifilar generator with minimal Shannon entropy

(area). The random variable R−0 realizes the current state of the minimal co-unifilar
generator, which is the time reversal of the ε-machine for the time-reversed process
[2]. Transducers taking the form of any of these generators produce the same process,
but structurally distinct generators exhibit different dissipations and thermodynamic
implementation costs.

putational mechanics [77], which comprise the minimal set of predictive states 4. This

confirms the result that, if one is restricted to predictive generators, simpler is better [20].

Critically, there are further connections with computational mechanics that, by re-

moving the restriction, lead to substantial generalizations. For ε-machine information

transducers with causal states S+
0 , the mutual information between the transducer and

the output past is the output process’ statistical complexity: I[S+
0 ;
←−
Y ′] = C ′µ. In other

words, the minimal transient implementation cost of a pattern generated by a unifilar

information transducer is the pattern’s statistical complexity. The transient dissipation

that occurs when generating a structured pattern, given in Eq. (5.5), is then the output’s

4One might conclude that simpler (smaller forward causal-state entropy) is thermodynamically better
(more efficient) [20]. Our development shows when this holds and when not, leading to a broader and
more incisive view of optimal adaptive systems.
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crypticity χ+ = C ′µ−E′ [156], as Ref. [2] concluded previously and Ref. [20] more recently.

Now, consider the more general case in which we allow the transducer implementation

to be nonunifilar; see Fig. 5.1 again. From the Data Processing Inequality [11], it follows

that the mutual information between X0 and
←−
Y ′ cannot be less than the output’s excess

entropy:

I[X0;
←−
Y ′] ≥ E′ . (5.7)

Thus, the minimum structural cost over alternate pattern-generator implementations is

the output pattern’s excess entropy.

Figure 5.1 suggests how to find this minimum. The implementation cost highlighted

by the dashed (red) line can be minimized by choosing a transducer whose states are

strictly functions of the future. In this case, the transducer’s mutual information with

the output past is simply E′, achieving the bound on implementation cost given by Eq.

(5.7). (Refer now to Fig. 5.2.) Constructed using states that are functions of the future,

such a ratchet is a generator with retrodictive (as opposed to predictive) states, denoted

R−0 or S−0 [157]. This means that the generator is counifilar, as opposed to unifilar

[158, 80]. These generators have the same states as the unifilar generators of the time-

reversed process, but generally are nonunifilar. These retrodictive generators produce the

same output process by running along the information reservoir in the same way as the

predictive generators, but rather than store all of the information in the past outputs

required to predict the future, they only store just enough to generate it. This affords

them a fundamental energetic advantage.

Critically, too, any such retrodictive implementation is maximally efficient, dissipat-

ing zero transient heat 〈Qtran〉min = 0, even though the state uncertainty varies across

implementations: H[R−0 ] > H[S−0 ]. Unlike unifilar transducers, for a given output process

there are infinitely many counifilar information transducers of varying state-complexity

that are all maximally thermodynamically efficient. In other words, simpler is not nec-

essarily thermodynamically better for optimized transducers, as we demonstrate using

the example of the (3, 2) Golden Mean Process in the Supplementary Materials. Figure

5.3 there demonstrates the distinct thermodynamic advantages of retrodictive represen-
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tations. This shows, as a practical matter, that both the design and evolution of efficient

biological computations have a wide latitude when it comes to physical instantiations.

To summarize, we identified the transient and structural thermodynamic costs of phys-

ical information transduction, generalizing the recent Information Process Second Law.

These bound the energetic costs incurred by any physically embedded adaptive system as

it comes to synchronize with the states of a structured environment. Physical organization

in the environment is a thermal resource for adaptive biological agents. To take advan-

tage of that resource, however, the agent’s internal state must reflect the hidden structure

of its input [6, 17, 20]. Similarly, when producing an organized output, the agent must

transition among the recurrent hidden states that are capable of generating the desired

structure. Information transducing agents such as these involve a transient phase during

which additional costs are incurred due to the agent adapting to its asymptotic behavior.

When asking about which physical implementations have the least transient dissipation

we showed that they can be bounded by the information shared by the agent, output past,

and input future. This led us to see that the most efficient generators of organization are

retrodictive, not necessarily ε-machines which are generative but predictive.

These results apply strictly to the transient behavior of thermodynamically reversible

computations. In the next section, we quantify structural costs of computation that

affect asymptotic behavior as well, and correspond to irreversible dissipation. The differ-

ence is that the transient costs come from globally integrated computations, which can

be reversed, while the next chapter considers localized modular computations that are

potentially irreversible.

5.4 Appendices

Derivations, further discussion and interpretation, and an explicit comparison of the ther-

modynamics of generators and predictors for an example system.

5.4.1 Shannon versus Kolmogorov-Sinai Entropy Rates

On the one hand, it is now commonplace shorthand in physics to describe a symbol-based

process in terms of Shannon’s information theory and so measure its intrinsic randomness
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via the Shannon entropy rate. On the other, properly capturing the information process-

ing behavior of physically embedded systems is more subtle. There are key conceptual

problems. For one, the symbol-based Shannon entropy rate may not be well defined for

a given continuous physical system. In the present setting we consider the entire engine

as a physical system. Then, hµ and h′µ are the Kolmogorov-Sinai entropies of the asso-

ciated reservoir dynamical systems [135, 136]. They are well defined suprema over all

coarse-grainings of the system’s state space.

5.4.2 Information Reservoirs Beyond Tapes

Rather than implement the information reservoir as a tape of symbols, one can simply

employ a one-dimensional lattice of Ising spins. Moreover, the reservoir need not be 1D,

but this is easiest to analyze since the total entropy of a 1D sequence is related to (but

not equal to) the Shannon entropy rate and an engine simply accesses information by

moving sequentially along the tape. Higher-dimension reservoirs, even with nonregular

topologies connecting the information-bearing degrees-of-freedom, can be a thermody-

namic resource when there is large total correlation among its degrees of freedom, at the

cost of decorrelating the information-bearing degrees of freedom [159].

5.4.3 Achievability and Implementability

A protocol that changes the joint Hamiltonian of the ratchet and information reservoir

quasistatically in time is thermodynamically reversible. The joint distribution evolves

according to the time-dependent Boltzmann distribution [153]. It is possible to achieve

the bounds of Eqs. (3) and (4) with the help of such protocols. While optimal protocols

for general information transduction has not been formulated yet, a recent work describes

a protocol for process generation that achieves the information-theoretic bounds, both

the asymptotic and the transient [33]. One has to follow an alternating sequence of

adiabatic (fast) and then quasistatic control of energy levels. It is noteworthy that the

efficient quasistatic protocols described in [33] requires the ratchet to interact the entire

sequence of bits simultaneously, to take advantage of all correlations between the bits and

ratchet. If we limit ourselves to ratchets that interact with one bit at a time, as is the
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standard implementation, the bounds may not be achievable even for process generation,

as discussed in the next chapter.

5.4.4 Thermodynamics of General Computation

We focused on spatially-unidirectional information transduction due to the stronger ther-

modynamic results. However, the thermodynamic results are valid much more broadly,

applicable to Turing-equivalent machines as well as non-1D information transduction, as

just noted.

First, Turing machines that move unidirectionally, reading input tape cells once and

writing results only once to an output tape, are equivalent to the transducers used here.

However, unidirectional Turing machines employ internal tapes as scratch storage [160]

and this now-internal memory must be taken into account when assessing thermodynamic

resources.

Second, the choice of implementation of a particular computation implies a transient

thermodynamic cost above the asymptotic implementation-independent work rate. The

general result is:

〈Qtran
0→N〉/kBT ln 2 ≥ H[X0,Y0]− H[XN ,YN ] +N∆h ,

where YN is the random variable for the information-bearing degrees of freedom at time

N and ∆h is the difference in the extensive component of the entropy density of the

output and input tape processes. In short, the transient cost due to an implementation

stems from the correlation built up between the device’s state and the pattern on which it

acts, discounted by the intensive part of the output pattern’s entropy.

5.4.5 Origin of Transient Information Processing Costs

We demonstrate how the transient IPSL of Eq. (5.3) arises. The steps give additional

insight.

Assuming that we are able to achieve asymptotic IPSL bounds—say, as in Ref. [20]—

the cumulative transient cost of information processing over the interval t ∈ [0, N ] is given
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by:

〈Qtran
0→N〉 ≡ 〈Q0→N〉 −N(hµ − h′µ)kBT ln 2 . (5.8)

Combining with Eq. (5.1), yields:

〈Qtran
0→N〉

kBT ln 2
≥ H[X0,Y0]− H[XN ,YN ] +N(h′µ − hµ)

= H[X0, Y0:∞]− H[XN , Y
′

0:N , YN,∞] +N(h′µ − hµ)

= (H[X0] + H[Y0:∞]− I[X0;Y0:∞])

− (H[XN ] + H[Y ′0:N , YN :∞]− I[XN ;Y ′0:N , YN :∞]) +N(h′µ − hµ) .

The last line used the standard identity H[A,B] = H[A] + H[B] − I[A;B] for random

variables A and B. Since we are interested in the purely transient cost and not spurious

costs arising from arbitrary initial conditions, we start the engine in its stationary state,

resulting in stationary behavior, so that H[X0] is the same as H[XN ]. Furthermore, we

assume that the engine’s initial state is uncorrelated with the incoming symbols and

so disregard I[X0;Y0:∞]. We then decompose the terms H[Y ′0:N , YN :∞] and H[Y0:∞] ≡
H[Y0:N , YN :∞] according to the above. These assumptions and decompositions lead to:

〈Qtran
0→N〉

kBT ln 2
≥ H[Y0:N ] + H[YN :∞]− I[Y0:N ;YN :∞]− H[Y ′0:N ]− H[YN :∞] + I[Y ′0:N ;YN :∞]

+ I[XN ;Y ′0:N , YN :∞] +N(h′µ − hµ) . (5.9)

In the limit of large N , in which the transducer has interacted with a sufficiently large

number of input symbols, we can invoke the following definitions of excess entropy:

E = lim
N→∞

(H[Y0:N ]−Nhµ)

= lim
N→∞

I[Y0:N ;YN :∞]

E′ = lim
N→∞

(H[Y ′0:N ]−Nh′µ) .

Upon shifting to the ratchet’s reference frame and switching back to the more intuitive

notation: XN → X0, Y0:N →
←−
Y , Y ′0:N →

←−
Y ′, and YN :∞ →

−→
Y , in which a left arrow means
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the past and a right arrow the future, and invoking the above definitions, new notation,

and these definitions, we rewrite the inequality Eq. (5.9), after some cancellation, as:

〈Qtran〉
kBT ln 2

≥ −E′ + I[
←−
Y ′;
−→
Y ] + I[X0;

←−
Y ′,
−→
Y ] ,

where 〈Qtran〉 is the total transient cost over infinite time: 〈Qtran〉 = limN→∞〈Qtran
0→N〉.

This is our main result, Eq. (5.3), and the starting point for the other results.

5.4.6 Efficiency of Different Generators of the Same Process

We now explore the consequences of the bound on implementation energy cost of generat-

ing a process with an example. The (3, 2) Golden Mean Process consists of strings where

0s only appear in sequences of three bookended by 1s, and 1s only appear in sequences

of two or more, bookended by 0s. There are infinitely many HMMs that generate this

process, four of which are shown in the first row in Fig. S1. Here, the circles denote

the hidden states of the HMMs and the arrows the transitions between the hidden states.

Each transition is associated with an output. We use this Mealy representation of HMMs,

because it is useful in computational mechanics for describing a wide variety of processes

and calculating the their information theoretic properties [36]. The transitions in Mealy

HMMs are described by a symbol-labeled transition matrix, with elements T
(y′)
x→x′ that

describe the probability of transitioning to the hidden state x′ and outputting y′ given

the current hidden state x:

T
(y′)
x→x′ = Pr(Y ′N = y′, XN+1 = x′|XN = x). (5.10)

Pictorially, this is described by labeling the arrow from x to x′ with T
(y′)
x→x′ . For instance,

in Fig. S1 we see that the ε-machine generator (first row, second column) has a transition

from hidden state A to hidden state B with label T
(0)
A→B = 0.5. This means, if the

ε−machine is in the hidden state A, it has the probability 0.5 to make a transition to

hidden state B and produce an output 0.

It is easy to see how the HMMs in the first row lead to the (3,2) Golden Mean

Process. Consider, for instance, the ε−machine HMM. If we happen to be in state A,

with probability 0.5 we make a transition to state B and output a 0. Afterwards, we are

144



forced to output two more 0’s as we make the only possible transitions B → C → D.

Then, we produce 1’s until we arrive at A again. Clearly, 0’s are produced in threes and

1’s in pairs or more.

Each of the different HMMs corresponds to a different information ratchet operating

on an IID input process. As described in [26], a ratchet is characterized by a Markov

transition Mx⊗y→x′⊗y′ over the joint state space of the ratchet and interaction bit

Mx⊗y→x′⊗y′ = Pr(Y ′N = y′, XN+1 = x′|XN = x, YN = y). (5.11)

To implement a particular HMM generator of a process from an IID input, we choose a

ratchet which ignores the input y

Mx⊗y→x′⊗y′ = T
(y′)
x→x′ . (5.12)

The result is an output process generated by T
(y′)
x→x′ where the states of the ratchet X take

the place of hidden states. For a device which can quasistatically implement the HMM

process generator, as described in Ref. [20], taking advantage of all correlations to achieve

the information-theoretic bounds, 〈Qimpl〉min is the implementation cost of generating the

process. In the following, we calculate 〈Qimpl〉min = I[X0;
←−
Y ′] for each of the four HMMs.

Figure 5.3 compares the implementation costs for both unifilar (predictive) and counifi-

lar (retrodictive) generators, as discussed in the main text. The table shows that for the

unifilar generators (shown in the first two columns), which have states that are a function

of the output past, the implementation energy cost is proportional to the state uncer-

tainty of the ratchet-generator states H[X0]. That is, a simpler ratchet with fewer states

is more thermodynamically efficient. Thus, the most efficient predictive generator is the

ε-machine (second column), which dissipates kBT ln 2 less when synchronizing than the

larger unifilar model presented in the first column. However, both the simple and more

complex co-unifilar generators (shown in the last two columns) outperform the ε-machine

in terms of efficiency. They achieve the theoretical bound on implementation cost, which

is kBT ln 2 times the excess entropy of the output process E′ = 1.5850. Thus, even ex-

tremely complex generators can be maximally efficient as long as they are counifilar and

their internal states are a function of future outputs.
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Figure 5.3. Four hidden Markov models that generate the same (3, 2) Golden Mean
Process. On the one hand, in the first two columns the representations are unifilar and,
thus, have states that are functions of the past. For these two HMMs, the ratchet state
uncertainty is proportional to the representation dissipation. Thus, the HMM in the
first column, with an extra bit of state uncertainty above the ε-machine in the second
column, also has additional representation dissipation. On the other hand, the two co-
unifilar models in the last two columns minimize dissipation, but have different state
uncertainties. They are more thermodynamically efficient than the first two HMMs.
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Chapter 6

Thermodynamics of Modularity:

Structural Costs Beyond the

Landauer Bound

6.1 Introduction

Physically embedded information processing operates via thermodynamic transforma-

tions of the supporting material substrate. The thermodynamics is best exemplified by

Landauer’s principle: erasing one bit of stored information at temperature T must be

accompanied by the dissipation of at least kBT ln 2 amount of heat [4] into the substrate.

While the Landauer cost is only time-asymptotic and not yet the most significant en-

ergy demand in everyday computations—in our cell phones, tablets, laptops, and cloud

computing—there is a clear trend and desire to increase thermodynamic efficiency. Digi-

tal technology is expected, for example, to reach the vicinity of the Landauer cost in the

near future; a trend accelerating with now-promising quantum computers. This seeming

inevitability forces us to ask if the Landauer bound can be achieved for more complex

information processing tasks than writing or erasing a single bit of information.

In today’s massive computational tasks, in which vast arrays of bits are processed in

sequence and in parallel, a task is often broken into modular components to add flexibility

and comprehensibility to hardware and software design. This holds far beyond the arenas

of today’s digital computing. Rather than tailoring processors to do only the task spec-
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ified, there is great benefit in modularly deploying elementary, but universal functional

components—e.g., NAND, NOR, and perhaps Fredkin [161] logic gates, biological neurons

[162], or similar units appropriate to other domains [163]—that can be linked together

into circuits which perform any functional operation. This leads naturally to hierarchical

design, perhaps across many organizational levels. In these ways, the principle of modu-

larity reduces the challenges of designing, monitoring, and diagnosing efficient processing

considerably [164, 165]. Designing each modular component of a complex computation

to be efficient is vastly simpler than designing and optimizing the whole. Even biological

evolution seems to have commandeered prior innovations, remapping and reconnecting

modular functional units to form new organizations and new organisms of increasing

survivability [166].

There is, however, a potential thermodynamic cost to modular information process-

ing. For concreteness, recall the stochastic computing paradigm in which an input (a

sequence of symbols) is sampled from a given probability distribution and the symbols

are correlated to each other. In this setting, a modularly designed computation processes

only the local component of the input, ignoring the latter’s global structure. This inherent

locality necessarily leads to irretrievable loss of the global correlations during computing.

Since such correlations are a thermal resource [6, 167], their loss implies an energy cost—a

thermodynamic modularity dissipation. Employing stochastic thermodynamics and infor-

mation theory, we show how modularity dissipation arises by deriving an exact expression

for dissipation in a generic localized information processing operation. We emphasize that

this dissipation is above and beyond the Landauer bound for losses in the operation of

single logical gates. It arises solely from the modular architecture of complex computa-

tions. One immediate consequence is that the additional dissipation requires investing

additional work to drive computation forward.

In general, to minimize work invested in performing a computation, we must leverage

the global correlations in a system’s environment. Globally integrated computations can

achieve the minimum dissipation by simultaneous control of the whole system, manipulat-

ing the joint system-environment Hamiltonian to follow the desired joint distribution. Not
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only is this level of control difficult to implement physically, but designing the required

protocol poses a considerable computational challenge in itself, with so many degrees of

freedom and a potentially complex state space. Genetic algorithm methods have been

proposed, though, for approximating the optimum [168]. Tellingly, they can find unusual

solutions that break conventional symmetries and take advantage of the correlations be-

tween the many different components of the entire system [169, 170]. However, as we will

show, it is possible to rationally design local information processors that, by accounting

for these correlations, minimized modularity dissipation.

The following shows how to design optimal modular computational schemes such

that useful global correlations are not lost, but stored in the structure of the comput-

ing mechanism. Since the global correlations are not lost in these optimal schemes, the

net processing can be thermodynamically reversible (dissipationless). Utilizing the tools

of information theory and computational mechanics—Shannon information measures and

optimal hidden Markov generators—we identify the informational system structures that

can mitigate and even nullify the potential thermodynamic cost of modular computation.

A brief tour of our main results will help orient the reader. It can even serve as a

complete, but approximate description for the approach and technical details, should this

be sufficient for the reader’s interests.

Section 6.2 considers the thermodynamics of a composite information reservoir, in

which only a subsystem is amenable to external control. In effect, this is our model of a

localized thermodynamic operation. We assume that the information reservoir is coupled

to an ideal heat bath, as a source of randomness and energy. Thus, external control

of the information reservoir yields random Markovian dynamics over the informational

states, heat flows into the heat bath, and work investment from the controller. Statistical

correlations may exist between the controlled and uncontrolled subsystems, either due to

initial or boundary conditions or due to an operation’s history.

To highlight the information-theoretic origin of the dissipation and to minimize the

energetic aspects, we assume that the informational states have equal internal (free) ener-

gies. Appealing to stochastic thermodynamics and information theory, we then show that
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the minimum irretrievable modularity dissipation over the duration of an operation due

to the locality of control is proportional to the reduction in mutual information between

the controlled and uncontrolled subsystems; see Eq. (6.7). We deliberately refer to “op-

eration” here instead of “computation” since the result holds whether the desired task is

interpreted as computation or not. The result holds so long as free-energy uniformity is

satisfied at all times, a condition natural in computation and other information processing

settings.

Section 6.4 applies this analysis to information engines, an active subfield within

the thermodynamics of computation in which information effectively acts as the fuel for

driving physically embedded information processing [7, 13, 10, 17, 6]. The particular

implementations of interest—information ratchets—process an input symbol string by

interacting with each symbol in order, sequentially transforming it into an output symbol

string, as shown in Fig. 2.1. This kind of information transduction [1, 13] is information

processing in a very general sense: with properly designed dynamics over an infinite reser-

voir of internal states, the devices can implement a universal Turing machine [137]. Since

information engines rely on localized information processing, reading in and manipulating

one symbol at a time in their original design [7], the measure of irretrievable dissipation

applies directly. The exact expression for the modularity dissipation is given in Eq. (6.15).

Sections 6.5 and 6.6 specialize information transducers further to the cases of pattern

extractors and pattern generators. Section 6.5’s pattern extractors use structure in their

environment to produce work and pattern generators use stored work to create structure

from an unstructured environment. The irreversible relaxation of correlations in infor-

mation transduction can then be curbed by intelligently designing these computational

processes. While there are not yet general principles for designing implementations for

arbitrary computations, the measure of modularity dissipation that we develop in the

following shows how to construct energy-efficient extractors and generators. For example,

efficient extractors consume complex patterns and turn them into sequences of indepen-

dent and identically distributed (IID) symbols.

We show that extractor transducers whose states are predictive of their inputs are
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optimal, with zero minimal modularity dissipation. This makes immediate intuitive sense

since, by design, such transducers can anticipate the next input and adapt accordingly.

This observation also emphasizes the principle that thermodynamic agents should req-

uisitely match the structural complexity of their environment to leverage those informa-

tional correlations as a thermodynamic fuel [17]. We illustrate this result in the case of

the Golden Mean pattern in Fig. 6.3.

Conversely, Section 6.6 shows that when generating patterns from unstructured IID

inputs, transducers whose states are retrodictive of their output are most efficient—i.e.,

have minimal modularity dissipation. This builds on the results of the last chapter, which

showed that retrodictive generators have the least transient dissipation. This is also intu-

itively appealing in that pattern generation may be viewed as the time reversal of pattern

extraction. Since predictive transducers are efficient for pattern extraction, retrodictive

transducers are expected to be efficient pattern generators; see Fig. 6.5. This also allows

one to appreciate that pattern generators previously thought to be asymptotically effi-

cient are actually quite dissipative [20]. Taken altogether, these results provide guideposts

for designing efficient, modular, and complex information processors—guideposts that go

substantially beyond Landauer’s principle for localized processing.

6.2 Global versus Localized Processing

If a physical system, denote it Z, stores information as it behaves, it acts as an infor-

mation reservoir. Then, a wide range of physically-embedded computational processes

can be achieved by connecting Z to an ideal heat bath at temperature T and externally

controlling the system’s physical parameters, its Hamiltonian. Coupling with the heat

bath allows for physical phase-space compression and expansion, which are necessary for

useful computations and which account for the work investment and heat dissipation dic-

tated by Landauer’s bound. However, the bound is only achievable when the external

control is precisely designed to harness the changes in phase-space. This may not be

possible for modular computations. The modularity here implies that control is localized

and potentially ignorant of global correlations in Z. This leads to uncontrolled changes
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in phase-space.

Most computational processes unfold via a sequence of local operations that update

only a portion of the system’s informational state. A single step in such a process can

be conveniently described by breaking the whole informational system Z into two con-

stituents: the informational states Z i that are controlled and evolving and the informa-

tional states Zs that are not part of the local operation on Z i. We call Z i the interacting

subsystem and Zs the stationary subsystem. As shown in Fig. 6.1, the dynamic over the

joint state space Z = Z i⊗Zs is the product of the identity over the stationary subsystem

and a local Markov channel over the interacting subsystem. The informational states of

the noninteracting stationary subsystem Zs are fixed over the immediate computational

task, since this information should be preserved for use in later computational steps.

Such classical computations are described by a global Markov channel over the joint

state space:

Mglobal

zit,z
s
t→zit+τ ,zst+τ

= Pr(Z i
t+τ =zi

t+τ , Z
s
t+τ =zs

t+τ |Z i
t=zi

t, Z
s
t =zs

t), (6.1)

where Zt = Z i
t⊗Zs

t and Zt+τ = Z i
t+τ⊗Zs

t+τ are the random variables for the informational

state of the joint system before and after the computation, with Z i describing the Z i

subspace and Zs the Zs subspace, respectively. (Lowercase variables denote values their

associated random variables realize.) The righthand side of Eq. (6.1) gives the conditional

transition probability over the time interval (t, t + τ) from joint state (zi
t, z

s
t) to state

(zi
t+τ , z

s
t+τ ). The fact that Zs is fixed means that the global dynamic can be expressed as

the product of a local Markov computation on Z i with the identity over Zs:

Mglobal

(zit,z
s
t)→(zit+τ ,z

s
t+τ )

= M local
zit→zit+τ

δzst ,zst+τ , (6.2)

where the local Markov computation is the conditional marginal distribution:

M local
zit→zit+τ

= Pr(Z i
t+τ = zi

t+τ |Z i
t = zi

t) . (6.3)

When the processor is in contact with a heat bath at temperature T , the average en-

tropy production 〈Σt→t+τ 〉 of the universe over the time interval (t, t+τ) can be expressed
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t Z i
t+⌧
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�zs
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t+⌧

Figure 6.1. Local computations operate on only a subset Z i of the entire information
reservoir Z = Z i ⊗ Zs. The Markov channel that describes the global dynamic is
the product of a local operation with the identity operation: Mglobal

(zit,z
s
t)→(zit+τ ,z

s
t+τ )

=

M local
zit→zit+τ

δzst ,zst+τ , such that the stationary noninteracting portion Zs of the information

reservoir remains invariant, but the interacting portion Z i changes.

in terms of the work done minus the change in nonequilibrium free energy F neq:

〈Σt→t+τ 〉 =
〈Wt→t+τ 〉 − (F neq

t+τ − F neq
t )

T
.

In this chapter, the sign of the work 〈Wt→t+τ 〉 has flipped in the equation for entropy pro-

duction, because it is the work invested by the controller, as opposed to the work produced

by the controlled system as we describe in the previous chapters. The nonequilibrium free

energy F neq
t at any time t can be expressed as the weighted average of the internal (free)

energy Uz of the joint informational states minus the uncertainty in those states:

F neq
t =

∑

z

Pr(Zt = z)Uz − kBT ln 2 H[Zt] . (6.4)

Here, H[Z] is the Shannon information of the random variable Z that realizes the state

of the joint system Z [9]. When the information bearing degrees of freedom support an

information reservoir, where all states z and z′ have the same internal energy Uz = Uz′ .

This is the situation we have considered in the following. In this situation, the first term

on the right of Eq. (6.4) does not change even when there is a change in the probability
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distribution Pr(Zt = z). The entropy production 〈Σt→t+τ 〉 then reduces to the work minus

a change in Shannon information of the information-bearing degrees of freedom [8, 9]:

〈Σt→t+τ 〉 =
〈Wt→t+τ 〉

T
+kB ln 2(H[Zt+τ ]−H[Zt]) . (6.5)

Essentially, this is an expression of a generalized Landauer Principle: entropy increase

guarantees that work production is bounded by the change in Shannon entropy of the

informational variables [4].

App. 6.8.1 describes an isothermal method for implementing a Markov channel, in this

case either Mglobal or M local. By controlling the energy landscape, we exactly specify the

form of the computation from input to output. Thus, if one is concerned with implement-

ing deterministic logical operations, we can exponentially reduce any thermal randomness

in the computation by making linear changes in energies. Our work, however, is closer

in spirit to modern random computation [171, 172, 173], where the outcome of a compu-

tation is not a deterministic variable but a random one. In the natural (e.g., biological

or molecular) setting, information processing in the presence of noise and stochasticity is

the rule, not the exception. Rarely are noise-free discrete computation theory concepts

applicable there. We developed thermodynamic principles that apply in this setting, too.

In fact, a more general perspective upon the current work is to look at it as a study on the

computation of thermodynamic systems, much in the spirit of computational mechanics

(interpreted as the mechanics of computation [143]). Our work considers the generation,

storage, dissipation, and transmission of information as a thermodynamic system per-

forms its dynamics. This outlook provides a broader perspective on the thermodynamics

of computation.

For the particular case of a globally integrated isothermal operation, the energy land-

scape over the whole system space Z is controlled simultaneously. In this case we can

achieve zero entropy production. And, the globally integrated work done on the system

achieves the theoretical minimum:

〈W global
t→t+τ 〉min = −kBT ln 2(H[Zt+τ ]− H[Zt]) .

The process is reversible since the change in system Shannon entropy balances the change
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in the reservoir’s physical entropy due to heat dissipation. Note that we do not assume the

initial and final probability distributions of a thermodynamic operation to be equilibrium

distributions. In fact, to have any meaningful computation we need to make transitions

between nonequilibrium distributions. This is because equilibrium distributions are uni-

form distributions, since the internal energies of the information bearing degrees of free-

dom are uniform [5]. The transitions we consider are between nonequilibrium, metastable

states with a decay time much longer than the experimental timescale. This time scale

separation is necessary if information has to be stored reliably over long periods of time.

We can achieve reversibility for transitions between nonequilibrium metastable states if

the control time scale is much larger than the time scale of the internal dynamics of

metastable states but much smaller than the time scale of global equilibration dynamics.

This is the regime we have considered in our discussions. Since the internal energy is uni-

form, the system cannot store the work and must dissipate it as heat to the surrounding

environment. This may not be the case for a generic modular operation.

There are two consequences of the locality of control. First, since Zs is kept fixed—that

is, Zs
t = Zs

t+τ—the change in uncertainty H[Z i
t+τ , Z

s
t+τ ] − H[Z i

t, Z
s
t ] of the joint informa-

tional variables during the operation, which is the second term in lefthand side of Eq.

(6.5), simplifies to:

H[Zt+τ ]− H[Zt] = H[Z i
t+τ , Z

s
t ]− H[Z i

t, Z
s
t ] .

Second, since we operate locally on Z i, with hamiltonian control limited to that subsystem,

and because the joint system Z is an information reservoir [5], which is energetically

mute at the beginning and end of the computation, there is no energetic coupling to the

non-interacting subsystem of Zs during control. The lack of coupling to the stationary

subsystem Zs implies that the interacting subsystem on its own fits the framework for

an open driven system described by Esposito and Van den Broeck, and thus the entropy

production estimated from just the interacting system alone 〈Σi〉 = 〈W 〉 −∆F i must be

non-negative, where

F i
t =

∑

z∈Zi
Pr(Zi

t = z)Uz − kBT ln 2H[Zi
t ]
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is the marginalized estimate of the nonequilibrium free energy in just the interacting sys-

tem [8]. As a result the work investment is bounded by the change this marginalized

estimate of the nonequilibrium free energy, which implies the generalized Landauer Prin-

ciple corresponding to the marginal distribution over Z i; see Eq. (6.2). In other words, in

absence of any control over the noninteracting subsystem Zs, which remains stationary

over the local computation on Z i, the minimum work performed on Z i is given by:

〈Wt→t+τ 〉 ≥ 〈W local
t→t+τ 〉min

= kBT ln 2(H[Z i
t]−H[Z i

t+τ ) . (6.6)

This information theoretic bound on the work is achievable, as described in App. 6.8.1,

by an isothermal process which is composed of slow manipulations of the energy land-

scape of the interacting subsystem, which takes the whole system between nonequilibrium

metastable distributions.

Combining the last two relations with the expression for entropy production in

Eq. (6.5) gives the modularity dissipation Σmod, which is the minimum irretrievable dissi-

pation of a modular computation that comes from local interactions:

〈Σmod
t→t+τ 〉min

kB ln 2
=
〈W local

t→t+τ 〉min

kBT ln 2
+ H[Z i

t+τ , Z
s
t ]− H[Z i

t, Z
s
t ]

= I[Z i
t;Z

s
t ]− I[Z i

t+τ ;Z
s
t ] , (6.7)

where I[X;Y ] is the mutual information between the random variables X and Y .

This is the central result of this chapter: there is a thermodynamic cost above and

beyond the Landauer bound for modular operations. It is a thermodynamic cost arising

from a computation’s implementation architecture. Specifically, the minimum entropy

production is proportional to the minimum additional work that must be done to execute

a computation modularly:

〈W local
t→t+τ 〉min − 〈W global

t→t+τ 〉min = T 〈Σmod
t→t+τ 〉min .

App. A describes how to achieve this minimum dissipation through isothermal protocols,

and any other protocol, perhaps done in finite time [15], or with unobserved coarse-grained
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H[Z i
t]

H[Z i
t+⌧ ]H[Zs

t ]

Figure 6.2. Information diagram for a local computation: Information atoms of the
noninteracting subsystem H[Zs

t ] (red ellipse), the interacting subsystem before the
computation H[Z i

t] (green circle), and the interacting subsystem after the computa-
tion H[Z i

t+τ ] (blue circle). The initial state of the interacting subsystem shields the
final state from the noninteracting subsystem; graphically the blue and red ellipses
only overlap within the green ellipse. The modularity dissipation is proportional to
the difference between information atoms I[Z i

t;Z
s
t ] and I[Z i

t+τ ;Zs
t ]. Due to statistical

shielding, it simplifies to the information atom I[Z i
t;Z

s
t |Z i

t+τ ], highlighted by a red
dashed outline.

variables [174], would necessarily require more work to implement. The following draws

out the implications.

Using the fact that the local operation M local ignores Zs, we see that the joint distri-

bution over all three variables Z i
t, Z

s
t , and Z i

t+τ can be simplified to:

Pr(Z i
t+τ = zi

t+τ , Z
i
t = zi

t, Z
s
t = zs

t)

= Pr(Z i
t+τ = zi

t+τ |Z i
t = zi

t) Pr(Z i
t = zi

t, Z
s
t = zs

t) .

Thus, Z i
t shields Z i

t+τ from Zs
t . A consequence is that the mutual information between

Z i
t+τ and Zs

t conditioned on Z i
t vanishes. This is shown in Fig. 6.2 via an information

diagram. Figure 6.2 also shows that the modularity dissipation, highlighted by a dashed

red outline, can be re-expressed as the mutual information between the noninteracting

stationary system Zs and the interacting system Z i before the computation that is not

shared with Z i after the computation:

〈Σmod
t→t+τ 〉min = kB ln 2 I[Z i

t;Z
s
t |Z i

t+τ ] . (6.8)

The conditional mutual information on the right bounds how much entropy is produced

when performing a local computation. It quantifies the irreversibility of modular infor-

mation processing.
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6.3 Thermodynamics of Correlations Revisited with

Modularity Costs

The new concept of thermodynamics of modularity lets us revisit some existing results

in new light. The cost in Eq. (6.8) has been recognized in the context in the context

of copying/measurement [175], and has relevance to biological push-pull systems [176].

It was shown that these biological processes can reversibly implement many computa-

tions, but are unable to decorrelate readouts with their receptors thermodynamically

efficiently. Treating the readout as the interacting subsystem and the receptor as the

stationary subsystem, this inefficiency can be predicted from the modularity dissipa-

tion. If the non-interacting stationary subsystem is uniformly distributed, such that

H[Zs
t ] = log2 |Zs|, and the interacting subsystem is a copy of that system, then all struc-

ture in the information reservoir comes in the form of correlations between the subsystems,

such that I[Zi
t ;Z

s
t ] = H[Zs

t ]. If we perform a decorrelation operation, mapping the inter-

acting system to a uniform distribution, and decorrelating the two subsystems such that

I[Zi
t+τ ;Z

s
t ] = 0, we could potentially recover kBT ln 2H[Zs

t ] of work from the system with

globally integrated control and energetic coupling between subsystems. But, if the control

is local, all these correlations are dissipated in the decorrelation operation, as reflected by

the modularity dissipation

〈Σmod
t→t+τ 〉min = kBT ln 2(I[Zi

t ;Z
s
t ]− I[Zi

t+τ ;Z
s
t ])

= kBT ln 2H[Zs
t ],

because energetic coupling is impossible in modular computations.

The analytic form of the modularity dissipation shown in Eq. (6.7), a difference of

mutual informations, has been seen before in different contexts [177, 178]. These works

show that the un-utilized change in free energy corresponds to dissipated work. In the

context of data representations, Eq. (6.7)’s bound is analogous to the expression for the

minimum work required for data representation, with Z i
t being the work medium, Z i

t+τ

the work extraction device, and Zs
t the data representation device [177]. And Still et al.’s

investigation of the thermodynamics of prediction in a system driven by an input signal
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shows that the irretrievable work dissipation is the same as the modularity dissipation

if the driving signal is treated as the interacting subsystem, and the driven system is

treated as the stationary subsystem [178]. While similar mathematically, the setup is

subtly different from the cost of local modular control of information processing, and the

frameworks lead to different results. This becomes especially clear in the context of signal

transduction.

The next section unpacks the implications of Eqs. (6.7) and (6.8) for information

transducers–information processing architectures in which the processor sequentially takes

one input symbol at a time and performs localized computation on it, much as a Turing

machine operates. These devices respond to an input signal much as the driven systems

discussed by Still et al. do. The irretrievable dissipation that they derive for their driven

systems can be minimized by ensuring that the driven system not store any unwarranted

information about the input, beyond what’s require to predict [178]. However, this means

that thermodynamic efficiency can be achieved by having the driven system store zero

information about the input. For a structured input to an information transducer, on

the other hand, we see distinctly different behavior. Such memoryless systems are ther-

modynamically inefficient, as we discuss in the section 6.5, which discusses the necessity

of prediction for efficient extractors. Moreover, the transducer framework allows us to

extend beyond prediction. We see results reminiscent of Still et al. with pattern genera-

tors in section 6.6, in that they are thermodynamically efficient when they store as little

unwarranted information as possible. However, these devices are retrodicting rather than

predicting. The language and mathematics used in the thermodynamics of modularity is

very similar to driven systems, but the modularity dissipation more directly speaks to the

design of efficient controllers.

Various other models of information-driven processes have been considered in the

literature. For example, Toyabe et al. [40] have considered a situation where a system is

subject to an external force depending on the instantaneous position of the system. In this

case, there is a modified expression of the second law of thermodynamics that is obeyed

by the system [39]. Horowitz, Sagawa, and Parrondo have considered a situation where
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a chemical force replaces the role of information in driving the system out of equilibrium

and extracting work [57]. McGrath et al. have considered a situation where the mutual

information between two spatial degrees of freedom in a biochemical context acts as a

thermodynamic resource [179]. It will be an interesting future exercise to explore the

implications of the current results for these previous works as well.

While we have identified the inherent dissipation due to modular computations, sug-

gesting that globally integrated control would lead to more thermodynamically efficient

computations, we see in the context of transducers that there are other paths to ther-

modynamic efficiency. The modularity dissipation can be minimized by designing the

computation such that the modular components store the relevant global correlations,

preventing dissipation. Locality and modularity are natural parts of complex compu-

tations, so rather than rely on the ability to simultaneously control the global energy

landscape, we use the modularity dissipation as a structural guide to design modular

computational architectures to be thermodynamically efficient.

Modular approach is not unique to in silico computation. Modularity is displayed

in the structure and functionality of biological organisms as well [180]. Our work can be

viewed as providing the information theoretic and thermodynamic backdrop to understand

modular operations of biological functionality such as memory [17], self-correction [6], and

pattern formation [19], among others.

6.4 Information Transducers: Localized processors

Information ratchets [63, 13] are thermodynamic implementations of information trans-

ducers [1] that sequentially transform an input symbol string, described by the chain of

random variables Y0:∞ = Y0Y1Y2, . . ., into an output symbol string, described by the chain

of random variables Y ′0:∞ = Y ′0Y
′

1Y
′

2 , . . .. The ratchet traverses the input symbol string

unidirectionally, processing each symbol in turn to yield the output sequence. As shown

in Fig. 2.1, at time t = Nτ the information reservoir is described by the joint distribution

over the ratchet state XN and the symbol string YN = Y ′0:NYN :∞, the concatenation of the

first N symbols of the output string and the remaining symbols of the input string. (This
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differs slightly from treatments in the previous chapters [6] in which only the symbol string

is the information reservoir. The information processing and energetics are the same, how-

ever.) Including the ratchet state in present definition of the information reservoir allows

us to directly determine the modularity dissipation of information transduction.

Going from time t = Nτ to t+ τ = (N + 1)τ preserves the state of the current output

history Y ′0:N and the input future, excluding the Nth symbol YN+1:∞, while changing the

Nth input symbol YN to the Nth output symbol Y ′N and the ratchet from its current state

XN to its next XN+1. In terms of the previous section, this means the noninteracting

stationary subsystem Zs is the entire semi-infinite symbol string without the Nth symbol:

Zs
t = (YN+1:∞, Y

′
0:N) . (6.9)

The ratchet and the Nth symbol constitute the interacting subsystem Z i so that, over

the time interval (t, t+ τ), only two variables change:

Z i
t = (XN , YN) (6.10)

and

Z i
t+τ = (XN+1, Y

′
N) . (6.11)

Despite the fact that only a small portion of the system changes on each time step, the

physical device is able to perform a wide variety of physical and logical operations. Ignor-

ing the probabilistic processing aspects, Turing showed that a properly designed (very)

finite-state transducer can compute any input-output mapping [181] 1. Such machines,

even those with as few as two internal states and a sufficiently large symbol alphabet [182]

or with as few as a dozen states but operating on a binary-symbol strings, are universal

in that sense [145].

Information ratchets—physically embedded, probabilistic Turing machines—are able

to facilitate energy transfer between a thermal reservoir at temperature T and a work

1Space limitations here do not allow a full digression on possible implementations. Suffice it to say
that for unidirectional tape reading, the ratchet state requires a storage register or an auxiliary internal
working tape as portrayed in Fig. 3 of Ref. [143].
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reservoir by processing information in symbol strings. In particular, they can function as

an eraser by using work to create structure in the output string [7, 13] or act as an engine

by using the structure in the input to turn thermal energy into useful work energy [13].

They are also capable of much more, including detecting, adapting to, and synchronizing

to environment correlations [19, 17] and correcting errors [6].

Information transducers are a novel form of information processor from a different

perspective, that of communication theory’s channels [1]. They are memoryful channels

that map input stochastic processes to output processes using internal states which allow

them to store information about the past of both the input and the output. With sufficient

hidden states, as just noted from the view of computation theory, information transducers

are Turing complete and so able to perform any computation on the information reservoir

[69]. Similarly, the physical steps that implement a transducer as an information ratchet

involve a series of modular local computations.

The ratchet operates by interacting with one symbol at a time in sequence, as shown

in Fig. 2.1. The Nth symbol, highlighted in yellow to indicate that it is the interacting

symbol, is changed from the input YN to output Y ′N over time interval (Nτ, (N + 1)τ).

The ratchet and interaction symbol change together according to the local Markov channel

over the ratchet-symbol state space:

M local
(x,y)→(x′,y′) = Pr(XN+1 =x′, Y ′N =y′|XN =x, YN =y).

This determines how the ratchet transduces inputs to outputs [13].

Each of these localized operations keeps the remaining noninteracting symbols in the

information reservoir fixed. If the ratchet only has energetic control of the degrees of

freedom it manipulates, then, as discussed in the previous section and App. 6.8.1, the

ratchet’s work production in the Nth time step is bounded by the change in uncertainty

of the ratchet state and interaction symbol:

〈W local
N 〉min =kBT ln 2(H[XN , YN ]−H[XN+1, Y

′
N ]). (6.12)

This bound has been recognized in previous investigations of information ratchets [7, 183].

Here, we make a key, but important and compatible observation: If we relax the condition
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of local control of energies to allow for global control of all symbols simultaneously, then

it is possible to extract more work.

That is, foregoing localized operations—abandoning modularity—allows for (and ac-

knowledges the possibility of) globally integrated interactions. Then, we can account for

the change in Shannon information of the information reservoir—the ratchet and the en-

tire symbol string. This yields a looser upper bound on work production that holds for

both modular and globally integrated information processing. Assuming that all informa-

tion reservoir configurations have the same free energies, the change in the nonequilibrium

free energy during one step of a ratchet’s computation is proportional to the global change

in Shannon entropy:

∆F neq
Nτ→(N+t)τ =kBT ln 2(H[XN ,YN ]−H[XN+1,YN+1]).

Recalling the definition of entropy production 〈Σ〉 = 〈W 〉−∆F neq reminds us that for

entropy to increase, the minimum work investment must match the change in free energy:

〈W global
N 〉min

= kBT ln 2(H[XN ,YN ]− H[XN+1,YN+1]) . (6.13)

This is the minimum work investment that can be achieved through globally integrated

isothermal information processing. And, in turn, it can be used to bound the asymptotic

work production in terms of the entropy rates of the input and output processes [13]:

lim
N→∞

〈WN〉 ≥ kBT ln 2(hµ − h′µ) . (6.14)

This is known as the Information Processing Second Law (IPSL).

Reference [6] already showed that this bound is not necessarily achievable by infor-

mation ratchets. This is due to ratchets operating locally. The local bound on work

production of modular implementations in Eq. (6.12) is less than or equal to the global

bound on integrated implementations in Eq. (6.13), since the local bound ignores correla-

tions between the interacting system Z i and noninteracting elements of the symbol string

in Zs. Critically, though, if we design the ratchet such that its states store the relevant

correlations in the symbol string, then we can achieve the global bounds. This was hinted
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at in the fact that the gap between the work done by a ratchet and the global bound can

be closed by designing a ratchet that matches the input process’ structure [6]. However,

comparing the two bounds now allows us to be more precise.

The difference between the two bounds represents the amount of additional work that

could have been performed by a ratchet, if it was not modular and limited to local interac-

tions. If the computational device is globally integrated, with full access to all correlations

between the information bearing degrees of freedom, then all of the nonequilibrium free

energy can be converted to work, zeroing out the entropy production. Thus, the mini-

mum entropy production for a modular transducer (or information ratchet) at the Nth

time step can be expressed in terms of the difference between Eq. (6.12) and the entropic

bounds in Eq. (6.13):

〈Σmod
N 〉min

kB ln 2
=
〈W local

N 〉min −∆F neq
Nτ→(N+1)τ

kBT ln 2
(6.15)

= I[YN+1:∞, Y
′

0:N ;XN , YN ]

− I[YN+1:∞, Y
′

0:N ;XN+1, Y
′
N ]

= I[YN+1:∞, Y
′

0:N ;XN , YN |XN+1, Y
′
N ] .

This can also be derived directly by substituting our interacting variables (XN , YN) = Z i
t

and (XN+1, Y
′
N) = Z i

t+τ and stationary variables (YN+1:∞, Y
′

0:N) = Zs into the expression

for the modularity dissipation in Eqs. (6.7) and (6.8) in Sec. 6.2. Even if the energy levels

are controlled so slowly that entropic bounds are reached, Eq. (6.16) quantifies the amount

of lost correlations that cannot be recovered. And, this leads to the entropy production

and irreversibility of the transducing ratchet. This has immediate consequences that limit

the most thermodynamically efficient information processors.

While previous bounds, such as the IPSL, demonstrated that information in the symbol

string can be used as a thermal fuel [7, 13]—leveraging structure in the inputs symbols

to turn thermal energy into useful work—they largely ignore the structure of information

ratchet states XN . The transducer’s hidden states, which can naturally store information

about the past, are critical to taking advantage of structured inputs. Until now, we only

used informational bounds to predict transient costs to information processing [20, 19].
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Figure 6.3. Multiple physical methods for transforming the Golden Mean Process
input, whose ε-machine generator is shown in the far left box, into a sequence of
uncorrelated symbols. The ε-machine is a Mealy hidden Markov model that produces
outputs along the edges, with y : p denoting that the edge emits symbol y and is taken
with probability p. (Top row) Ratchet whose internal states match the ε-machine states
and so it is able to minimize dissipation—〈Σext

∞ 〉min = 0—by making transitions such
that the ratchet’s states are synchronized to the ε-machine’s states. The transducer
representation to the left shows how the states remain synchronized: its edges are
labeled y′|y : p, which means that if the input was y, then with probability p the
edge is taken and it outputs y′. The joint Markov representation on the right depicts
the corresponding physical dynamic over the joint state space of the ratchet and the
interaction symbol. The label p along an edge from the state x⊗y to x′⊗y′ specifies the
probability of transitioning between those states according to the local Markov channel
M local

(x,y)→(x′,y′) = p. (Bottom row) In contrast to the efficient predictive ratchet, the
memoryless ratchet shown is inefficient, since it’s memory cannot store the predictive
information within the input ε-machine, much less synchronize to it.
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With the expression for the modularity dissipation of information ratchets in Eq. (6.16),

however, we now have bounds that apply to the ratchet’s asymptotic functioning. In

short, this provides the key tool for designing thermodynamically efficient transducers.

We will now show that it has immediate implications for pattern generation and pattern

extraction.

6.5 Predictive Extractors

A pattern extractor is a transducer that takes in a structured process Pr(Y0:∞), with corre-

lations among the symbols, and maps it to a series of independent identically distributed

(IID), uncorrelated output symbols. An output symbol can be distributed however we

wish individually, but each must be distributed with an identical distribution and inde-

pendently from all others. The result is that the joint distribution of the output process

symbols is the product of the individual marginals:

Pr(Y ′0:∞) =
∞∏

i=0

Pr(Y ′i ) . (6.16)

If implemented efficiently, this device can use temporal correlations in the input as a ther-

mal resource to produce work. The modularity dissipation of an extractor 〈Σext
N 〉min can

be simplified by noting that the output symbols are uncorrelated with any other variable

and, thus, the Y ′ terms fall out of the mutual information expression for dissipation in

Eq. 6.15, yielding:

〈Σext
N 〉min

kB ln 2
= I[YN+1:∞;XN , YN ]− I[YN+1:∞;XN+1] .

Minimizing this irreversibility, as shown in App. 6.8.2, leads directly to a fascinating

conclusion that relates thermodynamics to prediction: the states of maximally thermo-

dynamically efficient extractors are perfect predictors of the input process. Other work

has used predictive methods for extracting additional work from temporal correlations

[73, 6, 184], but the modularity dissipation provides the first proof of the need for predic-

tive states. Moreover, it can be applied to any extractor, to determine the dissipation of

an imperfect predictor.
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To take full advantage of the temporal structure of an input process, the ratchet’s

states XN must be able to predict the future of the input YN :∞ from the input past Y0:N .

Thus, the ratchet shields the input past from the output future such that there is no

information shared between the past and future which is not captured by the ratchet’s

states:

I[YN :∞;Y0:N |XN ] = 0 . (6.17)

Additionally, transducers cannot anticipate the future of the inputs beyond their corre-

lations with past inputs [1]. This means that there is no information shared between the

ratchet and the input future when conditioned on the input past:

I[YN :∞;XN |Y0:N ] = 0 . (6.18)

As shown in Appendix 6.8.2, Eqs. (6.17) and (6.18), which together are equivalent to the

state XN being predictive, can be used to prove that the modularity dissipation vanishes

〈Σext
N 〉min = 0. Moreover, setting the modularity dissipation to zero guarantees that the

state shields the past and future of the input from each other, as shown in Eq. (6.17).

Thus, because Eq. (6.18) is a given for transducers, this proves that the ratchet being

predictive is equivalent to zero modularity dissipation, and thus perfect thermodynamic

efficiency. The efficiency of predictive ratchets suggests that predictive generators, such as

the ε-machine [12], are useful in designing efficient information engines that can leverage

temporal structure in an environment.

For example, consider an input string that is structured according to the Golden

Mean Process, which consists of binary strings in which 1’s always occur in isolation,

bookended by 0’s. Figure 6.3 gives two examples of ratchets, described by different local

Markov channels M local
(x,y)→(x′,y′), that each map the Golden Mean Process to a biased coin.

The input process’ ε-machine, shown in left box, provides a template for how to design

a thermodynamically efficient local Markov channel, since its states are predictive of the

process. The Markov channel is a transducer [13]:

M
(y′|y)
x→x′ ≡M local

(x,y)→(x′,y′) . (6.19)
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By designing transducer states to stay synchronized to the states of the process’ ε-machine,

we can minimize the modularity dissipation to zero. For example, the efficient transducer

shown in Fig. 6.3 has almost the same topology as the Golden Mean ε-machine, with an

added transition between states C and A corresponding to a disallowed word in the input.

This transducer is able to harness all structure in the input because it synchronizes to the

input process and so is able to optimally predict the next input.

The efficient ratchet shown in Fig. 6.3 (top row) comes from a general method for

constructing an optimal extractor given the input’s ε-machine. The ε-machine is repre-

sented by a Mealy hidden Markov model (HMM) with the symbol-labeled state-transition

matrices:

T
(y)
s→s′ = Pr(YN = y, SN+1 = s′|SN = s) , (6.20)

where SN is the random variable for the hidden state reading the Nth input YN . If we

design the ratchet to have the same state space as the input process’ hidden state space—

X = S—and if we want the IID output to have bias Pr(YN = 0) = b, then we set the

local Markov channel over the ratchet and interaction symbol to be:

M local
(x,y)→(x′,y′) =




b, if T

(y)
x→x′ 6= 0 and y′ = 0

1− b, if T
(y)
x→x′ 6= 0 and y′ = 1 .

These constraints on the channel, combined with normalized transition probabilities,

does not uniquely specify M local, since there can be forbidden words in the input that,

in turn, lead to ε-machine causal states which always emit a single symbol. This means

that there are joint ratchet-symbol states (x, y) such that M(x,y)→(x′,y′) is unconstrained.

For these states, we may make any choice of transition probabilities from (x, y), since

this state will never be reached by the combined dynamics of the input and ratchet. The

end result is that, with this design strategy, we construct a ratchet whose memory stores

all information in the input past that is relevant to the future, since the ratchet remains

synchronized to the input’s causal states. In this way, it leverages all temporal order in the

input. This is characteristic of any efficient extractor, and confirms the thermodynamic

principle of requisite variety [17]. The fact that the ratchet states must synchronize to
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the ε-machine’s causal states, implies that the uncertainty in the ratchet’s memory must

at least match the uncertainty in the causal states of the input, which is its statistical

complexity

H[XN ] ≥ H[SN ] (6.21)

= Cµ. (6.22)

Thus, we have not only proved the thermodynamic principle of requisite variety in general,

but also refined it to a principle of requisite complexity.

By way of contrast, consider a memoryless transducer, such as that shown in Fig. 6.3

(bottom row). It has only a single state and so cannot store any information about the

input past. As discussed in previous explorations, ratchets without memory are insensitive

to correlations [17, 6]. This result for stationary input processes is subsumed by the

measure of modularity dissipation. Since there is no uncertainty in XN , the asymptotic

dissipation of memoryless ratchets simplifies to:

〈Σext
∞ 〉min = lim

N→∞
kB ln 2 I[YN+1:∞;YN ]

= kB ln 2 (H1−hµ) ,

where in the second step we used input stationarity—every symbol has the same marginal

distribution—and so the same single-symbol uncertainty H1 = H[YN ] = H[YM ]. Thus, the

modularity dissipation of a memoryless ratchet is proportional to the length-1 redundancy

H1−hµ [12]. This is the amount of additional uncertainty that comes from ignoring tem-

poral correlations. As Fig. 6.3 shows, this means that a memoryless extractor driven by

the Golden Mean Process dissipates 〈Σext
∞ 〉min ≈ 0.174kB with every bit, which lies in con-

trast Still et al.’s claim that “unwarranted retention of past information is fundamentally

equivalent to energetic inefficiency,” because such a memoryless ratchet minimizes the

instantaneous nonpredictive information, which is the measure of dissipation in a driven

system [178]. Moreover, it should be noted that the predictive model shown in Fig. 6.3

could include duplicate states and still be predictive and thus maximally efficient, fur-

ther conflicting with Still et al.’s thermodynamics of prediction. Despite the fact that
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both of these ratchets perform the same computational process—converting the Golden

Mean Process into a sequence of IID symbols—the simpler model requires more energy

investment to function, due to its irreversibility.

6.6 Retrodictive Generators

Pattern generators are rather like time-reversed pattern extractors, in that they take in

an uncorrelated input process:

Pr(Y0:∞) =
∞∏

i=0

Pr(Yi) , (6.23)

and turn it into a structured output process Pr(Y0:∞) that has correlations among the

symbols. The modularity dissipation of a generator 〈Σgen
N 〉min can also be simplified by

removing the uncorrelated input symbols:

〈Σgen
N 〉min

kB ln 2
= I[Y ′0:N ;XN ]− I[Y ′0:N ;XN+1Y

′
N ] .

Paralleling extractors, App. 6.8.2 shows that retrodictive ratchets minimize the modular-

ity dissipation to zero.

Retrodictive generator states carry as little information about the output past as

possible. Since this ratchet generates the output, it must carry all the information shared

between the output past and future. Thus, it shields output past from output future just

as a predictive extractor does for the input process:

I[Y ′N :∞;Y ′0:N |XN ] = 0 .

However, unlike the predictive states, the output future shields the retrodictive ratchet

state from the output past:

I[XN ;Y ′0:N |Y ′N :∞] = 0 . (6.24)

As show in App. 6.8.2, these two conditions mean that XN is retrodictive and imply

that the modularity dissipation vanishes. While we have not established the equivalence

of retrodictiveness and efficiency for pattern generators, as we have for predictive pat-

tern extractors, there are easy-to-construct examples demonstrating that diverging from

efficient retrodictive implementations leads to modularity dissipation at every step.
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Consider once again the Golden Mean Process. Figure 6.4 shows that there are al-

ternate ways to generate such a process from a hidden Markov model. The ε-machine,

shown on the left, is the minimal predictive model, as discussed earlier. It is unifilar,

which means that the current hidden state S+
N and current output Y ′N uniquely determine

the next hidden state S+
N+1 and that once synchronized to the hidden states one stays

synchronized to them by observing only output symbols. Thus, its states are a function

of past outputs. This is corroborated by the fact that the information atom H[S+
N ] is

contained by the information atom for the output past H[Y ′0:N ]. The other hidden Markov

model generator shown in Fig. 6.4 (right) is the time reversal of the ε-machine that gen-

erates the reverse process. This is much like the ε-machine, except that it is retrodictive

instead of predictive. The recurrent states B and C are co-unifilar as opposed to unifi-

lar. This means that the next hidden state S−N+1 and the current output Y ′N uniquely

determine the current state S−N . The hidden states of this minimal retrodictive model

are a function of the semi-infinite future. And, this can be seen from the fact that the

information atom for H[S−N ] is contained by the information atom for the future H[Y ′N :∞].

These two different hidden Markov generators both produce the Golden Mean Process,

and they provide a template for constructing ratchets to generate that process. For a

hidden Markov model described by symbol-labeled transition matrix {T (y)}, with hidden

states in S as described in Eq. (6.20), the analogous generative ratchet has the same

states X = S and is described by the joint Markov local interaction:

M local
(x,y)→(x′,y′) = T

(y′)
x→x′ .

Such a ratchet effectively ignores the IID input process and obeys the same informational

relationships between the ratchet states and outputs as the hidden states of hidden Markov

model with its outputs.

Figure 6.5 shows both the transducer and joint Markov representation of the minimal

predictive generator and minimal retrodictive generator. The retrodictive generator is

potentially perfectly efficient, since the process’ minimal modularity dissipation vanishes:

〈Σgen
N 〉min = 0 for all N . However, despite being a standard tool for generating an output,

the predictive ε-machine is necessarily irreversible and dissipative. The ε-machine-based
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Figure 6.4. Alternate minimal generators of the Golden Mean Process: predictive and
retrodictive. (Left) The ε-machine has the minimal set of causal states S+ required to
predictively generate the output process. As a result, the uncertainty H[S+

N ] is con-
tained by the uncertainty H[Y ′0:N ] in the output past. (Right) The time reversal of the
reverse-time ε-machine has the minimal set of states required to retrodictively generate
the output. Its states are a function of the output future. Thus, its uncertainty H[S−N ]
is contained by the output future’s uncertainty H[Y ′N :∞].

ratchet, as shown in Fig. 6.5(bottom row), approaches an asymptotic dynamic where the

current state XN stores more than it needs to about the past output past Y ′0:N in order

to generate the future Y ′N :∞. As a result, it irretrievably dissipates:

〈Σgen
∞ 〉min = kB ln 2 lim

N→∞
(I[Y ′0:N ;XN ]−I[Y ′0:N ;XN+1, Y

′
N ])

= 2
3
kB ln 2

≈ 0.462 kB .

With every time step, this predictive ratchet stores information about its past, but it also

erases information, dissipating 2/3 of a bit worth of correlations without leveraging them.

Those correlations could have been used to reverse the process if they had been turned

into work. They are used by the retrodictive ratchet, though, which stores just enough

information about its past to generate the future.

The previous chapter showed that storing unnecessary information about the past
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Figure 6.5. Alternative generators of the Golden Mean Process: (Right) The process’
ε-machine. (Top row) Optimal generator designed using the topology of the minimal
retrodictive generator. It is efficient, since it stores as little information about the
past as possible, while still storing enough to generate the output. (Bottom row) The
predictive generator stores far more information about the past than necessary, since
it is based off the predictive ε-machine. As a result, it is far less efficient. It dissipates
at least 2

3kBT ln 2 extra heat per symbol and requires that much more work energy per
symbol emitted.

leads to additional transient dissipation when generating a pattern [19, 20]. This cost

also arises from implementation. However, our measure of modularity dissipation shows

that there are implementation costs that persist through time. The two locally-operating

generators of the Golden Mean Process perform the same computation, but have different

bounds on their dissipation per time step. Thus, the additional work investment required

to generate the process grows linearly with time for the ε-machine implementation, but

is zero for the retrodictive implementation.

Moreover, we can consider generators that fall in-between these extremes using the

parametrized HMM shown in Fig. 6.6 (top). This HMM, parametrized by z, produces the

Golden Mean Process at all z ∈ [.5, 1], but the hidden states share less and less information

with the output past as z increases, as shown by Ref. [2]. One extreme z = 0.5 corresponds

to the minimal predictive generator, the ε-machine. The other at z = 1 corresponds to the

minimal retrodictive generator, the time reversal of the reverse-time ε-machine. The graph
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Figure 6.6. (Top) A parametrized family of HMMs that generate the Golden Mean
Process for z ∈ [.5, 1]. (Middle) As parameter z increases, the information stored in the
hidden states about the output past decreases. At z = 0.5 the HMM is the ε-machine,
whose states are a function of the past. At z = 1.0, the HMM is the time reversal of
the reverse-time ε-machine, whose states are a function of the future. The modularity
dissipation decreases monotonically as z increases and the hidden states’ memory of
the past decreases. (Bottom) Information diagrams corresponding to the end cases
and a middle case. Labeling as in Fig. 6.4.

there plots the modularity dissipation as a function of z. It decreases with z, suggesting

that the unnecessary memory of the past leads to additional dissipation, and echoing

the claim that “unwarranted retention of past information is fundamentally equivalent to

energetic inefficiency” in the particular context of pattern generation [178]. So, while we

have only proved that retrodictive generators are maximally efficient, this demonstrates

that extending beyond that class can lead to unnecessary dissipation and that there may

be a direct relationship between unnecessary memory and dissipation.

Taken altogether, we see that the thermodynamic consequences of localized informa-

tion processing lead to direct principles for efficient information transduction. Analyzing

the most general case of transducing arbitrary structured processes into other arbitrary

structured processes remains a challenge. That said, pattern generators and pattern ex-

tractors have elegantly symmetric conditions for efficiency that give insight into the range
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of possibilities. Pattern generators are effectively the time-reversal of pattern extractors,

which turn structured inputs into structureless outputs. As such they are most efficient

when retrodictive, which is the time-reversal of being predictive. Figure 6.4 illustrated

graphically how the predictive ε-machine captures past correlations and stores the neces-

sary information about the past, while the retrodictive ratchet’s states are analogous, but

store information about the future instead. This may seem unphysical—as if the ratchet

is anticipating the future. However, since the ratchet generates the output future, this

anticipation is entirely physical, because the ratchet controls the future, as opposed to

mysteriously predicting it, as an oracle would.

6.7 Conclusion

Modularity is a key design theme in physical information processing, since it gives the

flexibility to stitch together many elementary logical operations to implement a much

larger computation. Any classical computation can be composed from local operations

on a subset of information reservoir observables. Modularity is also key to biological

organization, its functioning, and our understanding of these [163].

However, there is an irretrievable thermodynamic cost, the modularity dissipation, to

this localized computing, which we quantified in terms of the global entropy production.

This modularity-induced entropy production is proportional to the reduction of global

correlations between the local and interacting portion of the information reservoir and

the fixed, noninteracting portion. This measure forms the basis for designing thermo-

dynamically efficient information processing. It is proportional to the additional work

investment required by the modular form of the computation, beyond the work required

by a globally integrated and reversible computation.

Turing machine-like information ratchets provide a natural application for this new

measure of efficient information processing, since they process information in a symbol

string through a sequence of local operations. The modularity dissipation allows us to

determine which implementations are able to achieve the asymptotic bound set by the

IPSL which, substantially generalizing Landauer’s bound, says that any type of structure
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in the input can be used as a thermal resource and any structure in the output has a

thermodynamic cost. There are many different ratchet implementations that perform a

given computation, in that they map inputs to outputs in the same way. However, if we

want an implementation to be thermodynamically efficient, the modularity dissipation,

monitored by the global entropy production, must be minimized. Conversely, we now

appreciate why there are many implementations that dissipate and are thus irreversible.

This establishes modularity dissipation as a new thermodynamic cost, due purely to an

implementation’s architecture, that complements Landauer’s bound on isolated logical

operations.

We noted that there are not yet general principles for designing devices that minimize

modularity dissipation and thus work investment for arbitrary information transduction.

However, for the particular cases of pattern generation and pattern extraction we find

that there are prescribed classes of ratchets that are guaranteed to be dissipationless, if

operated isothermally. The ratchet states of these devices are able to store and leverage the

global correlations among the symbol strings, which means that it is possible to achieve the

reversibility of globally integrated information processing but with modular computational

design. Thus, while modular computation often results in dissipating global correlations,

this inefficiency can be avoided when designing processors by employing the tools of

computations mechanics outlined here.

6.8 Appendices

6.8.1 Isothermal Markov Channels

To satisfy information-theoretic bounds on work dissipation, we describe an isothermal

channel where we change system energies in slow steps to manipulate the distribution

over Z’s states. Precisely, our challenge is to evolve an input distribution Pr(Zt = zt)

over the time interval (t, t+ τ) according to the Markov channel M , so that the system’s

conditional probability at time t+ τ is:

Pr(Zt+τ = zt+τ |Zt = zt) = Mzt→zt+τ .
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The Markov channel M specifies the form of the computation, as it probabilistically maps

inputs to outputs. While we don’t need to know the input distribution Pr(Zt = zt) to

implement a computation, it is necessary to know this distribution in order to design a

thermodynamically efficient computation. Making this as efficient as possible in a thermal

environment at temperature T means ensuring that the work invested in the evolution

achieves the lower bound:

〈W 〉 ≥ kBT ln 2(H[Zt]− H[Zt+τ ]) .

This expresses the Second Law of Thermodynamics for the system in contact with a heat

bath.

To ensure the appropriate conditional distribution, we introduce an ancillary system

Z ′, which is a copy of Z, as is proposed by Garner et al. in their implementation of ther-

modynamic pattern manipulation [20]. This is necessary, because continuous time Markov

chains, which are the probabilistic rate equations that underly thermodynamic stochastic

dynamics, have limits in the logical functions they can implement. Some logical functions,

such as flipping a bit (0 to 1 and 1 to 0) must be implemented with ancillary/hidden states

[185]. By including an ancillary system which is a copy of Z, we allow ourselves to imple-

ment any probabilistic channel Mzt→zt+τ , and thus any logical operation on Z. So that it

is efficient, we take τ to be large with respect to the system’s relaxation time scale and

break the overall process into three steps that occur over the time intervals (t, t + τ0),

(t+ τ0, t+ τ1), and (t+ τ1, t+ τ), where 0 < τ0 < τ1 < τ .

Our method of manipulating Z and Z ′ is to control the energy E(t, z, z′) of the joint

state z ⊗ z′ ∈ Z ⊗ Z ′ at time t. We also control whether or not probability is allowed to

flow in Z or Z ′. This corresponds to raising or lowering energy barriers between system

states.

At the beginning of the control protocol we choose Z ′ to be in a uniform distribution

uncorrelated with Z. This means the joint distribution can be expressed:

Pr(Zt = zt, Z
′
t = z′t) =

Pr(Zt = zt)

|Z ′| . (6.25)

Since we are manipulating an energetically mute information reservoir, we also start with
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the system in a uniformly zero-energy state over the joint states of Z and Z ′:

E(t, z, z′) = 0 . (6.26)

While this energy and the distribution change when executing the protocol, we return Z ′

to the independent uniform distribution and the energy to zero at the end of the protocol.

This means that the starting and ending distributions are usually out of equilibrium,

but because we limit the flow between informational states, they are metastable, and

don’t relax to the uniform equilibrium distribution. In this way, the information reservoir

reliably stores and processes many different nonequilibrium states.

The three steps that evolve this system to isothermally implement the Markov channel

M are as follows:

1. Over the time interval (t, t + τ0), continuously change the energy such that the

energy at the end of the interval E(t+ τ0, z, z
′) obeys the relation:

e−(E(t+τ0,z,z′)−F (t+τ0))/kBT = Pr(Zt = z)Mz→z′ ,

while allowing state space and probability to flow in Z ′, but not in Z. Since the

protocol is done slowly, Z ′ follows the Boltzmann distribution and at time t + τ0

the distribution over Z ⊗ Z ′ is:

Pr(Zt+τ0 = z, Z ′t+τ0 = z′) = Pr(Zt = z)Mz→z′ .

This yields the conditional distribution of the current ancillary variable Z ′t+τ on the

initial system variable Zt:

Pr(Z ′t+τ0 = z′|Zt = z) = Mz→z′ ,

since the system variable Zt remains fixed over the interval. This protocol effectively

applies the Markov channelM to evolve from Z to Z ′. However, we want the Markov

channel to apply strictly to Z.

Because the protocol is slow and isothermal, there is no entropy production and the
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work flow is simply the change in nonequilibrium free energy:

〈W1〉 = ∆F neq

= ∆〈E〉 − T∆S[Z,Z ′] .

Since the average initial energy is uniformly zero, the change in average energy is

the average energy at time t+ τ0. And so, we can express the work done:

〈W1〉 = 〈E(t+ τ0)〉 − T∆S[Z,Z ′]

= 〈E(t+ τ0)〉

+ kBT ln 2(H[Zt, Z
′
t]− H[Zt+τ0 , Z

′
t+τ0

]) .

2. Now, swap the states of Z and Z ′ over the time interval (t + τ0, t + τ1). This is

logically reversible. Thus, it can be done without any work investment over the

second time interval:

〈W2〉 = 0 . (6.27)

The result is that the energies and probability distributions are flipped with regard

to exchange of the system Z and ancillary system Z ′:

E(t+ τ1, z, z
′) = E(t+ τ0, z

′, z)

Pr(Zt+τ1 =z, Z ′t+τ1 =z′) = Pr(Zt+τ0 =z′, Z ′t+τ0 =z) .

Most importantly, however, this means that the conditional probability of the cur-

rent system variable is given by M :

Pr(Zt+τ1 = z′|Zt = z) = Pr(Z ′t+τ0 = z′|Zt = z)

= Mz→z′ .

The ancillary system must still be reset to a uniform and uncorrelated state and the

energies must be reset.

3. Finally, we again hold Z’s state fixed while allowing Z ′ to change over the time

interval (t + τ1, t + τ) as we change the energy, ending at E(t + τ, z, z′) = 0. This
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isothermally brings the joint distribution to one where the ancillary system is uni-

form and independent of Z:

Pr(Zt+τ = z, Z ′t+τ = z′) =
Pr(Zt+τ = z)

|Z ′| . (6.28)

Again, the invested work is the change in average energy plus the change in ther-

modynamic entropy of the joint system:

〈W3〉 = 〈∆E〉

+ kBT ln 2(H[Zt+τ1 , Z
′
t+τ1

]− H[Zt+τ , Z
′
t+τ ])

= −〈E(t+ τ1)〉

+ kBT ln 2(H[Zt+τ1 , Z
′
t+τ1

]− H[Zt+τ , Z
′
t+τ ]) .

This ends this three-step protocol.

Summing up the heat terms, gives the total dissipation:

〈Wtotal〉 = 〈Wt〉+ 〈W2〉+ 〈W3〉

= kBT ln 2(H[Zt, Z
′
t]− H[Zt+τ0 , Z

′
t+τ0

])

+ kBT (H[Zt+τ1 , Z
′
t+τ1

]− H[Zt+τ , Z
′
t+τ ])

+ 〈E(t+ τ0)〉 − 〈E(t+ τ1)〉 .

Recall that the distributions Pr(Zt+τ1 , Z
′
t+τ1

) and Pr(Zt+τ0 , Z
′
t+τ0

), as well as E(t +

τ0, z, z
′) and E(t+τ1, z, z

′), are identical under exchange of Z and Z ′, so H[Zt+τ1 , Z
′
t+τ1

] =

H[Zt+τ0 , Z
′
t+τ0

] and 〈E(t + τ0)〉 = 〈E(t + τ1)〉. Additionally, we know that both the

starting and ending distributions have a uniform and uncorrelated ancillary system, so

their entropies can be expressed:

H[Zt, Z
′
t] = H[Zt] + log2 |Z ′| (6.29)

H[Zt+τ , Z
′
t+τ ] = H[Zt+τ ] + log2 |Z ′| . (6.30)

Substituting this in to the above expression for total invested work, we find that we

achieve the lower bound with this protocol:

〈Wtotal〉 = kBT ln 2(H[Zt]− H[Zt+τ ]) . (6.31)
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Thus, the protocol implements a Markov channel that achieves the information-theoretic

bounds. It is similar to that described in Ref. [20].

The basic principle underlying the protocol is that when manipulating system energies

to change state space, choose the energies so that there is no instantaneous probability

flow. That is, if one stops changing the energies, the distribution will not change. However,

there are cases in which it is impossible prevent instantaneous flow. Then, there are

necessarily inefficiencies that arise from the dissipation of the distribution flowing out of

equilibrium.

6.8.2 Transducer Dissipation

6.8.2.1 Predictive Extractors

For a pattern extractor, being reversible means that the transducer is predictive of the

input process. More precisely, an extracting transducer that produces zero entropy is

equivalent to it being a predictor of its input.

As discussed earlier, a reversible extractor satisfies:

I[YN+1:∞;XN+1] = I[YN+1:∞;XNYN ] ,

for all N , since it must be reversible at every step to be fully reversible. The physical

ratchet being predictive of the input means two things. It means that XN shields the past

Y0:N from the future YN :∞. This is equivalent to the mutual information between the past

and future vanishing when conditioned on the ratchet state:

I[Y0:N ;YN :∞|XN ] = 0 .

Note that this also implies that any subset of the past or future is independent of any

other subset conditioned on the ratchet state:

I[Ya:b;Yc:d|XN ] = 0 where b ≤ N and c ≥ N .

The other feature of a predictive transducer is that the past shields the ratchet state from

the future:

I[XN ;YN :∞|Y0:N ] = 0 .
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This is guaranteed by the fact that transducers are nonanticipatory: they cannot predict

future inputs outside of their correlations with past inputs.

We start by showing that if the ratchet is predictive, then the entropy production

vanishes. It is useful to note that being predictive is equivalent to the extractor storing

as much information about the input future as the input past does:

I[XN ;YN :∞] = I[Y0:N ;YN :∞] ,

which can be seen by subtracting I[Y0:N ;YN :∞;XN ] from each side of the immediately

preceding expression and noting that the ratchet is nonanticipatory. Thus, it is sufficient

to show that the mutual information between the partial input future YN+1:∞ and the

joint distribution of the predictive variable XN and next output YN is the same as mutual

information with the joint variable (Y0:N , YN) = Y0:N+1 of the past inputs and the next

input:

I[YN+1:∞;XN , YN ] = I[YN+1:∞;Y0:N , YN ] .

To show this for a predictive variable, we use Fig. 6.7, which displays the information

diagram for all four variables with the information atoms of interest labeled.

Assuming that XN is predictive zeros out a number of information atoms, as shown

below:

I[XN ;YN , YN+1:∞|Y0:N ] = b+ c+ h = 0

I[XN ;YN |Y0:N ] = b+ h = 0

I[Y0:N ;YN , YN+1:∞|XN ] = i+ f + g = 0

I[Y0:N ;YN |XN ] = i+ f = 0 .

These four equations make it clear that g = c = 0. Thus, substituting I[YN+1:∞;XN , YN ] =

a + b + c + d + e + f and I[YN+1:∞;Y0:N , YN ] = a + b + d + e + f + g, we find that their

difference vanishes:

I[YN+1:∞;XN , YN ]− I[YN+1:∞;Y0:N , YN ] = c− g

= 0 .
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I[YN+1:1; XNYN ] = a + b + c + d + e + f

I[YN+1:1; Y0:NYN ] = a + b + d + e + f + g

I[YN+1:1; Y0:NYN ]� I[YN+1:1; XNYN ] = g � c

I[XN ; YN+1:1|Y0:N ] = 0 = b + c

I[XN ; YN :1|Y0:N ] = 0 = b + c + h

I[XN ; YN |Y0:N ] = 0 = b + h

a

b

c
d

e

f

g

h

i

H[YN ]H[XN ]

H[Y0:N ] H[YN+1:1]

Figure 6.7. Information diagram for dependencies between the input past Y0:N , next
input YN , current ratchet state XN , and input future YN+1:∞, excluding the next
input. We label certain information atoms to help illustrate the algebraic steps in the
associated proof.

There is zero dissipation, since XN+1 is also predictive, meaning I[YN+1:∞;Y0:N , YN ] =

I[YN+1:∞;XN+1], so:

〈Σext
N 〉min

kBT ln 2
= I[YN+1:∞;XN , YN ]− I[YN+1:∞;XN+1]

= I[YN+1:∞;XN , YN ]− I[YN+1:∞;Y0:N+1]

= 0 .

Going the other direction, using zero entropy production to prove that XN is predictive

for all N is now simple.

We already showed that I[YN+1:∞;XN , YN ] = I[YN+1:∞;Y0:N , YN ] if XN is predictive.

Combining with zero entropy production (I[YN+1:∞;XN+1] = I[YN+1:∞;XN , YN ]) imme-

diately implies that XN+1 is predictive, since I[YN+1:∞;XN+1] = I[YN+1:∞;Y0:N , YN ] plus

the fact that XN+1 is nonanticipatory is equivalent to XN+1 being predictive.

With this recursive relation, all that is left to establish is the base case, that X0 is

predictive. Applying zero entropy production again we find the relation necessary for
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I[Y 0
0:N ; XN+1Y

0
N ] = a + b + c + d + e + f = 0

I[Y 0
0:N ; Y 0

N+1:1Y 0
N ] = a + b + d + e + f + g = 0

I[Y 0
NY 0

0:N ; XN+1|Y 0
N+1:1] = b + c + h = 0

I[Y 0
0:NY 0

N ; Y 0
N+1:1|XN+1] = i + f + g = 0

I[Y 0
N ; Y 0

N+1:1|XN+1] = i + f = 0

I[Y 0
N ; XN+1|Y 0

N+1:1] = b + h = 0

H[Y 0
N+1:1] H[Y 0

0:N ]

H[Y 0
N ]H[XN+1]

a

b

c
d

e

f

g

h

i

Figure 6.8. Information shared between the output past Y ′0:N , next output Y ′N , next
ratchet state XN+1, and output future Y ′N+1:∞, excluding the next input. Key infor-
mation atoms are labeled.

prediction:

I[Y1:∞;X1] = I[Y1:∞;X0, Y0]

= I[Y1:∞;Y0] ,

From this, we find the equivalence I[Y1:∞;Y0] = I[Y1:∞;X0, Y0], since X0 is independent of

all inputs, due to it being nonanticipatory. Thus, zero entropy production is equivalent

to predictive ratchets for pattern extractors.

6.8.2.2 Retrodictive Generators

An analogous argument can be made to show the relationship between retrodiction and

zero entropy production for pattern generators, which are essentially time reversed ex-

tractors.

Efficient pattern generators must satisfy:

I[Y ′0:N ;XN ] = I[Y ′0:N ;XN+1Y
′
N ] .

The ratchet being retrodictive means that the ratchet state XN shields the past Y ′0:N from
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the future Y ′N :∞ and that the future shields the ratchet from the past:

I[Y ′0:N ;Y ′N :∞|XN ] = 0

I[Y ′0:N ;XN |Y ′N :∞] = 0 .

Note that generators necessarily shield past from future I[Y ′0:N ;Y ′N :∞|XN ] = 0, since all

temporal correlations must be stored in the generator’s states. Thus, for a generator,

being retrodictive is equivalent to:

I[Y ′0:N ;XN ] = I[Y ′0:N ;Y ′N :∞] .

This can be seen by subtracting I[Y ′0:N ;XN ;Y ′N :∞] from both sides, much as done with the

extractor.

First, to show that being retrodictive implies zero minimal entropy production, it is

sufficient to show that:

I[Y ′0:N ;XN+1, Y
′
N ] = I[Y ′0:N ;Y ′N :∞] ,

since we know that I[Y ′0:N ;XN ] = I[Y ′0:N ;Y ′N :∞]. To do this, consider the information

diagram in Fig. 6.8. There we see that the difference between the two mutual informations

of interest reduce to the difference between the two information atoms:

I[Y ′0:N ;XN+1Y
′
N ]− I[Y ′0:N ;Y ′N :∞] = c− g .

The fact that the ratchet state XN+1 shields the past Y ′0:N+1 from the future Y ′N+1:∞ and

the future shields the ratchet from the past gives us the following four relations:

I[Y ′0:NY
′
N ;Y ′N+1:∞|XN+1] = i+ f + g = 0

I[Y ′N ;Y ′N+1:∞|XN+1] = i+ f = 0

I[Y ′0:NY
′
N ;XN+1|Y ′N+1:∞] = h+ b+ c = 0

I[Y ′N ;XN+1|Y ′N+1:∞] = h+ b = 0 .

These equations show that that c = g = 0 and thus:

〈Σgen
N 〉min

kBT ln 2
= 0 .
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Going the other direction—zero entropy production implies retrodiction—requires that

we use I[Y ′0:N ;XN ] = I[Y ′0:N ;XN+1, Y
′
N ] to show I[Y ′0:N ;XN ] = I[Y ′0:N ;Y ′N :∞]. If XN+1

is retrodictive, then we can show that XN must be as well. However, this makes the

base case of the recursion difficult, since there is not yet a reason to conclude that X∞ is

retrodictive. While we conjecture the equivalence of optimally retrodictive generators and

efficient generators, at this point we can only conclusively say that retrodictive generators

are also efficient.
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