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Abstract

Memory and Thermodynamic Costs of Sampling and Biased Sampling

With probabilistic behaviors, emergent patterns, nonlinearities, and multiple compo-

nents, complex systems are challenging. A common method to study them is simulation.

Sampling behaviors is central in this and so it has become a common simulation method,

one used in many di↵erent fields. The goal is to mimic the system of interest in a way

that both the real system and the simulation exactly show the same stochastic behavior.

One then estimates properties of interest from the set of realizations.

The focus of the thesis are the resources required for sampling. It demonstrates

that when a system becomes increasingly complex, the memory resources that sampling

algorithms need diverge rapidly. This presents a barrier to studying complex systems.

The past several decades gave rise to the hope that a quantum computer will solve

problems more e�ciently than a classical computer. E�ciency here refers to the run time

that algorithm takes or to the memory it uses. Chapter 2 introduces a quantum algorithm

for the sampling problem, demonstrating that it is often much more memory e�cient than

its classical counterpart. Moreover, there are complex systems for which it is hard for

the best known classical algorithm to sample, but with quantum algorithms it can be

done with finite small resources. Since being introduced, the quantum algorithm was built

experimentally by an independent group of scientists using a quantum photonics circuit.

Chapter 3 introduces a new phenomenon called “ambiguity of simplicity”–that classical

and quantum theories can markedly disagree on structural complexity. Recent rapid

progress in quantum computation and quantum simulation suggest that the ambiguity of

simplicity will strongly impact statistical inference and, in particular, model selection. The

idea is as follows, consider the memory-optimal classical algorithm and memory-optimal

quantum algorithm for sampling. We say system A is simpler than system B, if the memory

requirement for the algorithm is less than the memory requirement for system B. It turns

out that system A can be simpler than system B when we consider the classical algorithm

and more complex than system B when we consider quantum algorithm. As a result,

-xiv-



there is no total order for physical simplicity. This phenomenon is fundamental since we

consider memory-optimal algorithm for both classical and quantum domain. Recently,

experimentalists observed this phenomenon, too, by testing it on sampling algorithms for

a simple nearest-neighbor Ising model.

For many complex systems we are interested in their rare behavior, not typical behaviors.

For example, financial market crashes, tsunamis, industrial accidents, and earthquakes are

thankfully rare, but extremely important. Simulating rare events, though, is particularly

challenging. In these scenarios, one needs a new class of algorithms for biased sampling.

Chapter 4 introduces a new class of biased-sampling algorithm based on memoryful finite-

state machines. It also studies their memory cost. It turns out that sampling some classes

of rare events can be extremely memory consuming while sampling others is practically

free. This new tool allows both sampling rare events of interest and also determining the

exact memory requirements beforehand.

Recalling the memory-e�cient quantum algorithm for sampling leads one to ask if

quantum computers help reduce the memory cost of biased sampling problem, too. Chapter

5 introduces a new quantum algorithm for biased sampling. The algorithm can be extremely

memory e�cient for the sampling of many classes of rare events.

Naturally, memory is not the only cost of computation. There are also energy costs

that manifests itself as heat. Every time we do a computation, a device uses an energy

resource and dumps heat into its environment. Is this cost fundamental? The answer is

positive: There is a limit on how much the cost can be reduced. This chapter takes the

first steps toward calculating the thermodynamic cost of sampling. It limits the analysis to

the case where the process is memoryless–independent, identically distributed. This is also

known as random number generation (RNG). It turns out its thermodynamic cost depends

strongly on the available resources. Chapter 6 investigates the thermodynamic cost of

several random number generation algorithms, including true random number generation,

pseudo-random number generation, and the RNG problem. The latter is analyzed in detail

via the von Neumann, Knuth and Yao, and Roche and Hoshi RNG algorithms.
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Chapter 1

Sampling and Its costs

1.1 Overview

One common way to study complex systems is to simulate them. Sampling is that part

of simulation in which the goal is to generate a realization of a system’s behavior. That

sample will be studied later in the process of simulation. Sampling has its own costs.

What are these costs and why do they appear?

This thesis attempts, first, to understand these costs and, second, to o↵er new ap-

proaches to reduce them. This chapter briefly reviews di↵erent types of cost in sampling,

discusses why each of cost exists, and o↵ers alternatives to common sampling methods. It

lays the foundation for the rest of the thesis.

After reviewing basic concepts, assumptions, and notation, I formally introduce sam-

pling and briefly study di↵erent classes of algorithm. The focus is on finite-state machines,

especially Hidden Markov models–an important class of sampling algorithm. The quantum

sampling algorithm is then introduced as an alternative that can reduce memory costs.

When the goal is to study the rare behavior of complex systems simple sampling

algorithms fail. One solution is a biased sampling algorithm. Next, I introduce classical

and quantum biased sampling algorithms and their memory costs.

Thermodynamic dissipation is another important cost that appears in simulation. Here

I discuss briefly why this cost exists for the simulation process. Specifically, I address the

thermodynamic cost of several cases of sampling algorithm when the user has access to
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di↵erent type of resources.

1.2 Stochastic Processes

In the beginning, we need to define some basics. A stationary ergodic discrete-time

stochastic process [3, 4] is a probability distribution P(.) over the bi-infinite chain of

random variables · · · X�1X0X1 · · · . As a result for a known process, one has access to

P(XiXi+1 · · · Xi+d) for any i and d or one can assign a probability to any events. The

word “Stationary” here means there are no particular points in time that are di↵erent.

All the points in time are equal or P(XiXi+1 · · · Xi+d) = P(XjXj+1 · · · Xj+d) for any i, j,

and d. The event space for all random variables Xis or as we will refer to it in the future,

the alphabet, are the same and denoted by A. Here we only focus on the case where A is

a finite set.

The simplest class of processes are I.I.D processes where they do not have any mem-

ory of the past. This means for any i and d, P(XiXi+1 · · · Xi+d) =
dQ

k=0
P(Xi+k). The

next simple but commonly used class is the Markovian processes where they only re-

member the last generated event. This means for any i and d, P(XiXi+1 · · · Xi+d) =

P(Xi)
dQ

k=1
P(Xi+k|Xi+k�1). The definition can be extended to the Markov order-R class

where the processes only remember the last generated R events. P(XiXi+1 · · · Xi+d) =

P(XiXi+1 · · · Xi+R�1)
dQ

k=1
P(Xi+k+R�1|Xi+k�1Xi+k · · · Xi+k+R�2).

1.3 Simulator and Finite-state machine

Simulation of a given process {P, A} here refers to generating a sample with the same

distribution as the process. A simulator is an algorithm that simulates the process.

Consider an algorithm that can generate random samples with any size n, X0X1 · · · Xn�1

with probability Q(X0X1 · · · Xn�1). Then the algorithm is the simulator of the given

process if P = Q. Sometimes the term simulation also refers to the case where the two

measures are approximately equal P ' Q, or they are equal at the large n limit, b ut we

do not consider these cases a simulation.

There are two main algorithms for the sampling of stochastic systems, Monte Carlo

algorithms, and finite-state machine algorithms. In this work, we only consider the
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A B0:p

1:1 � p

1:q

0:1 � q

Figure 1.1: Example Hidden Markov Model. If the model is in state A with probability p

it will generate 0 and stay at state A and with probability 1 � p it will generate 1 and
make a transition to the state B. If the model is in state B with probability q it will
generate 1 and stay at the same state and with probability 1 � q it will generate 0 and
make a transition to the state A.

finite-state machine algorithms. Each of them has its own advantages. Depending on the

situation one may choose one or another.

The general idea behind Monte Carlo algorithm is as follows. Let us say the user wants

a sample with size n generally n � 1. The algorithm starts with a particular realization

of size n, then depending on the algorithm the realization may be deterministic–all the

random variables take the same value–or completely random?drawn from an IID uniform

distribution. Then by doing many stochastic local changes based on some designed law

the realizations eventually changes to the sample of interest. During the process, the

algorithm must memorize the whole realization and as a result, the memory requirement

scales with the sample size n.

There are many di↵erent types of finite-state machine algorithms but the core idea

behind is the same. For simplicity, let us consider Hidden Markov Models (HMMs), an

important class of finite-state machine algorithm [4–6]. An HMM is a directed network

consisting of nodes or “states” and edges or “transitions” labeled with two numbers There

is a random walker on the network. Each time the random walker make a transition from

one state to the other, a symbol on the edge he took would be generated. The other

number on the edge is the probability that the random walker choose that particular edge.

Figure 1.1 shows an example of an HMM.

As a result, at each step, the finite-state machine algorithm generates a symbol, unlike

the Monte Carlo algorithm that generates the whole sample at the same time. This is the

important di↵erence between the two which makes each of them advantageous in di↵erent

scenarios.
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If the user of the sample and the one that runs the algorithm are the same then often

the Monte Carlo algorithm will be used. If the computer that runs the algorithm does

not memorize the sample that generates and instead writes it, symbol by symbol, on an

external memory register for the user then the finite-state machine would be a better

choice. This situation happens when the user of the sample –equivalently the external

memory– and the one that runs the algorithm –equivalently the computer– are di↵erent.

Before introducing the finite-state machine algorithm let us look at several simple

sampling algorithms to understand why there is a need for more sophisticated algorithms.

Let us say for a given process {P, A}, which for now we assume it can be any process

with any Markov order, the user wants to generate a sample with size n. The most trivial

algorithm memorize the whole probability distribution for any size n. Every time the

user wants a sample, the algorithm refers to the probability distribution. It generates

a random number r between 0 and 1 and by comparing it with probability distribution

P(X0X1 · · · Xn�1) generate a sample with a correct distribution. To do this the algorithm

needs to memorize the distribution P(X0X1 · · · Xn�1) and since the distribution has An

elements the algorithm needs to memorize An numbers. Since the algorithm should have

the ability to generate a sample with any size n then this algorithm needs to memorize the

full distribution which is impossible due to the infinite amount of memory requirement.

This is due to the fact that we did not put any condition on the target process. As a result,

one needs to look for a more elegant algorithm assuming we have some partial information

about the target process.

Now instead of a general process with arbitrary Markov order let us assume the

given process has Markov order, R. For this process to generate a sample with size n, the

information about the full distribution is not necessary and having the marginal conditional

distribution P(XR|X0X1 · · · XR�1) is su�cient. Since the marginal distribution has AR+1

elements the algorithm only needs to memorize AR+1 numbers not An numbers. This is

a great progress compared to the trivial algorithm since the number of things that the

algorithm needs to remember is independent of sample size n. One can see that we still

have exponential cost in the Markov order R.

4



As pointed out earlier, remembering AR+1 numbers is su�cient but the important

question is, is it necessary to remember all of them? Fortunately, in many cases the

answer is No. The idea behind this answer can be explained by an example. Let us say for

the two sequences x0x1 · · · xR�1 and x
0
0x

0
1 · · · x0

R�1 the conditional distributions are equal

P(XR|x0x1 · · · xR�1) = P(XR|x0
0x

0
1 · · · x0

R�1). As a result, there is no need to memorize

both of these two distributions. In this way, one can save memory by memorizing only A

numbers instead of 2 ⇤ A numbers. For a given process if this condition happens often for

pairs of sequences then one can save a lot of memory.

Using this idea, constructing a more e�cient algorithm is simple. The procedure is as

follows: if the probability distributions of the next symbol condition on two past sequences

are equal then put those two sequences on the same subset. Doing this we partition the

set of sequences with length R into subsets. The next step is to label each subset. Let

us denote the set of these partitions by S. Now since the algorithm is not interested in

the sample itself, the only thing it needs to remember is the label of the subset and not

more than that. Let us call these labels, “states”. In this way, it can correctly generate

the sample of interest without remembering too much. Each time the algorithm generates

a new symbol, the state changes, since the last R symbols of the sample is di↵erent from

before. Using the conditional probability distribution P(XR|X0X1 · · · XR�1), one can find

the transition matrix between states P(St+1|St, Xt). As a result instead of memorizing the

whole distribution the algorithm only memorize the conditional distribution P(St+1|St, Xt)

which is much more compact.

Now let us define the Hidden Markov Model more formally. An HMM is a tuple

{S, A, {T
(x) : x 2 A}} where S is the set of states of the machine, A is the alphabet of

the process, and {T
(x) : x 2 A}} is a set of substochastic matrices. This is how it works.

Let us say at time t the state of the HMM is St = i then at the time t + 1 the algorithm

with probability T
(x)
ij change the state of the HMM to St+1 = j and generate the symbol

x. Continuing this procedure the algorithm samples the target process.
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1.4 Quantum Simulator

A simulator is an algorithm that simulates a process. A simulator is a quantum simulator

if the algorithm is a quantum algorithm. Loosely, a quantum algorithm is a procedure that

runs on a quantum computer. Quantum algorithms are interesting since sometimes they

achieve a speedup compare to the classical algorithms, or other e�ciency improvements

such as memory e�ciency [7].

Quantum simulators or quantum samplers have been studied extensively for the past

six years and it has been shown that they may be extremely e�cient compared to their

classical counterparts [2, 8–16]. In the past two years, simple implementations have been

also been tested experimentally [17,18]. In chapter 2 I show there are physical systems

whose quantum sampler is highly memory e�cient while the memory requirement for their

classical sampler diverges rapidly with the system size.

There are many equivalent definitions of the quantum simulator. One that is more

similar to the definition of finite-state machine algorithm is a tuple {H, A, {K
(x) : x 2 A}}

where H denotes the Hilbert space in which quantum states reside, A is the same alphabet

as the given process’, and {K
(x) : x 2 A} is a set of Kraus operators [19] we use to specify

the measurement protocol.

This is how it works. Assume we have the quantum state ⇢ in hand. Generally, this

state can be mixed, which means it is part of a bigger pure system. At each step, the

algorithm performs a measurement by applying Kraus operators {K
(x) : x 2 A} to the

state. The measurement has two results, first, it gives an outcome and second change the

state of the system. Since the measurement is not projective measurement every time we

apply the operator the state of the system potentially would change. Denoting the outcome

of measurement by a random variable X, the probability of measuring particular value x

can be written as P(X = x|⇢) = tr

⇣
K

(x)
⇢K

(x)†
⌘
. After measurement with the outcome

X = x, the new quantum state would be ⇢
0 = K(x)⇢K(x)†

tr(K(x)⇢K(x)†)
. Repeating the measurement

process, again and again, generates a stochastic process. The detail of the procedure will

be introduced in Chapter 5.

Since the state is mixed and the operation is general CPTP map, to implement the
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algorithm in the lab one should translate the procedure into a unitary operation on a pure

state. This has been recently done [20].

Now an important question is, given a stochastic process of interest, how can we design

a quantum sampler which samples that specific process? Or, equivalently, given a classical

sampler, how can we design a quantum sampler? Chapter 2 and 5 will go through the

details of the algorithm construction.

1.5 Simultaneous Simulation and Its Memory cost

Usually, the user does not want to sample the process just for one single time. In

the simultaneous sampling problem, the goal is to generate M samples of a process

simultaneously, each of which is statistically independent of the others. The net result is

M running algorithms. Each algorithm must memorize the current state of its HMM. If

each algorithm uses its own memory, each needs log2 |S| bits of memory as before. The

total memory is then M log2 |S| bits.

However, we can reduce the amount of memory required by using one large shared

memory among the algorithm. In this way, according to Shannon’s coding theorem [21],

we can encode the states to reduce the amount of memory down to MH(S)  M log2 |S|

bits, where H(.) is the Shannon entropy. The memory used per sample is then just H(S)

which can be potentially much less than log2 |S|.

For a given process there are many sampling algorithms. But one may be interested

in the memory-optimal algorithm, the one that between all those algorithms uses the

minimum memory. This algorithm for a generic process is still unknown. The most

memory e�cient classical algorithm known today is called the ✏-machine [22].

Now assume for a given process we know the ✏-machine, the optimal algorithm which

is denoted by a {S, A, {T
(x) : x 2 A}}. What is the memory cost for this sampler and

how should one calculate it? As was pointed out earlier, the memory cost is the Shannon

entropy of the stationary distribution over the state. One can easily see that since the

matrix T =
P

x2A T
(x) is stochastic matrix the solution to the equation ⇡T = ⇡ gives

us the stationary distribution. As a result, calculating the memory cost for the classical
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sampling algorithm is straightforward.

Similar to the classical case for a given process there are many quantum sampling

algorithms. The most memory e�cient quantum algorithm known today is called the

q�machine and was introduced two years ago [12]. What is the memory cost for this

sampler? It turns out there is a similarity between the classical and quantum cases. The

memory cost for the quantum sampler is the von Neumann entropy of the stationary state

of the algorithm. Chapter 2,3, and 5 will go through the details of why is that.

How should one calculate the stationary state of the algorithm? The answer is not

as straightforward as the classical case. The details of the procedure were introduced in

Ref. [13], while a similar result recently appeared in Ref. [20].

1.6 Biased Sampling and Its Memory Cost

Another interesting and widely encountered problem related to sampling is biased sampling

problem [23, 24]. For a given process, sometimes we are interested in the rare behavior

of the system. For example in the financial market, extreme events are sometimes more

important than typical behavior, or in earth’s layer dynamics, earthquakes are really

important. To study rare events, one typical approach is to sample them first and then

study those samples. Consequently, one needs algorithms that sample rare events.

The first step is to find a mathematical framework that characterizes the rare events

to di↵erent subsets of interest. As we will see later, this step is necessary both to have a

self-consistent theory and also to apply the theory to real situations. The second task is

to come up with an algorithm that samples the particular subset of interest. In chapter 4

and 5, we go through these two steps in detail by introducing a class of algorithms for

biased sampling for generic processes with any Markov order.

As we will see in chapter 4, memory consumption for biased sampling algorithms

depends on which class of rare events we want to sample. Depending on the process’

structure, some rare-event classes can be inexpensive to sample, while some are expensive.

In chapter 4 we introduce a new tool to calculate the memory costs for the sampling of

di↵erent subsets of rare events.
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As discussed earlier, quantum algorithms can be more e�cient than classical algorithms.

In chapter 5, I will introduce a new quantum algorithm for biased sampling. The algorithm

can be quite memory e�cient compared to the best known classical algorithm.

1.7 Thermodynamic Cost of Sampling

When using your computer to do a computational task, it’s temperature rises. In doing

this, the computer converts ordered (low-entropy) energy to heat. Looking at this as

a thermodynamic system, the battery acts as a work reservoir, and the air around the

computer acts as a thermal reservoir at the ambient room temperature. Especially in large-

scale computations, such as simulations, this thermodynamic cost is not negligible. This is

why the cooling system is an important component in modern computing. Obviously, no

current systems are perfectly e�cient. And, as a result, there is the opportunity to reduce

such costs. Is there fundamental lower bound on these costs or can one can zero-energy

computing with some proper implementation?

It turns out that information processing?specifically computing with access to a finite

amount of memory–has an irreducible thermodynamic cost [25]. For a simple case, consider

erasing a bit. To model one bit of memory consider a particle in a double well potential

with energy barrier �E which is in contact with a thermal reservoir at temperature T .

The setup is shown in Figure 1.2. Since the particle is in contact with the thermal reservoir

the thermal noise can move the particle in the potential. The noise is random and its

energy is on the order of magnitude of kBT . To make sure that the bit is reliable the

energy barrier �E should be much larger than this amount. Now consider the case that

the particle is on the right well and one wants to erase it or equivalently move it to the left

well. To do this one needs to raise the particle beyond the energy barrier and as a result,

spend at least �E > kBT . This well-known result is often called Landauer’s Principle [26].

This simple example qualitatively shows one of the reasons behind the thermodynamic

cost of computation.

An important case of information processing and computation is random number
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Figure 1.2: Schematic figure showing a particle in double well potential modeling one bit
of memory. Thermal noise can move the particle around. A reliable bit requires �E being
much larger than kBT .

generation which is a specific case of sampling problem when the process is IID. The

thermodynamic cost of sampling problem can be quite di↵erent depending on the available

resources. For example, do we have access to a specific source of random number generator?

An example is generating random numbers with a uniform distribution for free. Or do we

want to use a deterministic algorithm and instead of a truly random number, generate

pseudo-random number? Another important case is when we want to use some physical

system that has some inherent randomness to design a true random number generator. In

Chapter 6 I study the thermodynamic cost of random number generation in detail.
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Chapter 2

Extreme Quantum Advantage when

Simulating Classical Systems with

Long-Range Interaction

2.1 Overview

Classical stochastic processes can be generated by quantum simulators instead of the more

standard classical ones, such as hidden Markov models. One reason for using quantum

simulators has recently come to the fore: they generally require less memory than their

classical counterparts. Here, we examine this quantum advantage for strongly coupled

spin systems—in particular, the Dyson one-dimensional Ising spin chain with variable

interaction length. We find that the advantage scales with both interaction range and

temperature, growing without bound as interaction range increases. In particular, it is

impossible to simulate Dyson’s original spin chain with the most memory-e�cient known

classical algorithm since it requires infinite memory, while quantum simulators can do so

since they use only finite memory. Thus, quantum systems can very e�ciently simulate

strongly coupled one-dimensional classical systems.

2.2 Introduction

The idea of a quantum computer, often attributed to Feynman [27], recognizes that while

simulating quantum many-body systems is di�cult, it is apparently something that the
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physical quantum system to be simulated itself accomplishes with ease. For this reason, it

was conjectured that a “quantum computer”—one that operates on a quantum instead of

classical substrate—might have a significant advantage in such a simulation. As modern

computational technology approaches its quantum limits, the potential for a quantum

advantage is becoming increasingly appealing. This has motivated diverse implementations

of quantum hardware from trapped ions [28, 29], cold atoms in optical lattices [30, 31],

superconducting circuits [32,33], photons [34,35] to liquid and solid-state NMR [36,37]

and quantum dots [38].

The phrase “quantum simulation” often refers to (as originally conceived) the simulation

of a quantum system [39]. However, this is not the only avenue in which we find quantum

advantages. For instance, there is a variety of classical systems that can be simulated

quantally with advantage [40] including simulating thermal states [41], fluid flows [42, 43],

electromagnetic fields [44], di↵usion processes [45,46], Burger’s equation [47], and molecular

dynamics [48].

Quantum advantages can also be found outside of the realm of simulation. Some

mathematical problems can be solved more e�ciently using a quantum computer. The

most well-known of these include Shor’s factorization algorithm [49], Grover’s quantum

search algorithm [50], quantum eigen-decomposition algorithm [51], and quantum linear

systems algorithm [52]. For factorization, Shor’s algorithm scales polynomially [49] while

the best classical algorithm currently known scales exponentially [53]. While neither

algorithm has been proven optimal, many believe that the separation in scaling is real [54].

Quantum advantages also exist in the context of stochastic process generation. Sequen-

tial generation and simultaneous generation are two important problems in this field [55].

In 1988, Crutchfield and Young [56] introduced memory e�cient classical algorithms for

both of these problems. While there are a small number of known cases (processes) for

which this algorithm can be surpassed [57–59], there remains no better general classical al-

gorithm. Our focus here is the problem of simultaneous generation, the potential quantum

advantage therein, and the separation in classical-quantum scaling. [Quantum algorithms

for sequential generation have been studied recently [60–62].]
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Reference [8] provided a quantum algorithm that can generally perform simultaneous

generation using less memory than the best known classical algorithms. Recently, we

introduced a new quantum algorithm—the q-machine—that improved this e�ciency.

The latter demonstrated constructively how attention to higher-order correlations in the

stochastic process can lead to an improved quantum algorithm for generation [12]. A sequel

provided more detailed analysis and derived the quantum advantage of the q-machine in

closed form [13]. This quantum advantage has also been verified experimentally for a simple

case [17]. Just as for integer factorization, proof of optimality of a simultaneous-generation

algorithm is challenging in both classical and quantum settings. However, with minor

restrictions, one can show that the current quantum algorithm is almost always more

e�cient than the classical [12].

While the existing results demonstrate a quantum advantage for generic processes, a

significant question remains: What is the scaling behavior of this advantage? That is, to

truly understand the nature of the advantage, it is critical to know how it depends on

problem size. The strong separation in scaling between the classical and quantum integer

factorization algorithms led many to expect that the separation will persist even as new

algorithms are developed. We wish to demonstrate an analogous separation in scaling,

thus solidifying the importance of the current quantum construction—the q-machine.

We choose as our testing ground the generation of equilibrium states for the one-

dimensional Ising system with N -nearest neighbor interaction. Here, the coupling range

N is our problem-size parameter. We choose a spin-spin coupling that decays as a power

law in N . This is a natural choice, both since this model has been studied in detail over

four decades [63–66] and since it provides a physically grounded benchmark.

To understand the use of such a system in this problem context, consider a one-

dimensional chain of spins (with arbitrary classical Hamiltonian) in contact with a thermal

reservoir. After thermalizing, the resulting bi-infinite chain of spins (considered together

at some instant t = t0) can be regarded as a (spatial) stochastic process. Successful

generation of this stochastic process is then equivalent to generating its equilibrium states.

We quantitatively define the quantum advantage as the ratio of necessary memories for
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classical and quantum algorithms. Our main result is that the quantum advantage scales

as NT
2
/ log T . We also show that classically simulating Dyson’s original model requires

infinite memory. In other words, exact classical simulation of the Dyson spin chain is

impossible.

2.3 Dyson-Ising Spin Chain

We begin with a general one-dimensional ferromagnetic Ising spin chain [67,68] defined by

the Hamiltonian:

H = �
X

hi,ji

J(i, j)sisj , (2.1)

in contact with thermal bath at temperature T , where si, the spin at site i, takes on

values {+1, �1}, and J(i, j) � 0 is the spin coupling constant between sites i and j.

[Throughout, T denotes the e↵ective temperature kBT .] Assuming translational symmetry,

we may replace J(i, j) by J(k) with k ⌘ |i � j|. Commonly, J(k) is a positive and

monotone-decreasing function. An interaction is said to be long-range if J(k) decays more

slowly than exponential. In the following, we consider couplings that decay by a power

law:

J(k) =
J0

k�
, (2.2)

where � > 0. The spin chain resulting from these assumptions is called the Dyson

model [63].

To approximate such an infinite-range system we consider one with finite-range inter-

actions. For every interaction range N , we define the approximating Hamiltonian:

HN = �
X

i

NX

k=1

J0

k�
sisi+k . (2.3)

[N is the interaction range and should not be mistaken with the size of the lattice which

is infinite here.] This class of Hamiltonians can certainly be studied in its own right, not

simply as an approximation. But why is the Dyson model interesting? The ferromagnetic

Ising linear spin chain with finite-range interaction cannot undergo a phase transition at

14



any positive temperature [69]. In contrast, the Dyson model has a standard second-order

phase transition for a range of �. Dyson analytically proved [63] that a phase transition

exists for 1 < � < 2. The existence of a transition at � = 2 was established much later [65].

It is also known that there exists no phase transition for � > 3 [64], where it behaves as a

short-range system. Finally, it was demonstrated numerically that the parameter regime

2 < �  3 contains a phase transition [66], however, this fact has resisted analytical proof.

For �  1, the model is considered nonphysical since the energy becomes non-extensive.

Notably, the driven quantum Dyson model has been studied experimentally of late,

since it exhibits many interesting nonequilibrium phases, such as the recently introduced

discrete time crystal (DTC) [70]. The experimental system consists of a lattice of hundreds

of spin-half particles stored in a Penning trap. Particles have been chosen to be 9Be+ [71],

40Ca+ [72] or 171Yb+ [73, 74] ions. Using a combination of static electric and magnetic

fields, the Penning trap confines ions. A general spin-spin coupling is implemented with

an optical dipole force (ODF) induced by a pair of o↵-resonance laser beams. The ODF

then produces Dyson-type interactions, where � is tunable over 0  �  3. Physically,

� = 1, 2, 3 corresponds to Coulomb-like, monopole-dipole, and dipole-dipole couplings,

respectively.

For these reasons this family of Hamiltonians, derived from the Dyson spin system,

o↵er a controlled way to investigate the consequences of nontrivial correlations.

2.4 Simulators

The concept of a stochastic process is very general. Any physical system that exhibits

stochastic dynamics in time or space may be thought of as generating a stochastic process.

Here, we consider not time evolution, but rather the spatial “dynamic”. For example,

consider a one-dimensional spin chain with arbitrary classical Hamiltonian in contact with

thermal reservoir. After thermalizing, a spin configuration at one instant of time may

be thought of as having been generated left-to-right (or equivalently right-to-left). The

probability distribution over these spatial-translation invariant configurations defines a

stationary stochastic process.

15



We focus, in particular, on stationary, discrete-time, discrete-valued stationary stochas-

tic processes. Informally, such a process can be seen as a joint probability distribution

P(.) over the bi-infinite chain of random variables . . . X�1X0X1 . . .. Formally, the process

denoted by P =
�
A, ⌃, P(.)

 
is a probability space [3, 4]. Each spin random variable

Xi, i 2 Z, takes values in the set A. For specificity, the observed symbols come from

an alphabet A = {#, "} of local spin states, but our results easily extend to any finite

alphabet. P(·) is the probability measure over the bi-infinite chain of random variables

X�1:1 = . . . X�2X�1X0X1X2 . . . and ⌃ is the �-algebra generated by the cylinder sets

in A1. Stationarity means that P(·) is invariant under index translation. That is,

P(XiXi+1 · · · Xi+m) = P(Xi+nXi+1+n · · · Xi+m+n), for all m 2 Z+ and n 2 Z. For more

information on stochastic processes generated by spin system we refer to Refs. [1, 75].

2.4.1 Classical Simulator

Consider a device that generates a stochastic process. We call this device a simulator of

the process if and only if there is no way to distinguish the process outputs from those

of the simulator. Given a physical system that yields a stochastic process, a device that

generates this process is then said to simulate the physical system. In some contexts, the

word “simulation” implies an approximation. In contrast, we require our simulators to be

exact.

How do these simulators work? Generally, we implement the algorithms by writing

computer programs. Two common formalisms used as algorithms for generating stochastic

processes are Markov Chains (MC) [76,77] and Hidden Markov Models (HMM) [4–6]. The

latter can be significantly more compact in their representations (more e�cient algorithms)

and, for this reason, are sometimes the preferred implementation choice.

HMMs represent the generating mechanism for a given process by a tuple
�
S, A, {T

(x) :

x 2 A}
 
, where S is a finite set of states, A is a finite alphabet (set of symbols), and

{T
(x) : x 2 A} is a set of |S| ⇥ |S| substochastic symbol-labeled transition matrices. The

latter’s sum T =
P

x2A T
(x) is a stochastic matrix.

As an example, consider the Even Process [78,79]. The process can be explained by

a simple procedure. Consider a biased coin that with probability p generates heads and
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with 1 � p generates tails. To generate the Even Process we use the algorithm:
8
>>>><

>>>>:

Step A: Flip the coin.

Step B: If the result is heads, output 0 and go to Step A. Else output 1 and go to Step C.

Step C: Output 1 and go to Step A.

This algorithm is depicted by the HMM shown on the left of Fig. 2.1a. For this HMM,

S = {A, B}, A = {0, 1}, T
(0) =

0

@p 0

0 0

1

A, and T
(1) =

0

@0 1 � p

1 0

1

A. The HMM, as an

algorithm, simply tells the computer that: if we are in state A then, with probability p,

output 0 and stay at state A and, with probability 1 � p, output 1 and go to state B. If

we are in state B, output 1 and go to state A.

The goal of sequential generation is to produce a very long realization of the process.

For this, we use one computer with a code that runs the algorithm. At each step, the

computer must memorize the current HMM state. Since the HMM has 2 states, we require

1 bit of memory for this process, independent of its bias p.

Here, though, we are interested in simultaneous generation where the goal is to generate

M realizations of a process simultaneously, each of which is statistically independent of

the others. The net result is M computers each with the above code, as on the right side

of Fig. 2.1a. Similar to the sequential problem, each computer must memorize the current

state of its HMM. If each computer uses its own memory, each needs 1 bit of memory as

before. The total memory is then M bits.

However, we can reduce the amount of memory required by using one large shared

memory among the computers. Figure 2.1a emphasizes this schematically. In this way,

according to Shannon’s coding theorem [21], we can encode the HMM states to reduce

the amount of memory down to M H(S)  M bits, where H(S) = � Pr(A) log2 Pr(A) �

Pr(B) log2 Pr(B). The memory per instance is then just H(S).

Every process has an infinite number of alternative HMMs that generate it. For example,

Fig. 2.1b shows three HMMs that each generate the Even Process, each with di↵erent H(S)

and as a result di↵erent memory costs. Now, an important question when considering all

possible generators is, which HMM needs the minimum memory or, equivalently, minimum

17



4

Here we focus on stationary, discrete-time, discrete-valued stationary stochastic processes. Informally such a process
can be seen as a joint probability distribution P(.) over the bi-infinite chain of random variables . . . X�1X0X1 . . ..
Formally the process denoted by P =

�
A,�,P(.)

�
, is a probability space [47, 48]. Each random spin variableXi, i � Z,

takes values in the set A. Here, the observed symbols come from an alphabet A = {�, �} of local spin states but our
results easily can be extend to any finite alphabet. P(·) is the probability measure over the bi-infinite chain of random
variables X��:� = . . . X�2X�1X0X1X2 . . . and � is the �-algebra generated by the cylinder sets in A�. Stationarity
means that P(·) is invariant under index translation. That is, P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n), for all
m � Z+ and n � Z. For more information on stochastic processes generated by spin system we refer to [49, 50].
Physical systems, under certain assumptions such as thermal equilibrium, manifest spatial stationary stochastic
processes. Consider a device that can generate stochastic processes. We call a device the simulator of our physical
system if and only if there is no way to distinct the device from the physical system based on the stochastic process
they generate. This means if we put them in black boxes we can not find out which one is which. Often, “simulation”
refers to an approximation. In contrast, we require our simulators to be perfect.
How do these simulators work? Generally we implement the algorithms by writing computer programs. Two common
formalisms used as an algorithm for generation of stochastic processes are Markov Chains (MC) [51, 52] and Hidden
Markov Models (HMM) [47, 53, 54]. The latter can be significantly more compact in their representations (more
e�cient algorithms) and, for this reason, are sometimes the preferred implementation choice.
HMMs represent the generating mechanism for a given process by a tuple

�
S,A, {T (x) : x � A}

�
where S is a finite

set of states, A is a finite set of alphabets and {T (x) : x � A} are |S| � |S| substochastic symbol-labeled transition
matrices. The latter’s sum T =

�
x�A T

(x) is a stochastic matrix.
As an example consider the Even Process [55, 56]. The process can be explain by a simple procedure. Consider Alice,
she has a biased coin that with probability p generates heads and with 1 � p generates tales. To generate the Even
process she use this algorithm:

�
��

��

Step A: Flip the coin, if the result is heads output 0 and go to the beginning
of step A, else output 1 and go to the next step.

Step B: Output 1 and go to the step A.

Using this algorithm, in a long run she eventually generates the Even process.
Memory
A unifilar HMM is one in which each row of each sub-stochastic matrix has at most one nonzero element. A fledgling
literature on minimal nonunfilar HMMs [29] exists, but constructive methods are largely lacking and, as a consequence,
much less is known [30–32].
�-Machine A given stochastic process can be correctly generated by any number of alternative unifilar HMMs. The
one requiring the minimum amount of memory for implementation is called the �-machine [58] and was first introduced
in Ref. [28]. A process’ statistical complexity Cµ [58] is the the Shannon entropy of the �-machine’s stationary state
distribution: Cµ = H(S) = �

�
��S Pr(�) log2 Pr(�). Key to our analysis of classical simulator resources, it measures

the minimal memory for a unifilar simulator of a process. Cµ has been determined for a wide range of physical systems
[59–65]. Helpfully, it and companion measures are directly calculable from the �-machine, many in closed-form [66].
Ising �-machine How do we construct the �-machine that simulates the process P(N,T )? First, we must de-
fine process’ Markov order [52]: the minimum history length R required by any simulator to correctly continue a
configuration.3 Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt�2, Xt�1) = P(Xt|Xt�R, . . . ,Xt�2, Xt�1) .

For any finite and nonzero temperature T , Ref. [50, Eqs. (84)� (91)] shows that P(N,T ) has Markov order N . One
concludes that su�cient information for generation is contained in the configuration of the N previously generated

3More precisely, we mean that an ensemble of simulators must be able to yield an ensemble of configurations that agree (conditioned
on that past) with the process’ configuration distribution.
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process she use this algorithm:

�
��

��

Step A: Flip the coin, if the result is heads output 0 and go to the beginning
of step A, else output 1 and go to the next step.

Step B: Output 1 and go to the step A.

Using this algorithm, in a long run she eventually generates the Even process.
Memory
A unifilar HMM is one in which each row of each sub-stochastic matrix has at most one nonzero element. A fledgling
literature on minimal nonunfilar HMMs [29] exists, but constructive methods are largely lacking and, as a consequence,
much less is known [30–32].
�-Machine A given stochastic process can be correctly generated by any number of alternative unifilar HMMs. The
one requiring the minimum amount of memory for implementation is called the �-machine [58] and was first introduced
in Ref. [28]. A process’ statistical complexity Cµ [58] is the the Shannon entropy of the �-machine’s stationary state
distribution: Cµ = H(S) = �

�
��S Pr(�) log2 Pr(�). Key to our analysis of classical simulator resources, it measures

the minimal memory for a unifilar simulator of a process. Cµ has been determined for a wide range of physical systems
[59–65]. Helpfully, it and companion measures are directly calculable from the �-machine, many in closed-form [66].
Ising �-machine How do we construct the �-machine that simulates the process P(N,T )? First, we must de-
fine process’ Markov order [52]: the minimum history length R required by any simulator to correctly continue a
configuration.3 Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt�2, Xt�1) = P(Xt|Xt�R, . . . ,Xt�2, Xt�1) .

For any finite and nonzero temperature T , Ref. [50, Eqs. (84)� (91)] shows that P(N,T ) has Markov order N . One
concludes that su�cient information for generation is contained in the configuration of the N previously generated

3More precisely, we mean that an ensemble of simulators must be able to yield an ensemble of configurations that agree (conditioned
on that past) with the process’ configuration distribution.
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Figure 2.1: (a) Left: Even Process ✏-machine. Right: Schematic of simultaneous generation
problem. Each black box contains an Even Process generator. They all share the same
memory for tracking the individual generator states. (b) Alternative HMMs: Even Process
generators, each with di↵erent memory costs. Top: Unifilar HMMs, since for every state
and symbol there is at most one outgoing edge from that state emitting that symbol.
Below: Nonunifilar HMM, since for example state G can go to di↵erent states G or H

emitting symbol 0.

H(S)?

A unifilar HMM is one in which each row of each substochastic matrix has at most

one nonzero element. Informally, this means the current state and next symbol uniquely

determine the next state. Many statistical and informational quantities can be calculated

in closed form from a process’s unifilar HMM; see Ref. [80] and discussion therein. For

example, in Fig. 2.1b the top two HMMs are unifilar and the bottom one is nonunifilar.

For a given process, finding the optimal HMM for simultaneous generation—an HMM

with minimum state-entropy H(S)—in the space of all HMMs is still an open question.

Restricting to the space of unifilar HMMs, though, the optimal HMM can be found. It

is the ✏-machine [22], first introduced in Ref. [56]. ✏-Machine states S are called causal

states. Due to ✏-machine’s unifilarity property, every generated past uniquely maps to a

causal state. A process’ statistical complexity Cµ [22] is the the Shannon entropy of the

✏-machine’s stationary state distribution: Cµ = H(S) = �
P

�2S Pr(�) log2 Pr(�). And,
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this is the required memory for simultaneous generation.

Attempts have been made to find smaller models among nonunifilar HMMs [57]. As

of now, though, only a handful of examples exist [57–59, 81]. Practically speaking, the

✏-machine is the most memory-e�cient algorithm for generating stochastic processes. Its

memory Cµ has been determined for a wide range of physical systems [82–88]. Helpfully, it

and companion informational measures are directly calculable from the ✏-machine, many

in closed-form [80].

We denote the process generated by the physical system with Hamiltonian Eq. (2.3)

at temperature T by P(N, T ). How do we construct the ✏-machine that simulates the

process P(N, T )? First, we must define process’ Markov order [77]: the minimum history

length R required by any simulator to correctly continue a configuration. Specifically, R is

the smallest integer such that:

P(Xt| . . . , Xt�2, Xt�1) = P(Xt|Xt�R, . . . , Xt�2, Xt�1) . (2.4)

[More precisely, an ensemble of simulators must yield an ensemble of configurations that

agree (conditioned on that past) with the process’ configuration distribution.]

Reference [1, Eqs. (84) � (91)] showed that for any finite and nonzero temperature T ,

P(N, T ) has Markov order N . One concludes that su�cient information for generation is

contained in the configuration of the N previously generated spins. (Figure 2.2a shows this

fact schematically for N = 2.) More importantly, the ✏-machine that simulates P(N, T )

has 2N causal states and those states are in one-to-one correspondence with the set of

length-N spin configurations.

Second, another key process characteristic is its cryptic order [89, 90]: the smallest

integer K such that H[SK |X0X1 . . .] = 0, where H[W |Z] is the conditional entropy [21]

and SK is the random variable for K
th state of the ✏-machine after generating symbols

X0, X1 . . .. Using the fact that the ✏-machine’s states are in one-to-one correspondence

with the set of length-N spin configurations [1], it is easy to see that P(N, T )’s cryptic order

K = N , the Markov order. We will use this fact in the quantum algorithm construction

to follow.

Figure 2.2b shows the ✏-machines of the processes P(N, T ) for N = 1, 2, and 3. Let’s
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explain. First, consider the spin process P(1, T ) that, as we pointed out, is a Markov-order

R = 1 process. This means to generate the process the simulator only need remember the

last spin generated. In turn, this means the ✏-machine (Fig. 2.2b left) has two states, "

and #. If the last observed spin is ", the current state is " and if it is #, the current state

is #. We denote the probability of generating a # spin given a previous generated " spin

by p
###
""". The probability of an " spin following a " spin is the complement.

Second, consider the process P(2, T ) with Markov-order R = 2 and so longer-range

interactions. Su�cient information for generation is contained in the configuration of the

two previously generated spins. Thus, the ✏-machine (Fig. 2.2b middle) has four states

that we naturally label "", "#, #", and ##. If the last observed spin pair x�1x0 is "#, the

current state is "#. Given this state, the next spin will be " with probability p
"""
"#"#"# and # with

probability p
###
"#"#"#. Note that this scheme implies that each state has exactly two outgoing

transitions. That is, not all state-to-state transitions are allowed in the ✏-machine.

Having identified the state space, to complete the ✏-machine construction we determine

the ✏-machine transition probabilities {T
(x)}x2A. To do this, we first compute the transfer

matrix V for the Ising N -nearest neighbors with the Hamiltonian in Eq. (2.3) at temperature

T and then extract conditional probabilities, following Ref. [1]. (See the Method section

following for details.) The minimum memory for simultaneous generation or, as it is called,

the statistical complexity Cµ(N, T ) of process P(N, T ) follows straightforwardly from the

process’ ✏-machine.

2.4.2 Quantum Simulator

By studying a specific process (similar to the ✏-machine in left of Fig. 2.2b), Ref. [8]

recently demonstrated that quantum mechanics can generate stochastic processes using

less memory than Cµ. This motivates a search for more e�cient quantum simulators of

processes with richer correlational structure.

A process’ quantum simulator is a pair {f, M}, where f : A1 ! ⌦ is a function from

the set A1 of past sequences to a set of quantum states ⌦ and M is some measurement

process. Given a particular past x�1:0, applying the measurement M to the quantum

state f(x�1:0) leads to a correct probability distribution over future P(x0:n|x�1:0). If

20



Independent Su�cient Next

X�7 X�6 X�5 X�4 X�3 X�2 X�1 X0 X1 X2

(a)

"" "#

## #"

"

#

###

"##

##"

#"# "#"

""#

#""

"""

p���
������

p���
������

p���
������

p���
������

p���
������

p���
������

p���
������

p���
������

p���
���

p���
���

p���
���

p���
��� p���

���������

p���
���������

p���
��������� p���

���������

p���
���������

p���
���������

p���
���������

p���
���������

p���
���������

p���
���������

p���
���������

p���
���������

p���
��������� p���

���������

p���
���������

p���
���������

(b)

Figure 2.2: (a) A Markov order-N process generates a spin configuration from left-to-right.
Markov order N = 2 shown. The values of an isolated spin S0, say, is undetermined.
To make this (stochastic) choice consistent with the overall process and the particular
instantiation on the left, it is su�cient to consider only the previous N (2) spins (highlighted
in green). (b) ✏-Machine generators of 1D-configuration stochastic processes in Dyson-
Ising systems of increasing correlational complexity (N = 1, 2, 3): P(1, T ) (left), P(2, T )
(middle) and P(3, T ) (right).

f(·) is a deterministic function, the simulator is called unifilar and if f is probabilistic

function, the simulator is called nonunifilar. After generating x0:n, the new past is x�1:n

and f can be used to map it to the new quantum state f(x�1:n). By repeating the same

measurement and mapping procedure, we generate a realization of the process. One can

also define quantum simulator in a way that M automatically maps f(x�1:0) to the

correct quantum state f(x�1:n) and generates the correct probability distribution over

x0:n [2].

Reference [12] introduced a class of unifilar simulators, called q-machines, that can

generate arbitrary processes. As in the classical setting, nonunifilar quantum simulators

are much less well understood [60, 61, 81]. The q-machine construction depends on an
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encoding length L, each with its own quantum cost Cq(L). Each of these simulators

simulate the same process correctly. It is known that the cost Cq(L) is constant beyond

the process’ cryptic order [90]. Based on numerical evidence, it is conjectured that this is

also the minimal Cq value. Thus, we restrict ourselves to this choice (L = K) of encoding

length and refer simply to the q-machine and its cost Cq.

The q-machine’s quantum memory Cq is upper-bounded by Cµ, with equality only

for the special class of zero-cryptic-order processes [90]. And so, Cµ/Cq gives us our

quantitative measure of quantum advantage.

Reference [13] recently introduced e�cient methods for calculating Cq using spectral

decomposition. Those results strongly suggest that the q-machine is the most memory-

e�cient among all unifilar quantum simulators, but as yet there is no proof. The quantum

advantage Cµ/Cq has been investigated both analytically [2,10,12,13,15] and experimentally

[17].

A process’ q-machine is straightforward to construct from its ✏-machine. First, since

the ✏-machine is unifilar, every generated past realization maps to a unique causal state.

Second, every causal state �i maps to a pure quantum state |⌘ii. Using these two maps

we can map every generated past realization uniquely to a quantum state. Each signal

state |⌘ii encodes the set of length-K (cryptic order) sequences that may follow �i, as well

as each corresponding conditional probability:

|⌘ii ⌘
X

w2AK

X

�j2S

q
P(w, �j|�i) |wi |�ji , (2.5)

where w denotes a length-K sequence and P(w, �j|�i) = P(X0 · · · XK�1 = w, SK�1 =

�j|S0 = �i). The resulting Hilbert space is the product Hw ⌦ H�. Factor space H� is of

size |S|, the number of classical causal states, with basis elements |�ii. Factor space Hw is

of size |A|K , the number of length-K sequences, with basis elements |wi = |x0i · · · |xK�1i.

Performing a projective measurement in the |wi |�i basis results in a correct probability

distribution. After generation of a particular realization by measurement, the next

corresponding quantum state can be indicated uniquely. This means we can repeat the

measurement process and continue generating the process.
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Now, let us return to simultaneous generation where the goal is to generate M process

realizations simultaneously where each is statistically independent of the others. As before,

we have M q-machines as in Fig. 2.1a. Also similar to the classical setting, we can reduce

the amount of required memory by having the q-machines use a single shared memory.

According to quantum coding theorem, we can encode the HMM states to reduce the

amount of memory to MS(⇢) qubits where S(·) is von Neumann entropy and ⇢ is the

density matrix defined by:

⇢ =
X

i

⇡i |⌘ii h⌘i| . (2.6)

As a result, each q-machine needs Cq = S(⇢) qubits of memory for simultaneous generation.

(a) (b)

Figure 2.3: (a) Classical memory Cµ(N, T ) required for simulating process P(N, T ) for
interaction ranges N = 1, . . . , 6, a range of temperatures T = 1, . . . , 50, and � = 2. Note
Cµ(·) is an increasing function of N and T . (b) Rescaling the classical memory requirement
Cµ(N, T ) to (N � Cµ)/(N � 1) shows a tight data collapse, which is especially strong at
high temperatures (T > 2). The asymptotic behavior is a power-law with scaling exponent
� = 2. The inset zooms in to show Cµ’s convergence with increasing N . While the figure
shows the case � = 2, the slope � at high T is independent of �.

2.5 Simulation of Dyson Chain

We begin by considering the case where spin couplings decay with exponent � = 2.

Figure 2.3a displays Cµ(N, T ) and Fig. 2.4a displays Cq(N, T )—the Cµ and Cq of processes
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P(N, T )—versus T for interaction ranges N = 1, . . . , 6. The most striking feature is that

the classical and quantum memory requirements exhibit qualitatively di↵erent behaviors.

The classical memory increases with T , saturating at Cµ = N , since all transitions

become equally likely at high temperature. As a result there are 2N equally probable

causal states and this means one needs N bits of memory to store the system’s current

state. For example, in the nearest-neighbor Ising model (process P(1, T )) high temperature

makes spin-" and spin-#, and thus the corresponding states, equally likely. [At T = 1

these processes have only a single causal state and thus Cµ = 0. This is a well known

discontinuity that derives from the sudden predictive-equivalence of all of the causal states

there.]

Also, in the low-temperature limit, this system is known to yield one of only two

equally likely configurations—all spin-" or all spin-#. In other words, at low temperature

p
###
""" and p

"""
### converge to zero, while p

"""
""" and p

###
### converge to one. [It should be pointed out

that at any finite temperature p
###
""" and p

"""
### are nonzero and, therefore, the ✏-machine states

remains strongly-connected.] This is reflected in the convergence of all curves at Cµ = 1

bit. Equivalently, this means one needs only a single bit of memory to store the current

state.

We can similarly understand the qualitative behavior of Cq(N, T ) for a fixed N . As

temperature increases, all length-N signal states become equivalent. This is the same as

saying that all length-N spin configurations become equally likely. As a consequence, the

signal states approach one another and, thus, Cq(N, T ) converges to zero.

In the low temperature limit, the two N -" and N -# configurations are distinguished by

the high likelihood of neighboring spins being of like type. This leads to a von Neumann

entropy (Cq) of S(⇢) = 1 qubit.

Figure 2.3a reveals strong similarities in the form of Cµ(T ) at di↵erent N . A simple

linear scaling leads to a substantial data collapse, shown in Fig. 2.3b. The scaled curves

(N � Cµ)/(N � 1) exhibit power-law behavior in T for T > 2. Increasing the temperature

to T = 300 (beyond the scale in Fig. 2.3b) numerical estimates from simulations indicate

that this scaling is given by � ' 2.000. The scaling determines how the classical memory
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saturates at high temperature.

This behavior is generic for di↵erent coupling decay values � > 1 and, more to the

point, the scaling is independent of �. We do not consider � < 1, where the system energy

becomes nonextensive.

(a) (b)

Figure 2.4: (a) Cq(·) is an increasing function of N , but a decreasing function of T and
bounded by 1 qubit, independent of N and T . Quantum memory Cq(N, T ), similar to
Cµ(N, T ), shows a data collapse in N that is especially tight at high temperature (T > 2).
The asymptotic behavior is a power-law with numerically estimated scaling exponent
↵ = 2. (Red dashed line.) The lower inset zooms to highlight convergence with increasing
N . Though the curves are for the case with � = 2, the slope ↵ at high T is independent
of T . (b) Magnetic field e↵ects on classical Cµ(N, T ) and quantum Cq(N, T ) memory

requirements for simulating the processes generated by Hamiltonian bHN for N = 1, . . . , 6
over a range of temperatures T = 1, . . . , 10 at B = 0.3. Cq(N, T ) curves are those under
the dashed blue line.

Now, we can analyze the decrease in Cq with temperature. Figure 2.4a shows that Cq

is also a power-law in T . By measuring this scaling exponent in the same way as above,

we determined that ↵ ' 2.000. Furthermore, we find analytically that for high T :

Cq(N, T ) / log2(T )

T 2
. (2.7)

To see this, first consider nearest-neighbor coupling N = 1. Due to symmetry we have

p ⌘ Pr(" | ") = Pr(# | #) = F/D, where F = exp (�J) and D = exp (�J) +
p

exp (�2�J)

with � = 1/T . At high temperature � is small and we have D = 2+�
2 and F = 1+� +�

2.
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Again, by symmetry we have ⇡1 = ⇡2 = 1/2 and, therefore, the density matrix in Eq. (2.6)

is:

⇢ =

0

BBB@

1/2
p

p(1 � p)

p
p(1 � p) 1/2

1

CCCA
, (2.8)

which has two eigenvalues: �
2
/4 and 1 � �

2
/4. As a consequence Cq, being ⇢’s von

Neumann entropy, is:

Cq = S(⇢) ' �
✓

�
2

4
log2

�
2

4
+

✓
1 � �

2

4

◆
log2

✓
1 � �

2

4

◆◆
' log2 (T )

2T 2
. (2.9)

Examining the numerator, for any r > 0 we have log2 (T ) < T
r. So, for large T :

1

T 2
<

log2 (T )

T 2
<

1

T 2�r
, (2.10)

for all r > 0. This explains the fat tails of Cq for large T and establishes that for N = 1

the scaling exponent is ↵ = 2.

Increasing the temperature the link between spins weakens. At high temperature the

only important neighbor is the nearest. As a consequence, the high temperature behavior

is similar to the case of N = 1 and, in addition, it is independent of N . This verifies and

adds detail to our numerical estimate.

This behavior is generic for di↵erent coupling decay values � > 1 and, moreover, the

scaling exponent ↵ is independent of �. Notably, in this case no rescaling is required.

The exponent directly captures the extreme compactness of high-temperature quantum

simulations.

Taking these results together, we can now appreciate the substantial relative advantage

of quantum versus classical simulators.

Define the quantum advantage ⌘ as the ratio of the minimum required memory for the

classical simulation to the minimum required memory for the quantum simulation:

⌘(N, T ) ⌘ Cµ(N, T )/Cq(N, T ) . (2.11)

For fixed temperature T ' 2, Cµ(N, T ) is approximately linear in N and for a fixed N

is approximately independent of T . As a consequence, the asymptotic quantum advantage
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is:

⌘(N, T ) / N
T

2

log2(T )
, (2.12)

which scales faster than any T
r for r < 2. Thus, the answer to our motivating question is

that the quantum advantage does, in fact, display scaling: it increases with interaction

range N and also increases strongly with temperature T .

Up to this point we focused on finite interaction-range systems, interpreting the chosen

models as a family of approximations to the Dyson model. Consider, though, Dyson’s

original spin chain [63] which has infinite-range interactions. In this case, the classical

memory cost of simulation diverges: limN!1 Cµ(N, T ) ! 1. That is, it is impossible

to simulate the Dyson model classically. In contrast, quantum memory cost is finite—

limN!1 Cq(N, T ) < 1 qubit—and so it can be simulated quantally. There is perhaps no

clearer statement of quantum advantage.

Naturally, one might ask how our results are modified by the presence of an exter-

nal magnetic field. Consider the one-dimensional ferromagnetic Ising spin chain with

Hamiltonian:

bHN = �
X

i

NX

k=1

J0

k�
sisi+k �

X

i

Bsi . (2.13)

Figure 2.4b shows that, due to symmetry breaking at low temperature, both Cq(N, T )

and Cµ(N, T ) converge to zero. (All spins at low temperature align with magnetic field

and, as a consequence, no memory is needed.) The high temperature behaviors for both

memory costs are the same as before, though, and the quantum advantage remains the

same.

2.6 Conclusions

It is notoriously hard to find quantum advantage and even harder to prove [91]. We found

such an advantage in the realm of stochastic process simulation. Concretely, we analyzed

the N -nearest neighbor Ising spin system and demonstrated that its quantum advantage

displays a generic scaling behavior—quadratic in temperature and linear in interaction

range. What does this mean? The most striking conclusion is that a strongly interacting
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classical system can be simulated with unbounded quantum advantage. One stark contrast

is that it is impossible to classically simulate Dyson’s original spin chain while quantum

simulators can do so and with finite memory cost.

How broadly might we expect to see this quantum advantage? Or, is it merely a feature

of strongly coupled spin systems? Define a universal spin model as one that can simulate

any other spin model. That is, by using the low-energy sector of such universal models, the

physics of every classical spin model can be reproduced. Recently, Ref. [92] showed that

the 2D Ising model with external fields is universal in this sense. This suggests that the

quantum advantage described here may not be limited to the particular spin system we

consider, but might also be universal. As a result, one should expect to see the quantum

advantage for other physical systems.

The Ising model has lent great insight to condensed matter physics, however it is a

classical model. Given that we are examining the di↵erence between classical and quantum

simulators, it is natural to wonder about this di↵erence in the context of a truly quantum

Hamiltonian. Is the quantum advantage amplified? Are there systems for which we find

no quantum advantage? And, is this their defining characteristic?

Here, we studied the cost of exact simulation of stochastic processes. Both classical

and quantum costs, though, can be very di↵erent when approximation is allowed. For

example, at high (but finite) temperature, we can approximate the process P(N, T ) as

independent, identically distribution (IID). One does not require any classical or quantum

memory to generate an IID process and, as a result, there would be no quantum advantage.

Apparently, the di↵erence between required classical memory for exact simulation and

approximate simulation can be quite large. In contrast, the price we pay to go from

approximate to exact quantum simulation is relatively small.

2.7 Appendix

We show how to construct the ✏-machine simulator of the process P(N, T ), following

Ref. [93]. Consider a block of spins of length 2N , divided equally into two blocks. We

denote spins in the left (L) and right (R) halves by: s
L
i and s

R
i for i = 1, . . . , N , respectively.
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We map the left and right block configurations each to an integer ⌘⇤ by:

⌘⇤ =
NX

i=1

✓
s
⇤
i + 1

2

◆
2i�1

, (2.14)

where ⇤ can be either L or R. For each block we can have 2N di↵erent configurations.

Consequently, the label ⌘⇤ varies between 0 and 2N � 1. The internal energy of a given

block with configuration ⌘⇤ is given by:

X⌘⇤ = �B

NX

i=1

s
⇤
i �

N�1X

i=1

N�iX

k=1

Jis
⇤
ks

⇤
k+i , (2.15)

and the interaction energy between two blocks is:

Y⌘L,⌘R = �
NX

i=1

iX

k=1

Jis
L
N�k+1s

R
k . (2.16)

With these we construct the transfer matrix:

V⌘L,⌘R = e
�(1/2X⌘L+Y⌘L,⌘R+1/2X⌘R )/T

. (2.17)

The right eigenvector of V corresponding to the largest eigenvalue is denoted by u.

Reference [1] shows that the ✏-machine labeled-transition matrices can be written as:

T
(x)
⌘0,⌘1 =

8
><

>:

1
�V⌘0,⌘1

u⌘1
u⌘0

, ⌘1 =
�
b⌘0

2 c + x(2N�1)
�

0, otherwise
, (2.18)

where x 2 {0, 1}, 0 for spin down and 1 for spin up. Then, the ✏-machine simulator of

P(N, T ) is
�
S, A, {T

(x)}x2A
 
, where A = {0, 1} and S = {i : 0  i  2N � 1}.
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Chapter 3

The Ambiguity of Simplicity in

Quantum and Classical Simulation

3.1 Overview

A system’s perceived simplicity depends on whether it is represented classically or quantally.

This is not so surprising, as classical and quantum physics are descriptive frameworks built

on di↵erent assumptions that capture, emphasize, and express di↵erent properties and

mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the

relative simplicity between two systems can change sign when moving between classical and

quantum descriptions. Here, we examine the minimum required memory for simulation.

We see that the notions of absolute physical simplicity at best form a partial, not a total,

order. This suggests that appeals to principles of physical simplicity, via Ockham’s Razor

or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid

progress in quantum computation and quantum simulation suggest that the ambiguity of

simplicity will strongly impact statistical inference and, in particular, model selection.

3.2 Introduction

Beyond his theory of gravitation, development of the calculus, and pioneering work in

optics, Newton engendered a critical abstract transition that has resonated down through

the centuries, guiding and even accelerating science’s growth: Physics began to perceive

the world as one subject to concise mathematical Laws. Above, Newton suggests that
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these Laws are not only a correct perception but they are also simple. Consequently, one

should abandon the Ptolemaic epicycles for Newton’s elegant F = ma and Fg / m1m2/r
2.

The desire for simplicity in a theory naturally leads us to consider simplicity as

a means for comparing alternative theories. Here, we compare the parsimony of two

descriptions of stochastic processes—one classical and one quantum. Classical versus

quantum comparisons have, of late, captured our attention both for reasons of principle

and of experiment. Quantum supremacy holds that quantum systems behave in ways

beyond those that can be e�ciently simulated by classical computers [94]. A single cold 2D

Fermi gas supports coexistence of both quantum mechanical states at its core and classical

states on its periphery [95, 96]. The overriding impression is that now is an interesting

time for the foundations of quantum mechanics. The following adds a new phenomenon to

these debates on the balance of classical and quantum theories, as concerns the simplicity

of their descriptions.

To start, we consider a Nature full of stationary stochastic processes. A theory,

then, is a mathematical object capable of yielding a process’ probabilities. We can

straightforwardly say that one process is more random than another via comparing their

temperatures or thermodynamic entropies. But how to compare them in terms of their

structural simplicities? We make use of a well developed measure of simplicity in stochastic

processes—the statistical complexity—a measure of internal memory [56] or the minimum

required memory to simulate a process. It provides a concrete and interpretable answer to

the question, which process is structurally simpler? By applying this comparison, we may

order all processes from the simplest to the most complicated [97].

With recent progress in quantum computation [98–100], an interesting twist comes

about if we add quantum mechanics to our modeling toolbox. Descriptions that act on a

quantum substrate o↵er new and surprising options. For example, it was shown that a

quantum mechanical description can lead to a simpler representation [2, 8, 12,13,60] and

even in some cases infinitely simpler [11,14]. Recently, this quantum advantage was verified

experimentally [17]. Proceeding with these methods, we discover what is most surprising:

the relative simplicity of classical and quantum descriptions can change. Specifically, there
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are stochastic processes, A and B, for which classical theory says A is simpler than B,

but quantum mechanics says B is simpler than A. What started out as a neat classical

array is upended by a new quantum simplicity order. This means quantizing a simple

classical model may not be as simple as quantizing a more complicated classical model. As

a consequence model selection is complicated by the addition of a quantum model class.

3.3 Classical and Quantum Simplicity

We consider stationary, ergodic processes: each a bi-infinite sequence of random variables

X�1:1 = . . . X�2X�1X0X1X2 . . . where each random variable Xt takes some value xt in a

discrete alphabet set A and where all probabilities P(Xt, . . . , Xt+L) are time-invariant.

How is their degree of randomness quantified? Information theory [21] measures the un-

certainty in a single observation X0 via the Shannon entropy : H[X0] = �
P

x2A P(x) log2 P(x)

and the irreducible uncertainty per observation via the entropy rate [101]: hµ = limL!1 H[X0:L]/L.

If we interpret the left half X�1:0 = . . . X�2X�1 as the “past” and the right half

X0:1 = X0X1X2 . . . as the “future”, we see that the entropy rate is the average un-

certainty in the next observable given the entire past: hµ = H[X0|X�1:0]. Thus, as we

take into account past correlations, the naive uncertainty H[X0] reduces to hµ.

How reducible is our uncertainty in the future X0:1 knowing the past X�1:0? The

answer is given by the mutual information between the past and the future—the excess

entropy [102]: E = I[X�1:0 : X0:1]. With hµ and E, we measure randomness and

predictability, respectively.

Let’s say we want to simulate a given process. To do this we write a computer code that

follows an algorithm and allocate the memory the algorithm needs. For a given process

computational mechanics [22] identifies the optimal algorithm—the process’ ✏-machine.

This is a unifilar hidden Markov model [103] that uses only the minimum required memory

for simulation. We view a process’ ✏-machine as the “theory” of a process in that it specifies

a mechanism that exactly simulates a process’ behaviors. In this way, computational

mechanics supplements E and hµ with a measure of structure—the minimum required

amount memory to simulate the given process.
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The ✏-machine consists of causal states � 2 S defined by an equivalence relation ⇠ that

groups histories, say x�1:t and x�1:t0 , that lead to the same future predictions P(Xt:1|·):

x�1:t ⇠ x�1:t0 () P(Xt:1|x�1:t) = P(Xt0:1|x�1:t0). From this, one concludes that a

process’ ✏-machine is, in a well defined sense, its simplest predictive theory.

Translating this notion of simplicity into a measurable quantity, we ask: What is the

minimum memory necessary to implement optimal prediction? The answer is the historical

information stored in the ✏-machine. Quantitatively, this is the Shannon entropy of the

causal-state stationary distribution {⇡�}, the statistical complexity :

Cµ = H[S] = �
X

�2S
⇡� log2 ⇡� , (3.1)

It is well known that the excess entropy is a lower-bound on this structural measure:

E  Cµ. In fact, this relation is only rarely an equality [104]. And so, while E quantifies

the amount to which a process is subject to explanation by its ✏-machine “theory”, this

simplest theory is typically larger, informationally speaking (Cµ), than the predictability

benefit it confers. That said, the ✏-machine is the best (simplest) theory. Thus, we use

Cµ to define our notion of classical simplicity. It provides an interpretable ordering of

processes—process A is simpler than process B when C
A
µ < C

B
µ .

We may also consider the recently proposed quantum-machine representation of pro-

cesses [8, 12, 13]. The quantum-machine consists of a set {|⌘k(L)i} of pure signal states

that are in one-to-one correspondence with the classical causal states �k 2 S. Each

signal state |⌘k(L)i encodes the set of length-L words that may follow �k, as well as each

corresponding conditional probability. Fixing L, we construct quantum states:

|⌘j(L)i ⌘
X

wL2AL

X

�k2S

q
Pob(wL, �k|�j) |wLi |�ki , (3.2)

where w
L denotes a length-L word and P(wL

, �k|�j) = P(X0:L = w
L
, SL = �k|S0 = �j).

The resulting Hilbert space is the product Hw ⌦ H�. Factor space H� is of size |S|, the

number of classical causal states, with basis elements |�ki. Factor space Hw is of size |A|L,

with basis elements |wLi = |x0i · · · |xL�1i.

33



The quantum measure of memory is the von Neumann entropy of the stationary state:

Cq = � Tr (⇢ log ⇢) , (3.3)

where ⇢ =
P

i ⇡i |⌘ii h⌘i|. This quantum analog of memory is generically less than the

classical: Cq  Cµ. Also, due to the Holevo bound [8, 105], E  Cq. Though rare in

process space, the classical and quantum informational sizes are equal exactly when both

models are “maximally simple” : E = Cq = Cµ.

3.4 Ising Chain Simplicity

The Ising spin-chain Hamiltonian is given by:

H = �
X

<i,j>

(Jsisj + bsi) , (3.4)

where si, the spin at site i, takes values
�

� 1, +1
 
, J is the nearest-neighbor spin coupling

constant, and b is the strength of the external magnetic field.

In equilibrium the bi-infinite chain of spin random variables defines a stationary stochas-

tic process which has been analyzed using computational mechanics [106]. Importantly,

spins obey a conditional independence: P(X0:1|x�1:0) = P(X0:1|x0). That is, the “future”

spins (right half) depend not on the entire past (left half) but only on the most recent spin

x0. The conclusion (see Appendix) is that the two-state Markov chain process is minimally

represented by the ✏-machine in Fig. 3.1. Using Eq. (3.1), the statistical complexity is

directly calculated as a function of p and q. Figure 3.2 shows that Cµ is a monotonically

increasing function of temperature T : 1 � Cµ / T
�2 at high T . In particular, for the three

processes chosen at temperatures T↵ < T� < T�, C
↵
µ < C

�
µ < C

�
µ.

Consider now the quantum representation of these spin configurations. Each causal

state is mapped to a pure quantum state that resides in a spin one-half space [2]:

|�1i =
p

p |"i +
p

1 � p |#i

|�2i =
p

1 � q |"i +
p

q |#i . (3.5)

(We use a more compact spin up/down notation, rather than the quantum machine

notation of Eq. (3.2).) Intuitively, the quantum overlap accounts for the fact that the
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�1 �2" :p

# :1 � p

" :1 � q

# :q

Figure 3.1: The ✏-machine for the nearest-neighbor Ising spin chain has two causal states
�1 and �2. If the last observed spin x0 is up (s0 = +1) the current state is �1 and if it’s
down (s0 = �1) is �2. If the current state is �1, with probability p the next spin observed
is up and, if the current state is �2, with probability q the next spin observed is down.

conditional predictions P(X0:1|�1) and P(X0:1|�2) share some subset of future outcomes.

The density matrix is then:

⇢ = ⇡1 |�1i h�1| + ⇡2 |�2i h�2| . (3.6)

Computing the quantum analog Cq = � Tr (⇢ log ⇢) as a function of temperature, Fig. 3.2

shows that this quantum size is generically well below the classical size Cµ. Thus, the

quantum theory for the Ising chain is simpler than the classical: C
↵
q < C

↵
µ , C

�
q < C

�
µ , and

C
�
q < C

�
µ. Given the nature of progress in quantum information and computation [19,107],

it is notable, but perhaps no longer so surprising, that there exists such a quantum

representational advantage.

3.5 Ambiguity of Simplicity

Absolute sizes aside, what can we say about the associated process rankings? How does

the notion of “simpler” survive the transition from classical to quantum description?

Observe (Fig. 3.2) that, unlike the classical measure Cµ, the quantum simplicity

Cq is not monotonic in temperature: C
↵
q < C

�
q < C

�
q . Moreover, the maximum Cq

occurs at temperature TCq ' 1.63 while the excess entropy is maximized at temperature

TE ' 1.53. These straightforward observations provide the kernel of several counterintuitive

consequences.

First, what is the consequence of nonmonotonicity? Take the processes ↵ and � in

Fig. 3.2. Classically and quantally, ↵ is simpler than �. In contrast, the ranking of

processes � and � changes, C
�
µ < C

�
µ and C

�
q > C

�
q .

In this way, even the familiar 1D Ising spin chain illustrates what is a general

phenomenon—the ambiguity of simplicity. How general? Consider two generic pro-
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Figure 3.2: Classical and quantum measures of Ising chain simplicity: Statistical complexity
Cµ, quantum state complexity Cq, and excess entropy E versus temperature T in units
of J/kB at b = 0.3 and J = 1. (Cµ(T ) and E(T ) after Ref. [1] and Cq(T ) after Ref. [2].)
Three particular spin processes are highlighted ↵, �, and � at temperatures T↵, T� , and T�.

cesses A and B, for which no change in ranking occurs under the quantum lens. This

indicates a consistency between the two representational viewpoints, at least with respect

to processes A and B: C
A
µ > C

B
µ and C

A
q > C

B
q . Figure 3.3(left) illustrates this circum-

stance. It can also be the case that the simplicity ranking of A and B changes when

moving from classical to quantum representation. We refer to this as ambiguity. See

Fig. 3.3(right). One concludes that the basic question—“Which process is simpler?”—no

longer has a well defined answer.

How generic are consistency and ambiguity in the Ising spin chain parameter space?

In Fig. 3.4 we construct an ambiguity diagram that compares all pairs of processes at

temperatures T1 and T2 in the range [0, 5]. There, we fix the magnetic field b = 0.3 and

coupling constant J = 1. We find that the only consistent pairs are those within a shrinking

envelope around the axes (T1 = 0 and T2 = 0). The bulk of parameter space, then, contains

ambiguously ranked pairs. The singular feature of the diagram is the leftmost point along
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Figure 3.3: (left) Classical and quantum rankings provide a consistent interpretation of
which process is simpler. (right) Rankings reverse. And so, the question of simplicity is
ambiguous.

the boundary between the two regimes. This occurs at the temperature TCq ' 1.63 where

we find the maximum value of Cq. Monotonicity of Cµ ensures that the transition between

consistency and ambiguity depends on a reordering of Cq (not Cµ) values.

A notable case occurs when b = 0: there is no external-field induced symmetry-

breaking. As a consequence, Cµ = 1 for all temperatures and Cq is a decreasing function

of temperature. This means that, for every pair of temperatures, we are at the border line

of ambiguity. Classically they are as simple as each other, but quantally the system at the

higher temperature is simpler.

3.6 Robustness of ambiguity

One may object that this ambiguity is merely an artifact of the particular quantum

construction or its size measure Cq. This is a valid concern, especially since minimality

of this (or any other quantum representation) has not been established. Critically, the

essence of ambiguity does not depend on this contingency, as we now show.

Denote by fCq the memory measure of an optimal quantum model1 eQ built according

1The quantum model with minimum Von Neumann entropy over it’s states.
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Figure 3.4: Ambiguity diagram for Ising spin chain: Each point corresponds to a pair of
Ising spin chains at temperatures T1 and T2 with J = 1 and b = 0.3. Given the inherent
symmetry, the figure shows only half of the T1 ⇥ T2 square. Consistency is found near
the (T = 0) axes, while ambiguity dominates the remainder of parameter space. Curved
boundary between these two regions ends at a temperature corresponding to max(Cq):
TCq ' 1.63 (marked as a red dash).

to some hypothetical, quantum scheme. Since fCq, like Cq, is also bounded between E

and Cµ [8, 105], we can define su�cient criteria for consistency and ambiguity between fCq

and Cµ. We assume that the hypothetical model eQ is no less e�cient than the original

quantum-machine: fCq  Cq.

Assume that for processes A and B, B is classically simpler. Then, the stronger

criterion EA
> C

B
q ensures that any eQ must yield consistency in rankings and is therefore,

what we call, certainly consistent. See Fig. 3.5(left). Similarly, if EB
> C

A
q , we know that

any eQ must yield an ambiguous ordering and is certainly ambiguous. See Fig. 3.5(right).

Figure 3.6 illustrates these stricter relations within the same Ising parameter region;

compare Fig. 3.4. The central region does not satisfy either strict constraint. As expected,

the certainly consistent (ambiguous) area is a proper subset of the consistent (ambiguous)

area.

One concludes that no matter what future improvements may be found in quantum
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representations, these “certain” subregions are robust. This is a strong statement about

how one can or cannot systematically rank the simplicity of systems classically and

quantally. Again, the basic Ising spin chain is su�ciently rich to illustrate these new

phenomena.

3.7 Discussion

How common is ambiguity? The Appendix shows that it is quite common in the analogous

(nearest-neighbor, ferromagnetic) two-dimensional Ising system. Perhaps, however, the

ambiguity of simplicity is special to spin systems. The Appendix establishes that it is, in

fact, a much more general phenomenon, by introducing a set of easily satisfied conditions

such that two simplicity functions over a set of structured objects must yield ambiguous

ordering. In particular, taking the space of all ✏-machines as a set and Cµ and fCq as the

two measures , we find that these conditions are satisfied. The general consequence is

that either the two measures selected are trivially equal or ambiguity must exist. In other

words, if the world is not ambiguous, quantum mechanics cannot simplify its explanation.

One concludes that ambiguity is necessary for quantum simplification.

3.8 Conclusions

The comparison of classical and quantum descriptions calls into question basic scientific

practices that rely on a belief in the simplicity of the physical world. These two worlds

disagree on simplicity ranking. Monitoring model simplicity is far from being the sole

domain of physics. It is key in a variety of statistical inference tasks, notably in model

selection [108]. Thus, the ambiguity of simplicity will have major practical consequences

in a future that relies on quantum computing instead of classical.

Imagine competing models of some finite data D. In Bayesian inference, one widely

employed methodology, choosing one model over another requires specifying a prior

probability distribution over models [109]. Such priors are commonly constructed to favor

simpler models. Indeed, there is a long history of methods that avoid overfitting to data

by incorporating simplicity measures into model selection, including Akaike’s Information

Criterion [110], Boltzmann Information Criterion [111], Minimum Description Length [112],
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Figure 3.5: Constraining hypothetical, as-yet-unknown frameworks for building quantum
models eQ: Appealing to size measures Cq and E and without knowing any further details

about eQ, we can still identify processes for which classical and quantum simplicity orderings
must certainly be consistent or ambiguous. Cases exist that fall into neither of these
stricter categories.

and Minimum Message Length [113].

Classically, we may find that model A is simpler than B and increase its prior accordingly.

Given that the two likelihoods P(D|A) and P(D|B) are similar enough, our inference

identifies A as preferred. As we showed, the tables may turn dramatically when evaluating

quantum models; we might find there that B is much simpler. We must then reconcile the

fact that the quantum lens reveals a di↵erent answer.

We introduced the ambiguity of simplicity focusing on classical and quantum descrip-

tions of classical processes. Quantum supremacy [94] suggests we go further to explore

how (and if) ambiguity manifests when modeling quantum processes. This can be probed

in the 1D quantum Heisenberg spin chain [67], for example. Measuring each spin in the
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Figure 3.6: Certain ambiguity diagram: Each point corresponds to a pair of Ising spin
chains at temperatures T1 and T2 with J = 1 and b = 0.3. Dashed line marks Fig.
3.4’s consitent-ambiguous border. Certainly consistent (ambiguous) is a proper subset
of consistent (ambiguous). Local extrema of max(E) and Cq = max(E) along the new
boundaries are marked with short blue lines at the corresponding temperatures. Long red
lines mark the same values as in Fig. 3.4.

z-direction yields a stochastic process—one that can be described classically or quantally.

The Heisenberg spin chain is realized experimentally in the quasi-1D magnetic order found

in antiferromagnetic KCuF3 crystals [114–116]. One can then adapt the methods of 1D

chaotic crystallography [88] to extract the ✏-machine and quantum-machine descriptions of

the quantum crystalline structure from scattering measurements. These and perhaps other

experiments will provide an entrée to analyzing the ambiguity of simplicity in quantum

systems.

3.9 Appendices

To ground the notion of simplicity, the main text couched the discussion in terms as

physical (and familiar) as possible by considering the Ising spin chain from statistical

physics [117]—a model that historically played a critical role in understanding phase

transitions [118], spin glasses [119], and lattice gasses [120]. Its impact has reached well

beyond physics, too, to ecology [121], financial economics [122], and neuroscience [123].
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Specifically, the main text focused on the one-dimensional nearest-neighbor Ising spin chain

in the thermodynamic limit, showing how it inherently contains an ambiguous simplicity

ordering. Here, we provide additional details underlying that analysis, generalize the result

to show that ambiguity also appears in the, perhaps even more familiar, 2D Ising lattice,

and finally establish the robustness of ambiguity via a theorem that lays out its most basic

conditions.

3.9.1 On Spin Chain Simplicity

Importantly, spins in the 1D chain obey a conditional independence: P(X0:1|x�1:0) =

P(X0:1|x0). That is, the “future” spins (right half) depend not on the entire past (left

half) but only on the most recent spin x0. Therefore, spin configurations resulting from the

Hamiltonian in Eq. (3.4) can be modeled by a simple two-state Markov chain consisting of

up (") and down (#) states with self-transition probabilities [106]:

p ⌘ P(" | ") = N+/D and

q ⌘ P(# | #) = N�/D ,

where N± = exp �(J ± b) and:

D = exp (�J) cosh (�b) +
q

exp (�2�J) + exp (2�J)sinh(�b)2 ,

with � = 1/(kBT ).

Calculating the ✏-machine via the causal-state equivalence relation is straightforward.

There are exactly two causal states; except when p = 1 � q where we find only one

causal state. The conclusion is that the two-state Markov chain process is minimally

represented by the ✏-machine in Fig. 3.1. Using Eq. (3.1), the statistical complexity is

directly calculated as a function of p and q:

Cµ = �
⇣ 1 � q

2 � p � q

⌘
log2

⇣ 1 � q

2 � p � q

⌘
�
⇣ 1 � p

2 � p � q

⌘
log2

⇣ 1 � p

2 � p � q

⌘
.

Figure 3.2 showed that Cµ is a monotonically increasing function of temperature T :

1 � Cµ / T
�2 at high T . In particular, for the three processes chosen at temperatures

T↵ < T� < T�:

C
↵
µ < C

�
µ < C

�
µ .
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Recall that Fig. 3.4 demonstrated that the presence of ambiguity is robust: There

exist parameter regions in which the ambiguity is stable against alternative quantum

representations—alternatives that arguably could lead to di↵erent simplicity metrics.

To address how common ambiguity is, consider ambiguity in the analogous (nearest-

neighbor, ferromagnetic) two-dimensional Ising system. To answer this question we need

to come back and look closely at the important di↵erence between Cµ and Cq. While Cq is

a smooth function of ✏-machine’s transition probabilities, this is not generally true for Cµ.

Consider Fig. 3.1 for p and q close to p = 1/2. In this case, we have a uniform distribution

over causal states and consequently Cµ ' 1. For the quantum-machine, using Eq. (3.5),

two states are very close to each other meaning h�1|�2i ' 1. The consequence is Cq ' 0.

Now, lets look at the case where p = q = 1/2. The two causal states are not distinguishable

and we only have one causal state and as a result Cµ = 0. We also have |�1i = |�2i which

leads to Cq = 0. The lesson here is that Cq smoothly tracks how distinguishable states

are, but Cµ tracks if causal states are exactly distinguished or not.

Recall that for the 1D Ising chain at high temperatures p 6= q; in particular, though

they are both are close to 1/2, they are never equal. The consequence is Cq ' 0 and Cµ = 1.

What about for the 2D Ising model? At the extreme T = 0 and for any nonzero value of

external field, the ground state will be in uniform alignment with the field. This means

that any random variable constructed from spin variables must have vanishing entropy.

Lacking a complete computational mechanics of structure in two-dimensional patterns

(though see Ref. [106,124]), it is still clear that any analog of statistical complexity (and

thereby Cq) will vanish at T = 0 for such uniform configurations.

At very high T , though, spins become increasingly uncorrelated and the configurational

conditional probability distribution associated with each causal state approaches uniformity,

but as a set the distributions remain distinct. That is, for any su�ciently high finite

temperature, the system has some, perhaps weak, correlation that keeps the distributions

from becoming identical. In other words, causal states in this regime remain probabilistically

distinct. So, as with the 1D case, at very high temperature (T � 1, but T 6= 1) Cµ(T ) is

not zero.
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What can we say about Cq in this limit? For high T � 1 spin randomness makes the

quantum states {|⌘i} (Eq. (3.2)) more and more indistinguishable. And so, their increasing

overlaps h⌘i|⌘ji ! 1, driving Cq to zero monotonically. The conclusion is that for the

2D Ising, at T ⇡ 0 and T � 1, we have the same qualitative picture for the simplicity

measures as depicted in Fig. 3.2. This brief argument says that ambiguity exists in the 2D

Ising spin model as well.

3.9.2 Ambiguity Robustness Theorem

First, we lay bare the mathematical argument and then we interpret it in terms of the

physical setting of the main text.

Consider a set of objects S and two functions over the set F1 : S ! G and F2 : S ! G.

Space G consists of elements that can be compared as follows.

If there exists s1, s2 2 S, such that F1(s1) > F1(s2) and F2(s1) < F2(s2), then we say

these functions are ambiguous over S.

We define three conditions for the set and functions.

Condition A The two functions map onto the whole space G: F1(S) = G and

F2(S) = G.

Condition B For all g 2 G there exists x 2 S such that F1(x) = F2(x) = g.

Condition C Assume � is a dense, total order on space G.

Theorem 1. Given two functions F1 and F2 that map set S to space G and satisfy

Conditions A, B, and C: No ambiguity implies that for all x 2 S, F1(x) = F2(x).

Proof. We prove the contrapositive by contradiction. Assume there exists x 2 S such that

F1(x) 6= F2(x). Without loss of generality, let F1(x) ⌫ F2(x). Since � is a dense total

order on G, there is g 2 G such that F1(x) ⌫ g ⌫ F2(x). By Condition B, there exists

y 2 S such that F1(y) = F2(y) = g. Trivially then, F1(x) ⌫ F1(y) and F2(x) � F2(y).

This demonstrates ambiguity and completes the proof.

We can interpret this in the setting of stationary processes with measures Cµ and fCq

and discuss the space of all possible quantum sizes. More specifically, consider the case

F1 = Cµ and F2 = fCq. We know that for any value y 2 R, there exists an ✏-machine with
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Cµ = fCq = E = y. This satisfies the assumption. Then, our results say that if the world is

not ambiguous, the two measures are equivalent. In other words, the quantum advantage

Cµ/
fCq requires ambiguity.
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Chapter 4

Memory Cost of Biased Sampling

4.1 Overview

We classify the rare events of structured, memoryful stochastic processes and use this to

analyze sequential and parallel generators for these events. Given a stochastic process,

we introduce a method to construct a new process whose typical realizations are a given

process’ rare events. This leads to an expression for the minimum memory required

to generate rare events. We then show that the recently discovered classical-quantum

ambiguity of simplicity also occurs when comparing the structure of process fluctuations.

4.2 Introduction

One of the most critical computations today is identifying the statistically extreme events

exhibited by large-scale complex systems. Whether in the domains of geology, finance, or

climate, or whether in natural or designed systems (earthquakes and hurricanes versus

market crashes and internet route flapping), one can argue that this class of problem

is rapidly coming to define our present scientific and technological era [125]. Success in

understanding the origins and occurrence of extreme events will have a major impact on

social infrastructure and its sustainability.

Large deviation theory [126–131] is a relatively new and key tool for analyzing a

process’ full range of statistical fluctuations. Presaged by Shannon-McMillman-Breiman

type theory in communication theory [21, 132], the mathematical development of large
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deviations was first pursued by Donsker and Varadhan [133]. In essence, it can be seen

as a refinement of the Central Limit Theorem [134] or as a generalization of Einstein’s

fluctuation theory [135,136]. Today, large deviation theory enters into physics in many

di↵erent circumstances [131]. One can also formulate statistical mechanics in the language

of large deviation theory [131,137,138]. And, it appears in abstract dynamical systems

under the rubric of the thermodynamic formalism [139].

The following analyzes the memory resources required to generate, and so study,

extreme events in structured temporal stochastic processes. It extends large deviation

theory in a constructive way that leads to exact calculations of the spectrum of fluctuations

for processes generated by finite-state hidden Markov models. Fortunately, in this setting

the generation and fluctuation problems can be simply stated. And so, we first give

a suitably informal introduction to process generators and fluctuation theory, leaving

technical results for later.

4.3 Markov Processes and Their Generators

A discrete-time, discrete-value stochastic process [3, 4] is the probability space P =
�
A1

, ⌃, P(·)
 
. Here, P(·) is the probability measure over the bi-infinite chain X�1:1 =

. . . X�2X�1X0X1X2 . . ., where random variables Xi take values in a finite discrete alphabet

A and ⌃ is the �-algebra generated by the cylinder sets in A1. The following only

considers ergodic stationary processes; that is, P(·) is invariant under time translation—

P(Xi1Xi2 · · · Xim) = P(Xi1+nXi2+n · · · Xim+n) for all n, m—and over successive realizations.

A familiar important property of stochastic processes is Markov order [77]. This is the

minimum history length R required by any generator to correctly generate the process.

Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt�2, Xt�1) = P(Xt|Xt�R, . . . , Xt�2, Xt�1) .

To keep matters uncomplicated, consider a process consisting of time series . . . 10010011 . . .

of binary symbols. Having raw sequences in hand does represent the process’ behaviors, but

in and of themselves the sequences are not that useful. For example, how can we predict

future symbols? What mechanisms drive the process’ behaviors? Much more helpful in
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answering such questions is an algorithm that can produce the process’ sequences. And, a

good one can be used to simulate the process—generating example sequences, perhaps

not even in the original data, but statistically similar—that allow one to predict future

sequences, gain insight into the process’ internal mechanisms, and estimate statistical

properties.

Note that in most cases representing a process by specifying the probability measure

P(·) is impossible due to the infinite number of possible sequences. So, how should we

represent processes? Is there a more compact way than specifying in-full the probability

measure on the sequence sigma algebra? In a rather direct sense, Markov chains and

hidden Markov models provide constructive answers. The quality of those answers depends,

of course, on how useful these representations are. We now fill in their technical details, so

that we can work with them.

Markov chains (MCs) [76,77] and hidden Markov models (HMMs) [4–6] are widely-used

algorithms for generating stochastic processes. Both consist of a set S of states and a

set of state-transition probabilities. Formally, both MCs and HMMs are specified by a

tuple
�
S, A, {T

(x)
, x 2 A}

 
. In this, S is a finite set of states, A is a finite alphabet,

and {T
(x)

, x 2 A} is a set of |S| ⇥ |S| substochastic symbol-labeled transition matrices

whose sum T =
P

x2A T
(x) is an stochastic matrix. In MCs states are past words, whereas

in HMMs states and words are distinct. Hence, their states are hidden—not directly

observed.

Consider an example HMM where S = {A, B}, A = {0, 1}, T
(0) =

2

4p 0

0 0

3

5, and

T
(1) =

2

40 1 � p

1 0

3

5. An HMM such as this is graphically depicted via its state-transition

diagram—a directed graph with labeled edges. S is the set of graph nodes and the edge

from node i to j is labeled by p|x corresponding to the HMM transition with probability

p = T
(x)
ij that goes from state i to j and generates symbol x. Fig. 4.1 shows the state-

transition diagram for a two-state HMM that generates a process called the binary-symbol

Even Process [102].

The Even Process highlights why HMMs are such useful algorithms. Since MC states
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A Bp|0

1 � p|1

1|1
Figure 4.1: State-transition diagram for the hidden Markov generator of the Even Process,
which consists of random binary sequences with an even number of 1s separated by
arbitrary-length blocks of 0s.

are constrained to be individual past, HMMs can be arbitrarily more compact than MCs

for the same process. In this case, the Even Process is an infinite Markov order process

since its current state can depend on arbitrarily long histories. (If only 1s have been

observed, it can be in either state A or state B.) Said in terms of algorithmic complexity,

the MC representing the Even Process requires an infinite number of Markov states, each

associated with a history 1k0, k = 0, 1, 2, . . .. In contrast, as the figure makes plain, the

Even Process’ HMM takes only two states. This is why HMMs are preferred algorithms

compared to MCs when it comes to generating processes.

When using HMMs as process generators we can restrict attention to those that are

unifilar : the current state and next symbol uniquely determine the next state. Unifilar

HMMs are important since they are perfect predictors of their process. (The same is not

generally true of a process’ nonunifilar HMM generators. We return to the important, but

subtle distinction between prediction and generation using HMMs at the end.) For any

given process there is an infinite number of unifilar HMM generators; so the restriction

imposes no loss of representational generality. Given all of the alternative HMMs, though,

which do we choose?

4.4 Optimal Serial and Parallel Generators

Let’s say Alice wants to generate the Even Process. The previous remarks indicate that

she should not use an MC algorithm since it has infinite states and, as a result, needs an

infinite amount of memory to generate the process. Ands so, she uses an HMM algorithm,

which is finite. To do this, she writes a computer program: If the current state is A, with
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probability p the program emits symbol 0 and stays at state A and with probability 1 � p

it emits symbol 1 and goes to state B. However, if the current state is B, it generates

symbol 1 and goes to the state A. The program continues in this fashion, again and again,

and in the long run generates a realization of the Even Process. Moreover, if Alice chooses

to start in A or B using the asymptotic state probability distribution ⇡, then the resulting

realization is stationary.

Imagine that a long time has passed and the HMM is in state A. Alice decides to stop

the program for now and return tomorrow to continue generating the same realization.

She must make a decision, does she use the realization generated today or start all over

again tomorrow? Not wanting to waste the e↵ort already invested, she decides to use

today’s realization tomorrow and simply concatenate newly generated symbols.

The next day, though, can she randomly pick a state and continue generating? The

answer is no. If she randomly picks state B, then there is a chance that after concatenating

the old and new realizations together, the sequence has odd number of 1s between two 0s.

However, she knows that the Even Process never generates such subsequences. Thus, if

she wants to use today’s realization tomorrow then, she must record the HMM’s current

state and continue generating from that state tomorrow.1

Information theory [21] tells us that to record the current state Alice needs log2 |S|

bits of memory. This is the cost of sequential generation. And, it gives a quantitative

way to compare algorithms across the infinite number of alternatives. If Alice wants to

use less memory, she selects the HMM with the minimum number |S| of states. Which

representation achieves this?

Before answering, let’s contrast another scenario, that for simultaneous generation.

Now, Alice wants to generate N � 1 realizations for a given process simultaneously, but

insists that the individual sequences be statistically independent. The latter means that

she cannot simply generate a single realization and copy it N times. At first blush, it

seems that she needs N log2 |S| bits of memory. According to Shannon’s source coding

1The time period over which Alice pauses generation can be set to any duration—an hour, a minute,
or a second. In particular, the period can be that required to generate a single symbol. In this case, after
every symbol emitted Alice must know in what state the generator is. In short, Alice needs to remember
the current state during generation.
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theorem [21,140], though, she can compress the sequence information and, for large N ,

she needs only N H[S]  N log2 |S| bits of memory, where H[S] = �
P

�2S ⇡(�) log2 ⇡(�)

is the Shannon entropy of the stationary probability distribution ⇡(.) over the HMM’s

states. That is, on average Alice needs H[S] bits of memory to generate each realization.

So, if Alice wants to use less memory, she selects the process HMM with the minimum

H[S] in the set of unifilar HMMs. Again, which representation achieves this?

Crutchfield and Young [56] showed that over all unifilar HMMs that generate a given

process, there is a unique HMM with the minimum number of states. Surprisingly, this

same HMM is also the one with the minimum entropy over its states. It is now known as

the ✏-machine [22,141] and its state entropy is the process’ statistical complexity Cµ [22,56].

The consequence is that, for a given stochastic process, the minimum memory required

for any unifilar HMM to sequentially generate it is log2 |S✏| bits, where S✏ is the set of

states in the process’ ✏-machine. And, for simultaneous generation the average minimum

required memory for each realization is Cµ.

Today, Cµ is often used as a measure of structural complexity for stochastic processes,

from stochastic resonance [142] to hydrodynamic flows [143], atmospheric turbulence [144],

geomagnetic volatility [145], and single-molecule dynamics [86,87,146]. In short, we use

✏-machines and Cµ to measure the memory inherent in a stochastic process. And, by the

preceding argument we now know how they determine the memory required for sequential

and parallel generation.

4.5 Typical and Atypical Behaviors

So far, the discussion implicitly assumed that models captured a process’ typically observed

behaviors. However, most stochastic processes exhibit statistical fluctuations and so

occasionally generate atypical, statistically extreme behaviors. Now, we turn to define

what we mean by typical and atypical behaviors. Once done, we finally state our problem:

How much memory is needed to generate a process’ atypical behaviors.

So, what does it mean that a process exhibits statistical fluctuations? Let’s say Alice

has a biased coin, meaning that when she flips it, the probability p of seeing heads is

51



greater than one half. Alice now flips the coin n � 1 times and sees k heads. The Strong

Law of Large Numbers [147] guarantees that for large n, the ratio k/n almost surely

converges to p:

P
✓

lim
n!1

k

n
= p

◆
= 1 .

Informally, for large n the typical sequence has close to p percent Heads. This does not

mean that Alice never sees long runs of all Heads or all Tails, for example. It simply means

that the latter are rare events.

We now show that a process’ typically observed realizations are those sequences in

its so-called typical set. Consider a given process and let An denote the set of length-n

sequences. Then, for an arbitrary ✏ > 0 the process’ typical set [21, 148,149] is:

A
n
✏ ={w : 2�n(hµ+✏)  P(w)  2�n(hµ�✏)

, w 2 An}, (4.1)

where hµ is the process’ metric entropy (Shannon entropy rate) [150]:

hµ(P) = � lim
n!1

1

n

X

w2An

P(w) log2 P(w) .

According to the Shannon-McMillan-Breiman theorem [140,151,152], for a given ✏ ⌧ 1

and su�ciently large n:

P(w /2 A
n
✏ , w 2 An)  ✏ . (4.2)

There are two important lessons here. First, coming from Eq. (5.1), all sequences in the

typical set have approximately the same probability. Second, coming from Eq. (5.2), for

large n the probability of sequences falling outside the typical set is close to zero—they

are rare.

One consequence is that sequences generated by a stationary ergodic process fall into

one of three partitions; see Fig. 5.3. The first contains those that are never generated

by a process—sequences with zero probability. (For example, the Even Process cannot

generate realizations containing a subsequence in {012k+10}, k = 0, 1, 2, . . .—those with an

odd number of 1s between 0s.) These are the forbidden sequences. The second partition
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Figure 4.2: For a given process, the space A1 of its realizations is partitioned into forbidden
sequences, sequences in the typical set, and sequences in atypical sets.

consists of those in the typical set—the set with probability close to one, as in Eq. (5.1).

And, the last contains sequences in a family of atypical sets—realizations that are rare to

di↵erent degrees. We now refine this classification.

Mirroring the familiar Boltzmann weight in statistical physics [153], in the n ! 1

limit, we define the subsets ⇤P
U ⇢ A1 for a process P as:

⇤P
U,n =

⇢
w : � log2 P(w)

n
= U, w 2 An

�

⇤P
U = lim

n!1
⇤P

U,n . (4.3)

In e↵ect, this partitions A1 into subsets ⇤P
U in which all w 2 ⇤P

U have the same probability

decay rate U . Physics vernacular would speak of the sequences having the same energy

density U .2 Figure 4.3 depicts these subsets as “bubbles” of equal energy. (Though,

to be clear about their “shape”, these subsets are isomorphic to Cantor sets.) The

definition guarantees that any bi-infinite sequence P generates belongs to one of these

sets. Equation (5.1) says the typical set is that bubble with energy equal to the process’

entropy rate: U = hµ. All the other bubbles contain rare events.

When Alice uses a process’ HMM to generate realizations, what she does is generate

sequences in the typical set with probability close to one and, rarely, atypical sequences.

Imagine, though, that Alice is interested in a particular class of rare sequences, those

2U , considered as a random variable, is sometimes called a self process [129].
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in a di↵erent isoenergy bubble; say, those with energy U in the set ⇤P
U . How can Alice

e�ciently generate these rare sequences? We now show that she can find a new process

PU whose typical set is ⇤P
U .

4.6 Generating Rare Events

To do this, we return to considering HMMs for a given process. With suitable HMMs and

a precise definition of a process’ atypical sequences we can now ask, How much memory is

required to generate them? How does this compare to the memory required to generate

typical behaviors?

Given a process P and its ✏-machine M(P), How do we construct an ✏-machine M(PU )

that generates P’s atypical sequences at some energy U 6= hµ? Here, we answer this

question by constructing a map B� : P ! P� from the original P to a new process P�.

The latter is parametrized by � 2 R/{0} which indexes the atypical set of interest. Both

processes P =
�
A1

, ⌃, P(·)
 

and P� =
�
A1

, ⌃, P�(·)
 

are defined on the same measurable

sequence space. The measures di↵er, but their supports (allowed sequences) are the same.

We refer to B� as the �-map.

Assume we are given M(P) =
�
S, A, {T

(x)
, x 2 A}

 
. We will now show that for every

probability decay rate or energy U , there exists a particular � such that M(P�) typically

generates the words in ⇤P
U,n for large n. The �-map which establishes this is calculated

by a construction that relates M(P) to M(P�) =
�
S, A, {S(x)

� , x 2 A}
 
—the HMM that

generates P�:

1. For each x 2 A, construct a new matrix T(x)
� for which

�
T(x)

�

�
ij

=
�
T(x)

��
ij
.

2. Construct a new matrix T� =
P

x2A T
(x)
� .

3. Calculate T�’s maximum eigenvalue b�� and corresponding right eigenvector br�.

4. For each x 2 A, construct new matrices S(x)
� for which:

�
S(x)
�

�
ij

=

�
T(x)

�

�
ij
(br�)j

b��(br�)i
. (4.4)
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Figure 4.3: A1 partitioned into ⇤Us—isoenergy or equal probability-decay-rate bubbles—
in which all sequences in the same ⇤U have the same energy U . The typical set is one such
bubble with energy equal to metric entropy: U = hµ. Another important partition is that
of the forbidden sequences, in which all sequences have zero probability. The forbidden set
can also be interpreted as the subset of sequences with infinite energy.

Theorem 2. For the new process P� in the limit n ! 1 the probability of the set ⇤P
U,n

converges to one lim
n!1

P�(⇤
P
U,n) = 1 where:

U = �
�1
�
hµ(P�) � log2

b��

�
. (4.5)

Also, in the same limit the process P� assigns equal energies over all the members of the

set ⇤P
U,n.

Proof. See the appendix.

As a result, for large n the process P� typically generates the set ⇤P
U,n, where U =

�
�1
�
hµ(P�) � log2

b��

�
. And so, there is a one-to-one relationship between � and U and

we can denote the process P� by PU . More formally, every word in ⇤P
U with probability

measure one is in the typical set of process P�.

This says that changing � controls which class of rare events we focus on. Informally,

the �-map acts like a magnifier (Fig. 4.3) by enhancing particular isoenergy bubbles. That

is, changing � moves the magnifier from one bubble to another. The �-map construction

guarantees that the HMMs M(P) and M(P�) have the same states and transition topology:
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Figure 4.4: a Two-Biased Coins (TBC) Process ✏-machine generator. b Intermittent
Periodic Process (IPP) ✏-machine generator. c Statistical complexity Cµ versus energy U

(or fluctuation class) for each, along with the energies U
⇤ at which their typical sets are

found (vertical dashed lines).

�
T(x)

�

�
ij

6= 0 ()
�
S(x)
�

�
ij

6= 0. The only di↵erence is in their transition probabilities.

Thus, M(P�) is also a unifilar HMM, but not necessarily an ✏-machine, since the latter

requires a minimal set of states. Minimality is not guaranteed by the �-map. Typically,

though, M(P�) is an ✏-machine and there is only a finite number of �s for which it is not.
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(More detailed development along these lines will appear in a sequel.)

Historically, a similar map was found for the first time in 1961 by Miller [154], but

only for Markov order-one processes. In the setting of continuous-time first-order Markov

evolution a similar map was introduced by Refs. [155, 156] (s-ensemble), by Ref. [157]

(biased ensemble), and Ref. [158,159] (exponential tilting). In these settings P� is sometimes

called an auxiliary process [157].

The �-map for unifilar HMMs and, consequently, for finite- or infinite-order discrete-

time discrete-value Markov processes was introduced for the first time in 1993 [128]. A

proof was not provided, which we remedy here, explaining why this �-map works so

generally. There P� was called the twisted distribution.

4.7 Memory Spectra

For an arbitrary stochastic process P, using its ✏-machine the last section presented a

method to construct a (unifilar) generator whose typical set is the process PU—the rare

events of the original P . Now, we determine the minimum memory required to generate

PU . Recalling the earlier coding-theoretic arguments, this is rather straightforward to

answer. The minimum memory to generate PU is determined by the size of its ✏-machine.

(As noted, this is the size of M(PU) except for finite number of U .)

And so, except for a finite number of rare-event classes, to sequentially generate

sequences in a given rare class, one requires the same memory—the number |S| of states—

as that to generate the original process. This is our first result on the minimum Markov

memory for a process’ rare events.

The story di↵ers markedly, however, for simultaneous generation. The minimum

required memory for simultaneous generation of PU is Cµ(PU ), putting the earlier coding

argument together with last section’s calculations. More to the point, this is generally not

equal to Cµ(P). To better appreciate this result, let us examine three examples.

First, consider the Two-Biased Coins (TBC) Process with p = 1/3, whose ✏-machine is

shown in Fig. 4.4a(top left). To generate its realizations one flips a biased coin repeatedly.

At first, label Heads a 0 and Tails a 1. After flipping, switch the labels and call a Head
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1 and Tail 0. A TBC process sequence comes from repeating these steps endlessly. As

Fig. 4.4a makes clear, there is a symmetry in the process. In the stationary distribution

⇡, state A has probability half, as does state B, and this is independent of p. This gives

Cµ(P) = 1 bit. Recalling the �-map construction, we see that changing � does not change

the ✏-machine topology. All that changes is p. This means, in turn, that the symmetry in

states remains and Cµ(PU ) = 1 is constant over allowed Us (or �s); Cµ(U) versus U is the

horizontal line shown in Fig. 4.4c.

What energies are allowed? The TBC Process has a finite energy range: U 2 [⇡

0.586, ⇡ 1.584]. From Eq. (4.3) we see that the maximum Umax corresponds to the bubble

with the rarest sequences that can be generated. Conversely, Umin corresponds to the

bubble with the most probable. The energy extremes delimit the domain of the Cµ(PU)

curves in Fig. 4.4c. In addition, the U associated with P’s typical set is marked in the

figure with a dashed (green) vertical line near U ⇡ 0.9183.

The di↵erence between the typical set and that with Umin is important to appreciate.

The typical set is that set of sequences with probability close to one and with energy

U = hµ. The latter is generally di↵erent from Umin. That is, typical sequences are not

necessarily the most probable sequences, considered individually, but rather they belong

to the most probable subset—the typical set.

As a result of this analysis for this example, one 1 bit of memory is uniformly required

for generating the TBC Process’ events, rare or not and independent of which class of rare

events we examine.

Second, this is not the general case, since Cµ(PU) can be a nonconstant function of

U , as we now show. Consider the Intermittent Periodic Process (IPP) with p = 0.35; its

✏-machine is given in Fig. 4.4b(top right). It gets its name since when p = 0, it periodically

emits the subsequence 101 and when p > 0, it randomly inserts 1s. Using the �-map and

Thm. 3 we can find the processes PU and calculate Cµ. Fig. 4.4c shows how their Cµ(PU )

depends on U . The IPP is similar to the TBC Process in that it also has a finite energy

range; IPP energies U 2 [⇡ 0.207, ⇡ 1.515]. It turns out that for any process with a finite

✏-machine the allowed energy range is also finite. In addition, the U associated with P ’s
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typical set is marked in the figure with a dashed (red) vertical line near U ⇡ 0.406.

Thus, IPP’s Cµ(PU ) is a nontrivial function of U . Practically, this means that generating

various rare-sequence classes requires less memory than for other classes. For example,

for events with Umax—p = 1 and � ! �1—ones needs no memory, since the class of

maximum energy has only one sequence—the all-1s sequence. This can be generated by

an IID process that emits only 1s. Generally, due to its IID character we do not need

to remember or store the process’ current state. In other words, the ✏-machine M(PU)

that generates this class only has one state and so Cµ = 0 bits there. For Umin, occurring

at p = 0 and � ! 1, there are three “ground state” sequences—the three shifts of

. . . 101101 . . . and three equally probable states. Thus, Cµ(Umin) = log2 3 ⇡ 1.585 bits are

necessary for generation.

Third and finally, for a more complex example consider the process generated by the

✏-machine with p = 1/3 given in Fig. 4.5a(top). Using the �-map and Thm. 3 we again find

the processes PU and calculate their Cµ, as shown in Fig. 4.5b(bottom). The di↵erence

between this process and IPP is that at no inverse temperature � do we have an IID

process P�. As a consequence Cµ(PU) is nonzero for all allowed U .

The insets in Fig. 4.5b(bottom) highlight the details of the process’ ✏-machines for

two limits of �. In the limit � ! 1 the probability of B’s self-transition vanishes and

the probability of transiting from state B to A goes to one. Similarly, the probability

of A’s self-transition vanishes and the A-to-C transition probability goes to one. As a

consequence, as shown in Fig. 4.5b, the extreme process generates 0 then 1, then flips

a coin to decide the outcome and then repeats the same steps again and again. The

physical interpretation is that this limit captures the process’ “ground states” and they

have positive entropy density and memory.

In the complementary limit � ! �1, an interesting property emerges. The process

breaks into two distinct subprocesses that link to each other only arbitrarily weakly.

The first process consists of state B with a deterministic self-transition that generates

1s. And, the second subprocess consists of state A with a deterministic self-transition

that and generates 0s. In other words, the process has two phases that rarely switch

59



A

B

C

1 � p|1p|0

p|1

1 � p|0 1
2 |1

1
2 |0

(a)

A

B

C

' 1|1✏|0

✏|1

' 1|0 1
2 |1

1
2 |0

A

B

C

✏|1' 1|0

' 1|1

✏|0 1
2 |1

1
2 |0

7

A

B

C

1 � p|1p|0

p|1

1 � p|0 1
2 |1

1
2 |0

(a)

(b)

FIG. 5: (a) Process �-machine generator. (b) Statistical
complexity Cµ versus energy U for the �-machine
generator. Insets (bottom) display �-machines for the
processes generating the fluctuation extremes at � ! 1
and � ! �1.

self-transition that and generates 0s. In other words, the
process has two phases that rarely switch between them-
selves. As a result, over moderate durations the process
exhibits nonergodic behavior. We note that this has pro-
found e↵ects on predictability: substantial resources are
required for predicting nonergodic processes [48], despite
their requiring finite resources for generation.
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a new process, and its unifilar HMM, that typically gen-

erates those rare events. Appealing to the optimality of
computational mechanics’ �-machines then allowed us to
analyze the minimal memory costs of implementing rare-
event generators. Depending on the goal—producing a
single correct sample (sequential generation) or a large
number of correct of samples (simultaneous generation)
from the rare class of interest—memory cost di↵ers. We
studied both costs. Taken together the three examples
analyzed give a complete survey of applying the method
and how memory costs vary across classes of rare events.

There are two main types of algorithms for generat-
ing stochastic processes: Monte Carlo versus finite-state
machine algorithms. Monte Carlo algorithms are appro-
priate if the process can be written as a probability dis-
tribution generated by a Hamiltonian system and if what
we are interested are macroscopic statistics. For a given
process, finding a compact Hamiltonian generator can
be challenging. In addition, to generate long realizations
using Monte Carlo algorithms one needs corrspondingly
long initial data. This data, which changes during the al-
gorithm, must be stored by the algorithm. And so, this
approach can be memory intensive. These limitations do
not exist for finite-state machine algorithms.

The introduction emphasized that we only focused on
unifilar HMMs as process generators and then we con-
structed the minimal unifilar generator for a given class
of rare events. The unifilar condition is necessary when
using a process’ past behavior to optimally predict its fu-
ture [49]. However, one may not be interested in predic-
tion, only generation for which unifilarity is not required.
While removing unifilarity expands the space of HMMs,
it greatly complicates finding minimal generators. For
one, nonunifilar HMMs can be more memory e�cient
than unifilar HMMs for a given process [18, 50, 51]. For
another, constructing a minimal nonunifilar HMM for a
general process is still an open and hard question [52–54].

The required memory Cµ(P) for (unifilarly) generat-
ing realizations of a given process P has been used as a
measure of structural complexity for over two decades. It
places a total order over stochastic-process space, ranking
processes by the di�culty to generate them. The theo-
rem introduced here extends the measure Cµ(P) to the
full memory spectrum Cµ(PU ) to generate fluctuations.

As one consequence, this structural accounting intro-
duces the new phenomenon of the ambiguity of simplicity
[55] to the domain of fluctuation theory. Say that process
A is simpler than process B, since it requires less mem-
ory to generate: Cµ(A) < Cµ(B). However, if instead
we are interested in the rarest events at U , we showed
that it is possible that A is more complex than process
B since it requires more memory for that event class:
Cµ(AU ) > Cµ(BU ). As Ref. [55] notes, this fundamen-
tal ambiguity flies in the face of appeals to simplicity via

7

A

B

C

1 � p|1p|0

p|1

1 � p|0 1
2 |1

1
2 |0

(a)

(b)

FIG. 5: (a) Process �-machine generator. (b) Statistical
complexity Cµ versus energy U for the �-machine
generator. Insets (bottom) display �-machines for the
processes generating the fluctuation extremes at � ! 1
and � ! �1.

self-transition that and generates 0s. In other words, the
process has two phases that rarely switch between them-
selves. As a result, over moderate durations the process
exhibits nonergodic behavior. We note that this has pro-
found e↵ects on predictability: substantial resources are
required for predicting nonergodic processes [48], despite
their requiring finite resources for generation.

VII. CONCLUDING REMARKS

To generate the rare behaviors of a stochastic process
one can wait, if one wants, for exponentially long times
for them to occur. Here, we introduced an alternative
to rare-event generation from large deviation theory and
its predecessors. Given a process, we first classified its
events into those that are forbidden, typical, and atypi-
cal. And, then we refined the atypical class. For any cho-
sen rare class we introduced an algorithm that constructs
a new process, and its unifilar HMM, that typically gen-

erates those rare events. Appealing to the optimality of
computational mechanics’ �-machines then allowed us to
analyze the minimal memory costs of implementing rare-
event generators. Depending on the goal—producing a
single correct sample (sequential generation) or a large
number of correct of samples (simultaneous generation)
from the rare class of interest—memory cost di↵ers. We
studied both costs. Taken together the three examples
analyzed give a complete survey of applying the method
and how memory costs vary across classes of rare events.

There are two main types of algorithms for generat-
ing stochastic processes: Monte Carlo versus finite-state
machine algorithms. Monte Carlo algorithms are appro-
priate if the process can be written as a probability dis-
tribution generated by a Hamiltonian system and if what
we are interested are macroscopic statistics. For a given
process, finding a compact Hamiltonian generator can
be challenging. In addition, to generate long realizations
using Monte Carlo algorithms one needs corrspondingly
long initial data. This data, which changes during the al-
gorithm, must be stored by the algorithm. And so, this
approach can be memory intensive. These limitations do
not exist for finite-state machine algorithms.

The introduction emphasized that we only focused on
unifilar HMMs as process generators and then we con-
structed the minimal unifilar generator for a given class
of rare events. The unifilar condition is necessary when
using a process’ past behavior to optimally predict its fu-
ture [49]. However, one may not be interested in predic-
tion, only generation for which unifilarity is not required.
While removing unifilarity expands the space of HMMs,
it greatly complicates finding minimal generators. For
one, nonunifilar HMMs can be more memory e�cient
than unifilar HMMs for a given process [18, 50, 51]. For
another, constructing a minimal nonunifilar HMM for a
general process is still an open and hard question [52–54].

The required memory Cµ(P) for (unifilarly) generat-
ing realizations of a given process P has been used as a
measure of structural complexity for over two decades. It
places a total order over stochastic-process space, ranking
processes by the di�culty to generate them. The theo-
rem introduced here extends the measure Cµ(P) to the
full memory spectrum Cµ(PU ) to generate fluctuations.

As one consequence, this structural accounting intro-
duces the new phenomenon of the ambiguity of simplicity
[55] to the domain of fluctuation theory. Say that process
A is simpler than process B, since it requires less mem-
ory to generate: Cµ(A) < Cµ(B). However, if instead
we are interested in the rarest events at U , we showed
that it is possible that A is more complex than process
B since it requires more memory for that event class:
Cµ(AU ) > Cµ(BU ). As Ref. [55] notes, this fundamen-
tal ambiguity flies in the face of appeals to simplicity via

7

A

B

C

1 � p|1p|0

p|1

1 � p|0 1
2 |1

1
2 |0

(a)

(b)

FIG. 5: (a) Process �-machine generator. (b) Statistical
complexity Cµ versus energy U for the �-machine
generator. Insets (bottom) display �-machines for the
processes generating the fluctuation extremes at � ! 1
and � ! �1.

self-transition that and generates 0s. In other words, the
process has two phases that rarely switch between them-
selves. As a result, over moderate durations the process
exhibits nonergodic behavior. We note that this has pro-
found e↵ects on predictability: substantial resources are
required for predicting nonergodic processes [48], despite
their requiring finite resources for generation.

VII. CONCLUDING REMARKS

To generate the rare behaviors of a stochastic process
one can wait, if one wants, for exponentially long times
for them to occur. Here, we introduced an alternative
to rare-event generation from large deviation theory and
its predecessors. Given a process, we first classified its
events into those that are forbidden, typical, and atypi-
cal. And, then we refined the atypical class. For any cho-
sen rare class we introduced an algorithm that constructs
a new process, and its unifilar HMM, that typically gen-

erates those rare events. Appealing to the optimality of
computational mechanics’ �-machines then allowed us to
analyze the minimal memory costs of implementing rare-
event generators. Depending on the goal—producing a
single correct sample (sequential generation) or a large
number of correct of samples (simultaneous generation)
from the rare class of interest—memory cost di↵ers. We
studied both costs. Taken together the three examples
analyzed give a complete survey of applying the method
and how memory costs vary across classes of rare events.

There are two main types of algorithms for generat-
ing stochastic processes: Monte Carlo versus finite-state
machine algorithms. Monte Carlo algorithms are appro-
priate if the process can be written as a probability dis-
tribution generated by a Hamiltonian system and if what
we are interested are macroscopic statistics. For a given
process, finding a compact Hamiltonian generator can
be challenging. In addition, to generate long realizations
using Monte Carlo algorithms one needs corrspondingly
long initial data. This data, which changes during the al-
gorithm, must be stored by the algorithm. And so, this
approach can be memory intensive. These limitations do
not exist for finite-state machine algorithms.

The introduction emphasized that we only focused on
unifilar HMMs as process generators and then we con-
structed the minimal unifilar generator for a given class
of rare events. The unifilar condition is necessary when
using a process’ past behavior to optimally predict its fu-
ture [49]. However, one may not be interested in predic-
tion, only generation for which unifilarity is not required.
While removing unifilarity expands the space of HMMs,
it greatly complicates finding minimal generators. For
one, nonunifilar HMMs can be more memory e�cient
than unifilar HMMs for a given process [18, 50, 51]. For
another, constructing a minimal nonunifilar HMM for a
general process is still an open and hard question [52–54].

The required memory Cµ(P) for (unifilarly) generat-
ing realizations of a given process P has been used as a
measure of structural complexity for over two decades. It
places a total order over stochastic-process space, ranking
processes by the di�culty to generate them. The theo-
rem introduced here extends the measure Cµ(P) to the
full memory spectrum Cµ(PU ) to generate fluctuations.

As one consequence, this structural accounting intro-
duces the new phenomenon of the ambiguity of simplicity
[55] to the domain of fluctuation theory. Say that process
A is simpler than process B, since it requires less mem-
ory to generate: Cµ(A) < Cµ(B). However, if instead
we are interested in the rarest events at U , we showed
that it is possible that A is more complex than process
B since it requires more memory for that event class:
Cµ(AU ) > Cµ(BU ). As Ref. [55] notes, this fundamen-
tal ambiguity flies in the face of appeals to simplicity via

7

A

B
C

1 �
p|1

p|0

p|1

1 �
p|0

1
2 |1

1
2 |0(a)

(b)

FIG. 5: (a) Process �-machine generator. (b) Statistical

complexity C
µ versus energy U

for the �-machine

generator. Insets (bottom) display �-machines for the

processes generating the fluctuation extremes at � !
1

and � !
�1

.
self-transition that and generates 0s. In other words, the

process has two phases that rarely switch between them-

selves. As a result, over moderate durations the process

exhibits nonergodic behavior. W
e note that this has pro-

found e↵ects on predictability: substantial resources are

required for predicting nonergodic processes [48], despite

their requiring finite resources for generation.

VII.
CON

CLUDIN
G

REM
ARK

S

To generate the rare behaviors of a stochastic process

one can
wait, if one wants, for exponentially long times

for them
to

occur.
Here, we introduced

an
alternative

to rare-event generation from
large deviation theory and

its predecessors.
Given

a
process, we first classified

its

events into those that are forbidden, typical, and
atypi-

cal. And, then we refined the atypical class. For any cho-

sen rare class we introduced an algorithm
that constructs

a new
process, and its unifilar HM

M
, that typically gen-

erates those rare events. Appealing to the optimality of

computational mechanics’ �-machines then allowed us to

analyze the minimal memory costs of implementing rare-

event generators.
Depending on

the goal—
producing a

single correct sample (sequential generation) or a
large

number of correct of samples (simultaneous generation)

from
the rare class of interest—

memory cost di↵ers. W
e

studied
both

costs.
Taken

together the three examples

analyzed give a complete survey of applying the method

and how
memory costs vary across classes of rare events.

There are two
main

types of algorithms for generat-

ing stochastic processes: M
onte Carlo versus finite-state

machine algorithms. M
onte Carlo algorithms are appro-

priate if the process can be written as a probability dis-

tribution generated by a Hamiltonian system
and if what

we are interested are macroscopic statistics. For a given

process, finding
a

compact Hamiltonian
generator can

be challenging. In addition, to generate long realizations

using M
onte Carlo algorithms one needs corrspondingly

long initial data. This data, which changes during the al-

gorithm, must be stored
by the algorithm. And

so, this

approach can be memory intensive. These limitations do

not exist for finite-state machine algorithms.

The introduction emphasized that we only focused on

unifilar HM
M

s as process generators and
then

we con-

structed
the minimal unifilar generator for a given

class

of rare events. The unifilar condition
is necessary when

using a process’ past behavior to optimally predict its fu-

ture [49]. However, one may not be interested in predic-

tion, only generation for which unifilarity is not required.

W
hile removing unifilarity expands the space of HM

M
s,

it greatly
complicates finding

minimal generators.
For

one, nonunifilar
HM

M
s can

be
more

memory
e�cient

than unifilar HM
M

s for a given process [18, 50, 51]. For

another, constructing a minimal nonunifilar HM
M

for a

general process is still an open and hard question [52–54].

The required
memory

C
µ (P) for (unifilarly) generat-

ing realizations of a given
process P

has been
used

as a

measure of structural complexity for over two decades. It

places a total order over stochastic-process space, ranking

processes by
the di�culty

to generate them. The theo-

rem
introduced

here extends the measure C
µ (P) to the

full memory spectrum
C

µ (P U
) to generate fluctuations.

As one consequence, this structural accounting intro-

duces the new
phenomenon of the ambiguity of simplicity

[55] to the domain of fluctuation theory. Say that process

A
is simpler than

process B, since it requires less mem-

ory
to

generate:
C

µ (A) <
C

µ (B).
However, if instead

we are interested
in

the rarest events at U , we showed

that it is possible that A
is more complex than

process

B
since

it requires more
memory

for that event class:

C
µ (A U

) >
C

µ (B U
). As Ref. [55] notes, this fundamen-

tal ambiguity flies in the face of appeals to simplicity via

(b)
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between themselves. As a result, over moderate durations the process exhibits nonergodic

behavior. We note that this has profound e↵ects on predictability: substantial resources are

required for predicting nonergodic processes [160], despite their requiring finite resources

for generation.
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4.8 Conclusions

To generate the rare behaviors of a stochastic process one can wait, if one wants, for

exponentially long times for them to occur. Here, we introduced an alternative to rare-

event generation from large deviation theory and its predecessors. Given a process, we

first classified its events into those that are forbidden, typical, and atypical. And, then

we refined the atypical class. For any chosen rare class we introduced an algorithm that

constructs a new process, and its unifilar HMM, that typically generates those rare events.

Appealing to the optimality of computational mechanics’ ✏-machines then allowed us to

analyze the minimal memory costs of implementing rare-event generators. Depending on

the goal—producing a single correct sample (sequential generation) or a large number

of correct of samples (simultaneous generation) from the rare class of interest—memory

cost di↵ers. We studied both costs. Taken together the three examples analyzed give a

complete survey of applying the method and how memory costs vary across classes of rare

events.

There are two main types of algorithms for generating stochastic processes: Monte

Carlo versus finite-state machine algorithms. Monte Carlo algorithms are appropriate

if the process can be written as a probability distribution generated by a Hamiltonian

system and if what we are interested are macroscopic statistics. For a given process,

finding a compact Hamiltonian generator can be challenging. In addition, to generate long

realizations using Monte Carlo algorithms one needs corrspondingly long initial data. This

data, which changes during the algorithm, must be stored by the algorithm. And so, this

approach can be memory intensive. These limitations do not exist for finite-state machine

algorithms.

The introduction emphasized that we only focused on unifilar HMMs as process

generators and then we constructed the minimal unifilar generator for a given class of

rare events. The unifilar condition is necessary when using a process’ past behavior to

optimally predict its future [12]. However, one may not be interested in prediction, only

generation for which unifilarity is not required. While removing unifilarity expands the

space of HMMs, it greatly complicates finding minimal generators. For one, nonunifilar
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HMMs can be more memory e�cient than unifilar HMMs for a given process [4, 57,161].

For another, constructing a minimal nonunifilar HMM for a general process is still an open

and hard question [58,59,81].

The required memory Cµ(P) for (unifilarly) generating realizations of a given process P

has been used as a measure of structural complexity for over two decades. It places a total

order over stochastic-process space, ranking processes by the di�culty to generate them.

The theorem introduced here extends the measure Cµ(P) to the full memory spectrum

Cµ(PU) to generate fluctuations.

As one consequence, this structural accounting introduces the new phenomenon of

the ambiguity of simplicity [15] to the domain of fluctuation theory. Say that process

A is simpler than process B, since it requires less memory to generate: Cµ(A) < Cµ(B).

However, if instead we are interested in the rarest events at U , we showed that it is possible

that A is more complex than process B since it requires more memory for that event class:

Cµ(AU) > Cµ(BU). As Ref. [15] notes, this fundamental ambiguity flies in the face of

appeals to simplicity via Occam’s Razor and practically impacts employing statistical

model selection as it relies on a total order of model complexity.

The same fluctuation theory has recently been used to identify fluctuations in macro-

scopic thermodynamic functioning in Maxwellian Demons [162]. Moreover, the method

can be applied to many stochastic systems to explore their rare behaviors, from natural

processes observed in fluid turbulence [163], physiology [164,165], surface science [166,167],

meteorological processes [168], to designed systems found in finance [169,170], and traf-

fic [171,172]. It gives a full description of a process, from its typical to its rare behaviors.

And, it determines how di�cult it is to simulate a process’ rare events.

Finally, there is another potentially important application domain. The rapid progress

in quantum computation and information suggest that, perhaps soon even, one will be able

to generate processes, both classical and quantum, using programmable quantum systems.

The equivalent memory Cq for the simultaneous quantum simulation of processes also has

already been introduced [8, 10, 12–14]. And so, a sequel will analyze quantum memory

fluctuation spectra Cq(U) and how they di↵er from the classical spectra introduced here.
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4.9 Appendix

This appendix establishes the main theorem via a single lemma relying on a process’

cryptic order.

Cryptic order is a recently introduced topological property of stochastic processes [173]

that is bounded by, but is rather di↵erent in motivation from, the more familiar Markov

order [174]. Formally, given a process’ ✏-machine, its cryptic order is K = inf
�
l :

H[Sl|X0X1 · · · ] = 0, l 2 Z
 
. Informally, this means that if we observe an infinite length

realization, we can be certain about in which state the ✏-machine is in after the K
th

symbol [175].

Lemma 1. For any given process with finite states and cryptic order, for every U and

� 2 R/0 we have:

⇤P
U = ⇤

P�

�U�log2 b��
.

Proof. Consider an arbitrary word w = x0x1 . . . xn�1 2 An generated by process P where

n � 1. Since the ✏-machine is unifilar, immediately after choosing the initial state, all the

successor states are uniquely determined. Using this, we can decompose w to two parts:

The first part wK is the first K symbols and the second part is w’s remainder. Knowing

w, the state �K and all successor states following �K+1, �K+2, . . . are uniquely determined.

As a consequence, the probability of process P generating w can be written as:

P(w) = P(wK)
n�1Y

i=K

⇣
T(xi)

⌘

�i�i+1

.

We can adapt the energy definition in Eq. (4.3) to finite-length sequences. Then, w’s

energy is:

U(w) = � log2 P(w)

n

= � log2 P(wK)

n
�

log2

✓Qn�1
i=K

⇣
T(xi)

⌘

�i�i+1

◆

n
.
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Now, consider the same word, but this time generated by the ✏-machine M(P�). Then, the

probability of generating w is:

P�(w) = P�(wK)
n�1Y

i=K

⇣
S(xi)
�

⌘

�i�i+1

= P�(wK)
n�1Y

i=K

⇣
T(xi)

�

⌘

�i�i+1

(br�)�i+1

b��(br�)�i

= P�(wK)
(br�)�n

(br�)�K

⇣
b��

⌘n�K
n�1Y

i=K

⇣
T(xi)

�

⌘

�i�i+1

= P�(wK)
(br�)�n

(br�)�K

⇣
b��

⌘n�K
 

n�1Y

i=K

⇣
T(xi)

⌘

�i�i+1

!�

.

The new energy for the same word is:

U�(w) = � log2 P(w)

n

= �
log2

⇣
P�(wK) (br�)�n

(br�)�K

⌘

n
� n � K

n
log2

b��

� �

log2

✓Qn�1
i=K

⇣
T(xi)

⌘

�i�i+1

◆

n
.

In the limit of large n the first terms in U(w) and U�(w) vanish and we have U�(w) =

�U(w) � log2
b��. Thus, for any two long sequences w1, w2 2 An, if U(w1) = U(w2), then

U�(w1) = U�(w2). And, the partitions induced by Eq. (4.3) are invariant under the �-map.

In other words, the energy of an arbitrary bubble after �-mapping changes from U to U�,

where:

U� = �U � log2
b�� .

This completes the lemma’s proof.

This demonstrates how the �-map changes bubble energy: U ! �U � log2
b��. So, now

we ask for the bubble (and its energy) that maps to the typical set of the new process P�.

That is, we use the �-map to find the class ⇤P
U of rare sequences typically generated by

M(P�).
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Figure 4.6: The �-map acts like a magnifier: In the parlance of large deviation theory,
it “twists” or “tilts” the sequence distribution in a way that focuses on the probability
of a chosen rare-event class. Fixing �, the �-map changes the energy U of a class to
U� = �U � log2

b��. In particular, a subset with energy U
⇤ maps to the typical set of a new

process that has energy hµ(P�). The set FW of forbidden sequences is invariant under the
�-map.

This sets up the theorem’s proof. Using the fact that the process’ metric entropy is

the typical set’s energy, the energy of P�’s typical set is hµ(P�). (Refer to Fig. 4.6.) The

lemma tells us how the �-map changes energy. Using this, we can identify the bubble with

energy U
⇤ that is typically generated by M(P�), it has:

hµ(P�) = �U
⇤ � log2

b�� .

This completes the theorem’s proof.
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Chapter 5

Extreme Quantum Memory

Advantage for Biased Sampling

5.1 Overview

We introduce a quantum algorithm for memory-e�cient biased sampling of rare events

generated by classical memoryful stochastic processes. Two e�ciency metrics are used to

compare quantum and classical resources for rare-event sampling. For a fixed stochastic

process, the first is the classical-to-quantum ratio of required memory. We show for two

example processes that there exists an infinite number of rare-event classes for which the

memory ratio for sampling is larger than r, for any large real number r. Then, for a

sequence of processes each labeled by an integer size N , we compare how the classical-to-

quantum required memory ratio scales with N . In this setting, since both memories can

diverge as N ! 1, the e�ciency metric tracks how fast they diverge. An extreme quantum

memory advantage exists when the classical memory diverges in the limit N ! 1, but

the quantum memory has a finite bound. We then show that finite-state Markov processes

and spin chains exhibit extreme memory advantage for sampling of almost all of their

rare-event classes.

5.2 Introduction

From earthquakes to financial market crashes, rare events are associated with catastrophe—

from decimated social infrastructure and the substantial loss of life to global economic
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collapse. Though rare, their impact cannot be ignored. Prediction and modeling such rare

events is essential to mitigating their e↵ects. However, this is particularly challenging,

often requiring huge datasets and massive computational resources, precisely because the

events of interest are rare.

Ameliorating much of the challenge, biased or extended sampling [23, 24] is an e↵ective

and now widely-used method for e�cient generation and analysis of rare events. The

underlying idea is simple to state: transform a given distribution to a new one where

previously-rare events are now typical. This concept was originally proposed in 1961

by Miller to probe the rare events generated by discrete-time, discrete-value Markov

stochastic processes [154]. It has since been extended to address non-Markovian processes

[128]. The approach was also eventually adapted to continuous-time first-order Markov

processes [176–178]. Today, the statistical analysis of rare events is a highly developed

toolkit with broad applications in sciences and engineering [179]. Given this, it is perhaps

not surprising that the idea and its related methods appear under di↵erent appellations,

depending on the research arena. For example, large deviation theory refers to the s-

ensemble method [155,156], the exponential tilting algorithm [158,159], or as generating

twisted distributions.

In 1997, building on biased sampling, Torrie and Valleau introduced umbrella sam-

pling into Monte Carlo simulation of systems whose energy landscapes have high energy

barriers and so su↵er particularly from poor sampling [180]. Since then, stimulated by

computational problems arising in statistical mechanics, the approach was generalized to

Ferrenberg-Swendsen reweighting, later still to weighted histogram analysis [181], and more

recently to Wang-Landau sampling [182].

When generating samples for a given stochastic process one can employ alternative

types of algorithm. There are two main types—Monte Carlo or finite-state machine

algorithms. Here, we consider finite-state machine algorithms based on Markov chains

(MC) [76, 183] and hidden Markov models (HMM) [4–6]. For example, if the process is

Markovian one uses MC generators and, in more general cases, one uses HMM generators.

When evaluating alternative approaches the key questions that arise concern algorithm
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speed and memory e�ciency. For example, it turns out there are HMMs that are always

equally or more memory e�cient than MCs. There are many finite-state HMMs for which

the analogous MC is infinite-state [102]. And so, when comparing all HMMs that generate

the same process, one is often interested in those that are most memory e�cient. For

a generic stochastic process, the most memory e�cient classical HMM known currently

is the ✏-machine of computational mechanics [22]. The memory it requires is called the

process’ statistical complexity Cµ [56].

Today, we have come to appreciate that several important mathematical problems

can be solved more e�ciently using a quantum computer. Examples include quantum

algorithms for integer factorization [49], search [50], eigen-decomposition [51], and solving

linear systems [52]. Not long ago and for the first time, Ref. [8] provided a quantum

algorithm that can perform stochastic process sample-generation using less memory than

the best-known classical algorithms. Recently, using a stochastic process’ higher-order

correlations, a new quantum algorithm—the q-machine—substantially improved this

e�ciency and extended its applicability [12]. More detailed analysis and a derivation of

the closed-form quantum advantage of the q-machine is given in a sequel [13]. Notably,

the quantum advantage has been verified experimentally for a simple case [17].

The following brings together techniques from large deviation theory, classical algo-

rithms for stochastic process generation, computational complexity theory, and the newly

introduced quantum algorithm for stochastic process generation to propose a new, memory

e�cient quantum algorithm for the biased sampling problem. We show that there can

be an extreme advantage in the quantum algorithm’s required memory compared to the

best known classical algorithm where the required memory for classical algorithm grows

unboundedly with problem size, but is bounded from above for the quantum algorithm.

Three examples are analyzed here. The first is the simple, but now well-studied Perturbed

Coin Process. The second is a more physical example—a stochastic process that arises from

the Ising next-nearest-neighbor spin system in contact with thermal reservoir. The third

is a sequence of processes generated by a series of Ising N -nearest-neighbor Hamiltonians.

Today, we know of several di↵erent sampling problems for which their best quantum
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algorithm has an advantage compared to the best classical algorithm. These sampling

problems fall into two categories. First are those in which the problem is quantum in

nature, such as boson sampling [184]. Second are the ones in which the target problem is

classical. Function sampling [185] and mixing [186] are in this category.

On the one hand, the advantage for both boson sampling and mixing appears in shorter

run times for the quantum algorithm. For the problem of rare-event sampling we study

here the run times for both classical and quantum algorithms are the same. On the other

hand, for function sampling advantage appears in smaller required memory; this is similar

to our problem. In both boson sampling and function sampling, the advantage appears

as an increasing function of problem size. While for mixing it is function of the spectral

gap—that is, a property of the problem input—the Markov chain of interest, in that case.

The quantum memory advantage we introduce here is both a function of problem size and

a property of the input instance.

In the boson sampling problem, a linear system scatters N individual bosons into

M � N output modes. The goal then is to sample from the output distribution. It is

known that for large N and M , the run time for the quantum algorithm is much smaller

than for the classical algorithm, while both algorithms need memory on the order of the

required sample size. In mixing, a Markov chain and an initial state are given and the

goal is to sample from the stationary distribution over Markov chain’s states with some

acceptable error margin. Denoting the spectral gap for Markov chain’s transition matrix

by �, the run time for the best known classical algorithm increases faster than the quantum

algorithm when � ! 0 [187]. As a result, the notion of an advantage is captured by a

function of �. In function sampling, a function f : X ⇥ Y ! {0, 1} and a probability

distribution Pr(X, Y ) over X ⇥ Y are given. Alice and Bob start with no inputs. The goal

then is to sample X, Y , and Z from the distribution (Pr, f(Pr)), where Alice end up with

X and Bob with Y and Z. Algorithm e�ciency is then defined by how much information

Alice and Bob must communicate during the algorithm. It turns out that the best known

quantum algorithm has markedly smaller communication costs than the classical. In the

function sampling problem, as in many other similar problems, communication cost can
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Figure 5.1: Hidden Markov model generator of a stochastic process with infinite-range
statistical dependencies that requires an HMM with only six states. To generate the same
process via a Markov chain requires one with an infinite number of states and so infinite
memory.

be framed as a memory cost, since Alice can always write the message in a memory that

Bob reads.

5.3 Classical Algorithm

The object for which we wish to generate samples is a discrete-time, discrete-value stochastic

process [3, 4]: a probability space P =
�
A1

, ⌃, P(·)
 
, where P(·) is a probability measure

over the bi-infinite chain . . . X�2X�1X0X1X2 . . ., each random variable Xi takes values

in a finite, discrete alphabet A, and ⌃ is the �-algebra generated by the cylinder sets in

A1. For simplicity we consider only ergodic stationary processes: that is, P(·) is invariant

under time translation—P(Xi1Xi2 · · · Xim) = P(Xi1+nXi2+n · · · Xim+n) for all n, m—and

over successive realizations.

Sampling or generating a given stochastic process refers to producing a finite realization

that comes from the process’ probability distribution. There are two main generation

(sampling) problems: sequential generation and simultaneous generation [55]. In sequential

generation or one-shot sampling the goal is to generate one long sample from the given
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process. However, in simultaneous generation the goal is to generate M � 1 realizations

of a process simultaneously, each of which is statistically independent of the others.

Generally, generating a process via its probability measure P(·) is impossible due to

the vast number of allowed realizations and, as a result, this prosaic approach requires an

unbounded amount of memory. Fortunately, there are more compact ways than specifying

in-full the probability measure on the sequence sigma algebra. This recalls the earlier

remark that HMMs can be arbitrarily more compact than alternative algorithms for the

task of generation.

An HMM is specified by a tuple
�
S, A, {T

(x)
, x 2 A}

 
. In this, S is a finite set

of states, A is a finite alphabet, and {T
(x)

, x 2 A} is a set of |S| ⇥ |S| substochastic

symbol-labeled transition matrices whose sum T =
P

x2A T
(x) is a stochastic matrix.

As an example, consider the HMM state-transition diagram shown in Fig. 5.1, where

S = {A, B, C, D, E, F}, A = {0, 1, 2}, and we have three 6 ⇥ 6 substochastic matrices

T
(0), T

(1), and T
(2). Each edge is labeled p|x denoting the transition probability p and

a symbol x 2 A which is emitted during the transition. In this HMM, of the two edges

exiting state C, one enters state B and the other enters state A. The edges from C to

A and C to B are labeled by 1
2 |1 and 1

2 |0. This simply means that if the HMM is in the

state C, then with probability 1
2 it goes to the state A and emits the symbol 1 and with

probability 1
2 it goes to state B and emits symbol 0. Following these transition rules in

succession generates realizations in the HMM’s process.

How does this generation method compare to generating realizations of the same

process via a finite Markov chain? (Recall that states in a MC not hidden: A = S) It

turns out that this cannot be implemented, since generating a symbol can depend on the

infinite history. That is, the process has infinite Markov order. As a result, to generate a

realization using a Markov chain one needs an infinite number of Markovian states. In

other words, implementing the Markov chain algorithm to generate process samples on a

conventional computer requires an infinite amount of memory.

To appreciate the reason behind the process’ infinite Markov order, refer to Fig. 5.1’s

HMM. There are two length-3 state-loops consisting of the edges colored red (right side
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of state-transition diagram) and those colored maroon (left side). Note that if the HMM

generates n 1s in a row, we will not know the HMM’s current state, only that it is either

A, D, or E. This state uncertainty (entropy) is bounded away from 0. The observation

holds for the other loop and its sequences of symbol 0 and the consequent ambiguity

among states B, C, and F . Thus, there exist process realizations from which we cannot

determine the future statistics, independent of the number of symbols seen. This means

that the process statistics depend on infinite past sequences—the process has infinite

Markov order. To emphasize, implementing a MC algorithm for this requires infinite

memory. The contrast with the finite HMM method is an important lesson: HMMs are

strictly more powerful generators, as a class of algorithms, than Markov chain generators.

For any given process P, there are an infinite number of HMMs that generate it.

Therefore, one is compelled to ask, which algorithm requires the least memory for im-

plementation? To appreciate the answer, let’s first address how much state memory one

needs to run an HMM.

Consider sequential generation in which the goal is to produce a very long realization of

a process. For this, we use one computer with a code that runs the algorithm (HMM). At

each step, the computer must memorize the current HMM state. Assuming the HMM has

N states, this requires log2 (N) bits of memory. As a result, if one wishes to implement

one-shot sampling using the minimum required memory then, over all the process’ HMM

generators, one needs to find that with the minimum number of states.

Here, though, we are interested in simultaneous generation for which the goal is

to simultaneously generate M � 1 process realizations, each of which is statistically

independent of the others. The e↵ective implementation uses M computers each with

the above code. Similar to the sequential problem, each computer must memorize the

current state of its HMM. If each computer uses its own memory, each needs log2 (N) bits

of memory as before. The total memory is then M log2 (N) bits. However, we can reduce

required memory by using one large memory shared among the computers. Figure 5.2

depicts this schematically. In this way, according to Shannon’s coding theorem [21], we

can encode HMM states to reduce the amount of memory down to M H(S)  M log2 (N)
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4

Here we focus on stationary, discrete-time, discrete-valued stationary stochastic processes. Informally such a process
can be seen as a joint probability distribution P(.) over the bi-infinite chain of random variables . . . X�1X0X1 . . ..
Formally the process denoted by P =

�
A,�,P(.)

�
, is a probability space [47, 48]. Each random spin variableXi, i � Z,

takes values in the set A. Here, the observed symbols come from an alphabet A = {�, �} of local spin states but our
results easily can be extend to any finite alphabet. P(·) is the probability measure over the bi-infinite chain of random
variables X��:� = . . . X�2X�1X0X1X2 . . . and � is the �-algebra generated by the cylinder sets in A�. Stationarity
means that P(·) is invariant under index translation. That is, P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n), for all
m � Z+ and n � Z. For more information on stochastic processes generated by spin system we refer to [49, 50].
Physical systems, under certain assumptions such as thermal equilibrium, manifest spatial stationary stochastic
processes. Consider a device that can generate stochastic processes. We call a device the simulator of our physical
system if and only if there is no way to distinct the device from the physical system based on the stochastic process
they generate. This means if we put them in black boxes we can not find out which one is which. Often, “simulation”
refers to an approximation. In contrast, we require our simulators to be perfect.
How do these simulators work? Generally we implement the algorithms by writing computer programs. Two common
formalisms used as an algorithm for generation of stochastic processes are Markov Chains (MC) [51, 52] and Hidden
Markov Models (HMM) [47, 53, 54]. The latter can be significantly more compact in their representations (more
e�cient algorithms) and, for this reason, are sometimes the preferred implementation choice.
HMMs represent the generating mechanism for a given process by a tuple

�
S,A, {T (x) : x � A}

�
where S is a finite

set of states, A is a finite set of alphabets and {T (x) : x � A} are |S| � |S| substochastic symbol-labeled transition
matrices. The latter’s sum T =

�
x�A T

(x) is a stochastic matrix.
As an example consider the Even Process [55, 56]. The process can be explain by a simple procedure. Consider Alice,
she has a biased coin that with probability p generates heads and with 1 � p generates tales. To generate the Even
process she use this algorithm:

�
��

��

Step A: Flip the coin, if the result is heads output 0 and go to the beginning
of step A, else output 1 and go to the next step.

Step B: Output 1 and go to the step A.

Using this algorithm, in a long run she eventually generates the Even process.
Memory
A unifilar HMM is one in which each row of each sub-stochastic matrix has at most one nonzero element. A fledgling
literature on minimal nonunfilar HMMs [29] exists, but constructive methods are largely lacking and, as a consequence,
much less is known [30–32].
�-Machine A given stochastic process can be correctly generated by any number of alternative unifilar HMMs. The
one requiring the minimum amount of memory for implementation is called the �-machine [58] and was first introduced
in Ref. [28]. A process’ statistical complexity Cµ [58] is the the Shannon entropy of the �-machine’s stationary state
distribution: Cµ = H(S) = �

�
��S Pr(�) log2 Pr(�). Key to our analysis of classical simulator resources, it measures

the minimal memory for a unifilar simulator of a process. Cµ has been determined for a wide range of physical systems
[59–65]. Helpfully, it and companion measures are directly calculable from the �-machine, many in closed-form [66].
Ising �-machine How do we construct the �-machine that simulates the process P(N,T )? First, we must de-
fine process’ Markov order [52]: the minimum history length R required by any simulator to correctly continue a
configuration.3 Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt�2, Xt�1) = P(Xt|Xt�R, . . . ,Xt�2, Xt�1) .

For any finite and nonzero temperature T , Ref. [50, Eqs. (84)� (91)] shows that P(N,T ) has Markov order N . One
concludes that su�cient information for generation is contained in the configuration of the N previously generated

3More precisely, we mean that an ensemble of simulators must be able to yield an ensemble of configurations that agree (conditioned
on that past) with the process’ configuration distribution.
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Figure 5.2: (Left) Even Process ✏-machine. (Right) Schematic of simultaneous generation
problem. Each black box contains an Even Process generator. They all share the same
memory for tracking the individual generator states.

bits, where H(S) is the Shannon entropy of the probability distribution over HMM’s states.

The memory per sample is then just H(S). As a result, if one needs to do simultaneous

sampling of a given process using minimum required memory, over all its HMM generators,

one needs to find the HMM with the minimum Shannon state entropy.

For both one shot and simultaneous sampling, the best known implementation, and

provably the optimal predictor, is known as the ✏-machine M [22, 141]. It states are called

causal states ; we denote this set S. The average memory required for M(P) to sequentially

sample process P is given by the process’ statistical complexity Cµ(P) [56]. To calculate it:

1. Compute the stationary distribution ⇡ over causal states. ⇡ is the left eigenvector of

the state-transition matrix T with eigenvalue 1: ⇡T = ⇡.

2. Calculate the state’s Shannon entropy H[S] = �
P

�2S ⇡(�) log2 ⇡(�).

Cµ = H[S] measures the (ensemble average) memory required simultaneous sampling of
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the process.

Another important, companion measure is hµ, the process’ metric entropy (or Shannon

entropy rate) [150]:

hµ(P) = � lim
n!1

1

n

X

w2An

P(w) log2 P(w) .

Although sometimes confused, it is important to emphasize that hµ describes randomness

in realizations, while Cµ is the average memory required to generate them.

5.4 Quantum Memory Advantage

Recently, it was shown that a quantum algorithm for process generation can use less

memory than the best known classical algorithm (✏-machine) [8]. By accounting for

a process’ higher-order correlations, a new quantum algorithm—the q-machine—was

introduced that substantially improved the original and is, to date, the most memory-

e�cient quantum algorithm known for process generation [12]. We refer to the ratio of

required classical memory Cµ to quantum memory Cq as the quantum memory advantage.

Closed-form expressions for the quantum memory advantage are given in Ref. [13].

Importantly, the quantum advantage was recently verified experimentally for the simple

perturbed coins process [17]. It was also discovered that the q-machine can confer an extreme

quantum memory advantage. For example, when generating ground-state configurations

(in a Dyson-type spin model with N -nearest-neighbor interactions at temperature T ), the

quantum advantage scales as NT
2
/ log2 T [11, 14]. Another example of extreme quantum

memory advantage has appeared recently in the simulation of continuous-time stochastic

processes [9]. One consequence of quantum advantage arises in model selection where

the basic question “Which process is simpler?” no longer has a well-defined answer [15].

This phenomenon recently has been experimentally observed [18]. Statistical inference of

models for stochastic systems often involves controlling for model size or memory. And

so, quantum statistical inference may see large improvements. Another consequence of

this advantage in the context of simulations is that reduced memory can reduce the heat

dissipation of simulation [188].
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The following determines the quantum advantage in biased sampling of a process’ rare

events. In particular, we develop tools to determine how the memory requirements of

classical and quantum algorithms vary over rare-event classes.

5.5 Quantum Algorithm

We define a stochastic process P’s quantum machine by Q(P) = {H, A, {Kx, x 2 A}},

where H denotes the Hilbert space with dimension |S| in which quantum states reside, A

is the same alphabet as the given process’, and {Kx, x 2 A} is a set of Kraus operators

we use to specify the measurement protocol for states [19].1 Assume we have the quantum

state (density matrix) ⇢0 2 B(H) in hand. We perform a measurement by applying Kraus

operators and, as a result, measure X. The probability of yielding symbol X = x is:

P(X = x0|⇢0) = tr
�
Kx0⇢0K

†
x0

�
.

After measurement with outcome X = x0, the new quantum state is:

⇢1 =
Kx0⇢0K

†
x0

tr(Kx0⇢0K
†
x0)

.

Repeating these measurements generates a stochastic process. The process potentially

could be nonergodic, depending on the initial state ⇢0. However, starting the q-machine in

the stationary state defined by:

⇢s =
X

x2A

Kx⇢sK
†
x ,

and repeatedly measuring generates a stationary stochastic process over x 2 A. For any

given process, ⇢s can be calculated by the method introduced in Ref. [13].

Our immediate goal is to design a quantum generator of a given classical process.

(Section 5.7 will then take the given process to represent a rare-event class of another

process.) For now, we start with the process’ ✏-machine. The construction consists of

three steps, as follows.

1We adopt a particular form for the Kraus operators. In general, they are not unique.
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First step Map every causal state �i 2 S to a pure quantum state |⌘ii. Each signal state

|⌘ii encodes the set of length-R sequences that may follow �i, as well as each corresponding

conditional probability:

|⌘ii ⌘
X

w2AR

p
P(w|�i) |wi ,

where w denotes a length-R sequence, P(w|�i) = P(X0 · · · XR�1 = w|S0 = �i), and R is

the process’ the Markov order. The resulting Hilbert space is Hw with size |A|R, the

number of length-R sequences, with basis elements |wi = |x0i ⌦ · · · ⌦ |xR�1i. From here

on out, assume all |⌘iis are linearly independent.2 As a result, one defines |S| new states

|⇠ii that reside in a Hilbert space of size |S|. (This is much smaller than the |⌘ii’s Hilbert

space, which has size |A|R.) Moreover, the |⇠iis have the same pairwise overlaps as the

|⌘iis. That is, for all i, j:

h⇠i|⇠ji = h⌘i|⌘ji .

Reference [13] developed a method to calculate all the overlaps h⌘i|⌘ji for a given process in

closed form. Since the |⌘iis are linearly independent one can use the overlaps to construct

the |⇠iis.

Second step Form a matrix ⌅ by assembling the signal states:

⌅ =
h
|⇠0i |⇠1i · · · |⇠|S|�1i

i
.

Define |S| new bra states |e⇠ii:
2

6666664

he⇠0|

he⇠1|

· · ·

h ]⇠|S|�1|

3

7777775
= ⌅�1

.

2The procedure requires only slight modification for linearly dependent causal states and, in any case,
does not a↵ect the results.
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That is, we design the new bra states such that we obtain the identity:

2

6666664

he⇠0|

he⇠1|

· · ·

h ]⇠|S|�1|

3

7777775

h
|⇠0i |⇠1i · · · |⇠|S|�1i

i
= I .

Third step Define |A| Kraus operators Kx for all x 2 A via:

Kx =
X

i,j

q
T

x
ij |⇠ji he⇠i| .

3

By applying Kraus operators repeatedly one generates the target stochastic process.

For example, consider the case in which the q-machine is in state |⇠ii h⇠i| and we apply the

Kraus operators. Then, if we do not make a measurement, the next state is
P
j,x

T
x
ij |⇠ji h⇠j|.

Let us say, though, that we make a measurement and the result is x. The next state is

|⇠ji h⇠j|, where j is the unique index where T
x
ij is nonzero. Appendix 5.10.2 shows that the

stationary state is:

⇢s =
X

i

⇡i |⇠ii h⇠i| .

The Hilbert space in which the algorithm operates has dimension |S|. Since the

operation is not unitary in this space and measurements are not projective, one may

argue that |S| is not the actual size of the Hilbert space needed to physically implement

the algorithm. However, it was recently shown that the algorithm presented here can

be implemented by unitary operations and projective measurements in a Hilbert space

with dimension |S||A| [20]. This new result gives an experimental implementation of our

algorithm.

Using the quantum generator Q(P), the required average memory for simultaneous

generation of process P is Cq(P) = S(⇢s), where S(⇢) = �tr(⇢ log ⇢) denotes the von

Neumann entropy [19].3 Since the algorithm can be implemented by unitary operations

2Appendix 5.10.1 proves the completeness of these operators.
3Von Neumann entropy is a well-accepted measure of quantum advantage in communication games [189].
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and projective measurements, the entropy of the quantum model stays constant at Cq

at all times during the simulation process. This confirms that Cq is a valid measure of

memory, while the minimal dimensions needed for sequential (one-shot) generation of P is

at most |S||A|.

Comparing memory e�ciencies of classical and quantum algorithms requires an e�-

ciency metric. Depending on the setting, there are two one can use. In the single-process

case, P is given and memory e�ciency is defined as a the ratio of required memory for

the classical algorithm to the quantum algorithm. Here, since we only explore finite-size

stochastic processes, both memories are finite and the ratio is a good quantitative e�ciency

measure.

In the multi-process case, a series of stochastic processes is given, with each process

labeled by an integer N that measures process size. Then, memory e�ciency is defined

by how the memory scales in N for the classical algorithm compared to the quantum.

This metric is closer to relative-complexity definitions familiar in computation complexity

theory. In the present case, since both memories are allowed to diverge when N ! 1, the

quantitative measure of e�ciency tracks how fast they diverge. We say we have extreme

quantum memory advantage when the classical memory diverges as N ! 1, but quantum

memory converges to a finite quantity.

5.6 Typical Realizations

At this point, we established classical and quantum representations of processes and

characterized their respective memory requirements. Using this, our purpose now shifts

to monitor classical and quantum resources required to generate rare-event classes of a

process’ realizations. Our first task is to review the theory of typical events and their

complement—rare events.

The concept of a stochastic process is quite general. Any physical system that exhibits

stochastic dynamics in time or space may be thought of as generating a stochastic process.

In the spatial setting one considers not time evolution, but rather the spatial “dynamic”.

For example, consider a one-dimensional noninteracting Ising spin-½ chain with classical
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Hamiltonian H = �
Pn

i=1 h�i in contact with a thermal reservoir at temperature T . After

thermalizing, a spin configuration at one instant of time may be thought of as having been

generated by a process that scans the lattice left-to-right (or, equivalently, right-to-left).

The probability distribution over these spatial-translation invariant configurations defines

a stationary stochastic process—a simple Markov random field.

For n � 1, one can ask for the probability of seeing k up spins. The Strong Law of

Large Numbers [147] guarantees that for large n, the ratio k/n almost surely converges to

p" = 1
2 (1 + tanh(h/kBT )). That is:

P
✓

lim
n!1

k

n
= p"

◆
= 1 .

Informally, a typical sequence is one that has close to p"n up-spins. However, this does

not preclude seeing other kinds of long runs, e.g., all up-spins or all down-spins. It simply

means that the latter are rare events, compared to the typical ones.

Now, let us formally define the concept of typical realizations and, consequently, rare

ones. Consider a given process P and let An denote the set of of all possible length-n

realizations. Then, for an arbitrary 0 < ✏ ⌧ 1 the process’ typical set [21, 148, 149] is

defined:

A
n
✏ ⌘{w : 2�n(hµ+✏)  P(w)  2�n(hµ�✏)

, w 2 An}, (5.1)

where hµ is the process’ Shannon entropy rate, introduced above.

According to the Shannon-McMillan-Breiman theorem [140,151,152], for a given ✏ ⌧ 1,

su�ciently large n
⇤, and w 2 An:

P(w /2 A
n
✏ )  ✏ , (5.2)

for all n � n
⇤. There are two important lessons here. First, from Eq. (5.1) we see that

all sequences in the typical set have approximately the same probability. More precisely,

the probability of typical sequences decays at the same exponential rate. The following

adapts this to use decay rates to identify distinct sets of rare events. Second, coming from

Eq. (5.2), for large n the probability of sequences falling outside the typical set is close to

zero—these are the sets of rare sequences.
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Figure 5.3: For a given process, the space A1 of all sequences is partitioned into forbidden
sequences, sequences in the typical set, and sequences neither forbidden nor typical—the
atypical or rare sequences.

Another important consequence of the theorem is that sequences generated by a

stationary ergodic process fall into one of three partitions; see Fig. 5.3. The first contains

sequences that are never generated; they fall in the the forbidden set. For example, the

HMM in Fig. 5.1 never generates sequences that have consecutive 2s. The second partition

consists of those in the typical set—the set with probability close to one, as in Eq. (5.1).

And, the last contains sequences in a family of atypical sets—realizations that are rare to

di↵erent degrees. We now refine this classification by dividing the atypical sequences into

identifiable subsets, each with their own characteristic rarity.

Mirroring the familiar Boltzmann weight in statistical physics [153], in the n ! 1

limit, we define the subsets ⇤P
u ⇢ A1 for a process P as:

⇤P
u,n =

⇢
w : � log2 P(w)

n
= u, w 2 An

�
and (5.3)

⇤P
u = lim

n!1
⇤P

u,n .

This partitions A1 into disjoint subsets ⇤P
u in which all w 2 ⇤P

u have the same probability

decay rate u. Physics vernacular would speak of the sequences having the same energy
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density u.4 Figure 5.4 depicts these subsets as “bubbles” of equal energy. Equation (5.1)

says the typical set is that bubble with energy equal to the process’ Shannon entropy rate:

u = hµ. All the other bubbles contain rare events, some rarer than others. They exhibit

faster or slower probability decay rates.

Employing a process’ HMM to generate realizations produces sequences in the typical

set with probability close to one and, rarely, atypical sequences. Imagine that one is

interested in a particular class ⇤P
u of rare sequences, say, those with energy u. (One might

be concerned about the class of large-magnitude earthquakes or the emergence of major

instabilities in the financial markets, for example.) How can one e�ciently generate these

rare sequences? We now show that there is a new process Pu whose typical set is ⇤P
u and

this returns us directly to the challenge of biased sampling.

5.7 Biased Sampling

Consider a finite set of configurations {ci} with probabilities specified by distribution Pr(·)

and an associated set {!i} of weighting factors. Consider the procedure of reweighting

that introduces a new distribution fPr(·) over configurations where:

fPr(ci) =
Pr(ci) exp(!i)P
i

Pr(ci) exp(!i)
.

Given a process P and its ✏-machine M(P), How do we construct an ✏-machine M(Pu)

that generates P ’s atypical sequences at some energy density u 6= hµ or, as we denoted it,

the set ⇤P
u ? Here, we answer this question by constructing a map B� : P ! P� from the

original process P to a new one P�. The map is parametrized by � 2 R/{0} which indexes

the rare set of interest. (We use � for convenience here, but it is related to u by a function

introduced shortly.) Both processes P =
�
A1

, ⌃, Pr(·)
 

and P� =
�
A1

, ⌃, Pr�(·)
 

are

defined on the same measurable sequence space. The measures di↵er, but their supports

(allowed sequences) are the same. For simplicity we refer to B� as the �-map.

Assume we are given M(P) =
�
S, A, {T

(x)
, x 2 A}

 
. We showed that for every

probability decay rate or energy density u, there exists a particular � such that M(P�)

4u, considered as a random variable, is sometimes called a self process [129].
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Figure 5.4: Space of all sequences A1 partitioned into ⇤us—isoenergy density or equal
probability-decay-rate bubbles—in which all sequences in the same ⇤u have the same
energy density u. The typical set is one such bubble with energy equal to Shannon entropy
rate: u = hµ. Another important class is the forbidden set, in which all sequences do not
occur. The forbidden set can also be interpreted as the subset of sequences with infinite
positive energy. By applying the map B� to the process and changing � continuously from
�1 to +1 (excluding � = 0) one can generate any rare class of interest ⇤P

u . � ! �1
corresponds to the most probable sequences with the largest energy density umax, � = 1
corresponds to the typical set and � ! +1 corresponds to the least probable sequences
with the smallest energy density umin.

typically generates the words in ⇤P
u,n for large n [55]. The �-map which establishes this is

calculated by a construction that relates M(P) to M(P�) =
�
S, A, {S(x)

� , x 2 A}
 
—the

HMM that generates P�:

1. For each x 2 A, construct a new matrix T(x)
� for which

�
T(x)

�

�
ij

=
�
T(x)

��
ij
.

2. Form the matrix T� =
P

x2A T
(x)
� .

3. Calculate T�’s maximum eigenvalue b�� and corresponding right eigenvector br�.

4. For each x 2 A, construct new matrices S(x)
� for which:

�
S(x)
�

�
ij

=

�
T(x)

�

�
ij
(br�)j

b��(br�)i
.

Having constructed the new process P� by introducing its generator, we use the latter

to produce some rare set of interest ⇤P
u,n.
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Theorem 3. In the limit n ! 1, within the new process P� the probability of generating

realizations from the set ⇤P
u,n converges to one:

lim
n!1

Pr
�

(⇤P
u,n) = 1 ,

where:

u = �
�1
�
hµ(P�) � log2

b��

�
. (5.4)

In addition, in the same limit the process P� assigns equal energy densities over all the

members of the set ⇤P
u,n.

Proof. See Ref. [55].

As a result, for large n the process P� typically generates the set ⇤P
u,n with the

specified energy u. The process P� is sometimes called the auxiliary, driven, or e↵ective

process [157, 190, 191]. Examining the form of the energy in Eq. (5.4), one sees that there

is a one-to-one relationship between � and u. And so, we can equivalently denote the

process P� by Pu. More formally, every word in ⇤P
u with probability measure one is in

the typical set of process P�.

The �-map construction guarantees that the HMMs M(P) and M(P�) have the same

states and transition topology:
�
T(x)

�

�
ij

6= 0 ()
�
S(x)
�

�
ij

6= 0. The only di↵erence

is in their transition probabilities. M(P�) is not necessarily an ✏-machine—the most

memory-e�cient classical algorithm that generates the process. Typically, though, M(P�)

is an ✏-machine. Moreover, there are only finitely many �s for which it is not. (More

detailed development along these lines will appear in a sequel.)

5.8 Quantum and Classical Memory For Biased Sam-

pling

Having introduced the necessary background to compare classical versus quantum models

and to appreciate typical versus rare realizations, we are ready to investigate the quantum

memory advantage when generating a given process’ rare events.
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A Bp|0

1 � p|1

q|1

1 � q|0
Figure 5.5: ✏-Machine generator of the Perturbed Coins Process. Edges are labeled with
conditional transition probabilities and emitted symbols. For example, for the self-loop on
state A, p|0 indicates the transition is taken with probability Pr(0|A) = p and the symbol
0 is emitted.

The last section concluded that the memory required by the classical algorithm to

generate P ’s rare sequences with energy density u is:

Cµ(P�) = Cµ(B�(P)) ,

where u and � are related via u = �
�1
�
hµ(P�) � log2

b��

�
. Similarly, the memory required

by the quantum algorithm to generate the rare class with energy density u is:

Cq(B�(P)) .

For simplicity, we denote these two quantities by Cµ(�) ⌘ Cµ(P�) and Cq(�) ⌘ Cq(P�).

The following analyzes the advantage for three example processes—two in the single-

process setting and one in the multi-process setting. For the first two, we consider particular

given stochastic processes and study the advantage (memory ratio) as the metric of memory

e�ciency. In the third example, we consider a series of stochastic processes labeled by

their size N and compare how both classical and quantum memories scale with N . The

ratio of scaling then is the metric for memory e�ciency.

5.8.1 Quantum Memory Advantage for a Simple Markov Pro-

cess

Let’s start in the single-process setting in which an individual stochastic process is given.

Consider the case where we have two biased coins, call them A and B, and each has a

di↵erent bias p and 1 � q both for Heads (symbol 0), respectively. When we flip a coin,
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if the result is Heads, then on the next flip we choose coin A. If the result is Tails, we

choose coin B. Flipping the coins over and over again results in a process Ppc called the

Perturbed Coins Process [8]. Figure 5.5 shows the process’ ✏-machine generator M(Ppc),

where S = {A, B} and A = {0, 1}.

One can also generate this process with a quantum machine Q(Ppc). Using the

construction introduced in Sec. 5.5, it has two Kraus operators corresponding to symbols

0 and 1:

K0 =

2

4
p

p 0
p

1 � p 0

3

5

K1 =

2

40
p

1 � q

0
p

q

3

5 .

For its stationary state distribution we have:

⇢s =
1

2 � p � q

2

4 1 � q ↵

↵ 1 � p

3

5 ,

where ↵ = (1�q)
p

p(1 � p)+(1�p)
p

q(1 � q). Calculation detail is given in App. 5.10.3.

Figure 5.6 shows the classical and quantum memory costs to generate rare realizations:

Cµ(�) and Cq(�) versus � for di↵erent �-classes. Surprisingly, the two costs exhibit com-

pletely di↵erent behaviors. For example, lim
�!0

Cq = 0, while lim
�!0

Cµ = 1. More interestingly,

as the inset demonstrates, even though both Cµ(�) and Cq(�) vanish exponentially fast,

in the limit of � ! 1 Cq(�) goes to zero noticeably faster.

We define the memory e�ciency ⌘(�) of biased sampling in the single-process setting

as the ratio of classical to quantum memory:

⌘(�) ⌘ Cµ(�)

Cq(�)
.

Figure 5.7 graphs ⌘(�), revealing how it divides into three distinct scaling regimes.

First, for small |�| the memory ratio scales as O(��2). Second, for large positive � the

memory ratio scales exponentially O(exp (c�)) as one increases �, where c is a function of p

and q. Third, for large negative �, there is no quantum advantage. Since we are analyzing
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Figure 5.6: Classical memory Cµ(�) and quantum memory Cq(�) versus � for biased
sampling of Perturbed Coins Process’ rare sequence classes: See Fig. 5.5, with p = 0.6
and q = 0.8. As the inset shows, for large � both classical and quantum memories decay
exponentially with �, but the quantum memory decays faster. The vertical dashed black
line and two red markers at � = 1 show the memory costs for generating typical sequences.

finite-state processes, this regime appears and is the analog of population inversion. And

so, formally there are �-class events with negative �.

Such is the quantum advantage for the Perturbed Coins Process at p = 0.6 and q = 0.8.

The features exhibited—the di↵erent scaling regimes—are generic for any p > 1�q, though.

Moreover, for Perturbed Coins Processes with p < 1 � q, the positive and negative low

temperature behaviors switch.

5.8.2 Quantum Memory Advantage for Next-Nearest-Neighbor

Spin Systems

Again, consider the single-process setting in which an individual stochastic process is

given. Let us, however, analyze the quantum advantage in a more familiar physical

system. Consider a general one-dimensional ferromagnetic next-nearest-neighbor Ising

spin-½ chain [67,68] defined by the Hamiltonian:

H = �
X

i

�
sisi+1 + 1

4sisi+2

�
, (5.5)
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Figure 5.7: The classical to quantum memory ratio for generating rare realizations of the
Perturbed Coins Process with p = 0.6 and q = 0.8 when employing its q-machine instead
of its (classical) ✏-machine. Three di↵erent advantages occur: (i) near � = 0 the ratio
scales as O(��2), (ii) for large positive �, it scales exponentially with �, O(exp (f(q, p)�)),
and (iii) no advantage at large negative �. The vertical dashed black line and red marker
at � = 1 show the memory cost for generating typical sequences.

in contact with thermal bath at temperature kBT = 1. The spin si at site i takes on values

{+1, �1}.

After thermalizing, a spin configuration at one instant of time may be thought of as

having been generated left-to-right (or, equivalently, right-to-left) along the lattice. The

probability distribution over these spatial-translation invariant configurations defines a

stationary stochastic process. Reference [1, Eqs. (84) � (91)] showed that for any finite

and nonzero temperature T , this process has Markov order R = 2. More to the point,

the ✏-machine that generates this process has four causal states and those states are in

one-to-one correspondence with the set of length-2 spin configurations.

Figure 5.8 displays the parametrized ✏-machine that generates this family of spin-

configuration processes. To simulate the process, the generator need only remember the

last two spins generated. This means the ✏-machine has four states, ##, #", "#, and "". If

the last two observed spins are "" for example, then the current state is "". We denote the

probability of generating a # spin given that the previous two spins were "" by p
###
"""""". If the
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Figure 5.8: ✏-Machine that generates the spin configurations occurring in the one-
dimensional ferromagnetic next-nearest-neighbor Ising spin chain with the Hamiltonian in
Eq. (5.5).

generator is in the "" state and generates a # spin, then the generator state changes to "#.

To determine the ✏-machine transition probabilities {T
(x)}x2A, we first compute the

transfer matrix V for the Hamiltonian of Eq. (5.5) at temperature T and then extract

conditional probabilities, following Ref. [1] and Ref. [14]’s appendix.

What are the classical and quantum memory costs for bias sampling of the rare spin-

configuration class with decay rate u, as defined in Eq. (5.3)? First, note that u is not a

configuration’s actual energy density E. If we assume the system is in thermal equilibrium

and thus exhibits a Boltzmann distribution over configurations, then u and E are related

via:

u =
log2(e)

kBT
(E � F(T )) ,

where:

F(T ) = �kBT lim
n!1

1

n
ln

0

@
X

{w2An}

e
�nE(w)

kBT

1

A .

This simply tells us that if a stochastic process describes thermalized configurations of a

physical system with some given Hamiltonian, then every rare-event bubble in Fig. 5.4
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Figure 5.9: Classical to quantum memory ratio for biased sampling of Ising spin configura-
tions: ⌘(u) versus decay rate u for bias sampling of equal-energy density spin configurations.
Vertical lines locate �s corresponding to particular us. Note the memory ratio ⌘(u) diverges
at u = u0 ⇡ 1.878 corresponding to � = 0. Note that the quantum memory advantage is
not limited to � = 0, but occurs in a large neighborhood around it. Quantitatively, for
any arbitrary large number r there exist a number ✏ for which the rare class �0 = ✏ has
the memory ratio ⌘(�0) > r.

can be labeled either with �, u, or E. Moreover, there is a one-to-one mapping between

every such variable pair.

Figure 5.9 plots ⌘(u) versus u—the memory ratio for generating rare configurations

with decay rate u. To calculate ⌘(u) for a given process P , first we determine the process’

classical generator M(P) using the method introduced in Ref. [141]. Second, for every

� 2 R/{0}, using the map introduced in Sec. 5.7, we find the new classical generator

M(P�). Third, using the construction introduced in Sec. 5.4, we find Q(P�). Fourth,

using Thm. 3 we find the corresponding u for the chosen �. Using these results gives

⌘(u(�)) = Cµ(�)/Cq(�). By varying � in the range R/{0} we cover all the energy density

us. Practically, to calculate ⌘(u) in Fig. (5.9), we chose 2000 � 2 [�10, 7.5].

As pointed out earlier, � = 1 always corresponds to the process itself. And, one obtains

its typical sequences. As one sees in Fig. 5.9, the memory ratio ⌘(1) < 2. This simply

means that, though there is a quantum advantage generating typical sequences, it is not
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Figure 5.10: Classical generators of four important rare classes: (Top-left) Negative zero-
temperature limit. (Top-right) positive zero temperature limit. (Bottom-left) Negative
infinite temperature limit. (Bottom-right) positive temperature limit. Gray edges and
states denotes them being rarely visited.

that notable. However, the figure highlights four other interesting regimes.

First, there is the � ! 1 limit corresponding to the rare class with minimum decay

rate equal to umin = � log2(p
###
######) = � log2(p

"""
""""""). From Eq. (5.5) it is easy to see that this

rare bubble only has two configurations as members: all up-spins or all down-spins. Let

us consider finite but large � � 1 that corresponds to the rare class with a low energy

density close to umin. Figure 5.10(top-left) shows a general ✏-machine for this process. Low

color intensity for both edges and states means that the process rarely visits them during

generation. This means, in turn, that a typical realization consists of large blocks of all

up-spins and all down-spins. These large blocks are joined by small segments.

Second, there is the � ! �1 limit that corresponds to the rare class with maximum
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decay rate equal to umax = �1
2 log2(p

###
#"#"#"p

"""
"#"#"#). From Eq. (5.5) it is easy to see that this rare

bubble only has one configuration as a member: a periodic repetition of spin down and spin

up. Consider finite � ⌧ 1 corresponding to a rare class with a high energy density close to

umax. Figure 5.10(top-right) shows the general ✏-machine for the associated process. The

typical configuration consists of large blocks tiled with spin-up and spin-down pairs that

are connected by other short segments.

Third, there is the � ! 0+ limit. In this limit we expect to see completely random

spin-up/spin-down configurations. Figure 5.10(bottom-right) shows the ✏-machine for this

class labeled with nonzero small �. The transition probability for the edges labeled +

is 1/2 + ✏ and for the edges labeled � is 1/2 � ✏, where ✏ is a small positive number. As

one can see, even though each transition probability is close to one-half, the self-loops are

slightly favored.

Fourth and finally, there is the � ! 0� limit. The generator here, Figure 5.10(bottom-

left), is similar to that at positive infinite temperature, except that the edge-sign labels

are reversed. This means that the self-loops are slightly less favored.

Appendix 5.10.4 explains the meaning of the � regimes and why each is important.

Remarkably, the memory ratio ⌘(u) diverges at u = u0 ⇡ 1.878, where u0 = lim
�!0

u—that

is, at both the positive and negative high-temperature limit. Moreover, the memory ratio

⌘(u) diverges as (u � u0)�2 in both limits.

5.8.3 Extreme Quantum Memory Advantage for N-Nearest-Neighbor

Spin Systems

Now, consider the multi-process setting in which we specify a series of stochastic processes

labeled by an integer N that determines the size of each. In this, e�ciency is defined by

how the memory scales in N for the quantum algorithm compared to the classical.

We explore a general one-dimensional ferromagnetic N -nearest-neighbors Ising spin-½

chain defined by the Hamiltonian:

HN = �
X

i

NX

k=1

1

k�
sisi+k ,
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Figure 5.11: Classical memory Cµ(N, �) (solid lines) and quantum memory Cq(N, �)
(dashed lines) required for generating process P(N, �) for interaction ranges N = 1, . . . , 4,
a range of � 2 [�5, 3], and � = 2. At both limits � ! 0+ and � ! 0�, Cµ(N, �) scales
linearly with N while Cq(N, �) vanishes. For any finite �, for su�ciently large N , Cµ(N, �)
is an increasing function of N , while Cq(N, �) is bounded above by 1. The vertical dashed
red line at � = 1 shows the memory costs for generating typical sequences.

in contact with a thermal bath at temperature kBT = 1 and for which there is monopole-

dipole coupling (� = 2).

As in the nearest-neighbor spin system, after thermalizing the probability over configu-

rations at one instant of time defines a spatially-stationary stochastic process. We denote

the process generated by this Hamiltonian by P(N). P(N) has Markov order R = N .

More to the point, the ✏-machine that generates this process has 2N causal states and

those states are in one-to-one correspondence with the set of length-N spin configurations.

To determine the ✏-machine transition probabilities {T
(x)}x2A, one can use Ref. [1] and

Ref. [14]’s appendix.

Let P(N, �) denote the process that typically generates the rare �-class of process

P(N). Now, for an arbitrary fixed �, one can ask how the required classical memory

Cµ(N, �) and quantum memory Cq(N, �) for generating P(N, �) scales with N .

Figure 5.11 shows Cµ(N, �) and Cq(N, �) versus � for di↵erent Ns. Cµ(.)s are plotted
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by solid-line and Cqs by dashed-line. To make them distinguishable, curves at di↵erent

Ns are displayed with di↵erent colors. Interestingly, in both � ! 0+ and � ! 0� limits,

Cµ(N, �) scales linearly with N , while Cq(N, �) goes to zero. More importantly, one can

also check that for any finite nonzero � and su�ciently large N , Cµ(N, �) is an increasing

function of N . Surprisingly, it can be shown that for any nonzero � and any N , Cq(N, �)

is bounded above by 1. The result is extreme quantum memory advantage for rare-event

sampling of this series of stochastic processes.

5.9 Conclusions

We introduced a new quantum algorithm for simultaneous sampling rare events in classical

stochastic processes. We showed that it confers a significant memory advantage when

compared to the best known classical algorithm.

We explored two settings: single-process and multi-process sampling. For single

processes an individual stochastic process is given and memory e�ciency is defined as the

ratio of memory required by the classical algorithm compared to that by the quantum one.

For two example systems, we showed that for any large real number r there exist infinite

classes of rare events for which the classical-quantum memory ratio for sampling is larger

than r. In the multi-process setting, a series of stochastic processes each labeled by an

integer size N is given. There, the memory e�ciency is defined by how required memory

scales in N for the classical algorithm compared to the quantum algorithm. In this setting

we demonstrated an extreme quantum memory advantage in which the classical memory

grows with N unboundedly, but the quantum memory is bounded.

5.10 Appendices

5.10.1 Completeness Condition

To establish Kraus operator completeness—
P
x

K
†
xKx = I— it is enough to show that, for

all l and k:

h⇠l|
 
X

x

K
†
xKx

!
|⇠ki = h⇠l|⇠ki .
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Using the definition of Kraus operators we have:

X

x

K
†
xKx =

X

i,j
m,n
x

q
T

(x)
mn

q
T

(x)
ij |f⇠mi h⇠n|⇠ji he⇠i| .

As a result, for all l and k:

h⇠l| (
X

x

K
†
xKx) |⇠ki =

X

n,j
x

q
T

(x)
ln

q
T

(x)
kj h⇠n|⇠ji

= h⇠l|⇠ki .

This completes the proof.

5.10.2 Stationary Distribution

We calculate the stationary distribution over causal states. First, we have:

X

x

Kx⇢sK
†
x =

X

r,i,j
m,n
x

⇡r

p
T x
mn

q
T

x
ij |⇠ji he⇠i|⇠ri h⇠r|f⇠mi h⇠n|

=
X

n,j,r
x

⇡r

q
T

(x)
rn

q
T

(x)
rj |⇠ji h⇠n| .

Since ✏-machines are unifilar [90], we always have:

q
T

(x)
rn

q
T

(x)
rj = T

x
rn. From this we find:

X

x

Kx⇢sK
†
x =

X

n,r
x

⇡rT
(x)
rn |⇠ni h⇠n| .

The stationary distribution over causal states satisfies ⇡T = ⇡ or, equivalently, ⇡n =
P
x,r

⇡rT
(x)
rn . Replacing ⇡n in the above equation leads to:

X

x

Kx⇢sK
†
x =

X

n

⇡n |⇠ni h⇠n| = ⇢s .

5.10.3 Perturbed Coins Process Quantum Machine

First step (Find the |⌘iis):

Map causal states A and B to two pure quantum states |⌘Ai and |⌘Bi:

|⌘Ai =
p

p |0i +
p

1 � p |1i

|⌘Bi =
p

1 � q |0i +
p

q |1i ,
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where |0i and |1i form orthogonal bases on Hilbert spaces of size 2.

Second step (Find |⇠iis and |e⇠iis):

Since the size of alphabet |A| = 2 and Markov order is R = 1 then |A|R = 2. The number

of causal state is also |S| = 2. As a result |⇠Ai = |⌘Ai, |⇠Bi = |⌘Bi,

⌅ =
h
|⇠Ai |⇠Bi

i
=

2

4
p

p
p

1 � q

p
1 � p

p
q

3

5 ,

and

⌅�1 =

2

4h e⇠A|

hf⇠B|

3

5 =

2

4
p

q �
p

1 � q

�
p

1 � p
p

p

3

5

p
pq �

p
(1 � p)(1 � q)

.

Third step (Find Kraus operators Kis):

K0 =
p

p |⇠Ai h e⇠A| +
p

1 � q |⇠Ai hf⇠B|

=

2

4
p

p 0
p

1 � p 0

3

5

K1 =
p

q |⇠Bi hf⇠B| +
p

1 � p |⇠Bi h e⇠A|

=

2

40
p

1 � q

0
p

q

3

5 .

We can easily check the completeness condition K
†
0K0 + K

†
1K1 = I.

Fourth step (Find stationary distribution ⇢s):

For the stationary state distribution over causal states we have ⇡T = ⇡, where:

T =

2

4 p 1 � p

1 � q q

3

5 .

As a result:

⇡ =

2

4⇡A

⇡B

3

5 =
1

2 � p � q

2

41 � q

1 � p

3

5 .
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Forbidden  
Set

An

P(w) / 2�un# / 2S(u)n

Figure 5.12: An the set of words with length n, can be decomposed to di↵erent bubbles
⇤P

u,n each labeled with di↵erent u. The number of words in the bubble with the energy
density u is

��⇤P
u,n

�� = 2nS(u) and the probability of each word in this bubble is 2�nu.

Using ⇢s = ⇡A |⇠Ai h⇠A| + ⇡B |⇠Bi h⇠B| we find:

⇢s =
1

2 � p � q

2

4 1 � q ↵

↵ 1 � p

3

5 ,

where ↵ = (1 � q)
p

p(1 � p) + (1 � p)
p

q(1 � q).

5.10.4 Meaning of the � Regimes

By Eq. (5.3), ⇤P
u,n is subset of all words with length n, ⇤P

u,n ✓ An, whose probability

decay rate u = �1
2 log2 Pr(w). This partitions An into disjoint subsets ⇤P

u,n showed by

green bubbles in Fig. 5.12. By definition, all the words in the bubble ⇤P
u,n have the same

probabilities 2�nu, as Fig. 5.12 shows.

One important question is how the probability of the whole bubble P(⇤P
u,n) decays

with n. This quantity can be written as a product of two factors: P(⇤P
u,n) = 2�nu

��⇤P
u,n

��.

The first is the probability of each word in the bubble and the second the number of words

in it.

96



Since
��⇤P

u,n

�� grows exponentially with n we define:

S(u) ⌘ lim
n!1

log2

���⇤P
u,n

���

n
.

Now, for the probability of the bubble with energy density u one can write:

P(⇤P
u,n) = 2�n(u�S(u))

.

The quantity I(u) = u � S(u) often called the large deviation rate. I(u) is always

positive except for the typical set where it vanishes. This simply tells us that P(⇤P
u,n), the

probability of every bubble except the typical set, decays exponentially with n.

This provides the background needed to interpret the meaning behind di↵erent �

regimes.

� ⌧ �1 regime: This regime includes bubbles with very high energy density u.

Recalling that the probability of each word in the bubble with energy density u is 2�nu,

we see that this regime includes the bubble with the rarest words. Notice that this does

not refer to the probability of an entire bubble, rather the probability of each word in the

bubble.

� ⌧ 1 regime: This regimes includes bubbles with very low energy density u. Again,

since the probability of each word in the bubble is 2�nu, then this regime includes the

bubble with the most probable words. To emphasize, this is the probability of each word

in the bubble. For example, the bubble that has the most probable word can potentially

have one member and still be very rare.

� = 1 class: This points to a particular bubble, the typical set.

� 2 (�✏, ✏) regime: This includes bubbles with �s near zero. One can show that

@uS(u(�)) = �. As a result, the maximum of S(u(�)) happens at � = 0. Recalling the

definition of S(u), this means that the bubble with the maximum number of words is

labeled by � = 0 or, equivalently, u(� = 0)). In other words, � 2 (�✏, ✏) includes bubbles

that have the largest number of words in them or, equivalently, largest S(u).
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Chapter 6

Thermodynamic Cost of Random

Number Generation

6.1 Overview

We analyze the thermodynamic costs of the three main approaches to generating random

numbers via the recently introduced Information Processing Second Law. Given access to

a specified source of randomness, a random number generator (RNG) produces samples

from a desired target probability distribution. This di↵ers from pseudorandom number

generators (PRNG) that use wholly deterministic algorithms and from true random

number generators (TRNG) in which the randomness source is a physical system. For each

class, we analyze the thermodynamics of generators based on algorithms implemented as

finite-state machines, as these allow for direct bounds on the required physical resources.

This establishes bounds on heat dissipation and work consumption during the operation

of three main classes of RNG algorithms—including those of von Neumann, Knuth and

Yao, and Roche and Hoshi—and for PRNG methods. We introduce a general TRNG

and determine its thermodynamic costs exactly for arbitrary target distributions. The

results highlight the significant di↵erences between the three main approaches to random

number generation: One is work producing, one is work consuming, and the other is

potentially dissipation neutral. Notably, TRNGs can both generate random numbers

and convert thermal energy to stored work. These thermodynamic costs on information

creation complement Landauer’s limit on the irreducible costs of information destruction.
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6.2 Introduction

Random number generation is an essential tool these days in simulation and analysis.

Applications range from statistical sampling [192], numerical simulation [193], cryptography

[194], program validation [195], and numerical analysis [196] to machine learning [197]

and decision making in games [198] and in politics [199]. More practically, a significant

fraction of all the simulations done in physics [200] employ random numbers to greater or

lesser extent.

Random number generation has a long history, full of deep design challenges and

littered with pitfalls. Initially, printed tables of random digits were used for scientific

work, first documented in 1927 [201]. A number of analog physical systems, such as

reversed-biased Zener diodes [202] or even Lava® Lamps [203], were also employed as

sources of randomness; the class of so-called noise generators. One of the first digital

machines that generated random numbers was built in 1939 [204]. With the advent of

digital computers, analog methods fell out of favor, displaced by a growing concentration on

arithmetical methods that, running on deterministic digital computers, o↵ered flexibility

and reproducibility. An early popular approach to digital generation was the linear

congruential method introduced in 1950 [205]. Since then many new arithmetical methods

have been introduced [206–211].

The recurrent problem in all of these strategies is demonstrating that the numbers gen-

erated were, in fact, random. This concern eventually lead to Chaitin’s and Kolmogorov’s

attempts to find an algorithmic foundation for probability theory [212–217]. Their answer

was that an object is random if it cannot be compressed: random objects are their own

minimal description. The theory exacts a heavy price, though: identifying randomness is

uncomputable [216].

Despite the formal challenges, many physical systems appear to behave randomly.

Unstable nuclear decay processes obey Poisson statistics [218], thermal noise obeys Gaus-

sian statistics [219], cosmic background radiation exhibits a probabilistically fluctuating

temperature field [220], quantum state measurement leads to stochastic outcomes [221–223],

and fluid turbulence is governed by an underlying chaotic dynamic [224]. When such
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physical systems are used to generate random numbers one speaks of true random number

generation [225].

Generating random numbers without access to a source of randomness—that is, using

arithmetical methods on a deterministic finite-state machine, whose logic is physically

isolated—is referred to as pseudorandom number generation, since the numbers must

eventually repeat and so, in principle, are not only not random, but are exactly predictable

[226,227]. John von Neumann was rather decided about the pseudo-random distinction:

“Any one who considers arithmetical methods of producing random digits is, of course, in a

state of sin” [228]. Nonetheless, these and related methods dominate today and perform

well in many applications.

Sidestepping this concern by assuming a given source of randomness, random number

generation (RNG) [229] is a complementary problem about the transformation of random-

ness: Given a specific randomness source, whose statistics are inadequate somehow, how

can we convert it to a source that meets our needs? And, relatedly, how e�ciently can

this be done?

Our interest is not algorithmic e�ciency, but thermodynamic e�ciency, since any

practical generation of random numbers must be physically embedded. What are the

energetic costs—energy dissipation and power inputs—to harvest a given amount of

information? This is a question, at root, about a particular kind of information processing—

viz., information creation—and the demands it makes on its physical substrate. In this

light, it should be seen as exactly complementary to Landauer’s well known limit on the

thermodynamic costs of information destruction (or erasure) [26, 230].

Fortunately, there has been tremendous progress bridging information processing and

the nonequilibrium thermodynamics required to support it [231,232]. This information

thermodynamics addresses processes that range from the very small scale, such as the

operation nanoscale devices and molecular dynamics [233], to the cosmologically large,

such the character and evolution of black holes [234,235]. Recent technological innovations

allowed many of the theoretical advances to be experimentally verified [236, 237]. The

current state of knowledge in this rapidly evolving arena is reviewed in Refs. [238–240].

100



Here, we use information thermodynamics to describe the physical limits on random number

generation. Though the latter is often only treated as a purely abstract mathematical

subject, practicing scientists and engineers know how essential random number generation

is in their daily work. The following explores the underlying necessary thermodynamic

resources.

First, Sec. 6.3 addresses random number generation, analyzing the thermodynamics

of three algorithms, and discusses physical implementations. Second, removing the

requirement of an input randomness source, Sec. 6.5 turns to analyze pseudorandom

number generation and its costs. Third, Sec. 6.6 analyzes the thermodynamics of true

random number generation. Finally, the conclusion compares the RNG strategies and

their costs and suggests future problems and energy use.

6.3 Random Number Generation

Take a fair coin as our source of randomness.1 Each flip results in a Head or a Tail with

50% � 50% probabilities. However, we need a coin that 1/4 of the time generates Heads

and 3/4 of the time Tails. Can the series of fair coin flips be transformed? One strategy is

to flip the coin twice. If the result is Head-Head, we report Heads. Else, we report Tails.

The reported sequence is equivalent to flipping a coin with a bias 1/4 for Heads and 3/4

for Tails.

Each time we ask for a sample from the biased distribution we must flip the fair coin

twice. Can we do better? The answer is yes. If the first flip results in a Tail, independent

of the second flip’s result, we should report Tail. We can take advantage of this by slightly

modifying the original strategy. If the first flip results in a Tail, stop. Do not flip a second

time, simply report a Tail, and start over. With this modification, 1/2 of the time we

need a single flip and 1/2 the time we need two flips. And so, on average we need 1.5

flips to generate the distribution of interest. This strategy reduces the use of the fair coin

“resource” by 25%.

Let’s generalize. Assume we have access to a source of randomness that generates the

1Experiments reveal this assumption is di�cult if not impossible to satisfy. Worse, if one takes the full
dynamics into account, a flipped physical coin is quite predictable [241].
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ABAC…
Randomness Reservoir

Output string

Work  
Reservoir

…

Thermal  
Reservoir

Machine

Exhaust line

…+ 0 + �Monte Carlo method+ 0 + �Monte Carlo method+ 0 + �Monte Carlo method

Figure 6.1: Thermodynamically embedded finite-state machine implementing an algorithm
that, from the source of randomness available on the input string, generates random
numbers on the output string obeying a desired target distribution and an exhaust with
zero entropy. Input string and output string symbols can come from di↵erent alphabet
sets. For example, here the input symbols come from the set {A, B, C} and the outputs
from {D, E}. Exhaust line symbols all are the same symbols �.

distribution {pi : i 2 A} over discrete alphabet A. We want an algorithm that generates

another target distribution {qj : j 2 B} from samples of the given source. (Generally,

the source of randomness {pi} can be known or unknown to us.) In this, we ask for a

single correct sample from the target distribution. This is the immediate random number

generation problem: Find an algorithm that minimizes the expected number of necessary

samples of the given source to generate one sample of the target.2

The goal in the following is to analyze the thermodynamic costs when these algorithmi-

cally e�cient algorithms are implemented in a physical substrate. This question parallels

that posed by Landauer [26,230]: What is the minimum thermodynamic cost to erase a

bit of information? That is, rather than destroying information, we analyze the costs of

creating information with desired statistical properties given a source of randomness.

2A companion is the batch random number generation problem: Instead of a single sample, generate a
large number of inputs and outputs. The challenge is to find an algorithm minimizing the ratio of the
number of inputs to outputs [242–244].
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6.3.1 Bounding the Energetics:

The machine implementing the algorithm transforms symbols on an input string sampled

from an information reservoir to an output symbol string and an exhaust string, using

a finite-state machine that interacts with heat and work reservoirs; see Fig. 6.1. The

input Randomness Reservoir is the given, specified source of randomness available to the

RNG. The states and transition structure of the finite-state machine implement the RNG

algorithm. The output string then consists of samples of the distribution of interest. The

exhaust string is included to preserve state space.

Here, we assume inputs Xn are independent, identically distributed (IID) samples from

the randomness reservoir with discrete alphabet A. The output includes two strings, one

with samples from the target distribution X
0
m over alphabet B and another, the exhaust

string. At each step one symbol, associated with variable Xn, enters the machine. After

analyzing that symbol and, depending on its value and that of previous input symbols, the

machine either writes a symbol to the output string or to the exhaust string. Yn denotes

the machine’s state at step n after reading input symbol Xn. The last symbol in the output

string after the input Xn is read is denoted X
0
m, where m  n is not necessarily equal

to n. The last symbol in the exhaust string is X
00
n�m. As a result, the number of input

symbols read by the machine equals the number of symbols written to either the output

string or the exhaust string. To guarantee that the exhaust makes no thermodynamic

contribution, all symbols written to X
00
i s are the same—denoted �. Without loss of

generality we assume both the input and output sample space is A [ B [ {�}. In the

following we refer to the random-variable input chain as Xn:1 = XnXn+1 · · · X1, output

chain as X
0
0:m = X

0
0X

0
1 · · · X 0

m�1, and exhaust chain as X
00
0:n�m = X

00
0X

00
1 · · · X 00

n�m�1.

The machine also interacts with an environment consisting of a Thermal Reservoir

at temperature T and a Work Reservoir. The thermal reservoir is that part of the

environment which contributes or absorbs heat, exchanging thermodynamic entropy and

changing its state Zn. The work reservoir is that part which contributes or absorbs

energy by changing its state, but without an exchange of entropy. All transformations

are performed isothermally at temperature T . As in Fig. 6.1, we denote heat that flows
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to the thermal reservoir by Q. To emphasize, Q is positive if heat flows into the thermal

reservoir. Similarly, W denotes the work done on the machine and not the work done by

the machine.3

After n steps the machine has read n input symbols and generated m output symbols

and n � m exhaust symbols. The thermodynamic entropy change of the entire system

is [246, App. A]:

�S ⌘ kB ln 2
�
H[X 00

0:n�m, X
0
0:m, Xn:1, Yn, Zn]

� H[X0:1, Y0, Z0]
�

,

where H[·] is the Shannon entropy [21]. Recalling the definition of mutual information

I[· : ·] [21], we rewrite the change in Shannon entropy on the righthand side as:

� H = (H[X 00
0:n�m, X

0
0:m, Xn:1, Yn] � H[X0:1, Y0])

+ (H[Zn] � H[Z0])

� (I[X 00
0:n�m, X

0
0:m, Xn:1, Yn : Zn] � I[X0:1, Y0 : Z0]) .

By definition, a heat bath is not correlated with other subsystems, in particular, with

portions of the environment. As a result, both mutual informations vanish. The term

H[Zn] � H[Z0] is the heat bath’s entropy change, which can be written in terms of the

dissipated heat Q:

H[Zn] � H[Z0] =
Q

kBT ln 2
.

Since by assumption the entire system is closed, the Second Law of Thermodynamics says

that �S � 0. Using these relations gives:

Q � �kBT ln 2
�
H[X 00

0:n�m, X
0
0:m, Xn:1, Yn] � H[X0:1, Y0]

�
.

To use rates we divide both sides by n and decompose the first joint entropy:

Q

n
� � kBT ln 2

n

�
H[X 00

0:n�m, X
0
0:m, Xn:1] � H[X0:1]

+ H[Yn] � H[Y0] � I[X 00
0:n�m, X

0
0:m, Xn:1 : Yn]

+ I[X0:1 : Y0]
�

.

3Several recent works [25, 245,246] use the same convention for Q, but W is defined as the work done
by the machine. This makes sense in those settings, since the machine is intended to do work.
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Appealing to basic information identities, several terms on the right-hand side vanish,

simplifying the overall bound. First, since the Shannon entropy of a random variable Y is

bounded by logarithm of the size |AY | of its state space, we have for the machine’s states:

lim
n!1

1

n
H[Yn] = lim

n!1

1

n
H[Y0]

 lim
n!1

1

n
log2 |AY |

= 0 ,

Second, recalling that the two-variable mutual information is nonnegative and bounded

above by the Shannon entropy of the individual random variables, in the limit n ! 1 we

can write:

lim
n!1

1

n
I[X 00

0:n�m, X
0
0:m, Xn:1 : Yn]  lim

n!1

1

n
H[Y0]

= 0 .

Similarly, lim
n!1

1
n I[X0:1 : Y0] = 0. As a result, we have:

lim
n!1

Q

n
� �kBT ln 2

n

�
H[X 00

0:n�m, X
0
0:m, Xn:1] � H[X0:1]

�
.

We can also rewrite the joint entropy as:

H[X 00
0:n�m, X

0
0:m, Xn:1] = H[X 0

0:m, Xn:1] + H[X 00
0:n�m]

� I[X 0
0:m, Xn:1 : X

00
0:n�m] .

Since the entropy of the exhaust vanishes, H[X 00
0:n�m] = 0. Also, since I[X 0

0:m, Xn:1 :

X
00
0:n�m] is bounded above by it, I[X 0

0:m, Xn:1 : X
00
0:n�m] also vanishes. This leads to:

H[X 00
0:n�m, X

0
0:m, Xn:1] = H[X 0

0:m, Xn:1] .

This simplifies the lower bound on the heat to:

lim
n!1

Q

n
� �kBT ln 2

n

�
H[X 0

0:m, Xn:1] � H[X0:1]
�

.

Rewriting the righthand terms, we have:

H[X0:1] = H[X0:n] + H[Xn:1] � I[X0:n : Xn:1]
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and

H[X 0
0:m, Xn:1] = H[X 0

0:m] + H[Xn:1] � I[X 0
0:m : Xn:1] .

These lead to:

lim
n!1

Q

n
� �kBT ln 2

n

�
H[X 0

0:m] � H[X0:n]

+ I[X0:n : Xn:1] � I[X 0
0:m : Xn:1]

�
.

Since the inputs are IID, I[X0:n : Xn:1] vanishes. Finally, I[X 0
0:m : Xn:1] is bounded

above by I[X0:n : Xn:1], meaning that I[X 0
0:m : Xn:1] = 0. Using these we have:

lim
n!1

Q

n
� kBT ln 2

n

�
H[X0:n] � H[X 0

0:m]
�

.

This can be written as:

lim
n!1

Q

n
� kBT ln 2

✓
H[X0:n]

n
� H[X 0

0:m]

m

⇣
m

n

⌘◆
.

As n ! 1, H[X0:n]/n converges to the randomness reservoir’s Shannon entropy rate

h and H[X 0
0:m]/m converges to the output’s entropy rate h

0. The tapes’ relative velocity

term m/n also converges and we denote the limit as 1/bL. As a result, we have the rate

Q̇ ⌘ lim
n!1

(Q/n) of heat flow from the RNG machine to the heat bath:

Q̇ � kBT ln 2

✓
h � h

0

bL

◆
. (6.1)

Since the machine is finite state, its energy is bounded. In turn, this means the average

energy entering the machine, above and beyond the constant amount that can be stored, is

dissipated as heat. In other words, the average work rate Ẇ and average heat dissipation

rate Q̇ per input are equal: Ẇ = Q̇.

This already says something interesting. To generate one random number the average

change �W in work done on the machine and the average change �Q in heat dissipation

by the machine are directly related: �W = �Q = bLQ̇. More to the point, denoting the

lower bound by QLB ⌘ kBT ln 2
⇣
bLh � h

0
⌘

immediately leads to a Second Law adapted to

RNG thermodynamics:

�Q � QLB . (6.2)
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It can be shown that bL is always larger or equal to h
0
/h [21] and so QLB � 0.4 This tells

us that RNG algorithms are always heat dissipative or, in other words, work consuming

processes. Random numbers generated by RNGs cost energy. This new RNG Second Law

allows the machine to take whatever time it needs to respond to and process an input.

The generalization moves the information ratchet architecture [246] one step closer to that

of general Turing machines [247], which also take arbitrary time to produce an output. We

now apply this generalized Second Law to various physically embedded RNG algorithms.

6.3.2 von Neumann RNG:

Consider the case where the randomness resource is a biased coin with unknown probability

p 6= 1/2 for Heads. How can we use this imperfect source to generate fair (unbiased p = 1/2)

coin tosses using the minimum number of samples from the input? This problem was

first posed by von Neumann [228]. The answer is simple but clever. What we need is

a symmetry to undo the source’s bias asymmetry. The strategy is to flip the biased

coin twice. If the result is Heads-Tails we report a Head; if it is Tails-Heads we report

Tails. If it is one of the two other cases, we neglect the flips and simply repeat from

the beginning. A moment’s reflection reveals that using any source of randomness that

generates independent, identically distributed (IID) samples can be used in this way to

produce a statistically uniform sample, even if we do not know the source’s bias.

Note that we must flip the biased coin more than twice, perhaps many more, to generate

an output. More troublesome, there is no bound on how many times we must flip to get a

useful output.

So, what are the thermodynamic costs of this RNG scheme? With probability 2p(1�p)

the first two flips lead to an output; with probability (1�2p(1�p))(2p(1�p)) the two flips

do not, but the next two flips will; and so on. The expected number of flips to generate a

fair coin output is bL = 1
p(1�p) . Using Eq. (6.2) this costs:

QLB = kBT ln 2

✓
H(p)

p(1 � p)
� 1

◆
, (6.3)

4This is not generally true for the setup shown in Fig. 6.1 interpreted most broadly. For computational
tasks more general than RNG, QLB need not be positive.
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Figure 6.2: Lower bound on heat dissipation during the process of single fair sample
generation by von Neumann algorithm versus the input bias p.

where H(p) = �p log2(p) � (1 � p) log2(1 � p). Figure 6.2 shows QLB versus source bias p.

It is always positive with a minimum 3kBT ln 2 at p = 1/2.

This minimum means that generating a fair coin from a fair coin has a heat cost of

3kBT ln 2. At first glance, this seems wrong. Simply pass the fair coin through. The

reason it is correct is that the von Neumann RNG does not know the input bias and, in

particular, that it is fair. In turn, this means we may flip the coin many times, depending

on the result of the flips, costing energy.

Notably, the bound diverges as p ! 0 and as p ! 1, since the RNG must flip an

increasingly large number of times. As with all RNG methods, the positive lower bound

implies that generating an unbiased sample via the von Neumann method is a heat

dissipative process. We must put energy in to get randomness out.

Consider the randomness extractor [248], a variation on von Neumann RNG at extreme

p, that uses a weakly random physical source but still generates a highly random output.

(Examples of weakly random sources include radioactive decay, thermal noise, shot noise,

radio noise, avalanche noise in Zener diodes, and the like. We return to physical randomness

sources shortly.) For a weakly random source p ⌧ 1, the bound in Eq. (6.3) simplifies

to �kBT ln p, which means heat dissipation diverges at least as fast as � ln p in the limit
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p ! 0.

6.3.3 Knuth and Yao RNG:

Consider a scenario opposite von Neumann’s where we have a fair coin and can flip it

an unlimited number of times. How can we use it to generate samples from any desired

distribution over a finite alphabet using the minimum number of samples from the input?

Knuth and Yao were among the first to attempt an answer [249]. They proposed the

discrete distribution generation tree (DDD-tree) algorithm.

The algorithm operates as follows. Say the target distribution is {pj} with probabilities

pj ordered from large to small. Define the partial sum �k =
Pk

j=1 pj, with �0 = 0. This

partitions the unit interval (0, 1) into the subintervals (�k�1, �k) with lengths pk. Now,

start flipping the coin, denoting the outcomes X1, X2, . . .. Let Sl =
Pl

m=1 Xm2�m. It can

be easily shown that S1 has the uniform distribution over the unit interval. At any step l,

when we flip the coin, we examine Sl. If there exists a k such that:

�k�1  Sl < Sl + 2�l  �k , (6.4)

the output generated is symbol k. If not, we flip the coin again for one or more times until

we find a k that satisfies the relation in Eq. (6.4) and report that k as the output.

This turns on realizing that if the condition is satisfied, then the value of future flips

does not matter since, for r > l, Sr always falls in the subinterval (�k�1, �k). Recalling

that S1 is uniformly distributed over (0, 1) establishes that the algorithm generates the

desired distribution {pj}. The algorithm can be also interpreted as walking a binary tree,5

a view related to arithmetic coding [21]. Noting that the input has entropy rate h = 1

and using Eq. (6.1) the heat dissipation is bounded by:

QLB = kBT ln 2
⇣
bL � H[{pi}]

⌘
. (6.5)

Now, let’s determine bL for the Knuth-Yao RNG. Ref. [249] showed that:

H[{pi}]  bL  H[{pi}] + 2 . (6.6)

5For details see Ref. [21].
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Input Output

00 A

01 B

10 C

110 B

1110 A

11110 A

111110 B

111111 C

Table 6.1: Most e�cient map from inputs to outputs when using the DDG-tree RNG
method.

More modern proofs are found in Refs. [244] and [21]. Given a general target distribution

the Knuth-Yao RNG’s bL can be estimated more accurately. However, it cannot be

calculated in closed form, only bounded. Notably, there are distributions {pj} for which bL

can be calculated exactly. These include the dyadic distributions whose probabilities can

be written as 2�n with n an integer. For these target distributions, the DDG-tree RNG

has bL = H[{pi}].

Equations (6.2) and (6.6) lead one to conclude that the heat dissipation for generating

one random sample is always a strictly positive quantity, except for the dyadic distributions

which lead to vanishing or positive dissipation. Embedding the DDG-tree RNG into a

physical machine, this means one must inject work to generate a random sample. The

actual amount of work depends on the target distribution given.

Let us look at a particular example. Consider the case that our source of randomness is

a fair coin with half and half probability over symbols 0 and 1 and we want to generate the

target distribution {11/32, 25/64, 17/64} over symbols A, B, and C. The target distribution

has Shannon entropy H[{pi}] ⇡ 1.567 bits. Equation (6.6) tells us that bL should be larger

than this. The DDG-tree method leads to the most e�cient RNG. Table 6.1 gives the

mapping from binary inputs to three-symbol outputs. bL can be calculated using the table:
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bL ⇡ 2.469. This is approximately 1 bit larger than the entropy consistent with Eq. (6.6).

Now, using Eq. (6.5), we can bound the dissipated heat: QLB ⇡ 0.625kBT .

6.3.4 Roche and Hoshi RNG:

A more sophisticated and more general RNG problem was posed by Roche in 1991 [250]:

What if we have a so-called M -coin that generates the distribution {pi : i = 1, . . . , M}

and we want to use it to generate a di↵erent target distribution {qj}? Roche’s algorithm

was probabilistic. And so, since we assume the only source of randomness to which we

have access is the input samples themselves, Roche’s approach will not be discussed here.

However, in 1995 Hoshi introduced a deterministic algorithm [251] from which we can

determine the thermodynamic cost of this general RNG problem. Assume the pis and qjs

are ordered from large to small. Define ↵t =
Pt

i=1 pi and �k =
Pk

j=1 qj , with ↵0 = �0 = 0.

These quantities partition (0, 1) into subintervals [↵t�1, ↵t) and Bk ⌘ [�k�1, �k) with lengths

pt and qk, respectively. Consider now the operator D that takes two arguments—an interval

and an integer—and outputs another interval:

D([a, b), t) = [a + (b � a)↵t�1, a + (b � a)↵t) .

Hoshi’s algorithm works as follows. Set n = 0 and R0 = [0, 1). Flip the M -coin, call

the result xn. Increase n by one and set Rn = D(Rn�1, xn). If there is a k such that

Rn ✓ Bk, then report k, else flip the M -coin again.

Han and Hoshi showed that [251]:

H[{qj}]

H[{pi}]
 bL  H[{qj}] + f({pi})

H[{pi}]
,

where:

f({pi}) = ln(2(M � 1)) +
H[{pmax, 1 � pmax}]

1 � pmax
,

with pmax = max
i=1,··· ,M

pi. Using this and Eq. (6.2) we see that the heat dissipation per sample

is always positive except for measure-zero cases for which the dissipation may be zero or not.

This means one must do work on the system independent of input and output distributions

to generate the target sample. Again, using this result and Eq. (6.2) there exist input and

output distributions with heat dissipation at least as large as kBT ln 2f({pi}).
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Input Output

0 0

10 0

11 1

Table 6.2: Immediate random number generation: The most e�cient map from inputs to
output to transform fair coin inputs to biased coin outputs with bias 1/4.

6.4 RNG Physical Implementations:

Recall the first RNG we described. The input distribution is a fair coin and the output

target distribution is a biased coin with bias 1/4. Table 6.2 summarizes the optimal

algorithm. Generally, optimal algorithms require the input length to di↵er from the output

length—larger than or equal, respectively.

This is the main challenge to designing physical implementations. Note that for some

inputs, after they are read, the machine should wait for additional inputs until it receives

the correct input and then transfers it deterministically to the output. For example, in

our problem if input 0 is read, the output would be 0. However, if 1 is read, the machine

should wait for the next input and then generate an output. How to implement these

delays? Let’s explore a chemical implementation of the algorithm.

Chemical reaction networks (CRNs) [252,253] have been widely considered as substrates

for physical information processing [254] and as a programming model for engineering

artificial systems [255,256]. Moreover, CRN chemical implementations have been studied

in detail [257, 258]. CRNs are also e�ciently Turing-universal [259], which makes them

appealing. One of their main applications is deterministic function computation [260, 261],

which is what our RNGs need.

Consider five particle types—0, 1, A, B, and �—and a machine consisting of a box that

can contain them. Particles 0 and 1 can be inputs to or outputs from the machine and

particle � can be an output from the machine. “Machine” particles A and B always stay

in the machine’s box and are in contact with a thermal reservoir. Figure 6.3 shows that

the left wall is designed so that only input particles (0 and 1) can enter, but no particles
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can exit. The right wall is designed so that only output particles (0, 1, and �) can exit.

To get started, assume there is only a single machine particle A in the box. Every ⌧

seconds a new input particle, 0 or 1, enters from the left. Now, the particles react in the

following way:

0 + A ) A + 0 ,

1 + A ) B ,

0 + B ) A + 0 + � ,

1 + B ) A + 1 + � .

The time period of each chemical reaction is also ⌧ . With this assumption it is not hard to

show that if the distribution of input particles 0 and 1 is {1/2, 1/2} then the distribution of

output particles 0 and 1 would be {3/4, 1/4}, respectively. Thus, this CRN gives a physical

implementation of our original RNG.

Using Eqs. (6.2) and (6.5) we can put a lower bound on the average heat dissipation per

output: QLB ⇡ 0.478kBT . Since deriving the bound does not invoke any constraints over

input or output particles, the bound is a universal lower bound over all possible reaction

energetics. That is, if we find any four particles (molecules) obeying the four reactions

above then the bound holds. Naturally, depending on the reactions’ energetics, the CRN-

RNG’s �Q can be close to or far from the bound. Since CRNs are Turing-universal [259]

they can implement all of the RNGs studied up to this point. The details of designing

CRNs for a given RNG algorithm can be gleaned from the general procedures given in

Ref. [260].

6.5 Pseudorandom Number Generation

So far, we abstained from von Neumann’s sin by assuming a source of randomness—

a fair coin, a biased coin, or any general IID process. Nevertheless, modern digital

computers generate random numbers using purely deterministic arithmetical methods.

This is pseudorandom number generation (PRNG). Can these methods be implemented by

finite-state machines? Most certainly. The e↵ective memory in these machines is very large,

113



0 + A

0 + A

0 +

Temperature T

Figure 6.3: Chemical Reaction Network (CRN) implementation of an RNG machine
consisting of a box and a particle in it. The left wall acts as a membrane filter such that
only input particles, 0 and 1, can enter, but no particles can exit through the wall. The
right wall is also a membrane designed such that only output particles, 0, 1 and �, can exit.
At the beginning the only particle in the box is “machine particle” A, which is confined to
stay in the box. Every ⌧ seconds a new input particle enters the box from the left and,
depending on the reaction between the input particle and the machine particle, an output
particle may or may not be generated that exists through the right wall.

with the algorithms typically allowing the user to specify the amount of state information

used [262]. Indeed, they encourage the use of large amounts of state information, promising

better quality random numbers in the sense that the recurrence time (generator period)

is astronomically large. Our concern, though, is not analyzing their implementations.

See Ref. [201] for a discussion of design methods. We can simply assume they can be

implemented or, at least, there exist ones that have been, such as the Unix C-library

random() function just cited.

The PRNG setting forces us to forego accessing a source of randomness. The input

randomness reservoir is not random at all. Rather, it is simply a pulse that indicates that

an output should be generated. Thus, h = 0 and bL = 1. In our analysis, we can take the

outputs to be samples of any desired IID process.
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Even though a PRNG is supposed to generate a random number, in reality after setting

the seed [226,227] it, in fact, generates an exactly periodic sequence of outputs. Thus, as

just noted, to be a good PRNG algorithm that period should be relatively long compared

to the sample size of interest. Also, the sample statistics should be close to those of the

desired distribution. This means that if we estimate h
0 from the sample it should be close

to the Shannon entropy rate of the target distribution. However, in reality h
0 = 0 since h

0

is a measure over infinite-length samples, which in this case are completely nonrandom

due to their periodicity.

This is a key point. When we use PRNGs we are only concerned about samples with

comparatively short lengths compared to the PRNG period. However, when determining

PRNG thermodynamics we average over asymptotically large samples. As a result, we

have QLB = 0 or, equivalently, �Q � 0. And so, PRNGs are potentially heat dissipative

processes. Depending on the PRNG algorithm, it may be possible to find machinery that

achieves the lower bound (zero) or not. To date, no such PRNG implementations have

been introduced.

Indeed, the relevant energetic cost bounds are dominated by the number of logically

irreversible computation steps in the PRNG algorithm, following Landauer [26]. This,

from a perusal of open source code for modern PRNGs, is quite high. However, this takes

us far afield, given our focus on input-output thermodynamic processing costs.

6.6 True Random Number Generation

Consider situations in which no random information source is explicitly given as with

RNGs and none is approximated algorithmically as with PRNGs. This places us in the

domain of true random number generators (TRNGs): randomness is naturally embedded

in their substrate physics. For example, a spin one-half quantum particle oriented in the

z
+ direction, but measured in x

+ and x
� directions, gives x

+ and x
� outcomes with 1/2

and 1/2 probabilities. More sophisticated random stochastic process generators employing

quantum physics have been introduced recently [8,10,12–15]. TRNGs have also been based

on chaotic lasers [263,264], metastability in electronic circuits [265,266], and electronic
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…

1

…

Figure 6.4: True general-distribution generator: Emit random samples from an arbitrary
probability distribution {pi}, i = 0, . . . , n � 1 where p1 to pn�1 sorted from large to small.
It has one internal state S and inputs and outputs can be 0, 1, ..., n � 1. All states
have energy zero. The joint states i ⌦ S for i 6= 0 have nonzero energies �Ei. Heat is
transferred only during the transition from state 0 ⌦ S to states i ⌦ S. Work is transferred
only during coupling the input bit to the machine’s state and decoupling the output bit
from the machine’s state.

noise [267]. What thermodynamic resources do these TRNGs require? We address this

here via one general construction.

6.6.1 True General-Distribution Generator:

Consider the general case where we want to generate a sample from an arbitrary probability

distribution {pi}. Each time we need a random sample, we feed in 0 and the TRNG returns

a random sample. Again, the input is a long sequence of 0s and, as a consequence, h = 0.

We also have h
0 = H[{pi}] and bL = 1. Equation (6.2) puts a bound on the dissipated heat

116



and input work: QLB = �kBT ln 2 H[{pi}]. Notice here that QLB is a negative quantity.

This is something that, as we showed above, can never happen for RNG algorithms since

they all are heat-dissipation positive: QLB > 0. Of course, QLB is only a lower bound

and �Q may still be positive. However, negative QLB opens the door to producing work

from heat instead of turning heat to dissipated work—a functioning not possible for RNG

algorithms.

Figure 6.4 shows one example of a physical implementation. The machine has a single

state S and the inputs and outputs come from the symbol set {0, 1, · · · , n � 1}, all with

zero energies. The system is designed so that the joint state 0 ⌦ S has zero energy and

the joint states i ⌦ S, i > 0, have energy �Ei. Recall that every time we need a random

sample we feed a 0 to the TRNG machine. Feeding 0 has no energy cost, since the sum

of energies of states 0 and S is zero and equal to the energy of the state 0 ⌦ S. Then,

putting the system into contact with a thermal reservoir, we have stochastic transitions

between state 0 ⌦ S and the other states i ⌦ S. Tuning the i ⌦ S ! 0 ⌦ S transition

probabilities in a fixed time ⌧ to 1 and assuming detailed balance, all the other transition

probabilities are specified by the �Eis and, consequently, for all i 2 {1, 2, · · · , n � 1}, we

have pi = exp (���Ei).

The design has the system start in the joint state 0⌦S and after time ⌧ with probability

pi it transitions to state i ⌦ S. Then the average heat transferred from the system to

the thermal reservoir is �
Pn�1

i=1 pi�Ei. Now, independent of the current state i ⌦ S, we

decouple the machine state S from the target state i. The average work we must pump

into the system for this to occur is:

�W = �
n�1X

i=1

pi�Ei .

This completes the TRNG specification. In summary, the average heat �Q and the average

work �W are the same and equal to
Pn�1

i=1 pi�Ei.

Replacing �Ei by �kBT ln pi we have:

�Q = kBT

n�1X

i=1

pi ln pi < 0 , (6.7)
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which is consistent with the lower bound �kBT ln 2 H[{pi}] given above. Though, as noted

there, a negative lower bound does not mean that we can actually construct a machine

with negative �Q, in fact, here is one example of such a machine. Negative �Q leads

to an important physical consequence. The operation of a TRNG is a heat-consuming

and work-producing process, in contrast to the operation of an RNG. This means not

only are the random numbers we need being generated, but we also have an engine that

absorbs heat from thermal reservoir and converts it to work. Of course, the amount

of work depends on the distribution of interest. Thus, TRNGs are a potential win-win

strategy. Imagine that at the end of charging a battery, one also had a fresh store of

random numbers.

Let’s pursue this further. For a given target distribution with n elements, we operate

n such TRNG machines, all generating the distribution of interest. Any of the n elements

of the given distribution can be assigned to the self-transition p0. This gives freedom in

our design to choose any of the elements. After choosing one, all the others are uniquely

assigned to p1 to pn�1 from largest to smallest. Now, if our goal is to pump-in less heat

per sample, which of these machines is the most e�cient? Looking closely at Eq. (6.7), we

see that the amount of heat needed by machine j is proportional to H({pi}) � |pj log2 pj|.

And so, over all the machines, that with the maximum |pj log2 pj| is the minimum-heat

consumer and that with minimum |pj log2 pj| is the maximum-work producer.

Naturally, there are alternatives to the thermodynamic transformations used in Fig. 6.4.

One can use a method based on spontaneous irreversible relaxation. Or, one can use the

approach of changing the Hamiltonian instantaneously and changing it back quasistatically

and isothermally [232].

Let’s close with a challenge. Now that a machine with negative �Q can be identified,

we can go further and ask if there is a machine that actually achieves the lower bound

QLB. If the answer is yes, then what is that machine? We leave the answer for the future.
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6.7 Conclusion

Historically, three major approaches have been employed for immediate random number

generation: RNG, PRNG, and TRNG. RNG itself divides into three interesting problems.

First, when we have an IID source, but we have no knowledge of the source and the goal is

to design machinery that generates an unbiased random number—the von Neumann RNG.

Second, when we have a known IID source generating a uniform distribution and the

goal is to invent a machine that can generate any distribution of interest—the Knuth and

Yao RNG. Third, we have the general case of the second, when the randomness source is

known but arbitrary and the goal is to devise a machine that generates another arbitrary

distribution—the Roche and Hoshi RNG. For all these RNGs the overarching concern

is to use the minimum number of samples from the input source. These approaches to

random number generation may seem rather similar and to di↵er only in mathematical

strategy and cleverness. However, the thermodynamic analyses show that they make

rather di↵erent demands on their physical substrates, on the thermodynamic resources

required.

We showed that all RNG algorithms are heat-consuming, work-consuming processes. In

contrast, we showed that TRNG algorithms are heat-consuming, work-producing processes.

And, PRNGs lie in between, dissipation neutral (�Q = 0) in general and so the physical

implementation determines the detailed thermodynamics. Depending on available resources

and what costs we want to pay, the designer can choose between these three approaches.

The most thermodynamically e�cient approach is TRNG since it generates both the

random numbers of interest and converts heat that comes from the thermal reservoir

to work. Implementing a TRNG, however, also needs a physical system with inherent

stochastic dynamics that, on their own, can be ine�cient depending on the resources needed.

PRNG is the most unreliable method since it ultimately produces periodic sequences

instead of real random numbers, but thermodynamically it potentially can be e�cient.

The RNG approach, though, can only be used given access to a randomness source. It is

particularly useful if it has access to a nearly free randomness source. Thermodynamically,

though, it is ine�cient since the work reservoir must do work to run the machine, but the
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resulting random numbers are reliable in contrast to those generated vis a PRNG.

To see how di↵erent the RNG and TRNG approaches can be, let’s examine a particular

example assuming access to a weakly random IID source with bias p ⌧ 1 and we want to

generate an unbiased sample. We can ignore the randomness source and instead use the

TRNG method with the machine in Fig. 6.4. Using Eq. (6.7) on average to produce one

sample, the machine absorbs |kBT p ln p| ⇡ 0 heat from the heat reservoir and turns it into

work. Since the required work is very small, this approach is resource neutral, meaning

that there is no energy transfer between reservoir and machine. Now, consider the case

when we use the RNG approach—the von Neumann algorithm. To run the machine and

generate one symbol, on average the work reservoir needs to provide work energy to the

machine. This thermodynamic cost can be infinitely large depending on how small p is.

This comparison highlights how di↵erent the random number generation approaches can

be and how their usefulness depends on available resources.

The thermodynamic analysis of the main RNG strategies suggests a number of chal-

lenges. Let’s close with several brief questions that hint at several future directions in the

thermodynamics of random number generation. Given that random number generation

is such a critical and vital task in modern computing, following up on these strike us as

quite important.

First, is Szilard’s Engine [268] a TRNG? What are the thermodynamic costs in

harvesting randomness? A recent analysis appears to have provided the answers [269]

and anticipates TRNG’s win-win property. Second, the randomness sources and target

distributions considered were rather limited compared to the wide range of stochastic

processes that arise in contemporary experiment and theory. For example, what about

the thermodynamics of generating 1/f noise [270]? Nominally, this and other complex

distributions are associated with infinite memory processes [271]. What are the associated

thermodynamic cost bounds? Suggestively, it was recently shown that infinite-memory

devices can actually achieve thermodynamic bounds [272]. Third, the random number

generation strategies considered here are not secure. However, cryptographically secure

random number generators have been developed [273]. What type of physical systems
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can be used for secure TRNG and which are thermodynamically the most e�cient? One

possibility is to use superconducting nanowires and Josephson junctions tuned near where

they generate superconducting critical currents [274]. Fourth, what are the additional

thermodynamic costs of adding security to RNGs? Finally, there is a substantial advantage

when employing quantum channels to compress classical random processes [12]. What are

the thermodynamic consequences of using such quantum implementations for RNGs?

Let’s close with several reflections on the results’ practical impact. They could very

well provide significant guidance in the near future, as we reduce the power consumption

of computation for an energy-sustainable society. One can even argue they are significant

now, as current technology strives to design ultra low-power devices and as the sciences

attempt to understand information processing in biological process.

Consider the first—the total energy dissipated annually worldwide for computation.

Total energy is directly related to the number of raw bit manipulations. The energy

dissipated per bit manipulation arises from di↵erent sources, such as the operation of

logic circuits, memory arrays, and communication interfaces. Currently for mainstream

technology (e.g., CMOS), the average energy per one bit manipulation is close to 10�14
J ,

which is referred as the benchmark [275]. It is also known that the computation volume

(number of bit manipulations) increases exponentially every year [276]. These observations

lead one to conclude that at the current benchmark energy dissipated per bit, global

computing will not be sustainable by 2040, when the energy required for computing is

projected to exceed the world’s estimated energy production.

The conclusion is rather direct. We need a radical improvement in the energy e�ciency

of computing and, in particular, in random number generation which is a significant

component in general computing. Random number generation is used heavily for many

di↵erent tasks, much of it outside of the sciences and technology is found in security

validation and secure communication and storage. Here, in analyzing the thermodynamic

costs for alternative methods of random number generation, we showed that one method

is work producing, one is work consuming, and the other is potentially dissipation neutral.

In this way, the results highlight the basic physical trade-o↵s when implementing energy-
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e�cient random number generation. Hopefully, these will be useful guideposts when

designing future computing infrastructure.
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[33] A. A. Houck, H. E. Türeci, and J. Koch. On-chip quantum simulation with super-
conducting circuits. Nat. Phys., 8(4):292–299, 2012. 12

[34] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal,
J. D. Biamonte, M. Mohseni, B. J. Powell, and M. Barbieri. Towards quantum
chemistry on a quantum computer. Nat. Chem., 2(2):106–111, 2010. 12

[35] A. Aspuru-Guzik and P. Walther. Photonic quantum simulators. Nat. Phys.,
8(4):285–291, 2012. 12

[36] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu. NMR implementation of a
molecular hydrogen quantum simulation with adiabatic state preparation. Phys.
Rev. Lett., 104(3):030502, 2010. 12

[37] J. Zhang, M. H. Yung, R. Laflamme, A. Aspuru-Guzik, and J. Baugh. Digital
quantum simulation of the statistical mechanics of a frustrated magnet. Nat. Comm.,
3:880, 2012. 12

[38] T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto. Quantum simulation of Fermi-
Hubbard models in semiconductor quantum-dot arrays. Phys. Rev. B., 78(7):075320,
2008. 12

[39] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys.,
86(1):153, 2014. 12

[40] D. A. Meyer. Quantum computing classical physics. Phil. Trans. Roy. Soc. London
A, 360(1792):395–405, 2002. 12

125



[41] M. H. Yung, D. Nagaj, J. D. Whitfield, and A. Aspuru-Guzik. Simulation of classical
thermal states on a quantum computer: A transfer-matrix approach. Phys. Rev. A,
82(6):060302, 2010. 12

[42] J. Yepez. Quantum lattice-gas model for computational fluid dynamics. Phys. Rev.
E, 63(4):046702, 2001. 12

[43] J. Yepez. Quantum computation of fluid dynamics. In Quantum Computing and
Quantum Communications, pages 34–60. Springer, 1999. 12

[44] S. Sinha and P. Russer. Quantum computing algorithm for electromagnetic field
simulation. Quant. Info. Proc., 9(3):385–404, 2010. 12

[45] J. Yepez. Quantum lattice-gas model for the di↵usion equation. Intl. J. Mod. Phys.
C, 12(09):1285–1303, 2001. 12

[46] G. P. Berman, A. A. Ezhov, D. I. Kamenev, and J. Yepez. Simulation of the di↵usion
equation on a type-ii quantum computer. Phys. Rev. A, 66(1):012310, 2002. 12

[47] J. Yepez. Quantum lattice-gas model for the burgers equation. J. Stat. Phys,
107(1-2):203–224, 2002. 12

[48] S. A. Harris and V. M. Kendon. Quantum-assisted biomolecular modelling. Phil.
Trans. Roy. Soc. London A, 368(1924):3581–3592, 2010. 12

[49] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review, 41(2):303–332, 1999. 12, 68

[50] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pages 212–219. ACM, 1996. 12, 68

[51] D. S. Abrams and S. Lloyd. Quantum algorithm providing exponential speed increase
for finding eigenvalues and eigenvectors. Phys. Rev. Lett., 83(24):5162, 1999. 12, 68

[52] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of
equations. Phys. Rev. Lett., 103(15):150502, 2009. 12, 68

[53] C. Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. Discrete
Algo. Complexity, pages 119–143, 1987. 12

[54] A. Bouland. Establishing quantum advantage. XRDS: Crossroads, The ACM
Magazine for Students, 23(1):40–44, 2016. 12

[55] C. Aghamohammadi and J. P. Crutchfield. Minimum memory for generating rare
events. Phys. Rev. E., 95(3):032101, 2017. 12, 70, 82, 83

[56] J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Lett.,
63:105–108, 1989. 12, 18, 31, 51, 68, 73

126
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[65] J. Fröhlich and T. Spencer. The phase transition in the one-dimensional Ising model
with 1/r2 interaction energy. Comm. Math. Phys., 84(1):87–101, 1982. 13, 15

[66] T. Blanchard, M. Picco, and M. A. Rajabpour. Influence of long-range interactions
on the critical behavior of the Ising model. Eur. Lett., 101(5):56003, 2013. 13, 15

[67] R. J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press, 1989.
14, 40, 86

[68] A. Aghamohammadi, C. Aghamohammadi, and M. Khorrami. Externally driven
one-dimensional Ising model. J. Stat. Mech., 2012(02):P02004, 2012. 14, 86

[69] G. S. Rushbrooke and H. D. Ursell. On one-dimensional regular assemblies. In
Mathematical Proceedings of the Cambridge Philosophical Society, volume 44, pages
263–271. Cambridge University Press, 1948. 15

[70] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D.
Potirniche, A. C. Potter, A. Vishwanath, et al. Observation of a discrete time crystal.
Nature, 543(7644):217, 2017. 15

[71] J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys,
M. J. Biercuk, and J. J. Bollinger. Engineered two-dimensional Ising interactions in
a trapped-ion quantum simulator with hundreds of spins. Nature, 484(7395):489,
2012. 15

127



[72] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos.
Quasiparticle engineering and entanglement propagation in a quantum many-body
system. Nature, 511(7508):202, 2014. 15

[73] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Ed-
wards, C. C. J. Wang, J. K. Freericks, and C. Monroe. Emergence and frustration
of magnetism with variable-range interactions in a quantum simulator. Science,
340(6132):583–587, 2013. 15

[74] J. Smith, Aaron. Lee, P. Richerme, B. Neyenhuis, P. W Hess, P. Hauke, M. Heyl,
D. A. Huse, and C. Monroe. Many-body localization in a quantum simulator with
programmable random disorder. Nat. Phys., 12(10):907, 2016. 15

[75] J. P. Crutchfield and D. P. Feldman. Statistical complexity of simple one-dimensional
spin systems. Phys. Rev. E, 55(2):R1239–R1243, 1997. 16

[76] J. R. Norris. Markov Chains, volume 2. Cambridge University Press, 1998. 16, 48,
67

[77] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, 2009. 16, 19, 47, 48

[78] B. Weiss. Subshifts of finite type and sofic systems. Monastsh. Math., 77:462, 1973.
16

[79] J. P. Crutchfield. Semantics and thermodynamics. In Nonlinear Modeling and
Forecasting, volume XII of Santa Fe Institute Studies in the Sciences of Complexity,
pages 317 – 359, Reading, Massachusetts, 1992. Addison-Wesley. 16

[80] J. P. Crutchfield, P. Riechers, and C. J. Ellison. Exact complexity: Spectral
decomposition of intrinsic computation. Phys. Lett. A, 380(9-10):998–1002, 2016.
18, 19

[81] P. Gmeiner. Equality conditions for internal entropies of certain classical and
quantum models. arXiv:1108.5303, 2011. 19, 21, 62

[82] N. Perry and P.-M. Binder. Finite statistical complexity for sofic systems. Phys.
Rev. E, 60:459–463, 1999. 19
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