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Abstract 
 
 Much work in complexity theory employs agent-based models in simulations of 
systems of multiple agents.  Agent interaction follows some standard types of network 
topologies.  Our aim is to assess how recent advances in the statistical modeling of social 
networks may contribute to agent-based modeling traditions, specifically, by providing 
structural characterizations of a variety of network topologies.  We illustrate the points by 
reference to a computational model for the evolution of cooperation among agents 
embedded in neighborhoods, and by reference to complex, real social networks defined 
by the ties of political support between US Senators as revealed through ties of 
cosponsorship of legislation.



Introduction 
 
 The purpose of this paper is to contribute to the greater understanding of network 
topologies for complexity analyses, particularly, analyses that deploy agent based 
modeling strategies.  In such models, the pattern of interactions between agents is crucial, 
and the network topology that emerges central, to the aggregate outcomes emergent from 
the local interactions of agents.  Standard interaction protocols produce highly stylized 
network topologies.  Our short run aim is to analyze these topologies using recent 
advances in the statistical modeling of social networks, a set of advances collected under 
the generic name of “exponential random graph” (erg) models.  This task will serve to 
introduce these advances, the assumptions upon which they are based, and the analyses 
they make possible.  Our long run aim is to demonstrate how these erg models could be 
used to provide more sophisticated and realistic network topologies for complexity 
analyses. 
 
 In following sections, we review formal models for social networks, both 
theoretical and methodological.  We then discuss the types of network topologies found 
in agent based models and illustrate the issue with a particular example, the network 
topology underlying the work of Macy and Skvoretz (1998) who produced a system in 
which it was possible to evolve cooperation in the one-shot Prisoner’s Dilemma between 
strangers, a result, however, that was highly dependent on parameters of the basic 
network topology.  We then analyze this topology using a very simple erg model with the 
aim of providing a statistical understanding of the difference between topologies in which 
the interaction basis is sufficient to allow stranger cooperation to emerge and topologies 
in which it is not sufficient.  We then compare these statistical characterizations to a 
“real” network that maps the ties of political support among US Senators as revealed in 
their cosponsorship of one another’s legislation.  On one hand, the question is:  is 
cooperation likely among Senators who are relative strangers – that is, does the statistical 
characterization of the Senate match the statistical characterization of a network topology 
that would be sufficient to support such cooperation?  On the other hand, the question is 
what novel interaction protocols could be proposed that would yield a network topology 
whose statistical profile matches that found in the legislative body – a question of 
broadening the available network topologies for complexity analyses. 
 
Models for Social Networks 
 

Models for social networks may be classified by their origins (Skvoretz 1991).  If 
the origins lie in general methodological techniques for data representation, the models 
may be called methodological models.  If the origins lie in formal theoretical analysis of 
specific social forces shaping contact or connection patterns, the models may be termed 
theoretical models.  Both types of models perform the same function of relating 
theoretical concerns to relevant data.  However, in much social science, the models are 
methodological because most theories in social science are not formally stated.  If a 
theory is not formally expressed, models for data patterns that embody its logic cannot be 
derived.  The only alternative uses general methodological techniques to represent data 
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patterns and then “interprets” such models’ effect parameters in terms of the theory’s 
constructs. 
 

In the context of models for social networks, the situation is atypical for social 
science in that theoretical models came first and then methodological models.  In fact, the 
most sophisticated models today are “exponential random graph models,” models, a form 
of general methodological model and, with one major exception, the development of 
theoretical models has been retarded by their analytical complexity.  This analytical 
complexity is side-stepped by erg models.  A brief review of early theoretical 
developments and then a review of the development of statistical-methodological models 
follows. 
 

Random and biased net theory was the earliest attempt to formally model social 
(and other networks).  Rapoport introduced it in a series of articles (1953a, 1953b, 1953c, 
1957, 1963).  Rapoport and colleagues used the framework to model aspects of friendship 
networks in two junior high schools (Rapoport and Horvath 1961; Foster, Rapoport, and 
Orwant 1963).  Fararo and Sunshine (1964) made significant theoretical extensions in 
their study of a large friendship network also among junior high school students. 

 
In biased net theory, a network is the outcome of a stochastic process that has 

random and biased elements.  Aggregate patterns in network structure emerge from local 
events of connection, that is, complexity at the aggregate level arises from the 
compounding of relatively simple, local events of connection.  However, the stochastic 
nature of the model makes analytical derivations impossible and exploration of a model’s 
consequences often relies on approximation assumptions. 

 
In Rapaport’s original presentation of biased net theory, biases were defined with 

the aim of deriving the connectivity of the network as the limit of a procedure of tracing 
outward from a small, randomly selected set of nodes to the rest of the population.  The 
connectivity of the net was defined by recursion formula that expressed the fraction of 
new nodes reached at distance t+1, P(t+1), from the start nodes as a function of the 
proportion of nodes already reached at distance t or less, X(t), and of structural features 
of the network.  One important feature was the contact density of the network, denoted by 
a, and defined as the constant number of “axons” or contacts emitted by each node.  In a 
random net, the tracing formula could be expressed as follows: 

 
( )( 1) (1 ( )(1 )P tP t X t e ?? ? ? ? a  

 
In a biased net, other structural features, called biases, changed the tracing 

formula.  Two of these important biases were reciprocity or “parent” bias and the closure 
or “sibling” bias, defined as follows: 

 
Pr( | )
Pr( | )
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x y z z x z y

?
?
? ? ?
? ? ? ? ? ? ?

 

 



 3 

That is, the reciprocity bias suggests that the probability of a tie from x to y is elevated if 
there is a tie from y to x.  The sibling bias suggests that the probability of a tie form x to y 
is elevated if there is a third node z that has a contact ot x and a contact to y.  In this case 
the tracing formula has the following form. 
 

( )( 1) (1 ( )(1 )P tP t X t e ??? ? ? ?  
 
where for t=0, a = a and for t>0, a = a – s (a-1) – p.  Note that the biases 
(probabilistically) reduce the number of contacts available to be sent to nodes as yet 
unreached in the tracing process.  Note also that the conceptualization of biases 
“conserves density.”  That is, the biased net in which each node contacts a others is just 
as dense as the random net in which each node contacts a others. 

 
Until Fararo and Sunshine, biases were “structural,” that is, biases that enhanced 

the probability of a tie’s occurrence given the structure of ties that surround a particular 
pair of actors.  The reciprocity or mutuality bias is a simple example – the parameter 
captures the idea that a tie from x to y is more likely than chance if there already is a tie 
from y to x.  Fararo and Sunshine introduced “compositional” biases – biases that impact 
the location of a tie depending on the similarity or difference in actor attributes, such as, 
their status as delinquents.  Later research used the specific compositional bias they 
introduced – the inbreeding bias – as the foundation of a formalization of Blau’s 
influential macrosociological theory of social structure (Blau 1977).  Fararo and Skvoretz 
developed this formalization in a series of articles (Fararo 1981; Skvoretz 1983; Fararo 
and Skvoretz 1984, 1989; Skvoretz and Fararo 1986).  These articles introduced an 
additional compositional bias – an outbreeding bias – necessary to model ties such as 
marriage in relation to the compositional dimension of gender.  The articles also provided 
formal models for situations in which multiple dimensions are in play simultaneously and 
for situations in which the compositional dimensions are ranked dimensions, like 
education and age, Blau’s graduated parameters.  Additional research based on these 
articles used biased net concepts to formalize Granovetter’s (1973) strength of weak ties 
arguments (Fararo 1983) and then to unify these arguments with Blau’s 
macrosociological theory in a formal synthesis. 
 

Research into the foundations of biased net theory (Skvoretz 1985, 1990) 
proposed Monte Carlo simulation methods to generate networks of specific size subject 
to specified levels of various bias factors.  The research also proposed a way of 
estimating bias parameters using a cross-classification of choice patterns in dyads by the 
number of co-nominations received by the dyad.  Both efforts were not entirely 
successful and furthermore, cast doubt on the validity of certain approximation arguments 
traditionally used in biased net theory to derive important network properties of interest, 
such as connectivity.  Development of the approach, therefore, stalled. 
 

On the other hand, methodological models for social networks began with early 
tests for departure from randomness searching for reciprocity effects in dyads or for 
transitivity effects in triads (Katz and Powell 1955; Holland and Leinhardt 1970).  The 
general methodology of categorical data analysis represented by log-linear models for 
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cell counts were adapted by Holland and Leinhardt (1981) to social network data in the 
form of directed graphs, calling the model the “p1” model.   

 
This model assumes dyadic independence – pattern of arcs in ij pair independent 

of the pattern of arcs in any other pair including ones containing i or j.  In the basic 
model, the effects taken into account on the probability of a “1” in the ij cell include: 
density (?), the differential expansiveness of nodes (ai), the differential attractiveness of 
nodes (ßi), and reciprocity (?).  The basic equations for the model are: 

 
 
 
 
 
 
 
 
 
 
 
 

 
The usefulness of this model is limited by independence assumption.  It is widely 

recognized that this assumption clearly oversimplifies matters.  As one example of the 
inappropriateness of the dyadic independence assumption, triadic effects such as the 
presence of an ij tie being significantly more likely if there are several others k who have 
ties to i and to j abound in real social networks.  Modeling these effects is beyond the 
capability of statistical models that assume dyadic independence.  The new statistical 
approaches, the erg family of models, explicitly model non-independence among dyads 
by including parameters for structural features that capture hypothesized dependencies 
among ties (Wasserman and Pattison, 1996; Anderson, Wasserman and Crouch, 1999; 
Pattison and Wasserman, 1999; Robins, Pattison and Wasserman, 1999; Lazega and 
Pattison, 1999; Robins, Elliott and Pattison, 2001). 

 
One common way to think about erg models is that they express the probability of 

a digraph G as a log-linear function of a vector of parameters ?, an associated vector of 
digraph statistics x(G), and a normalizing constant Z(?): 

 
exp( ( ))( )

( )
x GP G

Z
?
?

?  

 
The normalizing constant insures that the probabilities sum to unity over all digraphs.  
The ? parameters express how various properties of the digraph affect the probability of a 
specific digraph’s occurrence.  For instance, the amount of mutuality, i.e., reciprocated 
choices in the graph, is such a property.  Conceptually, if there is a “strong” force 
towards mutuality then digraphs with many dyads in which choices are reciprocated are 
more probable (net of other factors) than digraphs with few dyads in which choices are 
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reciprocated.  The vector of parameters, ?, captures the impact of different properties on 
digraph probability. If a parameter estimate for a specific property is large and positive, 
then graphs with that property have large probabilities.  If a property has a negative 
coefficient, then graphs with that property have small probabilities. 

 
Because of the analytical intractability of the normalizing constant, the above 

form of the model cannot be directly estimated.  Rather an indirect estimation procedure 
is proposed which focuses on the conditional logit, the log of the probability that a tie 
exists between i and j divided by the probability that it does not, given the rest of the 
graph (Strauss and Ikeda 1990; Wasserman and Pattison 1996).  Derivation of this 
conditional logit shows it to be an indirect function of the explanatory properties of the 
digraph.  Specifically, it is a function of the difference in the values of these variables 
when the tie between i and j is present versus when it is absent, as specified in the 
following equation: 

 
logit [P( xij = 1 | G – ij )] = ? ?[ x(G+ ) – x(G – ) ] 

 
where xij is the tie from i to j, G –ij  is the digraph including all adjacencies except the i,jth 
one, G+ is G –ij with xij=1 while G–  is G –ij with xij=0.   
 

In the logit form of the model, the parameter estimates have slightly different 
interpretations.  For instance, if the mutuality property has a negative coefficient, then in 
the exponential form, we may say that a graph with many mutual dyads has a lower 
probability than a graph with few mutual dyads.  In the logit form, the interpretation is 
that the log odds on the presence of a tie between i and j declines with an increase in the 
number of mutual dyads that would be created by its presence.  The importance of the 
logit version of the model lies in the fact that, as Strauss and Ikeda (1990) show, the logit 
version can be estimated, albeit approximately, using logistic regression routines in 
standard statistical packages.  The estimation approach is called “pseudolikelihood” and 
is widely used in spatial modeling where similar equations with intractable normalizing 
constants are encountered. Underlying this model is the assumption that the logits of the 
conditional probabilities are statistically independent (Anderson, Wasserman and Crouch, 
1999: 48). 

 
Digraph properties that may be used as independent variables can include dyad 

effects, such as mutuality, traid effects such as transitivity or closure, and even higher 
order effects such as the closure of four actor subgraphs into generalized exchange 
structures or even, as suggested by Wasserman and Pattison (1996), the overall degree of 
the digraph’s centralization.  In any case, two common assumptions are made to limit 
parameters that must be estimated.  The first assumption is a homogeneity assumption, 
that is, that a particular effect does not depend on the identities of the nodes involved.  
So, for instance, it is assumed that the mutuality effect does not depend on which dyad is 
under consideration.  A second common assumption is called the “Markov” assumption.  
The idea here is that edges or arcs can be conditionally dependent only if they share at 
least one node in the original graph in the original diagram.  Such an assumption would 
rule out using properties of four node subgraphs or overall graph properties like 
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centralization as independent variables predicting the log odds that a tie is present versus 
absent.  In the illustrations we consider in the next section, we adopt this Markovian 
assumption. 
 
Agent Based Models:  Statistical Analysis of an Illustrative Network Topology 
 

Agent based models have a number of common features.  The focus of attention is 
on systems consisting of multiple agents and the concern is with the emergence of system 
regularities from local interactions between agents.  Agents have internal states and 
behavioral rules and the rules may be fixed or changeable through experience and 
interaction.  Agents are boundedly rational; they have only limited information 
processing and computational capacity.  Agents interact in an environment that provides 
resources for their actions. Typically, agents and/or the rules they use thrive or die based 
upon their success in obtaining resources.  Agent based models are the paramount tools 
of what Epstein and Axtell (1996) call “generative social science,” social science whose 
overarching issue is to explore what micro-specifications of agents and their interaction 
protocols are sufficient to generate macro-phenomenon of interest. 

 
To make these points concrete, we consider a specific example of such a model 

introduced by Macy and Skvoretz (1998) in their computational study of cooperation 
between strangers in the one-shot PD game.  The details of their model are as follows.  
The system consists of 1000 agents.  Each agent’s behavior is coded by a bit string 15 
tokens long.  The string identifies actions the agent may take (play or not and if play, 
cooperate or defect) based on information about self and a potential partner.  Each string 
embodies a set of rules by which the information is used to produce (or not) certain 
actions.  An agent’s rule set is not constant but may change by imitation of more fit 
partners.  The environmental resources consist of the payoffs from the Prisoner’s 
Dilemma and from the decision to play or not the PD with a particular partner. 

 
For present purposes our concern is the network topology that arises as partners 

are selected for potential play.  Common topologies are:  fully random selection, in which 
any other agent is equally likely to be chosen as a partner, spatially defined selection in 
which agents occupy cells on a grid and select from their immediately adjacent neighbors 
(either in their Moore or von Neumann neighborhood); and stratified random selection in 
which the choice of partner is random but only from a subset of the overall population, an 
agent’s social neighborhood.  The model for cooperation uses the third topology which is, 
itself, varied in two ways:  first, by size of neighborhood from small (10) to relatively 
large (50), and second by “embeddedness” as defined by a bias probability that makes it 
more likely that a neighbor (someone in the agent’s social neighborhood) versus a 
stranger (someone in any other social neighborhood) is selected for potential play.  
Embeddedness corresponds to an inbreeding bias event in biased net theory – that is, it is 
the probability of an event such that if it occurs, the partner is selected from the agent’s 
neighborhood with probability 1 and if it does not occur, then choice is made at random 
from the entire population (and hence may result by accident in the selection of a 
neighbor).  (The relative payoffs from refusal to play and from the PD outcomes are also 
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varied and do affect the emergence of cooperation between strangers but this outcome is 
of no interest in the present context.) 

 
The tables and analyses that follow are based on simulation runs of 500 

generations, with each generation involve 10,000 pairwise “encounters.”  Each encounter 
may potentially lead to a play of the PD game if both partners choose to play.  If one or 
both partners refuse play, the exit payoff of 1 is earned.  The PD payoffs are T=4, R=3, 
P=1, and S=0.  Whether play occurs or not, the less fit partner may elect to “imitate” the 
more fit partner.  Imitation is implemented by the less fit partner changing each site on 
the bit string defining its strategy to the value at that site on the more fit partner.  Such a 
switch occurs with probability 0.5.  There is also some small probability of a mutation 
(0.01) that changes the value at a site to its complement.  A number of statistics on play 
and cooperation are calculated each generation.  The tables that follow are based on the 
last, 500th generation. 

 
The first table compares different values of the network topology parameters and 

the prevalence of cooperation between strangers.  It is clear from the table that the 
topology matters – small neighborhoods and high levels of embeddedness are conducive 
to relatively widespread cooperation between strangers.  When the population is divided 
into 100 neighborhoods of size 10 and embeddedness is 0.90 (so a neighbor is selected 
90% of the time for sure and 0.1% of the time by chance), the level of cooperation 
between strangers, when such encounters occur, is 60%.  When the population is divided 
into neighborhoods of size 50 and embeddedness is 0.50 (so a neighbor is selected 50% 
of the time for sure and 2.5% of the time by chance), the level of cooperation between 
strangers is quite low at 5%.  Note that in the first case, only 9.9% of all encounters are 
with strangers whereas in the second case 47.5% are.  The third example in Table 1 has 
large neighborhoods but a high level of embeddedness.  In this case 9.5% of all 
encounters are with strangers and a neighbor is selected 90% of the time for sure and 
0.5% of the time by chance.  The level of cooperation between strangers is 45%. 
 

Table 1.  Network Topology and Cooperation between Strangers 
 

 
Neighborhood Size 

 
Embeddedness 

Level of Cooperation 
between Strangers 

10 
50 
50 

0.90 
0.90 
0.50 

0.60 
0.45 
0.05 

 
 The networks created by these ties are diagrammed in Figures 1, 2, and 3.  Overall 
the first network is the least dense at 0.0097.  The two networks with neighborhoods of 
size 50 are about twice as dense, namely, 0.017 when embeddedness is high and 0.019 
when it is low.  The maximum density possible would occur when every encounter was 
between a different pair of agents.  That maximum density is 0.020.  Therefore, clearly 
one effect of high embeddedness is a pair of agents can participate in multiple 
encounters.  Table 2 shows the distribution of encounters per pair in these networks.  The 
effect of high embeddedness is clearly visible. 
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Figure 1.  Neighborhood = 10, Embeddedness = 0.90 
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Figure 2.  Neighborhood Size = 50, Embeddedness = 0.90 

 
Figure 3.  Neighborhood Size = 50, Embeddedness=0.50 

 
  

Table 2.  Encounters per Tie 
 

 10/0.90 50/0.90 50/0.50 
Encounters Freq % Freq % Freq % 

1 
2 
3 
4 
5 
6 
7 
8 

2174 
1223 
820 
387 
178 
59 
16 
2 

44.7 
25.2 
16.8 
8.0 
3.7 
1.2 
0.3 
0.0 

7298 
1116 
133 
14 
3 
0 
0 
0 

85.2 
13.0 
1.6 
0.2 
0.0 
0.0 
0.0 
0.0 

9092 
416 
24 
1 
0 
0 
0 
0 

95.4 
4.4 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 

 
 A final point to observe is the amount of connectivity between neighborhoods 
since this feature of the network is related to the potential for cooperation between 
strangers to evolve and withstand assault.  Table 3 shows how these networks differ in for 
various cutoff values.  For instance, if we count two neighborhoods as connected if at 
least one pair of agents have encountered each other, then in the first case of 100 
neighborhoods of size 10, only 18% of the neighborhoods are connected to each other.  If 
we compare the two cases in which there are 20 neighborhoods of size 50, it is very clear 
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that embeddedness serves to disrupt direct links between neighborhoods.  For instance, if 
we require that 10 of the potential 2,500 agent to agent links be present to count the 
neighborhoods as connected, every neighborhood is directly connected to every other 
neighborhood when embeddedness is 0.50, but only just under 5% of the neighborhoods 
are directly connected when embeddedness is 0.90. 
 

Table 3.  Densities between Neighborhoods for Various Cut-off Values 
 

Context Density 
 

10/0.90, Min = 1 
50/0.90, Min = 5 
50/0.50, Min = 5 

 
10/0.90, Min = 2 
50/0.90, Min = 10 
50/0.50, Min = 10 

 

 
0.181 
0.589 
1.000 

 
0.020 
0.047 
1.000 

 
 
 Our next concern is the statistical analysis of the networks that emerge in these 
three cases.  The three networks are graphs, that is, the connections between nodes are 
undirected.  The simplest Markov erg model for such entities is called ? s  t  model by 
Frank and Strauss (1986) who interpret these parameters as express three structural 
effects density (?), clustering (s ), and transitivity (t ).  The density effect expresses how 
much more or less likely than 50/50 are the odds that a tie is present vs. absent.  A 
positive clustering effect (net of density) means that graphs with many “two-stars,” that 
is, configurations in which one node is connected to two others, have higher probability 
than graphs with few two-stars.  Holding constant density, a graph will have more two-
stars if degree of the nodes, the number of contacts each has, has greater variance.  The 
transitivity effect expresses the impact of triangles in which all three nodes in a triad are 
connected by a tie.  A positive effect here means that net of density and variance in 
degree, a graph with more triangles is more likely than one with fewer triangles, that is, 
the ties tend to arrange themselves in areas of locally high density. 
 
 Pseudo-likelihood estimation of the logit equation for this model provides the 
results found in Table 4.  It must be cautioned that there is still much to learn about the 
robustness of the estimates.  Standard errors and measures of fit must be regarded as 
nominal and indicative of likely order of magnitude and should not be used for inferential 
purposes.  Also found in Table 4 are the results of estimating the same model on a real 
data set consisting of the reciprocated ties of political support in the United States Senate 
during the 101st Congress, as revealed by two senators cosponsoring one another 
legislation (Burkett 1997, Burkett and Skvoretz 2001). 
 
 As Table 4 shows in all four cases, the density effect is negative, meaning that a 
tie is more likely to be absent than present.  In all four networks, the clustering effect is 
negative, meaning that net of density, the degree distribution tends to be more 
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Table 4.  Estimates for the Basic Markov Graph Model 
 
 Coefficient (SE) Std Coefficient 
10/0.90 
Density (?) 
Clustering (s ) 
Transitivity (t ) 

 
-2.859 (.183) 
-0.173 (0.10) 
1.356 (0.11) 

 
0.000 

-0.225 
+0.447 

-2 Log L % Improvement = 65% 
50/0.90 
Density (?) 
Clustering (s ) 
Transitivity (t ) 

 
-1.166 (.085) 
-0.121 (.003) 
0.794 (.005) 

 
0.000 

-0.343 
+0.485 

-2 Log L % Improvement = 36% 
50/0.50 
Density (?) 
Clustering (s ) 
Transitivity (t ) 

 
-3.155 (.070) 
-0.033 (.002) 
0.777 (.009) 

 
0.000 

-0.105 
+0.291 

-2 Log L % Improvement = 6% 
101st Senate 
Density (?) 
Clustering (s ) 
Transitivity (t ) 

 
-1.423 (.183) 
-0.030 (.004) 
0.182 (.008) 

 
0.000 

-0.389 
+1.148 

-2 Log L % Improvement = 26% 
 
homogeneous or, in other words, there is a tendency for ties to be more evenly distributed 
over the nodes rather than clustered on just a few of them.  Also in all four cases, the 
transitivity effect is positive.  This means that there would tend to be areas of high local 
density thus creating, net of overall density and degree dispersion, completely connected 
triples of actors.  In all cases the magnitudes of the parameters, relative to their 
approximate standard errors, are large. 
 
 Two things appear to distinguish the cases in which cooperation emerges among 
strangers from the case in which it does not.  First, the model fits better the first two 
cases.  In the case of large neighborhoods and modest embeddedness, the improvement in 
fit (as measured by –2 Log of the Pseudolikelihood) is only 6%.  Second, the 
standardized effects of both clustering and transitivity are lower in the third case as 
compared to the first two.  The tentative conclusion, therefore, is that network topologies 
in which degree dispersion is low, but there are areas of locally high density, are 
networks conducive to the evolution and maintenance of cooperation between strangers.  
The pattern in the US Senate data is more similar to the pattern in the first two network 
topologies than in the third.  Therefore, we may also tentatively conclude that 
cooperation between strangers was viable in this particular milieu. 
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Conclusion 
 
 Our aim in this paper was to illustrate how new statistical models for social 
networks might be used to advance the agent based modeling strategy in the study of 
complexity.  Whether our conclusions about the statistical characterization of network 
topologies conducive to cooperation between strangers are correct or plausible or whether 
our coordination of this conclusion with actual data on political support has merit are less 
important issues than how one might coordinate the newly developed social network 
models with problems in complexity analysis.   
 

Clearly much more work needs to be done.  The formal bases of the pseudo-
likelihood estimation procedure need to be researched.  Alternative estimation 
techniques, such as Monte-Carlo Markov Chain estimation discussed by Snijders (2001), 
need to be investigated.  Simulation algorithms for exponential random graph models 
should be developed to explore more systematically the typical properties of the network 
topologies they create.  Further coordination with other agent based models and the 
network topologies they use should be encouraged. 
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