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Introduction 
 
Throughout the early history of neurology and neuroscience, most theoretical accounts of 
brain function have emphasized either aspects of localization or distributed properties [1].  
Instead, modern views focus extensively on the structure and dynamics of large-scale 
neuronal networks, especially those of the cerebral cortex and associated thalamocortical 
circuits whose activation underlies human perception and cognition [2,3].  Both, localized 
and distributed aspects of brain function naturally emerge from this network perspective.  
This essay highlights several unique characteristics of brain networks and explores how a 
computational analysis of these networks (see also [4]) may impact on our understanding 
of human brain function. 
 
With a few notable exceptions (such as diffusible messengers), all communication 
between nerve cells is carried out along physical connections, often linking cells that are 
separated by large distances.  Signals within these connections consist of series of action 
potentials (spikes) of unit magnitude and duration.  The arrival of an action potential at a 
synaptic junction triggers numerous biochemical and biophysical processes, ultimately 
resulting in transmission of electrical signals to the postsynaptic (receiving) cell, which 
may in turn generate an output spike transmitted along the neuron’s axon.  Neurons in the 
cerebral cortex maintain thousands of input and output connections with other neurons, 
forming a dense network of connectivity spanning the entire thalamocortical system.  
According to a detailed quantitative study [5], the human cerebral cortex contains 
approximately 8.3 × 109 neurons and 6.7 × 1013 connections.  The length of all 
connections within a single human brain is estimated between 100,000 km and 
10,000,000 km [5].  Despite this massive connectivity, cortical networks are exceedingly 
sparse, with an overall connectivity factor (number of connections present out of all 
possible) of around 10-6.  Brain networks are not random, but form highly specific 
patterns.  A predominant feature of brain networks is that neurons tend to connect 
predominantly with other neurons in local groups.  Thus, local connectivity ratios can be 
significantly higher than those suggested by random topology. 
 
Networks in the brain can be analyzed at multiple levels of scale.  Within small and 
localized region of the brain, neurons form characteristic sets of connections, so-called 
local circuits [6].  For example, neurons forming cortical columns show specific patterns 
of connectivity between morphologically and pharmacologically distinct classes of cells 
in different layers.  At a higher level of scale, such columns communicate through 
“tangential” or “horizontal” connections, forming networks of columns within single 
cortical areas.  Connection patterns formed by these local, intra-areal networks are 
thought to be responsible for the specific processing requirements of each area (e.g. [7]).  
In visual cortex, for example, intra-areal connections within and across columns 
preferentially link neurons that share similar response properties.  Considering the entire 
brain, the large-scale organization of the cortex is characterized by patterns of 
interconnections linking brain areas within and between specific sensory and motor 
systems (e.g. [8]).  These connection pathways form networks that are species-
characteristic, reflecting specific evolutionary adaptations.    
 



Neural connections are formed through developmental processes that at least in part are 
dependent upon neural activity [9].  Many brain networks remain plastic throughout the 
lifetime of the organism, exhibiting specific modifications of synaptic efficacy at multiple 
time scales, as well as continuous morphological change.  Thus, the detailed structural 
organization of brain networks will to some extent reflect the developmental and 
experiential history of the individual organism [10,11,12].  This point deserves special 
emphasis.  While it is possible (and perhaps desirable) to analyze brain networks as static 
entities, without reference to how they were generated, it is nonetheless essential to 
realize that their fine structure and morphology is the result of continuous interaction 
between neural substrate, ongoing neuronal activity and embodied action of an individual 
organism within an environment.   
 
Anatomical and Functional Connectivity 
 
Because of the close relationship between neural connectivity and neural activity 
throughout the brain, it is important to consider structural connection patterns within the 
context of the specific patterns of dynamic (“functional”) interactions they support.  The 
closeness and intricacy of this relationship is perhaps unique among natural and artificial 
networks.  Thus, our first distinction is that between anatomical (structural) and 
functional connectivity. 
 
Anatomical connectivity simply refers to the set of physical or structural connections 
linking neuronal units at a given time.  In any structural analysis of neural connection 
patterns, a choice has to be made on the level of the spatial scale at which the analysis is 
to be performed.  Analyses carried out at the local circuit level would most likely focus 
on the pattern of synaptic connections between individual neurons.  Analyses of intra-
areal patterns of connections would involve “connection bundles” or “synaptic patches” 
linking local neuronal populations (neuronal groups or columns).  Analyses of large-scale 
connection patterns would focus on connection pathways linking segregated areas of the 
brain.  Such pathways would comprise many thousands or millions of individual fibers.   
 
Functional connectivity refers to the pattern of temporal correlations (or, more generally, 
deviations from statistical independence) that exists between distinct neuronal units 
[13,14].  Such temporal correlations are often the result of neuronal interactions along 
anatomical or structural connections; in some cases observed correlations may be due to 
common input from an external neuronal or stimulus source.  Deviations from statistical 
independence between neuronal elements are commonly captured in a covariance matrix 
(or a correlation matrix), which, under certain statistical assumptions, may be viewed as a 
representation of the system’s functional connectivity.  While temporal correlations are 
perhaps most often used to represent statistical patterns in neuronal networks, other 
measures such as spectral coherence or consistency in relative phase relationships [15] 
may also serve as indicators of functional connectivity.   
 
The relationship between structural and functional dimensions of brain connectivity is 
mutual and reciprocal.  It is easy to see that structural connectivity is a major constraint 
on the kinds of patterns of functional connectivity that can be generated.  In the other 



direction, functional interactions can contribute to the shaping of the underlying 
anatomical substrate.  This is accomplished either directly through activity (covariance)-
dependent synaptic modification, or, over longer time scales, through effects of 
functional connectivity on an organism’s perceptual, cognitive or behavioral capabilities, 
which in turn affect adaptation and survival.  The reciprocity between anatomical and 
functional networks deserves emphasis as it captures some of the unique aspects of brain 
networks. 
 
Segregation and Integration in the Brain 
 
The networks of the cerebral cortex exhibit two main principles of structural and 
functional organization, segregation and integration [16,17,18].  Anatomical and 
functional segregation refers to the existence of specialized neurons and brain areas, often 
organized into distinct neuronal populations (groups or columns) or cortical areas.  These 
specialized and segregated sets of neurons selectively respond to specific input features 
(such as orientation, spatial frequency, or wavelength), or conjunctions of features (such 
as faces).  They reside in cortical areas that process separate feature dimensions (such as 
color and motion) or sensory modalities.   
 
But segregated and specialized neuronal units do not operate in isolation.  There is 
abundant evidence that coherent perceptual and cognitive states require the coordinated 
activation, i.e. the functional integration, of very large numbers of neurons within the 
distributed system of the cerebral cortex [19,20].  Electrophysiological studies have 
shown that perceptual or cognitive states are associated with specific and highly dynamic 
(short-lasting) patterns of temporal correlations (functional connectivity) between 
different regions of the thalamocortical system [21].  Human neuroimaging experiments 
have revealed that virtually all perceptual or cognitive tasks, e.g. object recognition, 
memory encoding and retrieval, reading, working memory, attentional processing, motor 
planning and awareness are the result of activity within large-scale and distributed brain 
networks [2,22].   
 
Brain Networks and Complexity 
 
Integration and segregation may be viewed, in some sense, as antagonistic principles.  
Functional segregation is consistent with the information-theoretical idea that neurons 
attempt to extract specialized information from their inputs, eliminating redundancy and 
maximizing information transfer [23].  Segregation tends to favor the analysis of inputs 
into (orthogonal and independent) principal components, ultimately represented in the 
activation of dedicated sets of neurons.   Functional integration, on the other hand, 
establishes statistical relationships (temporal correlations) between different and distant 
cell populations and cortical areas, leading to the generation of mutual information 
between brain regions.  By creating these mutual dependencies, local neuronal 
specialization may be degraded.  Both, functional segregation and integration (principally 
manifesting themselves in rate coding and temporal coding strategies, respectively), can 
have causal efficacy within the brain, in that the integrated action of specialized neurons 
can exert specific causal effects on other neurons.   



 
The interplay between segregation and integration within a given neural system is 
captured by the global structure of the system’s covariance matrix.  This global structure 
can be quantified using statistical measures based on mutual information between subsets 
of elements within the system (reviewed in [16]).  Most important among these measures 
is complexity [17], which captures the degree to which a neural system integrates 
specialized information.  Defined as the ensemble average of mutual information across 
all bipartitions of a neural system, complexity is high for systems that contain specialized 
elements that are capable of global (system-wide) interactions.  On the other hand, 
complexity is low for random systems, or for systems that are highly uniform (or, in other 
words, systems that lack either global integration or local specialization).   
 
Complexity, as defined above, refers to a pattern of functional interactions produced by a 
structural network.  Are the structural networks of the cerebral cortex capable of 
generating complex patterns of interactions?  And if so, are there specific structural 
motifs that give rise to high levels of complexity?  Answering these questions requires a 
computational analysis of structural connectivity patterns found in the brain. 
 
Brain Networks as Directed Graphs 
 
Neuronal networks consist of units connected by directed links (synapses).  Such 
networks can be described using methods derived from the theory of directed graphs 
[24,25].  The structure of a given network is captured by its adjacency matrix, with binary 
elements aij that represent the presence or absence of a directed edge between vertices j 
(source) and i (target).  If such an edge exists, vertex j can directly communicate signals 
(spikes) to vertex i.  Such direct connections are not the only way in which neuronal 
elements can influence each other.  Indirect interactions can proceed along paths, defined 
as ordered sequences of distinct vertices and edges.  If there is neither a direct connection 
nor a path between vertices j and i, then j cannot functionally influence i in any way. 
 
The analysis of structural connections and paths within networks allow the quantification 
of a broad range of network characteristics [4,26].  For example, the adjacency matrix of 
a network allows the derivation of the reachability matrix and the distance matrix.  The 
reachability matrix indicates, for each ordered pair of vertices j and i, whether a path (of 
any length) exists from j to i.  If all entries of the reachability matrix are ones, the 
network consists of only one component and is strongly connected.  Partitioning of the 
reachability matrix into non-overlapping subsets of vertices with no paths between them 
indicates the existence of multiple components.  The entries of the distance matrix give 
the length of the shortest (directed) path between the two vertices j and i.  The global 
maximum of the distance matrix is also called the diameter.  The average of all the 
entries of the distance matrix has been called the “characteristic path length” [27].   
 
These methods and measures can be applied to connectivity matrices of the cerebral 
cortex, which have been assembled from hundreds of neuroanatomical studies conducted 
in a variety of species, including cat [28] and nonhuman primates [8,29].  Results indicate 
that the cerebral cortex is comprised of clusters of densely and reciprocally coupled 



cortical areas that are globally interconnected [4,30,31,32].  Dynamically, these structural 
motifs give rise to functional connectivity with high complexity [4,30,31].  Cortical 
networks share some attributes of so-called “small world architectures”, including high 
values for cluster indices and short characteristic path lengths [30].  In addition, cortical 
networks can be “wired up” using very little wiring length, a key constraint given the 
limited amount of volume available in real three-dimensional brains. 
 
These network characteristics of real cortical connection matrices are strongly associated 
with the capacity of the cortex to combine functional segregation and integration.  As 
discussed earlier, complexity (as a measure of functional connectivity) captures the extent 
to which a system combines segregation and integration.  Complexity (and other 
measures, such as entropy or integration) can be used as cost functions in simulations 
designed to optimize network architectures.  Networks optimized for high complexity 
show structural motifs that are very similar to those observed in real cortical connection 
matrices [4,30], in particular a tendency to form clusters, short characteristic path lengths 
and short wiring lengths.  Other measures produce networks with strikingly different 
structural characteristics. 
 
These results open up an interesting new perspective on the role of complexity in 
evolution.  While it is unrealistic to assume that complexity could be directly used as a 
cost function during natural selection, it is possible that an increased ability of neuronal 
networks to combine functional segregation (generation of specialized neural circuits 
maximizing information transfer) together with their functional integration (generation of 
temporal correlations across feature domains and modalities) was favored.  Thus, the 
concomitant increase in complexity could have driven morphological change in a 
direction that is consistent with the patterns of cortical connectivity we actually observe. 
 
From Networks to Cognition 
 
The structure of brain networks is a result of the combined forces of natural selection and 
neural activity during evolution and development.  From a computational and information 
theoretical perspective, two of the major problems brains have to solve are the extraction 
of information (statistical regularities) from inputs and the generation of coherent states 
that allow coordinated perception and action in real time.  Solutions to these problems are 
reflected in the dual organizational principles of functional segregation and functional 
integration found throughout the cerebral cortex.  The requirement to achieve segregation 
and integration simultaneously imposes severe constraints on the set of possible cortical 
connection patterns.  Much more empirical and computational work is needed to 
elucidate the functional principles shaping structural connection patterns in the cortex.  
Our own computer simulations (reviewed in more detail in [4,30]) suggest that networks 
that optimally combine segregation and integration have structural motifs that are very 
similar to the ones present in large-scale cortical systems. 
 
Very likely there are many more ways in which structural properties of brain networks 
impact upon the dynamical and informational patterns neurons can generate and 
maintain.  There is mounting evidence that dynamical patterns generated by brain 



networks underlie all of cognition and perception (see e.g. [2,15,21,22].  At least some 
aspects of vision seem to be embedded in the structural connectivity of parts of the 
thalamocortical system [33,34], and disruptions of the wiring of these networks result in 
severe and specific alterations of mental and perceptual function.  The nature of 
awareness and consciousness itself may be rooted in the rapid integration of information 
[35,36], requiring a structural network capable of sustaining this process.  Network 
analysis may be the key to understanding and harnessing the remarkable computational 
and informational power of the brain.   
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