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Abstract: The number of interactions per node in metabolic network graphs follows a 
power law. I discuss two possible evolutionary explanations of this feature. The first 
relates to the observation that graphs with this degree distribution are robust to random 
node removal. This observation has lead to the hypothesis that metabolic networks show 
power-law degree distributions because it endows them with robustness against 
perturbations. However, abiotic chemical reaction networks also show this degree 
distribution, which makes robustness a less likely candidate cause of this distribution in 
metabolism. Secondly, this power-law distribution may be the result of the growth of 
metabolism through addition of metabolites over billions of years. A variety of graph-
growth models that lead to similarly structured graphs predicts that highly connected 
network nodes are old nodes. Empirical evidence supports this prediction for metabolic 
networks.  
 
 
 
Metabolism comprises the network of interactions that provide energy and building 
blocks for cells and organisms, a network sustaining the living and allowing it to grow 
and reproduce. For well-studied organisms, especially microbes such as Escherichia coli, 
considerable information about metabolic reactions has been accumulated through 
decades of experimental work. This information, originally scattered through thousands 
of papers of original literature, has increasingly found its way into larger collections 
including encyclopedias (Neidhardt 1996) and on-line databases (Karp et al. 1999, Ogata, 
1999 #473). With easier availability of this information, it has become feasible to map the 
structure of large pieces of an organism's metabolic network.  
 Representing metabolic networks. David Fell and myself (Fell and Wagner 
2000; Wagner and Fell 2001) assembled a list of 317 stoichiometric equations involving 
287 substrates that represent the central routes of energy metabolism and small-molecule 
building block synthesis in E. coli. Because there is considerable variation in the 
metabolic reactions realized under different environmental conditions, we included only 
reactions that would occur under one condition: aerobic growth on minimal medium with 



glucose as sole carbon source and O2 as electron acceptor. We also deliberately omitted 
(i) reactions whose occurrence is reportedly strain-dependent (Neidhardt 1996), (ii) 
biosyntheses of complex cofactors (e.g., adenosyl-cobalamine) which are not fully 
understood, and (iii) syntheses of most polymers (RNA, DNA, protein) because of their 
complex stoichiometry.   
 When faced with a complex assemblage of chemical reactions, the problem arises 
immediately of how to represent the resulting reaction network. Importantly, for most 
reactions only qualitative information is available - one may know the substrates and 
stoichiometry of a reaction but not much more. A mathematical representation that 
captures such qualitative information is that of a graph, for example that of a substrate 
graph GS=(VS, ES). Its vertex set VS consists of all chemical compounds (substrates) that 
occur in the network. Two substrates S1, S2 are adjacent if there exists an edge e, i.e., 
e=(S1, S2) ∈ ES, the edge set of this graph, if the two substrates occur (either as substrates 
or products) in the same chemical reaction. Such a network representation has the 
advantage of being intuitive and simple. Other graph-like representations of metabolic 
networks are possible, including bipartite graphs and hypergraphs (Graham et al. 1995). 
However, hypergraphs are much less intuitive constructs than graphs, and the many 
analysis tools available for graphs have not yet been developed to the same extent for 
other graph representations. One might argue that the existence of irreversible chemical 
reactions would suggest a directed graph (Graham et al. 1995) representation, i.e., a graph 
where each edge has a direction. However, a directed graph representation would be 
inappropriate for an important application of graph representations of biological 
networks: to assess qualitatively how perturbations of either enzyme concentrations - via 
mutation - or substrate concentrations - via changes in consumption or availability - 
propagate along the network. The reason is that even for irreversible reactions, the 
concentration of a reaction product potentially affects the reaction rate by occupancy of 
the enzyme's active site. Reaction products can thus affect substrate concentrations 
“upstream” of irreversible reactions.  
 What is the structure of the E. coli substrate graph? It has much in common with  
graphs found in areas as different as computer science (the world-wide web) and 
sociology (friendship and collaboration networks). It is a small world network (Watts 
1999) meaning that any two nodes (substrates) can be reached from each other through a 
path of very few edges, fewer than in other graphs of comparable size. Also, the 
distribution of the vertex degree d, the number of edges d connecting each substrate to 
other substrates follows a power law, i.e., the probability P(d) of finding a vertex with 
degree d is P(d) ∝ d-τ (Fig. 1). (The exponent is less than two but can not be estimated 
very accurately due to small network size.) This degree distribution has also been found 
for reactions derived from different organisms (Jeong 2000). It seems to be a universal 
characteristic of metabolic networks.  

Power-laws and robustness. Two complementary hypotheses figure prominently 
in explaining power-law degree distributions. First, Albert and collaborators. (Albert et 
al. 2000) found that networks with power-law distributed degrees are robust to random 
perturbations in the following sense. Upon removal of randomly chosen nodes, the mean 
distance between network nodes that can still be reached from each other (via a path of 
edges) increases only very little. This distance is also known as the network diameter. In 
graphs with other degree distributions, network diameter can increase substantially upon 



node removal. Also, graphs with power-law degree distributions fragment less easily into 
large disconnected subnetworks upon random node removal. These findings have led 
Jeong and collaborators (Jeong 2000) to suggest that metabolic network graphs with 
power-law distributed degrees have such a degree distribution because this distribution 
provides robustness against perturbations.   
 It is difficult to assess the merit of this hypothesis for metabolic networks directly, 
for doing so would require comparing large metabolic networks of different structure. 
However, the ensemble of core metabolic reactions is very similar in most free-living 
organisms, and thus the global structure of metabolism is highly conserved. In addition, it 
is not easy to identify (i) the kinds of perturbations to which a metabolic networks would 
have adapted over billions of years, and (ii) the reasons why short path lengths would 
provide an advantage to the organism. At most, one can venture an informed speculation. 
For metabolic networks, a possible advantage of small mean path lengths stems from the 
importance of minimizing transition times between metabolic states in response to 
environmental changes (Easterby 1986; Schuster and Heinrich 1987; Cascante et al. 
1995). Networks with robustly small average path lengths thus might adjust more rapidly 
to environmental change.  
 In contrast to this weak case for this selectionist explanation of the degree 
distribution, there may be a stronger case against it. One might ask whether power-law 
degree distributions might not be features of many or all large chemical reaction 
networks, whether part of an organism or not, and regardless of whether they perform any 
function that benefits from a robust network diameter. If so, then metabolic network 
degree distributions would join the club of other power-laws (such as Zipf's law of word 
frequency distribution in natural languages) whose existence does not owe credit to a 
benefit they provide.  
 Gleiss et al. (Gleiss et al. 2001) have assembled public information on a class of 
large chemical reaction networks that exist not only outside the living, but on spatial 
scales many orders of magnitude larger than organisms. These are the chemical reaction 
networks of planetary atmospheres, networks largely shaped by the photochemistry of 
their component substrates. The available data stems not only from earth's atmosphere, 
but also from other solar planets including Venus and Jupiter, planets with chemically 
vastly different atmospheres. These planets atmospheres have been explored through 
remote spectroscopic sensing methods and through visits by planetary probes. The 
chemical reaction networks in these atmospheres, despite being vastly different in 
chemistry, have a degree distribution consistent with a power law (Gleiss et al. 2001). 
This suggests that power-law distributions may be very general features of chemical 
reaction networks. The reasons why we observe them in cellular reaction networks may 
have nothing to do with the robustness they may provide.  

Power-laws and deep time. Metabolic networks have a history. They have not 
been assembled in their present state at once. They have grown, perhaps over billion 
years, as organisms increased their metabolic and biosynthetic abilities. Having to take 
into account this history raises a question: How does a network arrive at a power-law 
degree distribution if it grows? The perhaps simplest mathematical model capable of 
growing power-law distributed networks involves only two simple rules (Barabasi et al. 
1999). First and unsurprisingly, it adds nodes to a graph. Second, it connects this node to 
previously existing nodes according to a second rule, where already highly connected 



nodes are more likely to receive a new connection than nodes of lesser degree 
connectivity. Over many node additions, a power law degree distribution emerges. A 
great variety of variations to this model have been proposed (reviewed in Albert and 
Barabasi 2001).  They differ greatly in detail but retain in some way or another the rule 
that new connections preferably involve highly connected nodes. But more importantly, 
many of these models make a key prediction: Highly connected nodes are old nodes, 
nodes having been added very early in a network's history.  

We may never know enough about the history of life and metabolism to 
distinguish between different ways in which metabolism might have grown. However,  
we can address this latter prediction, common to many different growth models. Are 
highly connected metabolites old metabolites? The answer will contain a speculative 
element, because the oldest metabolites are those that arose in the earliest days of the 
living, close to life's origins. Also, that life forms as different as bacteria and humans 
have very similar metabolic structure suggests that the growth of metabolism has 
essentially been completed at the time the common ancestor of extant life emerged. The 
detailed structure of metabolism at this early time may remain in the dark forever. 
However, origin of life hypotheses make some clear predictions on the chemical 
compounds expected to have been part of early organisms. There are several of these 
hypotheses, and they are complementary in the respect most important here: They 
emphasize the origins of different aspects of life's chemistry. Some emphasize the origins 
of early genetic material (RNA). Others make postulates about the composition of the 
earliest proteins. Yet others ask about the earliest metabolites in energy metabolism. Each 
of them makes a statement about a different aspect of early life's chemistry.  

Figure 2 shows the twelve most highly connected metabolites of the E. coli 
metabolic network graphs. Every single one of them has been part of early organisms 
according to at least one origin-of-life hypothesis. Colored in green are compounds such 
as coenzyme A thought to have been a part of early RNA-based organisms (Benner et al. 
1989). The RNA moieties they contain are present in all organismal lineages. Some 
compounds in this group, such as tetrahydrofolate and coenzyme A, are thought to have 
played a role in precellular life that may have taken place on polykationic surfaces. Their 
merit in this regard is that they are elongate molecules with one anionic terminus. They 
are therefore able to flexibly tether other molecules to the substrate, thus localizing them 
while simultaneously increasing their potential to react with other compounds 
(Wachtershauser 1988). Colored in red in Figure 2 are amino acids that were most likely 
part of early proteins. This postulate is based on likely scenarios for the early evolution of 
the genetic code (Kuhn and Waser 1994). Shown in blue are compounds likely to be a 
part of the earliest energy and biosynthetic metabolism. Glycolysis and the TCA cycle are 
perhaps the most ancient metabolic pathways, and various of their intermediates (α- 
ketoglutarate, succinate, pyruvate, 3-phosphoglycerate) occur in Figure 2. (Benner et al. 
1989; Taylor and Coates 1989; Morowitz 1992; Kuhn and Waser 1994; Waddell and 
Bruce 1995; Lahav 1999). The potential relation between evolutionary history and degree 
connectivity of metabolites corroborates a postulate put forth and defended forcefully by 
Morowitz (1992), namely that intermediary metabolism recapitulates the evolution of 
biochemistry.   

Thus, although the structure of metabolic networks may not be a reflection of 
their robustness, it may teach us about their history. Functional genomic experiments are 



unearthing the structure of many other genetic networks (Hughes et al. 2000; Uetz et al. 
2000; Ito et al. 2001), some of which show a power-law degree distribution (Jeong et al. 
2001, Wagner, 2001 #1360). Perhaps their structure can also teach us important lessons 
about their ancient history.  
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Fig.1.: Power-law distribution of Escherichia coli core metabolism. Metabolites were 
ranked according to the number of connections (degree) they have in the substrate graph. 
Shown is metabolite rank vs. degree on a log-log scale. If D is a random variable 
describing metabolite degree, this rank plot estimates the counter-cumulative probability 
function P(log D>k). The data is consistent with a power law distribution of D, i.e., P(log 
D>k) ∝ e-kτ and thus P(D>k) ∝  k-τ.  However, little confidence can be placed in the 
estimated value of the exponent τ=1.3 because of the small network size.  

The following metabolic functions were included in the network whose degree 
distribution is presented: Glycolysis (12 reactions), pentose phosphate and Entner-
Doudoroff pathways (10), glycogen metabolism (5), acetate production (2), glyoxalate 
and anaplerotic reactions (3), tricarboxylic acid cycle (10), oxydative phosphorylation  
(6), amino acid and polyamine biosynthesis (95), nucleotide and nucleoside biosynthesis 
and (72), folate synthesis and 1-carbon metabolism (16), glycerol 3-phosphate and  
membrane lipids (17), riboflavin (9), coenzyme A (11), NAD(P) (7), porphyrins, heme, 
and sirohaem (14), lipopolysaccharides and murein (14), pyrophosphate metabolism (1), 
transport reactions (2), glycerol 3-phosphate production (2), isoprenoid biosynthesis and 
quinone biosynthesis (13).   
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  Twelve key metabolites in E. coli
ranked by degree connectivity  
glutamate (51)    
pyruvate (29)     
coenzyme A (29)    
α-ketoglutarate (27)     
glutamine (22)     
aspartate (20)     
acetyl-CoA (17)     
phosphoribosyl pyrophosphate (16)   
tetrahydrofolate  (15)     
succinate  (14)     
3-phosphoglycerate (13)    
serine (13)        

 

ig. 2.: Highly connected metabolites in Escherichia coli are evolutionarily old. The 
ist shows the 12 most highly connected metabolites in the E. coli core intermediary 
ubstrate network. The numbers in parentheses shows the degree (number of neighbors) 
f a metabolite in the substrate network as defined in the text.  Proposed remnants of a 
urface metabolism or an RNA world.   Proposed early amino acids.  Proposed early 
etabolites (in the tricarboxylic acid cycle or in glycolysis). The network was generated 

fter the elimination of the compounds NAD, ATP, and their derivatives. These are even 
ore highly connected than the compounds shown here. They are also evolutionarily 

ncient. See text for further details.    
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