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Abtract we are confronted, as never before, with an explosion in the size
of databases: from data-mining the web to dynamical brain imaging, the various
genome projects, and monitoring the millions of shipping containers that enter
our ports. These datasets are so vast that there is no conceivable way humans
can directly examine all of the data. What has been an intuitive and very human
discovery process—hypothesizing structures and building predictive theories about
the systems that produce them—must now be automated. But do we understand
the notions of structure and pattern well enough that we can teach machines to
discover them? How do we build theories that capture patterns in useful and
predictive ways? I will announce some very recent results on automated pattern
discovery and theory building for cellular automata. The lessons hint at what a

future " artificial” science might look like.

Joint work with Carl McTague.



Data Explosion:
e Neurophysiology: multiple neuron recordings (> 100 neurons @ 1kHz)
e Web Data-Mining: 10-100 GB/day, multi-terabyte databases
e Astrophysical data: Hubble, EUV, ...
e Neuroimaging: MEG 100-200 Squids @ 1 kHz
e Geophysics: Earthquake monitoring with 1000s sensors, of different kinds
e Biolnformatics: Genome projects, microarray sequencing, ...
e Searchable Video Databases

e Very large-scale simulations: weather, hydrodynamics, reaction kinetics, ...



Need machines to help.

Current approach is Pattern Recognition:

e Match data against existing palette of templates

e Fitting polynomials, assuming IID and distributions are Gaus-
sian, taking Fourier/Laplace Transforms, ...

Begs the Question:

Where did that palette come from in the first place?



How is this done now?? .
Select Domain

Baconian Scientific Algorithm:

Hypothesize |«

Test

Refine

Hypothesis generation: Guessing within a discipline's domain.
Must we always ‘‘guess” or intuit?

Problem: Hypothesis wrong? Little hint of where to go next.

The Inverse Problem: How to go from Data to Theory?



History of the Inverse Problem

Recently in nonlinear physics,

Attractor reconstruction:
e Packard et al (1980): “Geometry from a Time Series”

e Takens (1981), ...

“Theory From Time Series'" :
e JPC/McNamara (1987): Equations of Motion from a Data Series
e Farmer/Sidorovich (1987): Nonlinear prediction

e Casdagli (1989), ...

Problem with this, too, alas.



The Underlying Problem: Intrinsic Representation

Reformulating the Question:
Does data contain information about an appropriate representa-

tion?

Solution:
Tackle head on: Define structure, pattern, regularity, ...

Computational Mechanics:
Accounts for computational structure.
Extends Statistical Mechanics: more than ‘statistics’.



Analogy:

Physics “accounts” for energy flow and transduction.

Computational Mechanics accounts for
1. Amount of historical information stored in process;
2. The architecture supporting that storage; and

3. How stored information is transformed into future states.

More directly:
1. Physics has measures of disorder: temperature, thermodynamic entropy.

2. Comp’'l mechanics measures degrees of pattern: structural complexity.



Causal Architecture: A Review of Computational Mechanics

——

Processes: §: .9 _15051...=858.

Causal States S: Sets of E that are equally predictive about §

S ~ 3'such that P(S | S=5)=P(s | 5= gl) (1)

e-Machine: M = {S5,7}
e Theorem: M is the unique, optimal predictor of minimal size.
e Theorem: M is a minimal sufficient statistic for a process.

e T he intrinsic representation of a process.

Stored information is Statistical Complexity: C, = H[P(S)].

JPC & K Young, Physical Review Letters 63 (1989) 105—-108.
CR Shalizi & JPC, J. Statistical Physics 104 (2001) 817—879.



Cellular Automata: Artificial Physics’s

Elementary Cellular Automaton 18
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Cellular Automata Computational Mechanics

Space of configurations A*: Represented by finite-state automata.

CA LUT: A finite-state transducer Ty that reads in sets €2; and outputs €2;4;.

Language evolution:

Implemented by Finite-Machine Evolution (FME) Operator &:

(i) ©(2), (ii) Drop Transducer Inputs, (iii) Strip Transient States, (iv) Convert NFA — DFA,
and (v) Minimize.

Computational Complexity, starting with n-state language:
e () and Drop Inputs: O(n).
e Identify Transient States: O(n?).
e NFA — DFA: O(2").

e Minimize: O(nlogon).



Wolfram (1984): Iterate all configurations Q2 = A™*:

Q = DI .

Regular Language Complexity: [$2]

t| ECA 18 | ECA 22
1 5 15

2 a7 280

3 143 4506

4 | > 20,000 | > 20,000

(2)
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A Structural View

Domain: Spacetime shift-invariant pattern
1. A= dP(AN), for some p > 0.

2. N =o0"(N), for some m > 0.

Particle:
1. NaN, o € A*.

2. = PP(a), for some p > 0.

Particle Interactions:

1. a4+ 8 — 7.

2. a+v — 0.
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Example: ECA 18

Elementary Cellular Automaton 18

-
Time # v

99

Regularity: Regions of (0A4)* ... A domain?
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lteration of ECA 18’s Domain

Start

Hypothesized
Composition ECA 18 Transducer Domain
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Drop Inputs

Strip Transients

Minimize

QED
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Recognizing Structure: Domain Filtering
Factor out that data explained by structures one knows.

Elementary Cellular Automaton 18 ECA 18: Domain Filtered

Time Time

99 99
0 Site 99 0 Site 99
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ECA 18’s Particle Catalog

Domain | Process Language
NO (0X)*
Particle Wedges
a AOan—l—lo/\O

Interactions

at+a—0




The Enigma: ECA 22

ECA 22 Lookup Table

000 001 010 011 100 101

110 111

Mt
St+1 = ¢(77t)

0 1 1 0 1 0

0 0

Time

99

0 Site

History: highly disordered (high entropy) but ...

e Moore: "... nonlocal structures ...”

e Grassberger (1986): "...

long-range, complex correlations ..

" Power law decays.
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lterate of ECA 22's Candidate Domain

Candidate
Composition Transducer Domain
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Strip Transients
Drop Inputs & Minimize But # Candidate!



Second lterate of ECA 22's Candidate Domain

Candidate
Composition Transducer lterate
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Drop Inputs

ECA 22 Domain Proof Completed

Strip Transients

Minimize QED!
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Theorem: {/\8,/\9} IS a spacetime domain for ECA 22.

Proof: A
(i) A =D(Ng)

(i) AJ = D(A7)
in other words

(iii) A3 = d(No)

(iv) A9 = (A9)

This iIs the first structure discovered for ECA 22.
Captures much of ECA 22’s behavior.
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The Enigma? ECA 22
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ECA 22's Particle Catalog

Domains Process Language
N9 /\O = (000X)*
N = (1110 + 0000)*
AL o*
N2 (01)*
N3 (0011)*
Particles Wedges
a A3 4001 4AJ
/\‘1314,11113//\O
I6] /\O 01,4/\O
A,llOB,
Q’A,001B//\6
Interactions
at+a— 0
B+ B8 —0
a+ B — /\a—ﬁgas
ﬁ +a — /\a—,Bgas




ECA 22: Pattern Discovery

Theorem: {A8,A}} is the only (positive entropy) domain within
the complexity horizon (up to and including 6-state candidates).

Proof: Automated proof methods using the Haskell, a functional
programming language.

How was this done?
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Candidates for Domains: Process Languages

Finite-state process language: represented by (recurrent portion
of) e-machine.

AKA finite-state machine with one strongly connected compo-
nent; all states are start and final states.

n-DCL Library: The domain candidates with n-states.

How many are there?

States | n-DCL Library
Size
3
7
78
1,388
35,186
1,132,613

OO P WNRFS
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Automated Search

1. For all A € n-DCL, exclude by counterexample:

(a) Generate long s € A.
(b) Iterate this single configuration ®!(s).

(c) Test: If ®dI(s) ¢ A, then A is expanding.

2. For all nonexpansive n-DCL, exclude by entropy rate:

hu(DY(A)) < hyu(A) = Candidate contracts. (3)

3. For all nonexpanding, noncontracting n-DCL, attempt to di-
rectly prove invariance theorem: A = ®PA?

/\ that pass tests are domains.
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ECA 22: Table of a Million Theorems

States n-DCL ECA 22 Nonexpanding n-DCL
n Size Number Contracting Domains
1 3 2 > Al = 0%
2 7 2 (0X)* A% = (01)*
3 78 0
4 1,388 2 /\8, A3 = (0011)*
5 35,186 5 ((11))(11 4+ 01)*(10) + 00)*
((101)(00+ 1) + (1(00+ 1) +0))*
([(101)*(1(00 + 1) + 00)] 4 [1(00 + 1) + 0])*
([1%(01)(00 + 1)] + [11(00) + 0])*
([(1t01)*T(1+00 4+ 00)] 4+ [1100 + O])*
6 1,132,613 268 267 i\

QED

Several months ago: Estimated compute time ~ 5 Beowulf years!

When finally proved, proof took ~ 1 week: speed = 7000 tph!
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ECA 22’s Last Candidate

©

Transducer Candidate

27



Iterate of the Last Candidate
161 states and 318 transitions

NS AT
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Proof. Nonexpanding + h(®(A)) < h(A) O Candidate contracts.

Theorem: Not a domain.




The Near Term: All Elementary CASs

Push of a Button:

1. CA Pattern Discoverer will automatically build structural the-
ories for all 256 ECASs.

2. Result: a website of about 1000 pages, with several dozen
pages per ECA.

Beware of Prophets Expounding the CA Gospel!
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The Future: Artificial Science

Implications:

1. Artificial Particle Physics.

2. Automated Pattern Discovery.

3. Theorists unemployed?
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