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An investigation of causal state theory and graphical causal models, as presented in:

1. “Computational Mechanics: Pattern and Prediction, Structure and Simplicity”

2. “Causality: Models, Reasoning and Inference” by Judea Pearl

3. “Causation, Prediction, and Search” by Sprites et al.

DIFFERENCES IN PHILOSOPHY AND
GENERAL APPROACH

Computational Mechanics

What are patterns, and how should patterns be rep-
resented? Building from concepts and tools in statis-
tical mechanics, causal state theory uses the data of a
stationary time series with all joint probabilities known
over blocks of all lengths. With this information, it is
possible to reconstruct the ε-machine, a mathematical
object embodying Occam’s Razor in that its description
of the process has minimal statistical complexity sub-
ject to the constraint of maximally accurate prediction.
The ε-machine partitions the space of all histories of the
process into sets of histories with the same conditional
distribution of futures, i.e. causal states; it also pro-
vides the minimally-stochastic set of transition matrices,
which give the probabilities of going from causal state i

to j (while entering the symbols associated with that par-
ticular transition.) ε-machines are thus, in an abstract
sense, the ideal representation of a process’s structure,
and the causal states are the minimal sufficient statis-
tics for predicting the process’s future. The problem is
inferring ε-machines from limited data, and work of this
approach now focuses on developing inference algorithms
(state-merging versus state-creating) and accompanying
statistical error theories, indicatiing how much data and
computing time is required to attain a given level of con-
fidence in an ε-machine with a finite number of causal
states.

Graphical Causal Models

How might one extract causal relations from empiri-
cal, statistical data? How can (even incomplete) causal
knowledge be used to influence and control systems
around us (particularly social and economic systems)?
This approach covers as much area as possible in the
realm of mathematically expressing ideas of causal sys-
tems, understanding possibilities and limitations of de-
termining causal structures from various kinds of data,
and characterizing hypothesized efffects of a given in-

tervention. Various types of graphs are defined, along
with the conditions (such as Causal Markov, Minimal-
ity, Faithfulness, Stability) required for various degrees
of niceness and predictive capability. The literature on
graphical causal models is vast and underunified, despite
attempts by different parties to give a definitive presen-
tation of the theory. This approach also has had much
work focusing on developing causal inference algorithms,
for discovering causal relations between different events
and displaying them graphically and nonrecursively.

WHAT IS CAUSALITY AND WHAT IS A
CAUSAL RELATION? WHAT IS THE

ALGEBRAIC OR REPRESENTATIONAL
STRUCTURE USED TO ANALYZE OR DISPLAY

CAUSAL INFORMATION?

Computational Mechanics

Causality is defined in temporal terms. Something
causes something else by preceding it. In this way, the
preceding state of affairs is considered to “produce” the
present state of affairs. A chain of causal relations (a se-
quence of causal states, one leading to another) has the
property of causal states at different times being indepen-
dent, conditioning on the intermediate causal states. A
causal state chain is Markov, in that knowing the whole
history of the process up to a point has no more pre-
dictive capacity than knowing the causal state it’s in at
that point. The structure of causality is in the equiv-
alence relation causal states establish among different
histories which have the same conditional distribution
of future observables, and in the probabalistic symbol-
emitting transitions between the causal states. Directed
graphs (vertices representing causal states) with labeled
edges (represented emitted symbols and transition prob-
abilities) can visually display the vital information in the
ε-machine.

Graphical Causal Models

Pearl defines causality also in temporal terms (refer-
rning to Hume, etc.), along with an emphasis on inter-
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vention as the true test of a hypothesized causal relation.
Sprites et al refuse to come out and define causation or
causality, instead outlining three views of the nature of
causation: 1. Causal influence is a probabalistic rela-
tion. 2. Causal influence is a counterfactual relation
(ideas of manipulation or intervention - Pearl may fall
under this view). 3. It is better not to talk of causa-
tion. They then describe causation as being transitive
(A causes B and B causes C implies A causes C), ir-
reflexive (A connot cause itself) and antisymmetric (if A
causes B then B cannot cause A). I find the second two
properties to be quite unfortunate in terms of failing to
describe many causal relations of scientific interest, but
they represent the theoretical basis for the graphical ap-
proach’s representational structure. The formalism most
commonly used to express causal relations is that of di-
rected graphical models (vertices to denote events - often
defined by Boolean variables - and directional edges to
denote cause-and-effect relations). The absence of cau-
sation can generally be recognized by independent prob-
abilities - the many graphical-approach causal inference
algorithms generally take these ideas as their conceptual
basis. Because of the problems of discovering mutual cau-
sation from empirical statistical data, as well as the very
definition of causation in the case of Sprites et al., all
causal models are represented as DAGs. A justification
lies in Basmann’s (1965, cited in Sprites et al.) argument
that for every simultaneous equation model with a cyclic
graph, there exists a statisitcally indistinguishable model
with a acyclic graph; also, as previously stated, acyclic
graphs are decidedly less problematic to infer statistically
with present tools such a Bayesian analysis.

WHAT IS THE FORM OF THE DATA USED FOR
INFERRING CAUSALITY? EQUIVALENTLY,

WHAT PROCESSES ARE BEST CAPTURED BY
THE METHOD?

Computational Mechanics

Time series or other sequential data, in the form of a
stream of symbolic outputs. The ε-machines depend on
the existence of some alphabet of symbols from which is
taken the symbol emitted at each step. Also, the process
must be stationary, i.e. in some sense the causal states
are not changing over time. (This condition could con-
ceivably be relaxed, especially when using an “on-line”
algorithm.) Transient states are trimmed off (although
they can be easily rediscovered) in the search for recur-
rent states, to which the bi-infinite process would return
infintely often. The longer the time series or symbol se-
quence data, the smaller the alphabet, and the longer the
string of symbols the algorithm can consider as a suffix
at the end of a history the more accurate the ε-machine
reconstruction. Obviously, one assumes the process has

a finite number of causal states. The processes best cap-
tured by this method are sequences of a symbolic logic
character, with mysterious and complex pattern and an
unknown generative mechanism, such as an extremely
long string on not-totally-random 1’s and 0’s that are an
output of the golden mean system.

Graphical Causal Models

Although one of the main ideas of this approach is
to be able to deal with as many forms of data as pos-
sible, the most general form of data seems to be a col-
lection of statistics on different potential causal factors
and as much data as possible on the associated joint and
conditional probabilities. Generally the data is not se-
quential or in a time series, but quite often one can use
common sense to determine some kind of partial sequen-
tial ordering (i.e. a wet sidewalk cannot cause rain, but
rain causes a wet sidewalk). Importantly, when differ-
ent records or distributions are mixed, there can be a
spurious vanishing of association in the statistics (Simp-
son’s “paradox”), or when exogenous causal variables are
not accounted for, the causal graph may make no sense.
One must be sure not to mix records or omit relevant
latent (unobserved or unobservable) variables. Also, just
because some equations of functional dependencies cor-
rectly describe a system does not mean that one can infer
direct causal dependencies from those equations. (How-
ever, knowing causal dependencies does allow one to in-
fer functional dependency equations.) There are usually
many different graphs that accurately describe the avail-
able data, so the graphical approach outlines quite a lot
of different definitions of types of graphs, and conditions
for which graphs are preferable when, and why. The
field seems pretty incoherent to me on that point, but
the work seems to boil down to the search for an ideal
causal inference algorithm that can deal with many differ-
ent types of data and systems and give the most certain
graph with the lowest probability of error. The processes
best captured by this method are somewhat large-scale
socioeconomic phenomena, such as the relative effects of
sex, IQ, parental encouragement and socioeconomic sta-
tus on college plans.
(Note for what follows: “causality” and “causation”

are synonyms according to the American Heritage Dic-
tionary.)

HOW TO REPRESENT RANDOMNESS?

Computational Mechanics

Randomness is orthogonal to structure. Causal states
describe the structure of a process with maximum pre-
science and minimal statistical complexity. Randomness
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is embodied in the minimally stochastic transitions form
one state to another. (The given state can lead to many
states, but a given symbol leads to at most one of those
states.)

Causal Graphical Models

It depends on the form of the model. Bayesian net-
works (which are stochastic) seem to just graphically dis-
play information about joint probabilities, perhaps mak-
ing them something of a simplistic ε-machine without
symbol emissions from transitions. The deterministic
and pseudodeterministic causal models account for ran-
domness in the form of a mystery node denoted u (for
“unobservable”) which affects the outcome of a transi-
tion from one observable node to another.

EXAMPLES TO DISPLAY CONTRASTING FOCI
AND STRENGTHS OF BOTH APPROACHES

The Even Process (from a draft of ”An Algorithm
for Pattern Discovery in Time Series Part 1”)

This is a process which generates a string of 1’s and
0’s according to the rule that after a 0 is emitted, there
is a coin flip to see whether a 1 or 0 follows. After an
odd number of 1’s being emitted, the process must emit
a 1, but after an even number of 1’s it is back to the
coin flip. ε-machine reconstruction (with a causal-state-
splitting reconstruction) uses the data of a sequence of
104 1’s and 0’s that is the output of one run of the even
process, and comes up with the correct causal states, and
transition probabilities that are within .3% of the correct
probabilities. It is difficult to determine what the graph-
ical model approach would do, since there are so many
different possibilities. A fundamental problem is how to
define the “events” in question, since the data is not in
terms of potential factors. I suppose the natural thing
would be to say there are two events, either “emit a 1” or
“emit a 0,” and then calculate the probability of “emit a
0.” You’d look at “emit a 1” given “emit a 1” and “emit
a 0,” and you might not even be able to represent the
sequential nature (that “emit a 1” followed “emit a 0”)
because of the way these algorithms use Bayesian analy-
sis and don’t recognize time series. This is because of the
requirement to represent the process as a DAG. Bayesian
analysis to reconstruct the DAG would lead to an infi-
nite lattice of similar events and probabilities. Hopefully
at some point the modeler would have the sense to see
what was going on, and perhaps choose to break with the
herd and represent the process as a DAG - the process is
simple enough that it might be possible to see what was
going on. It would require human thought and effort to
do that, because none of the algorithms would be able to

FIG. 1: Causal Structure of Breathing Dysfunction

recognize the cyclic temporal causal relations.

Causes of Breathing Dysfunction (from Sprites et
al., ppl 130-132)

This is an imaginary but somewhat realistic example.
See fig. 1 for the “real” causal structure, from which
the marginal distribution over the boxed (endogenous)
variables was generated. Environmental Pollution and
Genotype are exogenous common causes of Cilia dam-
age, Heart disease, and Lung capacity, which are all con-
tributing causes of Measured breathing dysfunction, and
Cilia damage is also caused by Smoking which is caused
by Income and Parents’ smoking habits.

ε-machine reconstruction would not be able to deal
with this data. The data could perhaps be put in the
form of a time series of symbols describing the condi-
tion of a subject’s breathing capacity. It could then re-
construct causal states and transitions, but the only in-
formation I can imagine being captured would be that
breathing capacity tends to get worse and worse through
time, perhaps reflecting the cumulative effects of smok-
ing and environmental pollution. The fact that only one
subject was being used would preclude any capture of
individual-specific causal factors such as parents’ smok-
ing habits or genotype. All in all, ε-machines could not
uncover the underlying causal structure of the process,
being unable to account for these variable causal factors.
Sprites et al. cover two different algorithms’ recon-

struction of the causal structure (see fig. 2 and fig. 3).
One thing I don’t understand is why there are a couple
two-headed arrows - these are the guys who defined cau-
sation as being antisymmetric, but such quirks are typ-
ical of this approach. The circles on some edges denote
unexplained correlation. The Fast Causal Inference algo-
rithm seems to do a better job of uncovering the causal
structure, but both algorithms do a relatively good job.
Although there is a lot of uncertainty, there are no mis-
takes.
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FIG. 2: Reconstructed Causal Structure of Breathing Dys-
function 1: Modified PC Algorithm

FIG. 3: Reconstructed Causal Structure of Breathing Dys-
function 2: Fast Causal Inference Alogorithm

THE CONTRADICTIONS BETWEEN AND
LIMITATIONS OF BOTH APPROACHES

Computational Mechanics

The philosophy of quantifying Occam’s Razor could
be seen as a closed world assumption in Pearl’s view, if
you think it is implicitly assumed that all relevant factors
have been accounted for. On its own terms, however, the
causal state definition sidesteps this, because it doesn’t
matter what determines the causal state to be a causal
state, it just depends on the future morph of a given
history. “Factors” is not a meaningful term for the defi-
nition of an ε-machine. Also Pearl’s notion of “stability”
- that the model’s structure can retain its independence
pattern in the face of changing parameters - (a kind of
robustness) is not satisfied by the ε-machine reconstruc-
tion, because it is unclear what the “parameters” are.
In effect, the causal state theory can show the likelihood
of a certain symbol being emitted, given a history (or
a causal state), after reconstructing the ε-machine from
the exact joint probabilities over sequence blocks of all

lengths (data from one run). However, it doesn’t display
causal factors, and genuine causation versus potential
causation versus spurious association, the way graphi-
cal causal models do. In this way causal state theory
seems comparatively impractical for use in fields where
qualitative causal assumptions have value, where causal
factors are vitally important for intervention (policy pur-
poses, etc.) yet all relevant factors cannot be accounted
for, and/or data is in the form of a record of statistics
on related potential factors rather than as a time series.
(This is also just a matter of approach. Graphical models
are trying to extract causal relations from data in order
to predict effects of various possible interventions, CM is
trying to understand causal patterns in the abstract and
represent them formally and rigorously - both do an im-
pressive job, but they have different fundamental tasks
which leads to these contradictions and limitations.)

Graphical Causal Models

Both graphical books’ model conceptions rely com-
pletely on DAG’s as the underlying structure. Directed
Acyclic Graphs are similar to causal state graphs, having
marked and directed links. However, a major shortcom-
ing of DAG’s in terms of representing actual processes
is their innate inability to represent recursion, mutual
causation or feedback loops (by being “acyclic”). This
problem does not come up for graphical causal models to
have universal use-value, since auto-catalytic and home-
ostatic processes are pervasive and embedded in so many
processes of scientific interest. Also, in its pursuit of full
coverage and generality the graphical approach seems to
sacrifice coherence and clarity of theory. The problems
tackled by this approach live in the extremely complex
world of health, social, and economic systems, where it
is extremely difficult to find large, reliable datasets, let
alone account for all factors, leading to intrinsic analyti-
cal issues in the field.

POSSIBLE CONNECTIONS

Pearl regards the idea of “intervention” as fundamen-
tal to causal inquiry. Some of his definitions, such as his
definition of Causal Bayesian networks, relay on the op-
eration do(X=x) to make causal statements. With the
definition of a causal state as all histories having the same
morph, intervention does not seem as important. An in-
tervention could be represented by setting an appropriate

T
(s)
ij = 1 . (1)

Also, the interventions seem to serve the purpose of dis-
cerning conditional independencies, which the ε-machine
reconstruction takes as given. So probably when you’re
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at the point of reconstructing the ε-machine, you’ve done
all the interventions you need to do to determine joint
probabilities.
A nice connection is that DAG nodes are independent,

conditioning on the intermediate nodes; just as causal
states are independent, conditioning on the intermediate
causal states. This notion seems to be universal to all
concepts of causal chains. (Again, since DAG’s can’t
capture mutual causation or recursion, ε-machines seem
to be more general.)
Another idea that both approaches share (for obvious

reasons) is the focus on Minimality (or minimal statistical
complexity) as a main goal of a causal model. Nobody
wants to “overfit” the data.
For Pearl, functional causal models are deterministic

(like ε-machines), and are represented by a set of equa-
tions of the form

xi = fi(paiui) (2)

where pa denotes “parents” and u denotes “unobserved
disturbances,” so xi is a random variable determining an
observed or observable value. If each equation represents
an autonomous mechanism that determines the value of

just one distinct variable, then the model is a structural
causal model a.k.a. causal model. If we take “parents” to
represent “prior causal state” - and “unobserved distur-
bances” and f to somehow account for or determine the
transition between the prior and present causal states -
then we could characterize any causal model as a (per-
haps a very rough and definitely nonrecursive) ε-machine,
or equivalently, an ε-machine could be constructed out of
a causal model.

BIG PROBLEMS

ε-machines do not try to help up figure out causal prob-
lems of major public interest, such as what we could do to
decrease cancer rates. Graphical models have major an-
alytical weaknesses (incoherent theory, inability to deal
with causal symmetry and reflexivity). I’m not sure if it’s
possible in the present circumstances to combine these
two approaches in a Unified Causal Theory that lets us
tackle many kinds of relevant policy issues with analyti-
cal rigor and clarity, but it seems that the common goal
should be something of that nature.


