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Abstract How can we infer the structure of a collective from observations?
Can we find subcollectives? Is the collective smarter than its agents? I’ll show
how a theory of intrinsic computation can be adapted to answer these questions
for dynamical networks. The key idea is that of causal synchrony, in which one
infers the effective internal dynamics of agents and then estimates the agent-agent
coordination in terms of that hidden dynamics. Applications to synchronization in
neurobiological processes illustrate the uses and benefits of causal synchrony.

Joint work with Marcelo Camperi (USF) and Cosma and and Kristina Shalizi (SFI).



Innovation, sources

• Evolutionary:

– Evolving Cellular Automata [’91-’97]: www.santafe.edu/∼evca

– Epochal Evolution [’95-’98]: www.santafe.edu/∼evca

– Evolutionary Dynamics Workshop [’98]: www.santafe.edu/∼jpc/evdyn.html

– Evolutionary Dynamics Book [2002]: www.santafe.edu/∼jpc

Pattern Discovery: www.santafe.edu/∼cmg

– Emergence [’94]

– Learning and Adaptation
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Networks?

When is a “system” a “network”?

Network ↔ System architecture important
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Three Kinds of Network Problem

1. The Forward Problem: Modeling Networks

2. The Reverse Problem: Design Networks to Function

3. The Inverse Problem: Observations → Network

• What is architecture?

• What is information?

• History

• Design is not Behavior; Goals are not Functions

3



Emperor


Empress
 Cardinal
 Vizier


Archbishop


Bishop


Chancellor


Chamberlain


Baron


Illegitimate

Daughter


King's

Chaplain


Bishop


Baron

Chief

Judge


General


Southern

Captain


Northern

Captain


Executioner


Astrologer
Physician
Cook

Head


Groom

Priest


Chief

Scribe


Archbishop


4



Emperor


Empress
 Cardinal
 Vizier


Archbishop
 Chancellor

Chief

Judge


Northern

Captain


Illegitimate

Daughter


King's

Chaplain


Astrologer


Mistress
 Confessor
 Consultant
Friend


5



Synchrony and Distributed Information

When and how do the nodes in a network synchronize?

⇒ How do you measure if they’re synchronized?

Problems with synchrony measures:

• Computationally expensive

• Restrictive assumptions: e.g., Cross-correlation ⇒ linear dependence

• Need to know the nodes’ inner dynamics: e.g., Fourier ⇒ periodic

• Some combination of the above

Way out: Look at how information is shared between nodes

• Only want dynamically relevant information

• Must be able to extract it from observations

• Must not require serious assumptions about mechanisms
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Computational Mechanics

Time series: . . . S−1S0S1 . . . ; {Si}, i ∈ Z, Si ∈ A.
←
S t = history up to t;

→
S t = future from t

Process: P(. . . S−1S0S1 . . . ).

A Prediction = Distribution over futures P(
→
S ).

Predicting: Map η from history
←
s to future distribution:

η(
←
s ) = P(

→
S )

Prediction Method = A partition of the set {
←
S} of histories

Effective States R = Partition + Future distributions

Optimal Prediction ⇒ Find the best partition; How?

1. Maximize I(
→
S ;R)

2. Then minimize H[R]
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Causal Equivalence

←
s ∼

←
s
′
⇔ P(

→
S |
←
S=

←
s ) = P(

→
S |
←
S=

←
s
′
)

ε(
←
s ) ≡

{

←
s
′
|P(
→
S |
←
S=

←
s ) = P(

→
S |
←
S=

←
s
′
)

}

Causal States : S ≡ ε(
←
S )

All and only the distinctions that make a difference

Labeled transition probabilities:

T
(s)
ij ≡ P(St+1 = s,St+1 = j|St = i)

= 0 if j 6= g(i, s) (determinism)

ε-Machine = Causal states + Transition probabilities
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Properties

Optimal Prediction (Prescience): ∀η (alternative states R)

I(
→
S ;R) ≤ I(

→
S ;S)

Prescience ⇔ statistical sufficiency

Minimality : If R prescient, then

H[R] ≥ H[S]

Statistical complexity: Cµ = H[S]

Uniqueness: If R prescient and minimal, then ∃f such that

R = f(S)

S = f−1(R)
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Remarks:

1. Markovian, but not only HMMs

2. ε-Machine Reconstruction: Data/Theory → ε-machine

(i) Mathematically

(ii) Batch Algorithm

(iii) Online Algorithm

3. ε-Machine Filtering: Measurement series→ causal-state series

. . . s−2s−1s0s1s2 . . .→ . . . σ−2σ−1σ0σ1σ2 . . . ,

where si ∈ A and σ ∈ S.
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Example: Noisy Period-Two

(“every other symbol a wildcard”)

A B

0 | 1.0

1 | 0.5

0 | 0.5

1 | 0.25

0 | 0.75

Difference between:

1. Observations: 01000010 ∼ 0A0A0A0A

2. Causal States: ABABABAB.
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Causal Synchrony Ψ in Network

Network G with N nodes, each with a time series Sit.

Do not know communication topology.

Reconstruct ε-machine for each node i: {M i : i = 1, . . . , N}

Filter time series for each node i: Sit →M i Sit
For each pair (i, j) ∈ G:

Ψij =
I(Si;Sj)

min
{

Ci
µ, C

j
µ

}

I(Si;Sj) = Error in treating i and j as independent
= Amount of shared causal information

Ψij = Degree to which nodes share common causal state
= Degree of information spread over network
∈ [0,1]

Network Causal Synchrony ΨG = 〈Ψ
ij〉(i,j)∈G
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Example: Synchronized Clusters

Ψij = 1 inside perfectly synchronized clusters

Ψij = 0 across purely random (independent) nodes
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Example: Cyclic Processes

Periodic in causal states: Can still be observationally random.

Periods p, q, p ≤ q

r = lcm(p, q)

I = log pq/r

Ψ =
log pq/r

log p
Ψ = 0, if p and q relatively prime
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Example: Integrate and Fire Neurons
(Data due to M. Camperi)

100 integrate-and-fire neurons

All connect to all

Interaction begins at 1 second
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A

T

0 | 1

S
0 | 1

B

1 | 0.0353

0 | 0.965
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Neuron ε-Machine, Reconstructed
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Causal Synchrony in I&F Neural Network

t(s) Ψ

0–1 0.073
1–2 0.353
2–3 0.395
3–4 0.434
4–5 0.439
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Causal Architecture of Networks

ΨG too coarse; rather cluster by Ψ
ij

Hierarchical decomposition

— cf. Christopher Alexander, Notes on the Synthesis of Form

Causal drive: Conditional mutual information I(S it+1; [S
j
t ,S

k
t ,S

l
t])

Stanislav Andreski, Military Organization and Society :

Coherence ≈ Ψ

Subordination ≈ Change in distribution of actions given orders

(relative entropy)
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