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Abstract How can we infer the structure of a collective from observations?
Can we find subcollectives? Is the collective smarter than its agents? I'll show
how a theory of intrinsic computation can be adapted to answer these questions
for dynamical networks. The key idea is that of causal synchrony, in which one
infers the effective internal dynamics of agents and then estimates the agent-agent
coordination in terms of that hidden dynamics. Applications to synchronization in
neurobiological processes illustrate the uses and benefits of causal synchrony.

Joint work with Marcelo Camperi (USF) and Cosma and and Kristina Shalizi (SFI).



Innovation, sources

e Evolutionary:
— Evolving Cellular Automata ['91-'97]: www.santafe.edu/~evca
— Epochal Evolution ['95-'98]: www.santafe.edu/~evca
— Evolutionary Dynamics Workshop ['98]: www.santafe.edu/~jpc/e
— Evolutionary Dynamics Book [2002]: www.santafe.edu/~jpc
Pattern Discovery: www.santafe.edu/~cmg
— Emergence ['94]

— Learning and Adaptation



Networks?

When is a ‘'system” a “network” 7

Network <« System architecture important



Three Kinds of Network Problem

1. The Forward Problem: Modeling Networks

2. The Reverse Problem: Design Networks to Function

3. The Inverse Problem: Observations — Network
e \What is architecture?
e \What is information?

e History

e Design is not Behavior; Goals are not Functions
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Synchrony and Distributed Information
When and how do the nodes in a network synchronize?

= How do you measure if they're synchronized?

Problems with synchrony measures:
e Computationally expensive
e Restrictive assumptions: e.g., Cross-correlation = linear dependence
e Need to know the nodes’ inner dynamics: e.g., Fourier = periodic

e Some combination of the above

Way out: Look at how information is shared between nodes
e Only want dynamically relevant information
e Must be able to extract it from observations

e Must not require serious assumptions about mechanisms



Computational Mechanics

Time series: ...S5_15051...; {S;}, i€ Z, S; € A.
Et = history up to t; §t = future from ¢
Process: P(...5_15051...).

A Prediction = Distribution over futures P(§).

Predicting: Map n from histog/ s to future distribution:
n(s) = P(S) _

Prediction Method = A partition of the set {S} of histories

Effective States R = Partition 4+ Future distributions

Optimal Prediction = Find the best partition; How?

1. Maximize 1(§;7z)

2. Then minimize H[R]



Causal Equivalence

— —/ — — — «—
s~s < P(S|S=s)=P(S|S=s

— «—/ — « —
«(3) = {5IP(515=5)=P(5 |5

Causal States: S = e(g)

All and only the distinctions that make a difference

LLabeled transition probabilities:

T,ff) = P(Si4+1 = 5,541 = 4|5t = 1)
= 0 if j # g(4,s) (determinism)

e-Machine = Causal states + Transition probabilities



Properties

Optimal Prediction (Prescience): Vn (alternative states R)

I(§;R) < I(S;S)

Prescience < statistical sufficiency

Minimality: If 'R prescient, then

H[R] > HI[S]
Statistical complexity: C,, = H[S]

Uniqueness: If R prescient and minimal, then df such that

R = f(S)
S FHR)



Remarks:
1. Markovian, but not only HMMSs

2. e-Machine Reconstruction: Data/Theory — e-machine
(i) Mathematically

(ii) Batch Algorithm

(iii) Online Algorithm

3. e-Machine Filtering: Measurement series — causal-state series

...8_28_1808182... — ...0_20_.1000102 ... ,

where s, € A and 0 € S.
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Example: Noisy Period-Two
( “every other symbol a wildcard")

0]1.0

Difference between:
1. Observations: 01000010 ~ 0.40.4040A4
2. Causal States: ABABABAB.
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Causal Synchrony W in Network

Network G with N nodes, each with a time series Sg?.
Do not know communication topology.

Reconstruct e-machine for each node i: {M':i=1,...,N}
Filter time series for each node i: S} —, S}
For each pair (3,7) € G-
I(S%; 87)
min{C/’fb,CfL}

Wi =

I(S8*;S7) = Error in treating i and j as independent
- = Amount of shared causal information
(UL — Degree to which nodes share common causal state

Degree of information spread over network
[0, 1]

m ||

Network Causal Synchrony Wg = <Wij>(7;,j)€G
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Example: Synchronized Clusters

WY = 1 inside perfectly synchronized clusters

Wi = 0 across purely random (independent) nodes
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Example: Cyclic Processes

Periodic in causal states: Can still be observationally random.

Periods p,q, p <q

r = lcm(p,q)
= logpq/r
v — logpg/r
log p
v = 0, if p and g relatively prime
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Example: Integrate and Fire Neurons
(Data due to M. Camperi)

100 integrate-and-fire neurons
All connect to all
Interaction begins at 1 second
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Spike Rastergram: 0 to 1000 ms
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Neuron e-Machine, Reconstructed
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Causal Synchrony in I&F Neural Network

t(s)

0—-1
1-2

3—4
4—5

0.073
0.353
0.395
0.434
0.439
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Causal Architecture of Networks
W too coarse; rather cluster by w¥

Hierarchical decomposition
— cf. Christopher Alexander, Notes on the Synthesis of Form

Causal drive: Conditional mutual information (S} ;; (57, 8F,81)

Stanislav Andreski, Military Organization and Society:
Coherence = W

Subordination =~ Change in distribution of actions given orders
(relative entropy)
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