
Our work at the Simula Research Labo-
ratory mostly focuses on computational
applications in life sciences. Usually,
this involves fairly typical partial differ-

ential equations such as the incompressible Navier-
Stokes equations, elasticity equations, and parabolic
and elliptic PDEs, but these PDEs are typically cou-
pled either with each other or with ordinary differ-
ential equations (ODEs). Hence, even though the
PDEs themselves are reasonably well understood,
the couplings between them make the problems we
study quite challenging.

Our design goals are therefore threefold. First,
we want to easily define systems of PDEs. Second,
we want it to be easy to play with different solution
algorithms for systems of coupled PDEs. Finally,
we want to reuse existing software to avoid rein-
venting the wheel.

We use many good and mature libraries from the
Web, including Dolfin (www.fenics.org/dolfin/),
GiNaC (www.ginac.de), MayaVi (http://mayavi.
sourceforge.net), NumPy (http://numpy.scipy.org),

PETSc (www.mcs.anl.gov/petsc/), SciPy (www.
scipy.org), Trilinos (http://software.sandia.gov/
trilinos/), and VTK (www.vtk.org). In fact, we’re
mixing these libraries with our own packages:

• Famms (verification based on the method of
manufactured solutions),

• Instant (www.fenics.org/instant; inlining of C++
in Python),

• PyCC (http://folk.uio.no/skavhaug/heart_sim
ulations.html; the underlying framework for
gluing components together),

• PySE (http://pyfdm.sf.net; a finite difference
toolbox),

• Swiginac (http://swiginac.berlios.de/; a Python
interface to the symbolic mathematics engine
GiNaC), and

• SyFi (www.fenics.org/syfi/; a finite element
toolbox).

Some of these packages are Python modules,
whereas the others—thanks to Python’s popularity in
scientific computing—are equipped with Python in-
terfaces. By using Python, we don’t have to mix these
packages at the C level, which is a huge advantage.

Solving Systems of PDEs
Currently, our most important application is in car-
diac electrophysiology.1 The central model here is
the bidomain model,2 which is a system of two PDEs
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Using Python to Solve
Partial Differential Equations

This article describes two Python modules for solving partial differential equations (PDEs):
PyCC is designed as a Matlab-like environment for writing algorithms for solving PDEs, and
SyFi creates matrices based on symbolic mathematics, code generation, and the finite
element method.
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with the following form:

, (1)

0 = � � (Mi�v) + � � ((Mi + Me)�u). (2)

(The domain here is the same for both PDEs—that
is, the heart—but it has two potentials, intra- and
extra-cellular, which live inside and outside heart
cells.) The primary unknowns here are the trans-
membrane potential v and the extra cellular poten-
tial u. The function Iion(v, s) describes the flow of
ions across the cell membrane and can be quite
complicated; Mi represents intracellular conduc-
tivity, and Me is extracellular. The second argument
Iion(v, s) is generally a vector of variables, governed
by a set of ODEs:

. (3)

Note that s = s(x), so the ODE system is defined in
each point (you can find examples of cell models at
www.cellml.org). Hence, we must solve the system
for each computational node.

The bidomain formulation gives an accurate de-
scription of the myocardial tissue’s electrical con-
duction. Coupled with realistic ODE models of the
ionic current, we can study a large range of phe-
nomena, including conduction abnormalities due to
ischmeia or channel myopathies (genetic defects),
fibrillation and defibrillation, and drug intervention.
Figure 1, for example, shows a geometric model of
the human heart’s ventricles. The color represents
the transmembrane potential’s magnitude; Figure
1a shows normal activation, and Figure 1b shows
chaotic behavior (which corresponds to a fibrilla-
tory heart with critically reduced pumping ability).

We solve the bidomain model in Equations 1
through 3 by using an operator-splitting approach,
in which we first solve the ODE systems in each
computational node at each time step before we
solve the PDE system. Here’s a simple Python
script we use for solving this problem:

from dolfin import Mesh

from pycc.MatSparse import *

import numpy

from pycc import MatFac

from pycc import ConjGrad

from pycc.BlockMatrix import *

from pycc.Functions import *

from pycc.ODESystem import *

from pycc.CondGen import *

from pycc.IonicODEs import *

mesh = Mesh("Heart.xml.gz")

matfac = MatFac.MatrixFactory(mesh)

M = matfac.computeMassMatrix()

pc = PyCond("Heart.axis")

pc.setconductances(3.0e-3, 3e-4)

ct = ConductivityTensorFunction(

pc.conductivity)

Ai = matfac.computeStiffnessMatrix(ct)

pc.setconductances(5.0e-3, 1.6e-3)

ct = ConductivityTensorFunction(

pc.conductivity)

Aie = matfac.computeStiffnessMatrix(ct)

# Construct compound matrices

dt = 0.1

A  = M + dt*Ai

B  = dt*Ai

Bt = dt*Ai

C  = dt*Aie

# Create the Block system

AA = BlockMatrix((A,B),(Bt,C))

prec = DiagBlockMatrix((MLPrec(A), 

MLPrec(C)))

v = numpy.zeros(A.n, dtype='d') - 45.0

u = numpy.zeros(A.n, dtype='d')

x = BlockVector(v,u)

# Create one ODE systems for each vertex

odesys = Courtemanche_ODESystem()

ode_solver = RKF32(odesys)

ionic = IonicODEs(A.n, ode_solver, 

odesys)

∂
∂

=s
t

F s t( , )

∂
∂

= ∇ ⋅ ∇ + ∇ ⋅ ∇ −v
t

M v M u I v si i ion( ) ( ) ( , )

(a) (b)

Figure 1. Human heart ventricles. This model compares (a) normal
activity and (b) chaotic behavior.
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ionic.setState(odesys.getDefault

InitialCondition())

# Solve

z = numpy.zeros((A.n,), dtype='d')

for i in xrange(0, 10):

t = i*dt

ionic.forward(x[0], t, dt)

ConjGrad.precondconjgrad(prec, AA, 

x, BlockVector(M*x[0], z))

Although the code seems clean and simple, it’s
due to a powerful combination of C/C++/Fortran
and Python. The script runs on desktop computers
with meshes that have millions of nodes and can
solve complete problems within minutes or hours.
All computer-intensive calculations such as com-
puting matrices, solving linear systems (via alge-
braic multigrid and the conjugate gradient
method), and solving ODE systems are done effi-
ciently in C or C++.

Creating Matrices for Systems of PDEs
We created the tool SyFi to define finite elements
and variational forms, as well as generate C++ code
for finite element computations. It uses the sym-
bolic mathematics engine GiNaC and its Python
interface Swiginac for all its basic mathematical op-
erations. SyFi enables polynomial differentiation
and integration on polygonal domains. Further-
more, it uses the computed expressions, such as en-
tries in an element matrix, to generate C++ code. 

The following example demonstrates how to
compute an element matrix for the Jacobian of an
incompressible power-law fluid’s (nonlinear) sta-
tionary Navier-Stokes equations. Let

,

where 

u = �kukNk and �(u) = ||�u||2n. 

Then,

, (4)

Here’s the corresponding  Python code for com-
puting Equation 4 and generating the C code:

from swiginac import *

from SyFi import * 

def sum(u_char,fe):

ujs = symbolic_matrix(1,fe.nbf(), 

u_char)

u = 0

for j in range(0,fe.nbf()):

u += ujs.op(j)*fe.N(j)

u = u.evalm()

return u, ujs

nsd = cvar.nsd = 3 

polygon = ReferenceTetrahedron()

fe = VectorCrouzeixRaviart(polygon,1)

fe.set_size(nsd) # size of vector

fe.compute_basis_functions()

# create sum u_i N_i

u, ujs = sum("u", fe) 

n = symbol("n") 

mu = pow(inner(grad(u), grad(u)),n)

for i in range(0,fe.nbf()): 

# nonlinear power-law diffusion term 

fi_diffusion = mu*inner(grad(u), 

grad(fe.N(i))) 

# nonlinear convection term 

uxgradu = (u.transpose()

*grad(u)).evalm()  

fi_convection = inner(uxgradu,

fe.N(i), True)

fi = fi_diffusion + fi_convection

Fi = polygon.integrate(fi) 

for j in range(0,fe.nbf()): 

# differentiate to get the Jacobian 

uj = ujs.op(j) 

Jij = diff(Fi, uj) 

print "J[%d,%d]=%s\n"%(i,j, 

Jij.printc())

Note that both the differentiation and integration
is performed symbolically exactly as we would have
done by hand. This naturally leads to quite efficient
code compared to the traditional way of imple-
menting such integrals—namely, as quadrature
loops that involve the evaluation of basis functions,
their derivatives, and so on. The printc function
generates C++ code for the expressions; so far, we’ve
used this system to generate roughly 60,000 lines of
C++ code for computing various matrices based on
various finite elements and variational forms.

To ease the integration of the generated C++
code in Python, we developed an inlining tool called

J
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Instant, which lets us generate code, generate the
corresponding wrapper code, compile and link it to
an extension module, and then import the module
on the fly. The following code demonstrates Instant
with a simple example, in which we compute

symbolically, generate the corresponding C++
code, and inline the expression in Python with x as
a NumPy array:

import swiginac as S

from Instant import inline_with_numpy

import numpy as N 

x = S.symbol("x") 

xi = S.symbol("x[i]") 

f = S.sin(S.cos(x))

dfdx = S.diff(f,x)

print dfdx 

string = """

void func (int n, double* x, int m,

double* y) { 

if ( n != m ) { 

printf("Both arrays should be of 

the same size!");   

return; 

}

for (int i=0; i<n; i++) {

y[i] = %s; 

}

} """ % dfdx.subs( x == xi ).printc()

print string 

func = inline_with_numpy(string, arrays 

= [['n', 'x'], ['m', 'y']]) 

x = N.arange(100.0 )

y = N.zeros(100, dtype='d')

func(x,y)

print x

print y

We’ve shown that it’s possible to
solve real-life problems in a user-
friendly environment by combin-
ing Python’s high-level syntax with

the efficiency of compiled languages. However, this
approach opens up many new possibilities for com-
bining symbolic mathematics and code generation,
which is a largely overlooked alternative to traditional
approaches in finite element simulations. We’re cur-
rently implementing fairly advanced finite element
methods such as the mixed elasticity method,3 and
we also want to simulate human tissue and blood
with the most realistic models available today.
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Magnetic resonance imaging (MRI)
measures induced magnetic prop-
erties of tissue. It has long been the
chosen technique for creating

high-resolution anatomical images of the human
brain. Over the past decade, a new technique called
functional MRI (fMRI) has become a powerful and
widely used method for studying human brain
function. fMRI measures regional blood flow
changes in the brain, which can help researchers
identify the most active brain areas during mental
tasks such as memory and language.

Functional MRI Analysis
The first step of an fMRI analysis—image recon-
struction—takes raw data from the scanner and per-
forms a highly customized inverse Fourier transform
to create a time series of 3D functional images. A typ-
ical next step is to estimate the movement between
scans via an automated image-matching algorithm
and then use that estimate to remove artifacts due to

motion. Researchers commonly relate the activity
detected in the low-resolution functional images to
a high-resolution structural image of the same sub-
ject. However, to compare between subjects, the
functional or structural data must be warped to
match some standard brain, a process that requires
sophisticated models of brain anatomy. Finally, sta-
tistical techniques are used to determine which brain
regions are related to certain tasks or activities.

Clearly, fMRI data analysis comes with several
challenges. First, it has a wide variety of computa-
tionally intensive spatial and statistical processing
steps. Thus, an analysis software package must
cover the range from file system and network in-
teraction through complex image processing to ad-
vanced statistical inference and 3D visualization.
Second, such analysis involves a massive volume of
data, often reaching several hundred gigabytes.

The most common software package in use today
is SPM (www.fil.ion.ucl.ac.uk/spm/), which is writ-
ten in Matlab. Other common packages include
FSL (www.fmrib.ox.ac.uk/fsl/) and AFNI (http://
afni.nimh.nih.gov/afni/), written in C and C++, re-
spectively. Although these packages are well-
designed and supported, an increasing number of
imaging scientists have found that Matlab is not
powerful enough to support the industrial level of
code size and complexity that neuroimaging re-
quires, and that C and C++ are too low-level for
rapid development.
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Analysis of Functional Magnetic
Resonance Imaging in Python

The authors describe a package for analyzing magnetic resonance imaging (MRI) and
functional MRI (fMRI) data, which is part of the Neuroimaging in Python (NIPY) project.
An international group of leading statisticians, physicists, programmers, and
neuroimaging methodologists are developing NIPY for wider use.
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Neuroimaging and Python
Python has become a natural choice for neuro-
imaging because it is high level, object-oriented,
and interactive. All these features make it particu-
larly well suited to scientific programming. It also
has robust libraries for system interaction, image
processing, matrix algebra, and visualization.
Moreover, Python has very good tools for provid-
ing scripting support to software written in other
languages. Finally, because of Python’s strong in-
tegration with C and C++, it is often used as a type
of high-level language glue for calling routines in
a huge array of high-quality C/C++ libraries.

Accordingly, several significant neuroimaging
packages have already been written in Python. Led
by Daniel Sheltraw at Berkeley, researchers re-
cently developed a set of Python tools for MRI re-
construction (https://cirl.berkeley.edu/view/BIC/
ReconTools). John Hunter, the author of the mat-
plotlib Python plotting library, developed PBrain,
a sophisticated application for analyzing and visu-
alizing the data from electrical recordings on the
brain surface of epileptic patients (see Figure 1 and
p. 90).1 Finally, BrainVISA is a comprehensive
pipeline-analysis tool for anatomical data, devel-
oped by a team of researchers in France (www.
brainvisa.info).

Integrating Python
Development in Neuroimaging
In this article, our main focus is on NIPY (http://
neuroimaging.scipy.org), a new initiative to create
a unified, open source, and open development en-
vironment for the analysis of neuroimaging data.2

In particular, we focus on the fMRI component of
NIPY, which is based on the BrainSTAT package
that Jonathan Taylor wrote at Stanford University.3

We are also working with Hunter and researchers
at the University of Chicago to better integrate
PBrain into the NIPY framework.

Image Model
An MRI scanner produces images that represent
slices of brain tissue, and several of these slices to-
gether constitute a 3D whole-brain scan. The val-
ues in each voxel (volume element) in a 3D image
slice represent measurements from a small volume
of the brain.

A major problem in neuroimaging is that differ-
ent analysis packages and scanners use different out-
put image formats that are not readily compatible.
To address this, NIPY provides read and write ca-
pabilities for all the popular image formats in neu-
roimaging, as well as access to binary data images
and Python arrays in memory. Images can be com-
pressed upon read or write, loaded from an arbitrary
URL (with local caching), and managed by memory
mapping where possible. Images also have iterators
for reading data in slices and other subsets; Python
iterators offer an elegant mechanism for construct-
ing lazily instantiated sequential data structures—a
perfect abstraction for intuitively representing se-
quential data (such as time series, spatial slices, or
generally (n – 1) – d data bricks from an n – d data
set) without sacrificing memory efficiency.

Spatial transforms on images are fundamental to
neuroimaging—for movement correction, warping
to templates, and many other analysis steps. NIPY

(a) (b)

Figure 1. Python visualization widgets. Images from PBrain showing, (a) the position of the electrode arrays on the
surface of the brain superimposed with a surface reconstruction of the skull from a CT scan and (b) measures of
frequency and coherence of electrical activity overlaid on an image of the electrode positions.   
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offers a general model of image spatial transforms
that allow arbitrary combinations of linear and
nonlinear transforms, volume-to-surface mappings,
and flexible levels of image interpolation. A com-
mon analysis technique is to examine the signal
from a restricted region of the brain, or region of in-
terest (ROI). NIPY has several ROI objects and
functions, including discrete (point-level) and con-

tinuous (sphere, ellipse) region definitions, region
combination algebra, and region data extraction.

Data Diagnostics
Because the scanner’s signal quality can vary from
day to day, special attention is needed to ensure
good data. Currently, NIPY offers several diag-
nostic tools to let researchers discover problems
with their data before they analyze it.

Images that summarize data across a time series
provide a straightforward way to examine fMRI data.
Taking an image of the standard deviation of signal
intensity across time, for example, can highlight
problems in the time series acquisition that occur
with subject movement or instabilities of the data ac-
quisition over time (see Figure 2).

Figure 3 shows four plots that can help diagnose
potential problems in the time series. The top plot
displays the scaled variance from image to image; the
second plot shows the scaled variance per slice; the
third plot shows the scaled mean voxel intensity for
each image; and the bottom one plots the maximum,
mean, and minimum scaled slice variances per slice.

Another powerful technique for data diagnosis is
principal components analysis (PCA), which is par-
ticularly useful for detecting outlying time points
or unexpected sources of spatially coherent noise.
PCA on an image time series takes the time points
as rows and voxels as columns, and decomposes the
data into components that can efficiently express
the source of variance in the data. Each component
consists of a characteristic time series and the voxel
weights contributing to that component, and these
weights are viewable as an image. Figure 4 shows
images of the weights for the first four principal
components of a functional data set.

Statistical Processing
Subjects in a typical fMRI experiment perform some
task or receive stimuli while being scanned; thus, ar-
eas activated by the task or stimulus exhibit voxel
time series correlated with the experimental design.
Unfortunately, noise in fMRI analysis can come
from multiple sources, and the signal is relatively
low. This problem with signal detection has led to
several standard and more complex statistical meth-
ods.4 Partly for historical reasons, current analysis
packages use nonstandard or low-level statistical ter-
minology and interfaces, making them less accessi-
ble to scientists with general training in statistics.

At Stanford, Taylor developed a general set of
statistical model objects in Python that use stan-
dard statistical terminology and allow flexible high-
level statistical designs. Similar to the R statistical
language, these objects implement a general series
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Figure 2. Image of standard deviation across time
points.  By summarizing data, the standard
deviation image can highlight problems of
background noise and artifacts that vary over time.  

Figure 3. Time-series diagnostics. Researchers
can use these four plots to diagnose potential
problems in the time-series data.
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of statistical models and contrasts for data, includ-
ing functional images. These models form the basis
of NIPY statistical analysis and are now maintained
as part of the SciPy distribution; we hope these will
attract further development from researchers out-
side brain imaging.

Python’s power and generality mean that
we have many fruitful directions in
which to take NIPY. At the most basic,
its high-level language features make it

much easier to refactor the code into a well-
patterned, high-level interface that scientific de-
velopers can quickly pick up. Because Python has
such good integration with C/C++, we also have
ready access to very powerful visualization and
image-processing libraries. Two very important ex-
amples are the Visualization Toolkit (VTK) and the
Insight Toolkit (ITK). VTK provides high-quality
3D graphical display and includes Python wrappers
as part of its standard distribution, whereas ITK is
a library of image registration and segmentation
routines originally developed for the Visible Hu-
man Project. Like VTK, Python wrappers are part
of the standard ITK distribution.

We intend NIPY to become the standard analysis
library in neuroimaging in the medium term, which
means we will need to provide the ability to call rou-
tines in other packages that are more familiar to re-
searchers. Thankfully, this is a much easier task in
Python than in many other languages because of its
ability to interact with languages such as C.

Python’s language features can also help us tackle
the problem of provenance tracking. Because imag-
ing analyses and data sets are very diverse, researchers
use a variety of analysis packages and rarely record all
their data and analysis parameters, making it very dif-
ficult for other people to reproduce published analy-

ses. Fortunately, Python has excellent support for
metaprogramming techniques (including metaclasses
and function decorators) that can transparently
change object behavior. We can thus use these tech-
niques with Python’s object introspection to capture
the data’s nature and processing in a way that can be
closely wedded to the analysis.5 Ultimately, this
means that the analysis can become self-document-
ing, making it far easier to reproduce. 
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Figure 4. Principal components analysis (PCA). This type of analysis is particularly useful for detecting
outlying time points or unexpected sources of spatially coherent noise.



Researchers have used Python extensively
in desktop geographic information sys-
tem (GIS) applications for data pro-
cessing, analysis, management, spatial

statistical analysis, and so on since ESRI first re-
leased the ArcGIS suite, version 9.0.1, in January
2005. However, Python’s full value and potential
hasn’t been fully explored or deployed in Internet-
based GIS applications yet. This article describes
how Python could offer a unique and easy ap-
proach for Internet GIS developers.

Interactive mapping is an important part of
Internet-based GIS applications. Typically, Web
users activate the print function in their browser’s
menu to print out a map on a particular Web
page, but generating high-quality PDF map
products has been a challenge for developers. Al-
though the ArcMap Image Server in ESRI’s
ArcIMS has a function for printing PDF maps, it
requires the ArcMap license, and the perfor-
mance isn’t very satisfactory because it takes so
long to get the PDF product (see www.esri.com/
software/arcgis/arcims/). Furthermore, this func-

tion doesn’t support the fusion of ArcIMS image
products with the Web Mapping Service’s
(WMS’s) map images. Although PDF output sup-
port is part of the latest version of MapServer (an
open source map software package for the Web;
http://mapserver.gis.umn.edu/docs/howto/pdf
-output), MapServer itself doesn’t support WMS
map images or the maps’ surrounding compo-
nents (the legend, scale, and so on) in its PDF
map product. 

Using some of the “batteries” included with the
Python language, we can easily create PDF maps
and reports, make composite images that integrate
WMS map images with the map image output, and
develop elevation profiles. Python’s capability for
multipurpose Internet mapping applications is
unique yet easy to deploy.

Generating a
Map Document with Python
Python uses the Reportlab and Image module li-
braries to make PDF map creation an easy process.
Although Reportlab isn’t included with Python,
it’s available as a free downloaded at www.report
lab.org/downloads.html and can be integrated in
the server machine’s Python directory. Application
developers must first determine the location of the
map image product generated by the Internet GIS
server, but creating a PDF map document with
Python is extremely simple:
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Python for Internet GIS Applications

Python offers a unique capability in the field of geographic information system applications
because it helps developers create multipurpose Internet maps. This article discusses PDF
maps in particular.
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img=Image.open(mapDir)

c = canvas.Canvas(pdfDir,

pagesize=landscape(A4))

c.drawInlineImage(img, 83, 80,

img.size)

c.showPage()

c.save()

In this code snippet, mapDir = “C:\ArcIMS\
output\WVBaseMap_14384368425964.png”,
whereas pdfDir =“C:\ArcIMS\output\WVBase
Map_14384368425964.pdf”.

We can use the same approach to insert a logo,
map legend, scale bar, arrows, and so forth in the
PDF document, as Figure 1 shows. We can also
easily add multiple pages to the PDF document
by calling the showPage() and save() functions
multiple times. With the Reportlab toolkits, de-
velopers can add text, graphics, lines, and poly-
gons into the PDF map document. Because
Python creates PDF map documents by directly
processing the map image output generated by
the Internet GIS server, all application develop-
ers can deploy this approach, regardless of their
server environment. 

Image Fusion by Python
The Open Geospatial Consortium (OGC; www.
opengeospatial.org) developed the WMS specifi-
cation to facilitate geospatial data interoperability
and reusability. In this way, users can access map
and geospatial data without having to save the data
set locally. Using a specially structured HTTP re-
quest, they can retrieve map images and integrate
them into their own applications as background
images. But when a user wants to create a PDF
map document, we have to create a composite im-
age that merges multiple images.

Generally, we can overlay and merge multiple
WMS-compatible map images as a single map im-
age in a Web browser because such images are
normally transparent. The composite raster im-
age in Figure 2a, for example, looks like one map
image, but it’s actually composed of two images,
as Figure 2b (a WMS map generated by Mi-
crosoft’s TerraServer) and Figure 2c (a transpar-
ent PNG map image generated by ArcIMS) show.
In this case, the WMS image is served as the back-
ground image in a Web page that contains the
ArcIMS map image output. Because TerraServer’s
WMS image is retrieved remotely by an HTTP
GETMAP request and served as a background image
on the Web browser, to create a PDF document
with composite images, we must first save the
background image into the file directory with the

map output generated by the local Internet map-
ping server.

The WMS specification provides a basic guide

Figure 1. PDF map with varied surrounding
components. Using Python, developers can add
legends, scale bars, and arrows to maps.

(a)

(b)

(c)

Figure 2. Composite image overlay. What looks
like (a) a composite raster image in a Web
browser is actually (b) a WMS map image
generated by TerraServer and (c) a PNG map
output generated by ArcIMS.
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for image registration that helps developers retrieve
the correct WMS map images with the exact same
scale and extent of the corresponding map output
generated by the local server. Whenever the user
browses the Web, ArcIMS will generate four vari-
ables that define the bounding box (BBOX) of the
map extent—MinX, MinY, MaxX, and MaxY—as well
as the map output image’s width and height
(mWidth, mHeight). These variables can then be
used to dynamically retrieve the background Terra-
Server Digital Orthophoto Quarter (DOQ) image
via an HTTP request:

http://terraserver-

usa.com/ogcmap.ashx?version=1.1.1&RE-

QUEST=GetMap&

BBOX=MinX,MinY,MaxX,MaxY&width=mWidth&

height=mHeight&LAYERS=DOQ&styles=&SRS=

EPSG:26917&format=PNG&transparent=true

When ArcIMS generates its map output image
by default into server output directory
C:\ArcIMS\output\ with a specific code (such as
WVBaseMap_14384368425964.png), we can also

use such code to name the TerraServer image in the
same file directory—for example, terraDOQDir =
“C:\ArcIMS\output\WVBaseMap_14384368425

964terraDOQ.png”. In this way, we understand
that we can use these two images to create the com-
posite map image for the PDF document.

Python has library modules that provide an im-
age-fusion function to generate a PDF map with
composite images. If the user has requested a
WMS map service such as Microsoft’s Terra-
Service, we first need to use the urllib and url-
lib2 modules in Python to retrieve the WMS
image from the external server, and then save the
TerraServer DOQ image to the local machine with
the following code:

response = urllib2.urlopen(terraDO-

Qurl)

mapImg = response.read()

fo = open(terraDOQDir,’wb’)

fo.write(mapImg)

fo.close()

To create a composite image that merges the
ArcIMS transparent map image with the Terra-
Server background image, however, the Python
function for image fusion has different behavior
when the mask is defined differently in function
Image.composite(image1, image2, mask).
By creating a composite image with the following
Python script, the entire ArcIMS map image is
transparent, with a white background in the com-
posite image (see Figure 3):

w,h = image1.size

mask = Image.new(“L”,(w,h))

draw = ImageDraw.Draw(mask)

draw.rectangle([0, 0, w, h],

fill=”#FF0000”)

img =

Image.composite(image1,image2,mask)

We want to enforce that we can set the ArcIMS
image’s transparent part as a transparent window
by using the following Python script for imple-
mentation in other Internet GIS applications. In
this way, the white background is removed, and the
original image’s transparent behavior is maintained.
After we get the composite image, we can create a
PDF map document, as in Figure 4:

imgTerraDOQ=Image.open(terraDOQDir)

imgWVmap=Image.open(mapDir)

white =

Image.new(“RGB”,imgWVmap.size,(255,255

Figure 3. Composite image. The ArcIMS map is
transparent with a white background.

Figure 4. Composite image with transparent
ArcIMS map. After we get this image, we can
create a PDF map document.



MAY/JUNE 2007 59

,255)) 

imgWVmap=imgWVmap.convert(“RGBA”)

r,g,b,a = imgWVmap.split()

img = Image.composite(imgWVmap, imgTer-

raDOQ, a)

Generating Elevation
Profiles with Python
Elevation profiles show the change in elevation
along a line. They can help people assess a trail’s
difficulty, for example, or evaluate the feasibility
of placing a road along a given route. Figure 5
shows a map composed of a colorful digital eleva-
tion model’s (DEM’s) raster data layer. When the
user clicks on the Internet map viewer, he or she
can retrieve the elevation value at that (x, y) coor-
dinate. To generate an elevation profile, as in Fig-
ure 6, we retrieve multiple elevation values along
the line by dividing it into multiple sections and
then using Python to create an elevation profile
map as a PDF.

Figure 6 shows two elevation profiles within a
single graphic. The red line shows the true eleva-
tion information between the start and end points
that the user provided in Figure 5. Because the hor-
izontal distance is roughly 21.17 miles, the vertical
elevation information is exaggerated. The brown
line shows the true landscape along the line seg-
ment because its value is recalculated dynamically
based on the horizontal distance and the ratio used
to adjust the vertical elevation.

Python’s large “batteries included” set of
library modules can help us easily per-
form very sophisticated maneuvers with
very little programming. Although this

article uses ArcIMS as an example platform for In-
ternet GIS application development, the same ap-
proach I discussed can be used with MapServer and
other platforms. Because Python offers strong sup-
port for integration with other languages and tools,
we can expect Internet GIS developers to continue
expanding the use and scope of Python applications
in the coming months and years. 
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Figure 5. Elevation map. The digital elevation
model’s raster layer focuses on eastern West
Virginia.

Figure 6. Elevation profile along the line shown in
Figure 5. The red line shows the true elevation
information, and the brown line shows the true
landscape.
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Chaotic behavior in dynamical systems is
a well-studied phenomenon. A partic-
ularly illustrative class of such systems
is the so-called billiard systems, in which

a point particle moves freely along straight lines in-
side a two-dimensional domain � with elastic re-
flections at the boundary. Billiards are interesting
because they’re mathematically well studied with
various rigorous results, so they provide a good ba-
sis for investigating the implications of classical
chaos in quantum mechanical systems. Apart from
the basic research aspect, though, possible applica-
tions range from the design of semiconductor
nanostructures to optical microlasers. 

In this article, I give a brief overview of some as-
pects of our research at the Technische Universität
Dresden, where numerical computations play an
important role and Python allows for an efficient
way of implementation. 

Billiard dynamics
The boundary determines a billiard’s dynamical
properties. Figure 1 demonstrates this, showing 50
iterations of an initial point for two billiards, param-
etrized in polar coordinates by �(�) = 1 + � cos(�)
with � � [0, 2�] for parameters � = 0 (circular billiard)
and � = 1 (cardioid billiard).1 The circular billiard is

an example of an integrable system showing regular
dynamics. The opposite extreme is the cardioid bil-
liard, which is fully chaotic—this means that nearby
trajectories separate exponentially as a function of
time (hyperbolicity) and that a typical trajectory will
uniformly fill out the available space (ergodicity).

Because the billiard’s motion follows a straight
line, it’s convenient to use the boundary to define a
Poincaré section,

P := {(s, p) | s � [0, |��|], p � [–1, 1]}, (1)

where s is the arc length along the boundary ���
and p = �v, T(s)� is the projection of the unit veloc-
ity vector v after the reflection onto the unit tan-
gent vector T(s) in point s � ��. We get a Poincaré
map P of a point � = (s, p) � P by considering the
ray starting at point r(s) ��� in the direction spec-
ified with p and then determining the first inter-
section with the boundary, which ultimately leads
to a new point, � � = (s�, p�). Explicitly, the velocity
in the T, N coordinate system is given by

), so in Cartesian coordinates,

(2)

Numerically, the main task here is to find the
next intersection for a given starting point on the
boundary and direction, specified as s and p. If an
implicit equation,
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Quantum Chaos in Billiards

An important class of systems—billiards—can show a wide variety of dynamical behavior.
Using tools developed in Python, researchers can interactively study the complexity of these
dynamics. Such behavior is directly reflected in properties of the corresponding quantum
systems, such as eigenvalue statistics or the structure of eigenfunctions.
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F(x, y) = 0, (3)

determines the boundary, we can determine the
new point r � by solving

F(x + tvx, y + tvy) = 0 (4)

for t > 0. In the case of the circular billiard, we can
easily obtain an analytical solution that will lead to
an explicit prescription for the billiard mapping. In
general, however, only a numerical solution to
Equation 4 is possible.

For nonconvex billiards, there are points � = (s,
p) � P for which there is more than one solution of
Equation 4 (apart from t = 0); obviously, we must
choose the one with the smallest t > 0. We can
sometimes use the condition in Equation 3 to re-
move the t = 0 solution analytically from Equation
4. If F is a polynomial in x and y, this reduces the
order of Equation 4 by one—for example, for the
cardioid billiard to get a cubic equation for t.2 From
that solution, we can get the coordinates (x�, y�) =
(x, y) + tv.

Numerically, though, we must find one or sev-
eral solutions to Equation 4, depending on the
type of boundary, so we should try to bracket the
zero with the smallest t, such as by evaluating F(x
+ tvx, y + tvy) for sufficiently many values of t, and
then use scipy.optimize.brentq to determine
the zero as precisely as possible. We must pay spe-
cial attention to glancing motion—when p is near
±1—because t can get very close to 0. Moreover,
in nonconvex billiards, zeros of F(x + tvx, y + tvy)
can get very close to each other and are therefore
easily missed.

Visualization with Python
Both for research and teaching, it’s extremely use-
ful to interactively explore the dynamics in billiards
by using visualizations of the trajectories specified
in the Poincaré section via the mouse. For this pur-
pose, my students and I developed an application
written in Python, using wxPython (www.wx
python.org) for the GUI and a special widget to
quickly plot several points (www.physik.tudresden.
de/~baecker/python/plot.html). Figure 2 shows a
typical screenshot (� = 0.3). In this case, the system
shows both regular and irregular motion, depend-
ing on the initial point.

Quantum Billiards
Although classical mechanics can correctly de-
scribe macroscopic objects, a quantum mechanical
description is necessary at small scales. Due to the
Heisenberg uncertainty principle, it’s impossible

to simultaneously specify a particle’s position and
momentum—instead, the particle state is specified
with a wavefunction whose absolute value squared
is interpreted as the probability density. For quan-
tum billiards, finding the stationary solutions of
the Schrödinger equation reduces to the determi-
nation of eigenvalues and eigenfunctions of the
Helmholtz equation,

–��n(q) = En�n(q),    q � �� 	
�

with, for example, Dirichlet boundary conditions—
that is, �n(q) = 0 for q � ��. Here, � denotes the
Laplace operator, which reads in two dimensions 

.

The interpretation of � is that �D|�(q)|2d2q is the
probability of finding the particle inside the domain
D  �.

For some simple domains �, it’s possible to solve
Equation 5 analytically. For the billiard in a rec-
tangle with sides a and b, for example, the (non-
normalized) eigenfunctions are given by �n1,n2(q)
= sin(�n1q1/a)sin(�n2q2/b) with corresponding
eigenvalues

and (n1, n2) � �2. For the billiard in a circle, the
eigenfunctions are given in polar coordinates by
�mn(r, �) = Jm(jmnr) exp(im�), where jmn is the nth
zero of the Bessel function Jm(x) and m � Z, n � N.
Using scipy.special.jnzeros, we can easily
obtain a given number of zeros of Jm(x) for fixed m.

In general, though, no analytical solutions of
Equation 5 exist, so we must use numerical meth-
ods to compute eigenvalues and eigenfunctions.
Among the many different possibilities, the so-
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Figure 1. Billiard dynamics. Note the difference between (a) the
circular billiard and (b) the chaotic dynamics in the cardioid billiard.
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called boundary-integral method is popular.3 By
using Green’s theorem, we can transform the
two-dimensional problem in Equation 5 into a
one-dimensional integral equation. Discretiza-
tion leads to a matrix equation for which we must
determine the zeros of a determinant as a func-
tion of energy E. To detect nearly degenerate en-
ergy levels, it’s most efficient4 to use a singular
value decomposition. For the numerical imple-
mentation, this is the most time-consuming step,
which involves running scipy.linalg.

flapack.zgesdd. Using this approach, we can
easily compute 2,000 to 10,000 (and more, if nec-
essary) eigenvalues and eigenfunctions. In partic-
ular, due to the computation’s independence at
different E, we can parallelize this problem rather
straightforwardly by using as many CPUs as
available. Communication between different
CPUs isn’t needed, only the initial value of E
must be transferred to each CPU (via the mes-
sage-passing interface, for example).

Quantum Chaos
A fundamental question in quantum chaos is the
impact of the underlying classical dynamical prop-
erties on the statistical behavior of eigenvalues. It

has been conjectured that the statistics of random
matrices obeying appropriate symmetries can de-
scribe the eigenvalue statistics of fully chaotic sys-
tems.5 For generic integrable systems, we expect a
Poissonian random process to describe the energy-
level statistics.6

The simplest spectral statistics is the level-spac-
ing distribution P(s) obtained from the histogram
of the spacings

sn := xn+1 – xn , (6)

where xn are rescaled eigenvalues such that their
average spacing is 1. Once we compute the eigen-
values, we can determine the level-spacing distrib-
ution as follows:

from pylab import *

# x: rescaled eigenvalues 

spacings = x[1:]-x[0:-1] 

hist(dat, normed=True, bins=100) 

show()

We compare the resulting distribution with the
expectation for integrable systems,

Figure 2. Screenshot of a Python application. To interactively explore billiard systems, we can define initial conditions in
the Poincaré section on the left, for which the iterates are computed and the corresponding trajectory is shown in
position space on the right. Magnified views of parts of the Poincaré section are possible, as shown in the lower right
window.
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PPoisson(s) = exp(–s). (7)

Because P(s) � 1 for s � 0, this behavior is called
level attraction. We can use the Wigner distribution
to describe the level-spacing distribution for the
Gaussian orthogonal random matrix ensemble
(GOE) in a very good approximation7

. (8)

In this case, we have P(s) � 0 for s � 0, which is
called level repulsion. Figure 3 illustrates this be-
havior with a level-spacing distribution for the cir-
cle and the cardioid billiard, showing a good
agreement with the expected distributions.

For the eigenfunctions of Equation 5, we would
expect that they reflect the underlying classical
dynamics. According to the semiclassical eigen-
function hypothesis, the eigenstates should con-
centrate on those regions where a generic orbit
explores the long-time limit.8 For integrable sys-
tems, motion is restricted to invariant tori,
whereas the whole energy surface is filled uni-
formly for ergodic systems. For ergodic systems,
the semiclassical eigenfunction hypothesis is ac-
tually proven by the quantum ergodicity theo-
rem,9 which states that almost all eigenfunctions
become equidistributed in the semiclassical limit.
Restricted to position space, we have

(9)

for a subsequence   {�n} of density one. So,
for almost all eigenfunctions, the probability of
finding a particle in a certain region D of the posi-

tion space � in the semiclassical limit is just the
same as for the classical system.

Figure 4 illustrates this for an integrable circle
billiard and a chaotic cardioid billiard. We can
clearly see that in the former case, the probability
is restricted to subregions of the billiard, whereas
for the ergodic case, the probability density is uni-
formly distributed over the full billiard region
(apart from the inevitable fluctuations).

For systems with a mixed phase space, the dy-
namics is more complicated because regular and
chaotic motion coexist (as in Figure 2). This is also
reflected in the structure of quantum eigenstates,
which are either located in the regular islands or
extend over the chaotic region (see Figure 5). Re-
cent results show that in certain situations this sim-
ple picture doesn’t hold.10

Our experience with using Python for our
research purposes has been extremely
positive. When people think of scientific
computing, typically Fortran, C, or C++

immediately come to mind, but many tasks involve
fairly small amounts of time-critical code. Due to
Python’s efficient use of numerical libraries, no signif-
icant speed reduction arose in our applications. More-
over, all the illustrations displayed here involve
Python, via PyX (http://pyx.sourceforge.net) or
MayaVi (http://mayavi.sourceforge.net). Clearly, it has
come into its own for many different purposes.
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Figure 4. Behavior of eigenstates. The eigenstates of the integrable circular billiard and the chaotic cardioid billiard
reflect the structure of the corresponding classical dynamics.
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displayed in the last column for each case.
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I N T E R N A T I O N A L
P O L A R Y E A R

Aprimary strength of 3D general circula-
tion models (GCMs) is how well they
simulate the coupled interactions be-
tween sea ice, the land surface, the at-

mosphere, and the ocean, all of which are essential
for understanding the climate system’s response to
forcing perturbations. However, GCMs have lim-
ited spatial and temporal resolution (because of to-
tal integration time) and sometimes fail to capture
the fundamentally important processes that affect
climate variability. Moreover, the computational
constraints on large models restrict the number and
length of sensitivity experiments.

Component models, on the other hand, use
specified forcing at the boundaries, and although
they can’t study the coupled system’s response,

they are easier to interpret and are useful for
studying individual forcing parameters. Re-
searchers can also use models of intermediate
complexity, such as regional ice-ocean coupled
models, to study certain processes in partially cou-
pled modes. Perhaps the best option of all is to use
a hierarchy of models—a combination of interme-
diate-complexity models, process models, and
GCMs—to gain a clearer understanding of how
multiple processes can affect, say, the high-latitude
climate system.

The field of climate variability involves a wide
range of spatial and temporal scales. Small spatial-
scale processes such as turbulence, mixing, and
convection, for example, affect large-scale ice-
ocean-atmosphere circulation patterns, which de-
termine the system’s basic state, which in turn
affects small-scale processes. Small spatial-scale
processes also typically operate over shorter
timescales. Resolving (or parameterizing) the cli-
mate system’s smaller-scale features while per-
forming long-term integrations on complex GCMs
constitutes the principal challenge for computa-
tional scientists interested in the field.

In this article, the authors discuss future pro-
jections of the Arctic sea-ice cover from sophisti-
cated GCMs, the uncertainties associated with
these projections, and how the use of simpler com-
ponent models can help in the interpretation of
complex GCMs.

An Ice-Free Arctic?
Opportunities for Computational Science

The authors discuss modeling’s role in understanding the ice-ocean system, as well as its
importance in predicting the future state of Arctic sea ice. In doing so, this article presents
results from a hierarchy of models of different complexity, their strengths and weaknesses,
and how they could help forecast the future state of the ice-ocean system.
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Arctic Sea Ice
Over the past few decades, the Arctic has witnessed
large changes in its land, atmosphere, ice, and ocean
components. These changes include a decrease in sea-
ice extent and thickness,1,2 a warming of surface air
temperatures,3 a decrease in the sea-level pressure,4

deeper penetration of storms in the eastern Arctic,5 a
warming of the North Atlantic drift current and its
flow at depth beneath the fresher Arctic surface wa-
ters (see Figure 1),6 the melting of the permafrost,7

increased river runoff,8 and changes in vegetation,9

among others. Of all these changes, the best docu-
mented is the decrease of the minimum sea-ice extent
as observed by satellite (see Figure 2). Scientists have
seen a decrease in September sea-ice extent of 8 per-
cent per decade since the late 1970s,10 with three min-
imum ice records broken in the past four years.

All these observations are internally consistent
with local feedbacks from the ice, clouds, and the
surface energy budget (the balance of energy com-
ing in and then leaving the surface). At high lati-
tudes, the dominant feedback mechanism believed
to be responsible for increased local warming is
called ice-albedo feedback. If the climate warms, the
sea ice in the polar seas retreats, and the fraction of
solar radiation absorbed by the ice-ocean system
increases (sea ice reflects most of the incoming so-
lar radiation; the ocean absorbs most of it). This
leads to further warming of the ocean surface and
the overlying air, further retreat of the sea ice, fur-
ther warming, and so on. This positive feedback
can cause large and very rapid changes in surface
conditions and local climate—early models based
on sea-ice albedo feedback alone predicted several

ICE-OCEAN MODELING
By Uma Bhatt and David Newman, University of Alaska
Fairbanks

This issue’s article for the International Polar Year focuses
on various methods for modeling ice-ocean inter-

actions. This is timely not just because of the IPY but also
because of the much publicized shrinking Arctic ice cap and
expected changes in climate due to shifts in ocean currents.

The following Web sites highlight different aspects of a
changing Arctic from satellite data to model projections and
intercomparisons:

• NASA’s Scientific Visualization Studio site is a great place
to start because it plays movies created from satellite mea-
surements as well as from model projections (http://svs.
gsfc.nasa.gov/). To see beautiful animations of sea-ice
changes, search for “sea ice” on this site; one of the best
depicts the minimum ice concentration from 1979 to
2006 (http://svs.gsfc.nasa.gov/vis/a000000/a003300/
a003378/). For a variety of other movies of Arctic data, go
to http://svs.gsfc.nasa.gov/search/Keyword/Arctic.html.

• Scientists at the Geophysical Fluid Dynamics Laboratory
(GFDL; www.gfdl.noaa.gov) are investigating climate
variability and prediction from annual to centennial
timescales. You can see one of their state-of-the-art mod-
els of the shrinking Arctic ice cap at www.gfdl.noaa.gov/
research/climate/highlights/GFDL_V1N1_gallery.html.

• The US National Center for Atmospheric Research is home
to the Community Climate System Model (www.ccsm.
ucar.edu); as the name indicates, the climate community
is heavily involved in the model’s development. You can
find an overview of the model at www.ucar.edu/
communications/CCSM and more about high-latitude

simulations at www.ccsm.ucar.edu/working_groups/Polar.
• To make more sense of the results of different models

worldwide, Lawrence Livermore National Laboratory has
established a program to facilitate model comparison
(www-pcmdi.llnl.gov/projects/cmip/).

The article in this issue describes two extremes in the hier-
archy of models used to investigate ice-ocean interactions—
namely, large-scale global models and small-scale ice
models. In between these is a class of models called regional
models, which are typically forced with either real climate
data or GCM data at their boundaries and can be run at
higher resolution to investigate smaller-scale effects, such as
local orography, smaller-scale weather forcing effects, and so
on. You can find more information on the intercomparison
of these arctic regional ice-ocean models at the Arctic Ocean
Model Intercomparison Project (AOMIP; http://fish.cims.
nyu.edu/project_aomip/overview.html).

The next article in our series dedicated to the IPY will move
onto land and provide insights into modeling high-latitude
terrestrial vegetation dynamics, once again using a hierarchy
of models of varying complexity. Of course, due to space con-
straints, we can’t cover all the relevant topics in this series, and
most notable among our omissions is coverage of biogeo-
chemical processes. One of particular relevance for the polar
oceans is the carbon cycle in the ocean; recent studies show
that the acidification of the ocean due to enhanced carbon
dioxide is particularly important in the cold polar waters. This
acidification is expected to dissolve the calcium-based shells of
small marine organisms, unleashing a major impact on the
food chain. Models of these chemical-biological processes are
at an early stage of development, although researchers expect
biogeochemistry models to become an integral part of what
are presently classified as climate models.
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degree changes in the global mean temperature ini-
tiated by small changes in radiative forcing.11

In the real world (and in more complex models),
negative feedback mechanisms damp or delay the
climate system’s response to changes in forcing.
One such mechanism operating at high latitudes is
the cloud-albedo feedback. When sea ice retreats,
more ocean water is exposed to the atmosphere.
This leads to more evaporation (the overlying
warmer air can hold more water vapor than the
colder atmosphere) and potentially more clouds,
which are highly reflective of solar radiation. In ef-
fect, we’ve replaced a highly reflective material at
the surface (sea ice) with an equally reflective sur-
face up in the atmosphere (the clouds), but they
don’t cancel each other out entirely. Instead, the
combined effect of changes in cloud and sea ice has
a reduced but still significant effect on top-of-
atmosphere (TOA) albedo, which is important to
global temperature (see Figure 3). In fact, in a
cloudier Arctic, increased longwave radiation
reaching the surface can intensify sea-ice melt, es-
pecially during the spring.12

In the late 1980s and early 1990s, more storms
than usual penetrated deep into the eastern Arctic,
a phenomena that became part of a trend in the
North Atlantic Oscillation (NAO). During a pos-
itive NAO phase, storms preferentially move
northward in the Icelandic and Barents Seas
(rather than across the Atlantic or Baffin Bay), with
the sea-level pressure in the northern part of the
North Atlantic relatively lower. These storms
carry sensible and latent heat north, create wind
patterns that blow ice away from the coastlines of
the Kara and Laptev Seas,13 and export thick
multiyear ice from the central Arctic through the
Fram Strait,14 which thins the ice in the peripheral
seas. The associated heat flux from the relatively
warm ocean through the thin ice cover keeps the
overlying atmosphere warmer. These storms also
result in a greater poleward heat transport (both in
the ocean and in the atmosphere), warmer surface
air temperature in the eastern Arctic, deeper pen-
etration of North Atlantic drift waters along the
continental shelf, less multiyear ice in the central
Arctic, and increased precipitation and runoff from
the Eurasian continent.

All the feedback mechanisms we mentioned ear-
lier lead to a larger warming signal—called polar
amplification—in the high latitudes, particularly in
the northern hemisphere, which has a perennial
sea-ice cover and the potential for a stronger ice-
albedo feedback signal. As a result, although cli-
mate models predict a global mean warming of 3 to
5 degrees Celsius by the end of the 21st century

(assuming a continued increase in greenhouse
gas15), the same models predict a warming of 10 to
15 degrees Celsius and a much reduced sea-ice
cover in the Arctic for the same time frame.16 Be-
cause of polar amplification, the Arctic region
could be a place where scientists can more clearly
separate a warming signal associated with human

Figure 1. Arctic Ocean surface circulation. Red arrows indicate warm
Atlantic Ocean currents and blue arrows indicate cold Arctic surface
currents. North Atlantic drift waters entering the Arctic west of
Svalbard flow counterclockwise at depth (the warm core is at
roughly 300 meters) and exit through the Fram Strait (not shown).
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Figure 2. Satellite observation. (a) The trend in September sea-ice
extent in the Arctic, and (b) sea-ice extent anomalies for 2002,
2003, 2004, and 2005. The pink line represents the mean ice-edge
position averaged over the satellite era.
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activity from naturally occurring climate variabil-
ity. These are among the reasons why climate sci-
entists are interested in monitoring and modeling
the high latitudes, and why they do field work in
such remote and harsh environments.

The Ice-Ocean System’s Mean State
Sea ice and oceans are present in both hemispheres
at high latitudes. Yet, the two systems’ natures and
behaviors are very different.

Sea ice forms when surface waters reach their
freezing points (roughly –1.8� Celsius for typical
ocean waters), but for this to occur, the surface
ocean must be stratified.17 When seawater cools, it
becomes denser—the heavier surface waters sink
(convect) and mix with deeper waters. In a stratified
ocean, the depth to which the water convects is
limited to the surface layer, so only the first few
tens of meters (roughly 40 meters, for the Arctic)
must cool to the freezing point for sea ice to form.
In an unstratified ocean, the entire water column
(roughly 4,000 meters) would need to cool before
ice could form on the surface.

In the Arctic, surface stratification mainly comes
from the input of fresh water from river runoff.
The Arctic Ocean constitutes 2 percent of the
Earth’s total ocean volume, yet it receives approx-
imately 10 percent of total continental runoff. The
cold and relatively fresh surface waters (the mixed
layer) sit above an equally cold but somewhat saltier
layer of water called the cold halocline layer (CHL).
Beneath this layer are warmer and saltier waters
from the North Atlantic. The CHL’s presence in
the Arctic buffers the cold surface waters from the
warmer Atlantic waters by limiting the ocean heat
flux into the mixed layer during the winter growth
season, which in turn helps the buildup of a peren-
nial sea-ice cover. Two different mechanisms ex-
plain the CHL’s formation. In the first, shelf-water
advection feeds the cold halocline waters: when ice
forms at the beginning of the cold season it rejects
salt, making the relatively fresh shelf waters saltier.
These waters are advected offshore and find their
level of equilibrium between the lighter (fresher)
surface waters and the heavier (saltier) Atlantic wa-
ters. In the second, deep-ocean convection feeds
the cold halocline waters; the relatively fresh shelf
waters are advected offshore and remain near the
surface (http://psc.apl.washington.edu/HLD/Lomo/
Lomonosov.html).

In the Southern Ocean, surface stratification is
much weaker and is mainly due to melting ice
shelves, melting sea ice, and the runoff from the
continental ice sheet. The mixed layer sits directly
atop the warmer and saltier pycnocline waters. In
early winter, once the shallower seasonal pycno-
cline (from the previous summer’s sea-ice melt) is
eliminated when ice grows in fall, further ice for-
mation (and salt release) later in the winter causes
convection and entrainment of the warmer sub-
pycnocline waters to the surface. This will melt or
prevent from forming approximately 1.5 meters of
ice each winter.

A Seasonally Ice-Free Arctic
When scientists talk about an ice-free Arctic,
they’re generally referring to a summer ice-free
Arctic Ocean—that is, one that has lost its peren-
nial sea-ice cover, a situation that’s sometimes
called the Antarctic analogue.18 In winter, no model
projects a complete disappearance of the sea-ice
cover until at least the end of this century.

In the Arctic Ocean, approximately 1 meter of ice
forms each year during winter, 0.7 meters melt dur-
ing the summer, and an equivalent of 0.3 meters are
exported south to the North Atlantic where it melts.
We could achieve a seasonally ice-free Arctic through
a sustained increase in sea-ice export out of the Arc-

Figure 3. Monthly mean top-of-atmosphere (TOA) albedo (green
dots) against northern hemisphere sea-ice concentrations (SICs).
Purple dots connected with a line represent area-weighted TOA
albedo averages for each 0, 100, and 10 percent bin of SIC. The
dashed lines are standard deviations, and the thin red lines connect
maximum and minimum observed surface albedo values for both
the open ocean and sea ice, corresponding to the TOA albedo
envelope in the absence of an atmosphere. (The TOA albedo is
from the Earth Radiation Budget Experiment’s [http://asd-www.
larc.nasa.gov/erbe/ASDerbe.html] data, and the SICs are from the
Hadley Centre’s sea-ice and sea-surface temperature data set
[http://hadobs.metoffice.com].23)



MAY/JUNE 2007 69

tic via the Fram Strait,14 a decline in winter sea-ice
production, or an increase in summer sea-ice melt.

Anomalous Ice Export
The mean time sea ice resides in the Arctic is ap-
proximately seven years. For the sea-ice export to
have a significant impact on the volume of ice re-
maining in the Arctic, anomalous wind patterns
must be maintained for at least this amount of time.
However, as we mentioned earlier, a strong nega-
tive feedback limits the impact of enhanced sea-ice
export on Arctic ice volume.14

When export is anomalously high, the volume
(or mean thickness) of ice left behind decreases,
and the heat lost from the ocean to the atmosphere
(and concomitant sea-ice formation) increases. In
the late 1980s and early 1990s, researchers ob-
served a trend toward a more positive NAO index,
with deeper penetrations of storms in the eastern
Arctic and winds blowing the thick multiyear ice
from the central Arctic out through the Fram
Strait. Some scientists have hypothesized that the
very low ice observed in subsequent years is the re-
sult of this trend.3 However, since the mid-1990s,
the NAO index hasn’t been as positive, yet the sys-
tem hasn’t recovered.

Anomalous Winter Sea-Ice Growth
The typical heat loss from the Arctic Ocean to the
atmosphere is 15 Watts per square meter (W m–2),
which is equivalent to a 1-meter ice growth over an
8-month growing season. In winter, the dominant
factors in the surface heat balance are upwelling
and downwelling longwave radiation and the con-
ductive heat flux through the sea ice.19 On a typi-
cal clear-sky day, the net longwave radiation
emitted from the surface is approximately 30 
W m–2, whereas the net longwave radiative flux
drops to almost zero during cloudy skies.

The expected increase in downwelling longwave
radiation by 2050, as predicted by the latest gener-
ation of GCMs from the International Panel on
Climate Change’s 4th Assessment (IPCC-AR4),
ranges from roughly 10 to 25 W m–2, depending on
the model used and the future CO2 increase sce-
nario considered. This is significantly larger than
the same models’ global average, which ranges
from 3 to 15 W m–2, and is of the same order of
magnitude as the net heat loss to the atmosphere
during the winter months. An increase in the
downwelling longwave radiation will result in a
warmer surface-ice temperature, a reduced tem-
perature gradient from the ice base to its surface,
and a reduced winter ice growth. These changes
would gradually decrease the winter sea ice’s

growth over time, if no other feedback mechanisms
were present. Of all the IPCC models participat-
ing in the 4th assessment that have a realistic sea-
sonal ice extent cycle, 40 percent display this
gradual decrease.20

Anomalous Summer Sea-Ice Melt
In summer, the main balance in the Arctic sea ice’s
surface heat budget is between the net shortwave
radiation absorbed at the surface, the energy re-
quired to melt the sea ice, and to a lesser extent the
net longwave radiation lost by the surface.19 Clouds
have a large impact on surface melt as well.
Whereas winter clouds have a warming effect (in-
creased downwelling longwave radiation), summer
clouds reduce the amount of shortwave radiation
that reaches the surface and typically have a cool-
ing effect (the increased downwelling longwave ra-
diation associated with clouds doesn’t compensate
for the decreased downwelling shortwave radia-
tion21). Depending on microphysical properties
(such as cloud-particle radius and ice versus liquid),
clouds can affect the surface radiation balance dif-
ferently in winter and summer.22,23

How the summer melt will change in response
to future greenhouse gas production depends
largely on the projected changes in Arctic cloud
cover and type. At present, satellite observations
show an increase in the melt season by a few weeks,
associated with the NAO’s more positive phase,10

and possibly with an increase in the downwelling
longwave radiation reaching the surface.12

Feedback Mechanisms
Increased ice export, decreased winter growth, and
increased summer melt will all result in a gradual
change in sea-ice conditions in the Arctic Ocean.
Let’s examine how slowly varying CO2 increases in
the atmosphere could lead to a rapid decline in
Arctic sea-ice volume if we reach certain thresholds
in sea-ice thickness or surface ocean temperature
and salinity structure.

Dynamic Feedback
Energy input by the wind dissipates due to both
bottom friction between the ice base and ocean
surface and lateral friction between ice floes rub-
bing against one another along shear lines. When
local convergence is present,24 ridges form, lead-
ing to an increase in the system’s potential energy.
A thinner sea-ice cover has a lower mechanical
strength and deforms more easily (sea ice com-
pressive and shear strengths are functions of thick-
ness, but sea ice tensile strength is invariably much
lower because the pack ice is a highly fractured
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material that can’t sustain large tensile stresses be-
fore deforming). Moreover, faster-moving ice
yields more mixing at the surface.

Localized high shear deformation can also raise
the pycnocline depth (due to Ekman upwelling)
and increase turbulent heat fluxes in the surface
ocean boundary layer.25 Figure 4 shows typical
lead (a narrow opening in the sea-ice pack that ex-
poses the open ocean) patterns as well as the spa-
tial distribution of leads from three years of
Radarsat Geophysical Processor System (RGPS)
data. A faster-moving sea-ice cover has a shorter
life span in the Arctic (with wind forcing remain-
ing the same), which results in decreased thermo-
dynamic growth.

Loss of the Cold Halocline Layer
As discussed earlier, the CHL buffers the Arctic’s
cold surface water from the warm Atlantic layer be-
neath. In the early 1990s, Michael Steele and Tim-
othy Boyd26 showed that the eastern-central Arctic
CHL was weak in 1993 and completely absent in
1995. Without a CHL, the Arctic Ocean assumes
characteristics of the Antarctic water column, and
with that, presumably an increased ice-ocean heat
exchange and a behavior similar to the Antarctic
ocean-ice system (that is, a seasonal ice cover). In
the late 1990s, the CHL returned.27 Researchers
argued that this excursion was due to a change in
the large-scale atmospheric circulation and a con-
comitant change in river inflow paths along the
Eurasian shelf.28 During that time, the river runoff
from Eurasia formed an eastward-flowing coastal
current in response to large-scale wind pattern
changes (as opposed to flowing off the shelf and
along the Lomonosov ridge in the central Arctic).

It’s unclear how the CHL will respond to reduc-
tions in ice cover. Weakening or loss of the CHL
would constitute a large positive feedback mecha-
nism accelerating the decline of Arctic sea-ice cover.
To quantify the amount of heat brought up to the
surface when sea ice forms, rejects salt, and enables
surface convection, Douglas Martinson and Richard
Iannuzzi29 developed a simple bulk model based on
the upper ocean’s temperature and salinity profile.
Douglas Martinson and Michael Steele18 later cal-
culated (using all available temperature and salinity
profiles from the Arctic) the latent ocean heat fluxes
that would be released in the event of a CHL loss.
The values of heat fluxes ranged from 17 W m–2

north of Greenland in the Amundsen Basin to ap-
proximately 9 W m–2 in the Canadian Basin. Given
that the CHL’s presence is linked with river runoff
paths into the Arctic Ocean and shelf water’s hy-
drographic properties, whether we could lose the
CHL over the entire Arctic Ocean at once remains
an open question. However, even a partial loss over
a limited region of the Arctic would significantly
impact the sea-ice cover’s thinning.

Ice-Ocean-Albedo Feedback
Another possible mechanism for the rapid decline
in Arctic sea-ice cover is linked with ice-ocean-albedo
feedback. As the sea ice gradually thins due to in-
creased greenhouse gases in the atmosphere, we’ll
reach a threshold when an anomalously warm year
(associated with natural interannual variability)
causes a significant increase in open water. This will
be followed by increased absorption of solar radia-
tion in the mixed layer and an increase in basal melt
along with the usual surface melt. The natural vari-
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ability that can trigger these events includes higher
than normal atmospheric and oceanic heat fluxes
to the Arctic.20 Observations taken along the
Eurasian continental shelf show a pulse-like warm-
ing of the Atlantic water circulating cyclonically
along the shelf in the Arctic Ocean, and scientists
also recorded a few warm events of roughly 1� Cel-
sius in 199030 and 2004.6 Researchers simulated
similar warming events with a regional ice-ocean
model forced with specified atmospheric forcing.31

The Arctic Sea-Ice Cover’s Future
The models participating in the IPCC’s 4th assess-
ment represent the state of the art in global climate
modeling. They incorporate ocean, atmosphere,
terrestrial, and sea-ice components as well as the
linkages among them.

IPCC-AR4 models consistently exhibit a de-
crease in Arctic sea-ice cover in response to in-
creasing greenhouse gases, but this retreat ranges
widely in its rate and magnitude. Some of this scat-
ter is related to the simulated present-day climate
conditions; models with more extensive ice cover
in the current climate tend to be less sensitive. An
analysis of 14 IPCC-AR4 models shows that the re-
treat of sea ice by the mid-21st century is correlated
to late 20th century conditions with a correlation
coefficient of R = 0.42, where R stands for the cor-
relation coefficient between the simulated sea-ice
extent in the middle of the 21st century and those
of the late 20th century. By the end of the 21st cen-
tury, however, the correlation degrades to R = 0.09,
such that, although initial ice conditions are im-
portant, other processes dominate. These processes
affect climate-feedback strength and can include
simulated cloud cover, atmospheric circulation’s
meridionality (the north–south heat-moisture
transport), and the mean and variability of ocean
heat transport to the Arctic.

The mechanism for losing perennial sea-ice
cover is thermodynamic in nature—that is, it’s due
to an increased net surface and basal heat budget
and melt. For the multimodel ensemble mean, the
ice melt for the 2040–2060 average increases over
that of the 1980–2000 average by 1.2 meters,
whereas the net ice growth increases by 0.2 meters
and the ice export decreases by 0.1 meters. This
clearly shows that the dominant term for the en-
semble mean is sea-ice melt, with ice export and
winter growth acting as negative feedbacks. How-
ever, the variability in winter growth and ice export
is larger, and, for some models, they act as positive
feedbacks. Of all the processes that could be re-
sponsible for Arctic sea-ice decline, increased sum-
mer melt is thus the main player.

Limitation of Current GCMs
We noticed major improvements in Arctic simula-
tion quality from the latest generation of models
participating in the IPCC’s 4th assessment when
compared to the previous generation of models.
These include the representation of sea-ice thick-
ness distribution, the simulation of sea-level pres-
sure at high latitude, the atmospheric circulation
pattern’s meridionality, and precipitation patterns
at high latitudes (a discussion of Arctic climate bi-
ases associated with the previous generation of
GCMs appears elsewhere32). Important issues re-
main, however, and they’ll require further attention
before we can rely entirely on model predictions of
the Arctic’s future climate.

Clouds, for example, are inherently difficult to
model because of the small-scale nature of the
processes that govern their formation. Moreover,
Arctic clouds are difficult to measure remotely be-
cause distinguishing them from the sea ice surface
in infrared and visible satellite images is difficult.
The lack of data and difficulty in collecting it also
poses a challenge to the study of Arctic clouds. For-
tunately, several cloud detection algorithms specific
to the polar regions have been developed recently
and validated against ground-based campaigns,
whereas the newly launched satellite programs have
much improved capabilities in differentiating
clouds from sea ice and quantifying the clouds’ mi-
crophysical properties (such as cloud ice and liquid
water content and particle size).33,34

Measurements conducted during the Surface
HEat Budget of the Arctic (SHEBA; http://sheba.
apl.washington.edu) experiment showed that liquid
water dominates cloud water content over the ice
phase in summer, and even winter clouds contain
significant amounts of liquid water.21 Moreover, liq-
uid clouds reflect more shortwave radiation, whereas
ice clouds are relatively more transparent. The
model parameterizations that researchers use to de-
cide whether a cloud is liquid or solid are simple and
often based on relatively few field campaigns that
aren’t always applicable to Arctic conditions. Figure
5 shows the partitioning between liquid and ice in
the Arctic from SHEBA observations and three cou-
pled models participating in the IPCC’s 4th assess-
ment report. Models with the largest liquid water
content show the smallest downwelling shortwave
flux during the summer, which is partly compen-
sated for with an increased longwave flux. During
the winter months, models with liquid-dominated
clouds have higher downwelling longwave radiation
compared to models with ice-dominated clouds.

Another small-scale process that isn’t well re-
solved in current GCMs is linked with determin-
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ing the upper ocean’s vertical structure—in partic-
ular, the CHL. GCMs often have problems when
resolving the sharp salinity gradients at the base of
the mixed layer; instead, they tend to produce
saltier surface waters and fresher pycnocline waters,
which results in a warm Atlantic layer that isn’t
buffered from the surface. However, the warm At-
lantic layer is often deeper than observed because
of the upper water column’s salinity structure (see
Figure 6). The two effects compensate for each
other, often giving realistic sea-ice heat and mass
balance. Whether the variability around the mean
or the response in a changing climate is realistic re-
mains an open question.

A Simple Modeling Approach
To separate the effect of anomalous atmospheric
circulation, increases in the downwelling longwave
radiation associated with increased greenhouse gas,
and the loss of the CHL in creating a summer ice-
free Arctic, we can use a simple stand-alone viscous
plastic sea-ice model coupled to a slab ocean and at-
mospheric energy balance model (a detailed de-
scription of the model appears elsewhere35). To this
end, we ran the model continuously with 1989 wind
forcing because that year had an anomalously high
NAO index and sea-ice export; with an increased

downwelling longwave radiation of 20 W m–2, a
typical value simulated by IPCC-AR4 models for
2050; and with a specified ocean heat flux of 20 
W m–2, mimicking the loss of the CHL in the Arc-
tic Ocean. Figure 7 shows a present-day climate
simulation. We forced the model run with atmos-
pheric forcing fields for the 1949–2005 time period.
In our sensitivity studies, we modified only one
forcing field at a time; the other fields remained the
same as for the present climate run. In all cases, we
used a 10-year mean sea-ice thickness field, calcu-
lated from the past 10 years of a 50-year run.

The main features of the present-day climate
stand-alone model simulation include thicker ice
north of the Canadian Arctic Archipelago (5 to 6
meters) and thinner ice along the Eurasian Basin (1
meter), in good agreement with observations from
submarine and satellite altimeter estimates
(http://nsidc.org). This sea ice thickness pattern is
due to the dominant winter winds that tend to push
ice from the Eurasian continent toward North
America as well as the longer life span of sea ice
caught in the Beaufort Gyre. The asymmetry in ice
thickness is particularly interesting: ice is thicker in
the Beaufort Gyre than in the Lincoln Sea (north
of Greenland) because of the advection by the
Beaufort Gyre of thick multiyear ice westward in
front of the Canadian coastline.

When forcing the model with continuous 1989
wind forcing (and keeping everything else the
same), the steady-state response (achieved after
seven years) results in a change in sea ice thick-
ness, with thinner ice primarily in the East Siber-
ian Sea and the Beaufort Gyre (see Figure 7c).
The export of thick multiyear ice from the Lin-
coln Sea is also clearly visible in the Fram Strait
and along the East Greenland coastline. In con-
trast, the simulation with increased downwelling
longwave radiation results in much thinner ice
over the entire Arctic Ocean (see Figure 7b). Of
the three effects that scientists believe have the
biggest impact on sea-ice cover, the loss of the
CHL is greater because it reduces winter ice
growth and contributes to a thinner end-of-win-
ter sea-ice thickness that’s more prone to sub-
stantial summer melt.

The timescale associated with the decline of sea-
ice cover in these simulations also differs. Changes
in the longwave forcing are gradual and occur over
longer timescales than the ice-surface-ocean sys-
tem’s steady-state response (roughly seven to eight
years). The sea-ice cover’s response in this simula-
tion is therefore in equilibrium with the forcing.
On the other hand, both the changes in large-scale
atmospheric circulation and in the CHL can occur
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Figure 5. Liquid vs. ice clouds. In comparing the May–September
cloud ice vs. liquid water paths from SHEBA’s ground-based
observations and the GISS-ER, HadCM3, and CCSM3 models, we
see a dominance of liquid water clouds in summer, which is
sometimes underestimated in some models. The data are averaged
from 1959–1998; the numbers above each bar indicate the total
cloud water paths (g m–2), and the percentages show the
partitioning into liquid and ice phases.



MAY/JUNE 2007 73

on much shorter timescales, so the ice-surface-
ocean response time governs the system’s re-
sponse, which in turn leads to rapid changes in
sea-ice conditions. For this reason, while the mag-
nitude of the surface forcing for both the increased
downwelling longwave radiation and the loss of
the CHL is of the same order of magnitude, a loss
of the CHL could lead to a much more rapid de-
cline of the sea-ice cover.

The study of polar oceans, sea ice, and
the high-latitude climate relies heav-
ily on regional models and GCMs
that incorporate several critical Earth

system components. Climate models suggest a
transition to ice-free Arctic conditions in the sum-
mer in the near future (in 50 to 100 years). This
represents an unprecedented change in the Arctic
climate, with potentially far-reaching effects.

Fortunately, several institutions, including na-
tional research centers and universities, have
groups of researchers working on the develop-
ment, numerical implementation, and coupling of
new and improved climate models. These group
efforts provide a unique opportunity for scientists
in the computational sciences to tackle important
climate issues in a stimulating multidisciplinary
research environment.
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