
Computing in Science & Engineering is a peer-reviewed, joint publication of the IEEE Computer Society and the American Institute of Physics

http://cise.aip.org www.computer.org/cise/

May/June 2007

An Ice-Free
Arctic? p. 65

ALSO

PYTHON:
BATTERIES INCLUDED

PYTHON:
BATTERIES INCLUDED

The Return of the
Books Dept. p. 3

Making the
Complex Simple p. 84

Statement of Purpose

Computing in Science & Engineering

aims to support and promote the

emerging discipline of computational

science and engineering and to

foster the use of computers and

computational techniques in scientific

research and education. Every issue

contains broad-interest theme articles,

departments, news reports, and

editorial comment. Collateral materials

such as source code are made available

electronically over the Internet. The in-

tended audience comprises physical

scientists, engineers, mathematicians,

and others who would benefit from

computational methodologies.

All articles and technical notes

in CiSE are peer-reviewed.

M A Y / J U N E 2 0 0 7 Volume 9, Number 3

P Y T H O N : B A T T E R I E S I N C L U D E D
Guest Editor’s Introduction

Paul F. Dubois

7
Python for Scientific Computing

Travis E. Oliphant

10
IPython: A System for Interactive Scientific Computing

Fernando Pérez and Brian E. Granger

21
Computational Physics Education with Python

Arnd Bäcker

30
Python Unleashed on Systems Biology

Christopher R. Myers, Ryan N. Gutenkunst, and James P. Sethna

34
Reaching for the Stars with Python

Perry Greenfield

38
A Python Module for Modeling and Control Design of Flexible Robots

Ryan W. Krauss and Wayne J. Book

41
Python in Nanophotonics Research

Peter Bienstman, Lieven Vanholme, Wim Bogaerts,
Pieter Dumon, and Peter Vandersteegen

46
Using Python to Solve Partial Differential Equations

Kent-Andre Mardal, Ola Skavhaug, Glenn T. Lines,
Gunnar A. Staff, and Åsmund Ødegård

48
Analysis of Functional Magnetic Resonance Imaging in Python

K. Jarrod Millman and Matthew Brett

52
Python for Internet GIS Applications

Xuan Shi

56
Quantum Chaos in Billiards

Arnd Bäcker

60
I N T E R N A T I O N A L P O L A R Y E A R

An Ice-Free Arctic? Opportunities for Computational Science
L. Bruno Tremblay, Marika M. Holland, Irina V. Gorodetskaya, and Gavin A. Schmidt

65

Cover illustration: Dirk Hagner

Printed on 100% recycled paper

C O L U M N S

The First Word
Norman Chonacky, Editor in Chief
You’re Recommending What?!

The Last Word
Francis Sullivan
Wrong Again!

2

96

3

75

80

84

90

W W W . C O M P U T E R . O R G / C I S E /
H T T P : / / C I S E . A I P. O R G

M A Y / J U N E 2 0 0 7

How to Contact CiSE, p. 6

Computer Society Membership Info, p. 9

AIP Membership Info, p. 29

Advertiser/Product Index, p. 95

D E P A R T M E N T S

Books
Michael Jay Schillaci
Computationally Complete

Education
Christopher R. Myers and James P. Sethna
Python for Education:
Computational Methods for Nonlinear Systems

Your Homework Assignment
Dianne P. O’Leary
A Partial Solution to Beetles, Cannibalism, and Chaos:
Analyzing a Dynamical System Model

Computing Prescriptions
Julian V. Noble
Making the Complex Simple

Scientific Programming
John D. Hunter
Matplotlib: A 2D Graphics Environment

W W W . C O M P U T E R . O R G / C I S E /
H T T P : / / C I S E . A I P. O R G

2 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE COMPUTING IN SCIENCE & ENGINEERING

T H E F I R S T W O R D

I’ll take some space in the next issue to express my thanks
to those who invested a piece of themselves in the life of
CiSE and its predecessors. Naturally, the publication’s evo-
lution involves a concomitant evolution of its editorial
board, but sometimes these retirements arise sadly and un-
expectedly. Julian V. Noble, co-editor of our Computing
Prescriptions department and a long-time professor of
physics (recently professor emeritus) at the University of
Virginia, very recently died (see p. 84); we will miss him.

It’s at times of such transitions in life that I reflect about
transitions in other contexts—in this case, the life of our
publication. Gathered around the meeting table were both
the young and the not-so-young, embodying a range of as-
sets from energy to wisdom. Within the “younger” set are
those people growing up in an information galaxy that
sometimes seems to me to reside in another universe.

One of the big issues on the table was how to expand our
ability to create a community among groups of scientists,
engineers, and mathematicians who are drawn together by
their common intellectual investment in computing. To the
“youngsters,” the obvious answer is the Web. I tend to view
the Web as a source of information rather than a medium
for building a community, especially among people who
don’t know one another; but “that’s the whole point,” these
energetic enthusiasts exclaim. As I understand it, our mis-
sion is to serve a collection of people who have a common
need but not an ethos. Yet, the assumption at the meeting is
that a sizeable chunk of our putative community belongs to
this Web generation: its members don’t hesitate to exchange
ideas and critiques in near real time with others about whose
professional (let alone personal) character and competence
they have almost no idea—it’s the buzz that brings them to-
gether.

I must admit that I don’t really “get it,” but in my ripe old

age I’m also not inclined to obstruct new possibilities even
if they don’t make complete sense to me at the time. And I
deeply believe that we have a responsibility to build a com-
munity whose members are in need, perhaps serious need,
of some ethos of shared intellectual interests. So you can
count on seeing an experiment in CiSE-sponsored blogging
in the not-too-distant future.

How soon? Well, one metric was evident during our meet-
ing. While I was expounding about the algorithm for deter-
mining CiSE’s share of the income earned from the IEEE’s
digital library (Xplore) and asking for strategic moves that
might ameliorate its decline, the “youngsters” were busy on-
line buying a domain name for blogging purposes … right
there in front of me! I doubt it’ll be very long at all before
you have the opportunity to share your thoughts.

In the meantime, enjoy this issue, which is full of
Pythonista enthusiasm—this, I do get—and continue to
enjoy our tales from the far North with our International
Polar Year theme track.

YOU’RE RECOMMENDING WHAT?!

By Norman Chonacky, Editor in Chief

T HIS MAGAZINE’S EDITORIAL BOARD JUST CONCLUDED ITS ANNUAL MEET-

ING AT THE AMERICAN CENTER FOR PHYSICS IN COLLEGE PARK, MARY-

LAND. DURING THE PROCEEDINGS, I INTRODUCED SOME NEW BOARD MEMBERS

AND ANNOUNCED THE RETIREMENT OF SOME OTHERS.

HOW YOU CAN CONTRIBUTE

1. Send a Letter to the Editor

Have we published something that caught your eye?
Would you like to comment on any of our articles, or share
an opinion about any of our departments? Please email
senior editor Jenny Stout (jstout@computer.org).

2. Review for Us

Email cise@computer.org with your vita and experience.

MAY/JUNE 2007 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE 3

Editor: Mario Belloni, mabelloni@davidson.edu

Send announcements to bortega@computer.org

B O O K S

A imed directly at the undergrad-
uate student, the stated goal of
Rubin Landau’s A First Course in

Scientific Computing: Symbolic, Graphic, and
Numeric Modeling Using Maple, Java,
Mathematica, and Fortran90, is “[t]o pro-
vide them with tools and knowledge they
can utilize throughout their college ca-
reers.” Adopting a tutorial approach and

an “over the shoulder” style that lets students work indepen-
dently and confidently, Landau addresses almost all the short-
comings of earlier computational physics books and produces
a text that will certainly stand the test of time.

Drawing on both a long career of teaching excellence and
from his prolific body of research, Landau wisely guides his
readers through the scientific computing world with what at
times feels like kind, grandfatherly advice. Indeed, in the pref-
ace—a part of the book that many students might unfortu-
nately skip—he deftly focuses the reader’s attention on the
simple observation that, “[t]he basic ideas behind scientific
computing are language independent, yet the details are not.”
With this guiding principle, he sensibly chooses Maple and
Java as exemplars of the vast array of tools available to stu-
dents. Together with the accompanying CD, which includes
alternate code for Mathematica and Fortran90, the text’s in-
tended role is to be “closer to a workbook than a reference
book.” In this regard, Landau does very well. With a short
chapter on LaTeX, he also addresses the ever-increasing role
of electronic document production in the Web-based com-
munication of scientific works and so provides the student
with a complete set of tools for the task at hand.

Maple
To begin, although Landau’s use of the command-line mode
is appropriate because of platform variability concerns, the
addition of a “walk through” of Maple’s features would serve
to give students a literal view of what’s to come and could
provide witness to the way in which students could integrate
different programming environments. By demonstrating

Maple’s ability to typeset mathematical equations, plot func-
tions, and export graphics and pages as HTML or LaTeX,
for example, students could quickly appreciate its usefulness.
Instructors could then point to the examples as greater ex-
planation and motivation for the course’s scope and content.

Partly due to the workbook approach, the Maple discus-
sion’s overall organization is somewhat terse with many sec-
tions, subsections, and sub-subsections that don’t always
seem particularly pertinent to the task of “introducing the
relevant mathematics in the course of solving realistic prob-
lems.” This is especially true when using the book in courses
designed to include students from curricula other than
physics. For example, the first problem in the text draws on
the results of special relativity, and Landau takes great care
to entice the student saying, “[a]lthough the theory of spe-
cial relativity does have its subtleties […] [t]his should give
you a good working knowledge of some tools.” Given the
text’s audience, the first example should allow all students,
not just physics majors, to fully grasp the phenomena’s phys-
ical significance. Moreover, nearly 20 pages separate the in-
troduction of relativistic equations with the plots of their
basic behavior, with much of the intervening material com-
ing from a computer science perspective. This is avoidable
in an electronic format, but in written form, an organiza-
tional scheme that sets the tutorial information and exer-
cises in sidebars or boxes would be preferable.

Although the mathematical and computational techniques
Landau covers include the detailed use of integration and
differentiation as well as matrix algebra and advanced plot-
ting commands, too much is made of Maple’s limitations. A
measure of this is necessary, but in some cases this approach
might challenge students’ confidence in Maple—for exam-
ple, Maple sometimes allows operators to be omitted (as
when employing its version of scientific notation); a state-
ment that using operators will decrease your debugging
time would be useful in this circumstance. Moreover, when
illustrating Maple’s computer algebra system, the text fo-
cuses on the nature of commands such as simplify and
collect, but it fails to give a detailed treatment of ex-

COMPUTATIONALLY COMPLETE
By Michael Jay Schillaci

R. Landau, A First Course in Scientific Computing: Symbolic, Graphic, and Numeric
Modeling Using Maple, Java, Mathematica, and Fortran90, Princeton Univ. Press,
2005, ISBN: 0691121834, 472 pages.

4 COMPUTING IN SCIENCE & ENGINEERING

tremely important commands like unapply. Consequently,
the opportunity to impart high-order heuristics to the stu-
dent is lost. By including short tables or intermittent sum-
maries of important built-in functions and commands in the
text (in addition to those already in the appendix) and with
a more judicious use of the command-line help system, the
delivery and impact of the examples could be improved.

When tackling more complex ideas, the text’s colloquial
approach often comes across as abrupt. For instance, in dis-

B O O K S

EDITOR IN CHIEF
Norman Chonacky
cise-editor@aip.org

ASSOCIATE EDITORS IN CHIEF
Jim X. Chen, George Mason Univ.,

jchen@cs.gmu.edu

Denis Donnelly, Siena College, donnelly@siena.edu

Steven Gottlieb, Indiana Univ., sg@indiana.edu

Douglass E. Post, Carnegie Mellon Univ.,
post@ieee.org

EDITORIAL BOARD MEMBERS
Klaus-Jürgen Bathe, MIT, kjb@mit.edu

Antony Beris, Univ. of Delaware, beris@che.udel.edu

Michael W. Berry, Univ. of Tennessee, berry@cs.utk.edu

Bruce Boghosian, Tufts Univ., bruce.boghosian@tufts.edu

Hans-Joachim Bungartz, Institut für Informatik,
bungartz@in.tum.de

George Cybenko, Dartmouth College, gvc@dartmouth.edu

Jack Dongarra, Univ. of Tennessee, dongarra@cs.utk.edu

Rudolf Eigenmann, Purdue Univ., eigenman@ecn.purdue.edu

David Eisenbud, Mathematical Sciences Research Inst.,
de@msri.org

William J. Feiereisen, Los Alamos Nat’l Lab, wjf@lanl.gov

Geoffrey Fox, Indiana Univ., gcf@grids.ucs.indiana.edu

Sharon Glotzer, Univ. of Michigan, sglotzer@umich.edu

Anthony C. Hearn, RAND, hearn@rand.org

Charles J. Holland, Darpa, charles.holland@darpa.mil

M.Y. Hussaini, Florida State Univ., myh@cse.fsu.edu

Rachel Kuske, Univ. of British Columbia, rachel@math.ubc.ca

David P. Landau, Univ. of Georgia, dlandau@hal.physast.uga.edu

R. Bowen Loftin, Texas A&M University, Galveston,
loftin@tamug.edu

B. Vincent McKoy, California Inst. of Technology,
mckoy@its.caltech.edu

Jill P. Mesirov, Whitehead/MIT Ctr. for Genome Research,
mesirov@genome.wi.mit.edu

Constantine Polychronopoulos, Univ. of Illinois,
cdp@csrd.uiuc.edu

William H. Press, Los Alamos Nat’l Lab., wpress@lanl.gov

John Rice, Purdue Univ., jrr@cs.purdue.edu

John Rundle, Univ. of California, Davis,
rundle@physics.ucdavis.edu

Ahmed Sameh, Purdue Univ., sameh@cs.purdue.edu

Henrik Schmidt, MIT, henrik@mit.edu

Greg Wilson, Univ. of Toronto, gvwilson@third-bit.com

CONTRIBUTING EDITORS
Francis Sullivan, The Last Word, fran@super.org

Paul F. Dubois, Café Dubois, paul@pfdubois.com

NOT SO NEW, BUT IMPROVED

I n early 2006, the CiSE editorial board evaluated the
Books department. The outcome of this discussion was

that the department emerged as an important section of
the magazine that we needed to rework and update. With
CiSE’s larger constituency, the Books department seeks to
have “something for everyone,” so our goal is to feature at
least one book review per issue, which will come from
these general categories:

• programming (design, tools, techniques, languages);
• computational sciences (engineering, biology, chemistry,

physics, and so on);
• engineering and science applications (CAD/CAE, pro-

ductivity, modeling, simulation);
• algorithms (high-performance and parallel computing,

numerical, symbolic);
• data (mining, databases, analyses);
• textbooks (computer science or science with computation);
• laboratory/experimental (acquisition, control systems,

imaging, sensors); and
• hardware/networks (special purpose, distributed systems,

communications).

However, the Books department is only as good as the
books we receive, and the reviewers who review them. If
you know of a good book worthy of review, or want to re-
view a book in one of these categories, please contact me
at mabelloni@davidson.edu.

We kick off this revamped department with Michael
Jay Schillaci’s review of Rubin Landau’s book, A First
Course in Scientific Computing. Much debate exists as to
what a first course in scientific computing should be (see
for example, the September/October 2006 issue of
CiSE), and Landau’s approach has been at the forefront
of much of this discussion. In addition to our review, the
American Journal of Physics recently published a compari-
son review of three first-course books (vol. 74, no. 7,
2006). Our reviewer also has his own first-course ap-
proach, which you can download as a PDF from his Web
site (www.evsis.org/download.html).

MAY/JUNE 2007 5

cussing how a 3D plot structure is rendered on a 2D sur-
face, Landau says, “we do that by rotating the object, shad-
ing it, employing parallax, and so forth.” Arguably, one of
the most appealing aspects of software packages such as
Maple or Mathematica is that the nontechnical masses can
use them to blindly produce complex and beautiful graph-
ics, but one of a scientific computing course’s many goals is
to give students a deeper understanding of the principles
involved. For this reason, it might have been more benefi-
cial in this context if the text demonstrated how the student
could add plot options such as viewpoint and shading to the
basic command structure to alter the object’s appearance.
Then, the student could use the matrix rotation techniques
to construct a simple animation sequence, directly illus-
trating the effects and providing a concrete and in-depth
example. Indeed, with a similar approach to each of the
chapter’s problems, Landau could enhance the coverage of
Maple methods and programming.

Java
The thorough treatment of Java as a paradigm example of a
modern object-oriented programming (OOP) language,
complete with plotting and Web-based applications, is
where Landau’s text makes its real contribution. Although
his first example might seem a bit mundane—calculating a
circle’s area—it goes beyond the traditional “hello world”
program and introduces the language’s method-based struc-
ture. In particular, Landau’s discussion of classes and methods
and when to avoid thinking too deeply about the required
syntax of declarations is very refreshing. To quickly demon-
strate Java’s power and appeal, he then shows how easy it can
be to produce graphical output.

Despite the fact that some of the physical examples cov-
ered in the Maple section weren’t fully developed, Landau’s
use and expansion of these same examples later in the text
(most notably, the detailed simulation of a large city’s elec-
tricity usage) should let students move confidently into mod-
ern scientific computing’s more technical aspects. Moreover,
his addition of “new” problems such as frictionless projec-
tile motion provide students with a demonstration of how
theory, algorithm development, and logic must all come to-
gether to produce working simulations. The comparison of
Java and Maple solutions to differential equations helps fur-
ther drive home this point and also provides the unified ap-
proach that’s lacking in some of the text’s earlier portions.

Landau employs a “just enough” approach when it comes
to his discussions of OOP concepts, but deals with the ideas
of encapsulation and inheritance sufficiently, making the

DEPARTMENT EDITORS
Books: Mario Belloni, Davidson College, mabelloni@davidson.edu
Computing Prescriptions: Isabel Beichl, Nat’l Inst. of Standards and

Tech., isabel.beichl@nist.gov
Computer Simulations: Muhammad Sahimi, University of Southern

California, moe@iran.usc.edu, and Dietrich Stauffer, Univ. of Köhn,
stauffer@thp.uni-koeln.de

Education: David Winch, Kalamazoo College, winch@TaosNet.com
News: Rubin Landau, Oregon State Univ., rubin@physics.oregonstate.edu
Scientific Programming: Konstantin Läufer, Loyola University,

Chicago, klaufer@cs.luc.edu, and George K. Thiruvathukal, Loyola
University, Chicago, gkt@cs.luc.edu

Technology: James D. Myers, jimmyers@ncsa.uiuc.edu
Visualization Corner: Claudio T. Silva, University of Utah,

csilva@cs.utah.edu, and Joel E. Tohline, Louisiana State University,
tohline@rouge.phys.lsu.edu

Your Homework Assignment: Dianne P. O’Leary, Univ. of Maryland,
oleary@cs.umd.edu

STAFF
Senior Editor: Jenny Stout, jstout@computer.org
Group Managing Editor: Steve Woods
Staff Editors: Kathy Clark-Fisher, Rebecca L. Deuel, and Brandi Ortega
Contributing Editor: Joan Taylor
Production Editor: Monette Velasco
Publications Coordinator: Hazel Kosky, cise@computer.org
Technical Illustrator: Alex Torres

Publisher: Angela Burgess, aburgess@computer.org
Associate Publisher: Dick Price
Advertising Coordinator: Marian Anderson
Marketing Manager: Georgann Carter
Business Development Manager: Sandra Brown

AIP STAFF
Circulation Director: Jeff Bebee, jbebee@aip.org
Editorial Liaison: Charles Day, cday@aip.org

IEEE ANTENNAS AND
PROPAGATION SOCIETY LIAISON

Don Wilton, Univ. of Houston, wilton@uh.edu

IEEE SIGNAL PROCESSING SOCIETY LIAISON
Elias S. Manolakos, Northeastern Univ., elias@neu.edu

CS PUBLICATIONS BOARD
Jon Rokne (chair), Mike Blaha, Angela Burgess, Doris Carver, Mark

Christensen, David Ebert, Frank Ferrante, Phil Laplante, Dick Price, Don
Shafer, Linda Shafer, Steve Tanimoto, Wenping Wang

CS MAGAZINE OPERATIONS COMMITTEE
Robert E. Filman (chair), David Albonesi, Jean Bacon, Arnold (Jay) Bragg,

Carl Chang, Kwang-Ting (Tim) Cheng, Norman Chonacky, Fred Douglis,
Hakan Erdogmus, David A. Grier, James Hendler, Carl E. Landwehr,
Sethuraman (Panch) Panchanathan, Maureen Stone, Roy Want

EDITORIAL OFFICE
COMPUTING in SCIENCE & ENGINEERING
10662 Los Vaqueros Circle, Los Alamitos, CA 90720 USA
phone +1 714 821 8380; fax +1 714 821 4010; www.computer.org/cise/

IEEE Antennas &
Propagation Society

move to Web computing easier to appreciate. Because of a
small typographical error (probably placed there by Landau
to encourage students and instructors to type in their own
code!), the first Web application didn’t run “out of the box.”
By extending this basic applet project to include user control,
he implicitly reminds us that much of scientific computing’s
lineage was based on copious use of legacy code and libraries.
However, the follow-through absent in the Maple section is
also evident here as Landau stops just short of a full-blown
Web application using JavaScript to allow for direct user in-
teraction via form input.

LaTeX
Despite the fact that the text is formally broken into three

sections, the third section—entitled, “The LaTeX Survival
Guide”—is very short. Nevertheless, it does an adequate job
of introducing the essential LaTeX commands and environ-
ments that a student would need to produce high-quality
and content-rich documents suitable for laboratory reports,
refereed journal submissions, or Web postings. The reasons
for including LaTeX in a first course in scientific computing
are clear in that the superior mathematical typesetting abil-
ity and the resulting electronic documents (that is, EPS or
PDF) are ubiquitous. However, LaTeX’s integration and
connection to the extant material in the text and course isn’t
evident in Landau’s treatment. Specifically, no discussion of
styles and packages is included—which is essential if you
want to compile the LaTeX source from a Maple worksheet.
This level of detail isn’t often found in the many TeX
primers available online but adds a decidedly more complete
view of the subtleties of electronic document production.
Instead of viewing this as a liability, you could rearrange the
text material to cover LaTeX elements first and then move
to Maple (or Mathematica). This would have the added ben-
efit of allowing nontraditional students to learn and refresh
their programming and debugging skills while working with
less cognitively demanding material.

I t’s arguable that an introductory scientific computing course
ought to be accessible to all students of the broader sciences.

A conscientious instructor willing to reorganize and extend
some material to make it more suitable and appealing to a mul-
tidisciplinary student body could use A First Course in Scientific
Computing to cast this wider net. Indeed, the colloquial and tu-
torial approach might help alleviate the many practical prob-
lems associated with incorporating computational applications
into a more traditional lecture environment. The text provides
many concrete and programming examples in action and il-
lustrates how much you can accomplish with a few well-cho-
sen tools. All in all, students impressed with the text’s
workbook style and reference-book quality will add it to their
bookshelves and return to it often.

Michael Jay Schillaci is managing director of the McCausland Cen-

ter for Brain Imaging at the University of South Carolina. His research

interests include computational physics and curriculum develop-

ment, and models of human cognition using magnetic resonance

imaging and electroencephalographic data. Schillaci has a PhD in

physics from the University of Arkansas at Fayetteville. He is a mem-

ber of the American Physical Society and the Cognitive Neuro-

sciences Society. Contact him at mjs@sc.edu.

Writers

Visit www.computer.org/cise/
author.htm.

Letters to the Editors

Send letters to Jenny Stout, Lead Editor, jstout@computer.org.
Provide an email address or daytime phone number.

On the Web

Access www.computer.org/cise/ or http://cise.aip.org.

Subscribe

Visit https://www.aip.org/forms/journal_catalog/order
_form_fs.html or www.computer.org/subscribe/.

Subscription Change of Address (IEEE/CS)

Send an email to address.change@ieee.org. Please specify CiSE.

Subscription Change of Address (AIP)

Send general subscription and refund inquiries to subs@aip.org.

Missing or Damaged Copies

Contact help@computer.org. For AIP subscribers, contact
claims@aip.org.

Reprints of Articles

For price information or to order reprints, email cise@
computer.org or fax +1 714 821 4010.

Reprint Permission

Contact William Hagen, IEEE Copyrights and Trademarks
Manager, at copyrights@ieee.org.

www.computer.org/cise/

How to
Reach CiSE

B O O K S

6 COMPUTING IN SCIENCE & ENGINEERING

MAY/JUNE 2007 7

G U E S T E D I T O R ’ S
I N T R O D U C T I O N

This issue’s special theme is the com-
puter programming language Python
and the increasing role it plays in sci-
entific projects. Free and universally

available, Python comes with a vast standard library
containing support for nearly every area of com-

puter science. An even more extensive set of third-
party tools and modules covers additional tasks,
from managing a Web site to doing a fast Fourier
transform to distributed or parallel programming.
Python’s motto, “batteries included,” is meant to
convey the idea that Python comes with everything
you need.

Interpreted Doesn’t Mean
Slow or only Interactive
Python is an interpreted language, and it can be
used interactively. Some might assume that this
limits its uses—for example, that an interpreted

Python: Batteries Included

PAUL F. DUBOIS

Contributing Editor

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

8 COMPUTING IN SCIENCE & ENGINEERING

language can’t possibly be fast enough for scientific
programming—but as you’ll see, this isn’t true.
Others might assume that an interactive language
can’t be used in a large code, or in a batch or paral-
lel system, but that’s not right either.

Python’s numerical extension NumPy adds an
array language similar in power to the one in mod-
ern Fortran, in which operations are performed in
compiled code. Together with modules for numer-
ical mathematics and graphics, Python by itself is a
powerful computational tool. Moreover, it’s easy to
make your own compiled code callable from
Python (and able to call Python itself). Various
tools help you make this connection quickly and
easily, and once you connect to Python, you have
access to Python’s “batteries.”

Steering
My own interest in Python focuses on using it for
computational steering: Python serves as the input
language to a scientific application, and the actual
computations are performed both in Python itself
and in compiled extensions. This approach gives
users the chance to be creative, serves as a built-in
symbolic debugger and interactive graphics capa-
bility, and reduces development time. Nobody I
know who has experienced it has ever been willing
to be without it in the future.

I first wrote a system for producing steered code
in 1984 at Lawrence Livermore National Labora-
tory. This system, called Basis, was such a new idea
that it was difficult at the time to explain it to peo-
ple, but it proved very successful and developers
have written at least 200 applications with it. Some
of the larger ones are still in use today, and Basis is
still an active project (http://basis.llnl.gov). The
key to its success is that the interpreted language I
wrote for the steering was an array language quite
similar to what was eventually in Fortran 95. By
using the array operations, I could do real work in

the interpreter (besides calling the compiled rou-
tines to do the bulk of the work). Most impor-
tantly, the language was simple—it was enough
like Fortran that users could easily read it and learn
to write it.

However, trouble was coming. Basis supported
Fortran 77, and I could see that not only was For-
tran going to evolve but the object-oriented revo-
lution was upon us. So in the early 1990s, I
contemplated my “Act II.” I even designed an
object-oriented interpreter and implemented a
prototype. We held periodic meetings with Basis
users to discuss their requirements.

One day I found Python and saw that it had a
great similarity to my prototype, was better
thought out, and much further along. The one
thing it lacked was an array-language extension,
but a special-interest group was already looking
into that. At the next meeting, I mentioned it fa-
vorably, and David Grote, a member of the
group, said that he, too, had just discovered it and
thought it would do the job. I decided to throw
my efforts into helping design the array extension
that became Numerical Python. Jim Hugunin
volunteered to write the code; he later moved on
to create Jython and IronPython, the Java and
.NET versions of Python. I took over as the proj-
ect’s coordinator, and five years later, I passed the
torch to Perry Greenfield (whose article about
telescopes appears in this issue). Now the project
is led by Travis Oliphant, who describes it more
fully on p.10.

The happy ending here is that we made a good
choice, and LLNL now has many Python-based ef-
forts built from scratch or wrapped around legacy
codes, and others that evolved from Basis codes:
hundreds of thousands of lines of C++, Python, and
Fortran 95, all working together just as we hoped,
doing compute-intensive calculations on massively
parallel computers.

Description Tool URL

Python with standard library Python http://python.org
SciPy project (which includes Python, NumPy, and f2py) SciPy/NumPy http://scipy.org
Enhanced interactive Python IPython http://ipython.scipy.org
Two-dimensional graphics Matplotlib http://matplotlib.sf.net
Three-dimensional graphics MayaVi http://mayavi.sf.net
Connect Python to C/C++ SWIG http://swig.org

Boost/Python http://boost.org
PyCXX http://cxx.sf.net

Connect Python to Fortran f2py (in SciPy)
Python Cheese Shop 2,000 more packages http://cheeseshop.python.org

Table 1. Basic Python resources.

MAY/JUNE 2007 9

In this Issue
We begin the issue with a basic introduction to
Python in general and the SciPy project in partic-
ular. SciPy gathers the high-performance array ex-
tension together with many modules for doing
common mathematical and statistical functions.
Our next major article introduces the advanced in-
teractive interpreter IPython and the matplotlib
graphics package. IPython is the computational
tool of choice for some people, used in much the
same way as commercial products such as Matlab
but with access to the full Python world and at no
cost. Matplotlib is rapidly becoming accepted as
the standard two-dimensional graphics utility for
Python, and the Scientific Programming depart-
ment on p. 90 discusses it in even greater detail.

After the larger introductory articles, we have a
series of shorter pieces that present specific scien-
tific, engineering, and educational applications. To
show you a wide variety, we tried to extract the ba-
sic material on the language and its tools into the
first two articles, so we suggest you read those first
after sneaking a peek at the pretty pictures in the
application pieces. An extra article on Python in the
classroom appears in the Education department.

Although I asked the authors to state briefly why
they find Python helpful, I also asked them not to
extensively argue for it over some other technology
choice. As in Field of Dreams, we think we’ve built
it and that you will come once you see it.

I hope you enjoy our special issue and will try
the Python approach to scientific comput-
ing. Table 1 should get you started, with a
list of basic Python resources that are open

source and available without charge. There are
many, many more; start your hunt at the Python
Cheese Shop (http://cheeseshop.python.org).

Paul F. Dubois is retired and lives in Pleasanton, Cali-
fornia, where he contributes to open source projects and
writes for CiSE. His column “Cafe Dubois” will return
next issue. Contact him at paul@pfdubois.com.

PURPOSE: The IEEE Computer Society is the world’s largest association
of computing professionals and is the leading provider of technical
information in the field.

MEMBERSHIP: Members receive the monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, affiliate society
members, and others interested in the computer field.

COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 18 May 2007, Los Angeles

EXECUTIVE COMMITTEE

President: Michael R. Williams*
President-Elect: Rangachar Kasturi;* Past President: Deborah M. Cooper;*

VP, Conferences and Tutorials: Susan K. (Kathy) Land (1ST VP);* VP,
Electronic Products and Services: Sorel Reisman (2ND VP);* VP, Chap-
ters Activities: Antonio Doria;* VP, Educational Activities: Stephen B.
Seidman;† VP, Publications: Jon G. Rokne;† VP, Standards Activities:
John Walz;† VP, Technical Activities: Stephanie M. White;* Secretary:
Christina M. Schober;* Treasurer: Michel Israel;† 2006–2007 IEEE Divi-
sion V Director: Oscar N. Garcia;† 2007–2008 IEEE Division VIII Direc-
tor: Thomas W. Williams;† 2007 IEEE Division V Director-Elect: Deborah
M. Cooper;* Computer Editor in Chief: Carl K. Chang†

* voting member of the Board of Governors † nonvoting member of the Board of Governors

BOARD OF GOVERNORS

Term Expiring 2007: Jean M. Bacon, George V. Cybenko, Antonio Doria,
Richard A. Kemmerer, Itaru Mimura, Brian M. O’Connell, Christina M.
Schober

Term Expiring 2008: Richard H. Eckhouse, James D. Isaak, James W. Moore,
Gary McGraw, Robert H. Sloan, Makoto Takizawa, Stephanie M. White

Term Expiring 2009: Van L. Eden, Robert Dupuis, Frank E. Ferrante, Roger
U. Fujii, Anne Quiroz Gates, Juan E. Gilbert, Don F. Shafer

EXECUTIVE STAFF

Associate Executive Director: Anne Marie Kelly; Publisher: Angela R. Burgess;
Associate Publisher: Dick J. Price; Director, Administration: Violet S.
Doan; Director, Finance and Accounting: John Miller

COMPUTER SOCIETY OFFICES
Washington Office. 1730 Massachusetts Ave. NW, Washington, DC 20036-

1992
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org

Los Alamitos Office. 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-
1314
Phone: +1 714 821 8380 • Email: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657 • Fax: +1 714 821 4641
Email: help@computer.org

Asia/Pacific Office. Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku,
Tokyo 107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS

President: Leah H. Jamieson; President-Elect: Lewis Terman; Past
President: Michael R. Lightner; Executive Director & COO: Jeffry W.
Raynes; Secretary: Celia Desmond; Treasurer: David Green; VP,
Educational Activities: Moshe Kam; VP, Publication Services and
Products: John Baillieul; VP, Regional Activities: Pedro Ray; President,
Standards Association: George W. Arnold; VP, Technical Activities:
Peter Staecker; IEEE Division V Director: Oscar N. Garcia; IEEE Division
VIII Director: Thomas W. Williams; President,
IEEE-USA: John W. Meredith, P.E.

revised 23 Mar. 2007

Coming up in our next issue

July/August: New Directions

The articles in this special issue cover a wide

range of topics, from problem-solving

environments to algorithm design to physics

curricular material.

Python is an interpreted language with ex-
pressive syntax that some have compared
to executable pseudocode. This might be
part of the reason why I fell in love with

the language in 1996, when I was seeking a way to
prototype algorithms on very large data sets that
overwhelmed the capabilities of the other inter-
preted computing environments I was familiar with.
My enjoyment of programming with Python in-
creased as I quickly learned to express complicated
ideas in the syntax and objects available with it.

The idea that coding in a high-level language
can greatly enhance productivity isn’t new. Many
scientists and engineers are typically exposed to
one or more interpreted scientific computing en-
vironments early in their careers because they help
them write nontrivial computational programs
without getting too bogged down in syntax and
compilation time lags. Python can be used in ex-
actly this way, but its unique features offer an en-
vironment that makes it a better choice for
scientists and engineers seeking a high-level lan-
guage for writing scientific applications. In the rest

of this special issue’s articles, you’ll find a feast of
reasons why Python excels as a platform for scien-
tific computing. As a small appetizer, consider this
list of general features:

• A liberal open source license lets you sell, use, or
distribute your Python-based application as you
see fit—no extra permission necessary.

• The fact that Python runs on so many platforms
means you don’t have to worry about writing an
application with limited portability, which also
helps avoid vendor lock-in.

• The language’s clean syntax yet sophisticated con-
structs let you write in either a procedural or fully
object-oriented fashion, as the situation dictates.

• A powerful interactive interpreter allows real-
time code development and live experimenta-
tion, thus eliminating the time-consuming and
productivity-eating compile step from the code-
then-test development process.

• The ability to extend Python with your own com-
piled code means that Python can be taught to do
anything as fast as your hardware will allow.

• You can embed Python into an existing applica-
tion, which means you can instantly add an
easy-to-use veneer on top of an older, trusted
application.

• The ability to interact with a wide variety of
other software on your system helps you lever-
age the software skills you’ve already acquired.

10 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

Python for Scientific Computing

By itself, Python is an excellent “steering” language for scientific codes written in other
languages. However, with additional basic tools, Python transforms into a high-level
language suited for scientific and engineering code that’s often fast enough to be
immediately useful but also flexible enough to be sped up with additional extensions.

TRAVIS E. OLIPHANT

Brigham Young University

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

P Y T H O N :
B A T T E R I E S I N C L U D E D

MAY/JUNE 2007 11

• Its large number of library modules (both in-
stalled in the standard library and through addi-
tional downloads) means you can quickly
construct sophisticated programs such as a Web
server that solves partial differential equations, a
distributed image-processing library with auto-
matic load-balancing, or an application that col-
lects data from the Internet, posts results to a
database, and emails you with progress reports.

• The existence of Python bindings to all standard
GUI toolkits means you can apply rapid develop-
ment techniques when building a user interface.

• The Python community is famous for delivering
quick, useful responses to user inquiries on the
mailing lists, newsgroups, and IRC channels de-
voted to Python.

• A repository of categorized Python modules is
available at www.python.org/pypi along with
easy-to-install “eggs” that simplify software
management.

With this small taste of Python’s usefulness, let’s
dive in and try to uncover a little bit about the lan-
guage itself. This overview is necessarily terse. Be-
cause Python is a general-purpose programming
language, a wealth of additional information is
available in several books and on Internet sites
dedicated to it (see the “Useful References” side-
bar). Python’s help function also provides addi-
tional information.

Clean Syntax
A significant factor in Python’s utility as a comput-
ing language for scientists and engineers is its clear
syntax, which can make code easy to understand
and maintain. Some of this syntax’s specifics include
code blocks defined by indentation, extensive use
of namespaces (modules), easy-to-read looping
constructs (including list comprehensions), excep-
tion handling, and documentation strings. Con-
sider the following code, which computes the sinc
function on a list of inputs:

from math import sin, pi

def sinc(x):

‘’’Compute the sinc function:

sin(pi*x)/(pi*x)‘’’

try:

val = (x*pi)

return sin(val)/val

except ZeroDivisionError:

return 1.0

output = [sinc(x) for x in input]

With only a little explanation, this code is com-

pletely understandable. It shows the use of
namespaces because the sin function and the pi
constant are kept in a separate module and must
be “imported” to be used. (Alternatively, we
could have used import math along with
math.sin and math.pi to refer to the objects).
Modules are either files (with a “.py” suffix) with
Python code or compiled shared libraries specif-
ically built for import into Python. Each module
contains a namespace that allows grouping of
similar functions, classes, and variables in a man-
ner that lets the code scale from simple scripts to
complicated applications.

This code also demonstrates exception handling:
the try/except syntax allows for separate han-
dling when division fails. Notice, too, that the code
block defining the function is indented, but other-
wise offers no indication of the code’s beginning or
end. This feature ensures that both the computer
and the human reader have the same concept of
code level without spurious characters taking up
precious onscreen real estate.

The string in the code immediately after the
function definition is the function docstring, which
is useful when generating help messages or docu-
menting functions in the output of automatic doc-
umentation tools such as pydoc and epydoc. The
output list is generated from the input sequence via
a compact looping construct called a list compre-
hension. This readable construct looks almost like
executable English because it creates a new list
whose elements are the output of sinc(x) for
every x in the input sequence.

One of Python’s key features is dynamic typing.
Notice that the type of the sinc function’s input is
never specified—all we need is for the sin function
to work on it. In this case, the math module’s sin
function doesn’t handle complex numbers, but the

USEFUL REFERENCES

• D. Ascher et al., Numerical Python, tech. report UCRL-MA-128569,
Lawrence Livermore Nat’l Lab., 2001; http://numpy.scipy.org.

• P.F. Dubois, K. Hinsen, and J. Hugunin, “Numerical Python,” Com-
puters in Physics, vol. 10, no. 3, 1996, pp. 262–267.

• E. Jones et al., “SciPy: Open Source Scientific Tools for Python,”
2001; www.scipy.org.

• T.E. Oliphant, Guide to NumPy, Trelgol, 2006; www.trelgol.org.
• M. Pilgrim, Dive into Python, 2004; www.diveintopython.org.
• G. van Rossum and F.L. Drake, eds., Python Reference Manual,

Python Software Foundation, 2006; http://docs.python.org/ref/
ref.html.

12 COMPUTING IN SCIENCE & ENGINEERING

cmath module does, so we can use it to replace the
math module if desired.

Useful Built-In Objects
Everything in Python is an object of a particular
kind (or type); the standard way to construct a
type is with a function call. Some types, however,
are constructed from built-in, simplified syntax.
The built-in scalar types are integer (infinitely
large), floating point (double precision), and
complex (double-precision real and imaginary
parts). The syntax automatically constructs the
scalars, as evidenced by the following interactive
interpreter session:

>>> type(1), type(1.0), type(1.0j),

type(’one’)

(<type ’int’>, <type ’float’>, <type

’complex’>, <type ’str’>)

The ’>>>’ marker indicates that the interpreter is
ready to receive code. Separating items with a
comma automatically constructs an immutable (un-
changeable once constructed) sequence called a tu-
ple. In this example, I’ve also demonstrated the
creation of a string object, which is another im-
mutable object used extensively in Python code. An
additional sequence in Python is a mutable (can be
altered) list. A list can contain a sequence of any
Python object (including extra lists); thus, we can use
lists to construct simple multidimensional arrays:

>>> a = [[’an’, ’ecletic’, 3],[5.0,

’nothing’]]

>>> print a[1][0]

5.0

This is an efficient, quick way to store and work
with small arrays. For larger arrays, however,
NumPy is better suited for managing memory and
speed requirements (I’ll discuss NumPy in more
detail later).

Python’s dictionary provides a very useful con-
tainer object that lets us look up a value using a key.
For example,

>>> a = {2: ’two’, ’one’:1}

>>> print a[’one’], a[2]

1 two

The object before the ’:’ here is the key and the ob-
ject after the ’:’ is the value. The key must be im-
mutable so that the lookup step happens quickly.
Dictionaries are useful for storing data for later re-
trieval with a key, which is a common need in scien-

tific computing—we can even construct a very sim-
ple sparse-matrix storage scheme with dictionaries.

File objects are also important for most scientific
computing projects. We use the open command to
construct such objects:

>>> fid = open(’simple.txt’,’w’)

>>> fid.write(“This is a string written

to the file.”)

>>> fid.close()

This example shows how to open a file, write a sim-
ple string to it, and then close it again (we can also
close it by deleting the fid variable). To read from
a file, we use the file object’s read method to return
a string with the file’s bytes. In this example, I’ve
also demonstrated that both double (“) and single
(‘) quotes can delimit a string constant as long as we
open and close a particular string with the same
quote style.

Functions and Classes
Besides offering clean syntax, Python also con-
tributes to the construction of maintainable code
by separating code into logical groups such as mod-
ules, classes (new object definitions), and functions.
As I mentioned earlier, a module is a collection of
Python code grouped together into a single file
(with the “.py” extension), and it usually contains
many related functions or classes. After using the
import command on a module, we can use dot no-
tation to access the functions, classes, and variables
defined within the module:

>>> import numpy as N

>>> print N.linalg.inv([[1,2],[1,3])

[[3., -2.],

[-1., 1.]])

This code segment calls the inv function from the
linalg submodule of the numpy module (which I
renamed to the local variable N for the current ses-
sion). The inv function works on any nested se-
quence and finds the “matrix” inverse of a
two-dimensional array.

Functions are normally defined with the syntax
def funcname(...): <indented block>. For
simple functions, we can also use a lambda expres-
sion, which lets us write one-line (anonymous)
functions. Here’s a lambda expression that uses a
recursive formula to compute a factorial:

f = lambda x: (x<1) or x*f(x-1)

This function takes one argument and returns one

MAY/JUNE 2007 13

object that should be the factorial for integer input.
It works because the or operation doesn’t compute
the second operand if the first is true. Anonymous
functions are occasionally useful, but the standard
way to define functions is to use the def syntax:

def sum_and_mean(x, sumfunc=sum,

norm=None):

if norm is None:

norm = len(x)

y = sumfunc(x)

return y, y/float(norm)

This function also illustrates the use of keyword ar-
guments to define default values for optional func-
tion arguments, as well as the use of a tuple to
return more than one result from the function. The
resulting tuple can be unpacked when the function
is called, giving the appearance that the function
returns more than one argument:

tot, ave = sum_and_mean([1, 4, 10, 3.0])

Python fits the brain of many different kinds of
people partly because it supports both procedural
and object-oriented programming styles. In each
module, you can define functions to implement be-
havior or create new objects by defining classes.
These new objects can have methods and attrib-
utes, including special methods that teach Python
how to interpret object-specific syntax (such as in-
fix operators). Here’s a simple class that inherits
from the list object but redefines the ’+’, ’-’,
and ’*’ infix operators to represent element-by-
element addition, subtraction, and multiplication:

class vector(list):

def __add__(self, other):

res = [x+y for x,y in zip(self,

other)]

return vector(res)

def __sub__(self, other):

res = [x-y for x,y in zip(self,

other)]

return vector(res)

def __mul__(self, other):

res = [x*y for x,y in zip(self,

other)]

return vector(res)

def tolist(self):

return list(self)

This class uses list comprehension (inline looping)
and the zip built-in function to iterate over all el-
ements of the two inputs that perform the re-

quested operation on each input pair. The result is
a list from the list-comprehension syntax, which is
converted to a vector before being returned:

>>> v = vector([1,2,3])

>>> print v+v

[2, 4, 6]

>>> print v*v

[1, 4, 9]

>>> print v-[3,2,1]

[-2, 0, 2]

Classes contain attributes accessed via dot nota-
tion (object.attribute), and methods are at-
tributes that can be called like a function. They’re
defined inside a class block to take the object itself
as the first argument. This object isn’t needed when
calling the method on an instance of the class, so to
call the tolist() method of a vector class’s object
(which is bound to the name “v”), you would write
v.tolist().

Special methods are prefixed and postfixed with
the characters “__” to indicate that the Python in-
terpreter automatically calls them at special
times—for example, v+v is translated by the inter-
preter to v.__add__(v).

Standard Library
Another reason why Python is so useful is that it
comes prepackaged with a wealth of general-purpose
libraries, popularizing the notion that it comes with
“batteries included.” Let’s review a few modules you
might want to use in your own computing projects:

• re, a powerful regular expression matching that
significantly enhances Python’s already powerful
string-processing capabilities;

• datetime, date–time objects and tools for their
manipulation;

• decimal, support for real numbers with user-
settable precision;

• random, functions for random-number genera-
tion;

• pickle, portable serialized (stringified) repre-
sentations of Python objects (let’s you save
Python objects to disk and load them on a dif-
ferent system);

• email, routines for parsing, handling, and gen-
erating email messages;

• csv, assistance for automatically reading and
writing files with comma-separated values;

• gzip, zlib, and bz2, functions for reading and
writing compressed files;

• zipfile and tarfile, functions for extracting and
creating file containers;

14 COMPUTING IN SCIENCE & ENGINEERING

• mmap, an object allowing the usage of memory-
mapped files;

• urllib, routines for opening arbitrary URLs;
• ctypes, a foreign-function interface that lets

Python open a shared library and directly call its
exported functions;

• os, a cross-platform interface to the functional-
ity that most operating systems provide; and

• sys, objects maintained by the interpreter that
interact strongly with it (such as the module-
search path and the command-line arguments
passed to the program).

All these libraries let you use Python right out of
the box for almost all programming projects. Be-
sides my scientific uses of Python, for example, I’ve
also been able to use it to manage an email list, run
a Web server, and create nice-looking personalized
birthday calendars for my family.

Ease of Extension
Although Python is often fast enough for many cal-
culation needs, multidimensional for loops will
still leave you wanting some way to speed up the
code. Fortunately, Python is easily extended with a
large C-API for calling Python functionality from
C, connecting to non-Python compiled code, and
extending the language itself by creating new
Python types (or classes) in C (or C++).

An extension module is a shared library that
completely mimics a Python module with variable,
function, and class attributes. It’s created with a sin-
gle entry-point function, which Python calls when
the module is imported. This entry point sets up
the module by adding constants, any new defined
types, and the module function table, which trans-
lates between module function names and actual C
functions to call.

Developers have created many automated tools
over the years to make the process of writing Python
modules that use compiled code almost trivial—f2py
(http://cens.ioc.ee/projects/f2py2e/), for example,
allows automated calling of Fortran code; weave
(www.scipy.org/Weave) allows calling of C/C++
code; Boost.Python (www.boost.org/libs/python/
doc/) allows seamless integration of C++ code into
Python; and Pyrex (www.cosc.canterbury.ac.nz/
greg.ewing/python/Pyrex/) allows the writing of an
extension module in a Python-like language.

However, what really makes Python excel as a lan-
guage for scientists and engineers is the NumPy ex-
tension (which you download separately). It supplies
Python with a multidimensional array object whose
items are stored exactly as they would be in compiled
code. The extension also provides universal functions

that operate rapidly over the multidimensional array
on an element-by-element basis as well as additional
fast functions for calculations on the array. NumPy
has its own C-API, so you can write your own exten-
sions with it. Such extensions form the foundation of
SciPy, which is a collection of toolboxes to further
extend Python’s scientific-computing capabilities.

NumPy
NumPy is freely available at http://numpy.scipy.org
and offered under a very generous license. It grew
out of an original module called Numeric (and
sometimes also called numpy) written in 1995. Nu-
meric established most of NumPy’s features, but
the way Numeric handled data types wasn’t flexi-
ble enough for a group of scientists at the Space
Science Telescope Institute, so they built a re-
placement system called Numarray that introduced
significant new features. However, despite a degree
of compatibility between the two array systems, de-
velopers wrote various extensions that could use
only one package or the other, which created a di-
vide in the fledgling community.

In 2005, I began the process of trying to bridge
this divide by creating NumPy, which essentially
took the ideas that Numarray had pioneered and
ported them back to the Numeric code base, sig-
nificantly enhancing Numeric in the process. In
October 2006, we released version 1.0 of NumPy,
which has all the features of Numeric and Num-
array (including full support for both of their C-
APIs) plus some additional features. This article
barely scratches the surface of what NumPy pro-
vides, but a full account of the package is available
at www.treglol.com.

Array Objects
First and foremost, NumPy provides a homoge-
nous, multidimensional array of a particular data
type. Although the array’s main goal is to hold items
of the same kind, one of its available built-in data
types is called an “object.” An array of it can hold an
arbitrary Python object at each element, thus it’s ef-
fectively a heterogeneous multidimensional array.

Data types. The data type an array can hold is quite
arbitrary. NumPy’s array internally supports all the
fundamental C data types, including 10 different
kinds of signed and unsigned integers, three kinds
of floats, three kinds of complex numbers, and a
Boolean type. In addition, arrays can hold strings
or unicode strings, and you can even define your
own data type that’s equivalent to a C structure
(sometimes called a record). Thus, for example, you
can have an array whose elements consist of a 20-

MAY/JUNE 2007 15

byte record whose first field is a 4-byte integer, sec-
ond field is a 12-character string, and last field is an
array of four 1-byte unsigned integers. Consider
the following example, which defines such a data
type to track an array of students:

>>> import numpy as N

>>> dt = N.dtype([(’id’, ’i4’),

(’name’, ’S12’), (’scores’, ’u1’, 4)])

>>> a = N.array([(1001, ’James’,

[100,98,97,60]), (1002, ’Kathy’,

[100,100,85,98]), (1003, ’Michael’,

[84,75, 98,100]), (1004, ’John’,

[84,76,82,92])], dtype=dt)

>>> a[’name’]

array([’James’, ’Kathy’, ’Michael’,

’John’], dtype=’—S12’)

>>> a[’scores’]

array([[100, 98, 97, 60],

[100, 100, 85, 98],

[84, 75, 98, 100],

[84, 76, 82, 92], dtype=uint8)

This example shows how to extract a record ar-
ray’s fields as arrays of another data type. Records
can even be nested so that a particular field itself
contains another record data type. Record arrays
are a useful way to group data and are essential if
the array is constructed from a complicated
memory-mapped data file.

Given the potential complexity of the array data
type, it’s useful to think about an array in NumPy
as a collection of items consuming exactly the
same number of bytes. A data type object des-
cribes each element in the array, whereas the ar-
ray itself provides the information regarding the
array’s shape.

Attributes and methods. All arrays have several at-
tributes and methods. Some attributes can be set to
alter the array’s characteristics—for example, we
could reshape the previously created array of stu-
dents into a 2 � 2 array by setting its shape attribute:

>>> print a.shape, a.ndim

(4,) 1

>>> a.shape = (2,-1)

>>> print a.shape, a.ndim

(2,2) 2

The –1 entry in the shape-setting tuple indicates
that the second dimension’s shape should be what-
ever is necessary to use all the array elements. In
this case, the missing entry is 2.

The array’s methods allow quick computation or

manipulation of its elements—in our example, we
can use them to sort the one-dimensional array of
students. Using the name field’s argsort method
returns an array of indices that sort the array. Pro-
viding this set of indices to the take method cre-
ates a new 1D array in the sorted order:

>>> b = a.take(a[’name’].argsort())

>>> print b[’id’]

[1001 1004 1002 1003]

Indexing. Another useful array feature is the ability
to extract specific subregions via indexing by using
the a[obj] notation on an array object There are
basically four kinds of array indexing: field extrac-
tion, element selection, view-based slicing, and
copy-based indexing. We’ve already seen an exam-

ple of indexing in which obj indicates which array
field to extract; element selection occurs when obj
is such that we extract a single element of the array.
In this case, the indexing notation returns a new
Python scalar object that contains the data at that
location in the array. For example, let’s define a to
be an array of Gaussian random numbers and ex-
tract a particular number from it:

>>> import numpy as N

>>> a = N.random.randn(50,25)

>>> print a.shape, a[10,15]

(50, 25) 0.5295135653

View-based indexing occurs when obj is a slice
object or a tuple of slice objects. In this case, the in-
dexing notation returns a new array object that
points to the same data as the original array. This
is an important optimization that saves unnecessary
memory copying but must be mentally noted to
avoid unexpected data alteration. Given the previ-
ously defined array, for example,

>>> b=a[10:15:2, 8:13:2]; b

array([[0.35238367, -0.40288084,

0.10110947],

[-0.91742114, 1.13308636, 0.00602061],

[-0.57394525, -2.00959791, -0.3262831

]])

What really makes Python excel as a language

for scientists and engineers is the NumPy

extension (which you download separately).

16 COMPUTING IN SCIENCE & ENGINEERING

The notation 10:15:2 inside the indexing brack-
ets tells Python to begin at element 10, end before
element 15, and get every two elements—in other
words, to extract elements 10, 12, and 14 from the
first dimension of the array. Indexing along one
dimension of a 2D array extracts a 1D array. As a
result, the second range indicates that for each 1D
array, we should take elements 8, 10, and 12 to
form the output array. Remember this output ar-
ray is just a view of the underlying data—chang-
ing elements of b will change the newly formed
array as well.

Copy-based indexing always returns a copy of
the data and occurs when obj is an array (or a tu-
ple containing arrays) of a Boolean or integer data
type. Boolean indexing allows masked selection of
all the array’s elements, which is particularly useful
for setting certain elements to a particular value.
The code a[a > 0.1] -= 0.1, for example, will
decrease every element of a that’s larger than 0.1
by 0.1. This works because arrays redefine sub-
traction to perform element-by-element subtrac-
tion and comparison operators to return Boolean
arrays with the comparison implemented element
by element.

When the indexing array has an integer data
type, it’s used to extract an array of specific entries.
For fully specified index arrays, the returned array’s
shape is the same as the shape of the input index-
ing arrays—for example,

>>> b=a[[10,12,14], [13,15,17]]; b

array([1.55922631, 0.93609952,

-0.10149853])

Notice that the returned 1D array has elements
a[10,13], a[12,15], and a[14,17] and not the
cross-product array, as some would expect. We can
get the cross-product by using either b=a[
[[10],[12],[14]], [[13,15,17]]] or
b=a[N.ix_([10,12,14], [13,15,17])].

Universal Functions
Exceptional opportunities for array manipulation
and extraction are only part of what makes NumPy
useful for scientific computing. It also provides uni-
versal function objects (ufuncs), which make it
simple to define functions that take N inputs and
return M outputs by performing some underlying
function, element by element. The basic mathe-
matical operations of arrays are all implemented
with universal functions that take two inputs and
return one output—for example, when either b or
c is an array object, a=b+c is equivalent to
a=N.add(b,c).

More than 50 mathematical functions are de-
fined in the numpy module as universal functions,
but it’s easy to define your own universal functions
either in compiled code (for very fast ufuncs) or
based on a Python function (which will have
ufuncs features but will operate more slowly).
Let’s look more closely at these features.

Broadcasting. ufuncs operate element by element,
which seems to imply that all input arrays must
have the same shape. Fortunately, NumPy provides
a concept known as broadcasting, which is a specific
method for arrays that don’t have the same shape
to try and act as if they do. Broadcasting has two
rules in the form of steps:

• Make sure all arrays have the same number of
dimensions by pre-pending a 1 to the shape at-
tribute of arrays whose number of dimensions is
too small. Thus, if an array of shape (2,5) and
an array of shape (5,) were input into a ufunc,
the (5,)-shaped array would be interpreted as a
(1,5)-shaped array.

• Interpret the length of any axis whose length is 1
as if it were the size of the other non-unit-length
arrays in the operation. Thus, if we use an array of
shape (3,6) and an array of shape (6,), the sec-
ond array would first be interpreted as a (1,6)-
shaped array and then as a (3,6)-shaped array.

If applying these rules fails to produce arrays of
exactly the same shape, an error occurs because el-
ement-by-element operation isn’t defined. As an
example of ufunc behavior, consider the following
code, which computes the outer product of two 1D
arrays:

>>> a,b = N.array([[1,2,3],[10,20,30]])

>>> c = a[:,N.newaxis] * b; print c

[[10, 20, 30],

[20, 40, 60],

[30, 60, 90]]

The first line uses Python’s ability to map a se-
quence object to multiple objects in one line, which
is equivalent to temp=N.array(...) followed by
a=temp[0] and b=temp[1]. This produces two
1D arrays of shape (3,). The indexing manipula-
tion in the next line selects all the elements of a and
adds a new axis to its end, making a (3,1)-shaped
array. Broadcasting then interprets the multiplica-
tion of a (3,)-shaped array as multiplication by a
(1,3)-shaped array that produces a (3,3)-shaped
result, which is cij = aibj in index notation. Note that
broadcasting never copies any data to perform its

MAY/JUNE 2007 17

dimension upgrading—rather, copying is handled
by reusing the repeated values internally.

Output arrays. All ufuncs take optional arguments
for output arrays. Sometimes, to speed up calcula-
tions, you might want the ufunc to place its result
in an already allocated array rather than have a
fresh new allocation occur. This is especially true
in a complicated calculation that has many tempo-
raries—for example, the code a=(b+4)*c*d in-
volves the creation of two strictly unnecessary
temporary arrays to hold the results of intermedi-
ate calculations. If these arrays are large, we can
save the significant overhead of creating and delet-
ing the temporary arrays by writing this as

a=b+4

N.multiply(a, c, a)

N.multiply(a, d, a)

Clearly, this isn’t as easy to read, but it could be es-
sential for large simulations.

Memory-saving type conversion. When ufuncs are
created, they must specify the data types of the re-
quired inputs and outputs. A typical ufunc usually
has several low-level routines registered to match
specific signatures. If the pattern of inputs doesn’t
match one of the internally supported signatures, the
ufunc machinery will upcast any inputs (in size-
limited chunks) as needed to match an available sig-
nature so the calculation can proceed. This same
chunked-casting occurs if an output array is provided
that isn’t the same type the calculation produces.

Suppose a is an array of 4-byte integers, but b is
an array of 4-byte floats, and you want to add them
together. The add ufunc has 18 registered low-
level functions for implementing the add operation
on identical input data types that produce the same
data type. For this mixed data-type operation, the
ufunc machinery chooses 8-byte floats for the un-
derlying operation (the “lowest” type to which we
can convert both 4-byte integers and 4-byte floats
without losing precision). The conversion to 8-byte
floats occurs behind the scenes in chunks no larger
than a user-settable buffer size. If an output array
is provided, then the 8-byte result is coerced back
into the output.

Array-like object wrapping. All ufuncs provide the
ability to handle any object as an input. The only
requirement is that it be converted to an array (be-
cause it has an __array__ method, defines the ar-
ray interface, or is a sequence object). If the input
arrays also have the special __array_wrap__

method defined, then that method will be called on
each result of the ufunc. The method call’s output
is returned as the ufunc’s output. This lets user-de-
fined objects define an __array_wrap__ method
that takes an input array and returns the user-de-
fined object and have those objects passed seam-
lessly through NumPy’s ufuncs.

Hardware error handling. On platforms that support
it, NumPy lets you query the result of hardware er-
ror flags during the computation of any ufunc and
issue a warning, issue an error, or call a user-pro-
vided function. Hardware error flags include under-
flow, overflow, divide-by-zero, and invalid result. By
default, all errors either give a warning or are ig-
nored, but the seterr function lets you alter that
behavior:

>>> array([1,2])/0. # emits a warning

>>> old = N.seterr(divide=’raise’)

>>> array([1,2])/0. # now it will raise

an error

>>> N.seterr(**old)

Methods. All ufuncs that take two inputs and re-
turn one output can also use the ufunc methods
reduce, accumulate, and reduceat, which,
respectively

• perform the function repeatedly using successive
elements along a particular dimension of the ar-
ray and then store the result in an output variable;

• perform the function repeatedly using successive
elements along a particular dimension of the ar-
ray and then store each intermediate result; and

• perform the function repeatedly using successive
elements along specific portions of a particular
dimension of the array.

These methods admit simple interpretations for
well-known operations—for example, the sum
method of an array that sums all the elements along
a particular axis is implemented using add.reduce.
Similarly, the array’s prod method is implemented
with multiply.reduce.

Basic Libraries
In addition to the fundamental array object and the
many implemented ufuncs, NumPy comes with
several standard subclasses, a masked-array imple-
mentation, a simple polynomial class, set opera-
tions on 1D arrays, and a host of other useful
functions. Routines for implementing Fourier
transforms, basic linear algebra operations, and
random-number generation are also available. Let’s

18 COMPUTING IN SCIENCE & ENGINEERING

look at these features more closely, starting with the
provided objects:

• matrix is an array subclass that works with 2D
arrays and redefines the ’*’ operator to be
matrix-multiplication and the ’**’ operator to
be matrix-power;

• memmap is an array subclass in which the mem-
ory is a memory-mapped file;

• recarray is an array subclass that allows field
access by using attribute lookup and returning
arrays of strings as chararrays;

• chararray is an array of strings that provide
standard string methods (which operate element-
by-element) as additional array methods; and

• ma is an additional array type called a masked ar-
ray, which stores a mask along with each array to
ignore specific values during computation.

Many functions exist for creating, manipulating,
and operating on arrays, but let’s focus here on a
small sampling of commonly used functions:

• convolve curls together two 1D input sequences;
• diag constructs a 2D array from its diagonal or

extract a diagonal from a 2D array;
• histogram creates a histogram from data;
• choose constructs an array using a choice array

and additional inputs;
• dot sums over the last dimension of the first ar-

gument and the second-to-last dimension of the
second (this extension of matrix-multiplication ex-
ploits system libraries if available at compile time);

• empty, zeros, and ones create arrays of a cer-
tain shape and data type filled with nothing, 0,
and 1, respectively;

• fromfunction creates an N–d array from a func-
tion with N inputs, which are assumed to be in-
dex positions in the array;

• vectorize takes a callable object (such as a
function or a method) that operates on scalar in-
puts and return a callable object that works on
arbitrary array inputs element-by-element; and

• lexsort returns an array of indices showing
how to sort a sequence of arguments (these ar-
guments must all be arrays of the same shape).

The Fourier transform is an essential tool to many
algorithms for arbitrary-dimensioned data. The
numpy.fft package has the following routines:

• fft and ifft, 1D fast Fourier transform and in-
verse (uses 1/N normalization on inverse);

• fft2 and ifft2, 2D fast Fourier transform and
inverse; and

• fftn and ifftn, ND fast Fourier transform and
inverse.

Additional routines specialize for real-valued
data—for example, rfft and irfft are real-valued
Fourier transforms that take real-valued inputs and
return nonredundant complex-valued outputs by
taking 1D Fourier transforms along a specified di-
mension. All the fft routines take N-dimensional
arrays, can pad to specified lengths, and operate
only along the axes specified.

Linear algebra routines (they’re all under the
numpy.linalg namespace) are built against a de-
fault basic linear algebra system (BLAS) and a
stripped-down linear algebra package (LAPack)
implementation (vendor-specific linear algebra li-
braries can be used if provided at build-time).
Among the numerical routines available are those
for finding a matrix inverse (inv), solving a system
of linear equations (solve), finding the determi-
nant of a matrix (det), finding eigenvalues and
eigenvectors (eig), and finding the pseudo inverse
of a matrix (pinv). Routines for the Cholesky
(cholesky), QR (qr), and SVD (svd) decomposi-
tions are also available.

Random-number generation is an important
part of most scientific computing exercises, so
NumPy comes equipped with a substantial list of
fast random-number generators of both continu-
ous and discrete type. All these random-number
generators reside in the numpy.random name-
space, allow for array inputs, and produce array
outputs. Each random-number generator also
takes a size=keyword argument that specifies the
shape of the output array to be created. Two con-
venience functions, rand and randn, produce
standard uniform and standard normal random
numbers using their input arguments to deter-
mine the output shape:

>>> a = N.random.rand(5,10,20); print

a.shape, a.std()

(5, 10, 20) 0.289855415313

>>> b = N.random.randn(6,12,22); print

b.shape, b.var()

(6, 12, 22) 1.01300101504

Additional random-number generators are avail-
able for producing variates from roughly 50 differ-
ent distributions; some of the continuous
distributions include exponential, chi-square,
Gumbel, multivariate normal, noncentral F, trian-
gular, and gamma, to name a few. The discrete dis-
tributions available include binomial, geometric,
hypergeometric, Poisson, and multinomial.

MAY/JUNE 2007 19

f2py
As I mentioned earlier, NumPy comes installed
with a powerful tool called f2py, which can parse
Fortran files and construct an extension module
that contains all the subroutines and functions in
those files as methods. Suppose I have a file called
example.f that has two simple Fortran routines
for subtracting the element of one array from an-
other in two different precisions:

SUBROUTINE DSUB(A,B,C,N)

DOUBLE PRECISION A(N)

DOUBLE PRECISION B(N)

DOUBLE PRECISION C(N)

INTEGER N

CF2PY INTENT(OUT) :: C

CF2PY INTENT(HIDE) :: N

DO 20 J = 1, N

C(J) = A(J) + B(J)

20 CONTINUE

With equivalent code called SSUB that uses REAL
instead of DOUBLE PRECISION, I can make and
compile an extension module (called example) that
contains two functions (ssub and dsub). All I need
to do is run

f2py -m example -c example.f

The CF2PY directives in the code (which are in-
terpreted as Fortran comments) make the inter-
face to both routines receive two input arguments
and return one output argument. The argument
providing the array size is hidden and passed
along automatically:

>>> import example

>>> example.dadd([1,2,3],[4,5,6])

array([5., 7., 9.])

>>> example.sadd([1,2,3],[4,5,6])

array([5., 7., 9.], dtype=float32)

Notice that f2py converts input arrays and re-
turns the output in the expected precision.

SciPy
Quite a bit of calculation and computational ability
exists with just Python and the NumPy package in-
stalled, but if you’re accustomed to other computa-
tional environments, you might notice a few missing
tools, such as those for optimization, special func-
tions, and image processing. SciPy builds on top of
NumPy to provide such advanced tools. To do this,
SciPy resurrects quite a bit of the well-tested code
available at public-domain repositories such as netlib:

• The input/output (io) subpackage provides raw
routines for reading and writing binary files as
well as simplified routines for reading and writ-
ing files for popular data formats.

• The linear algebra (linalg) subpackage provides
extended interfaces to the BLAS and LAPack li-
braries and has additional decompositions such
as LU (lu) and Schur (schur), as well as a selec-
tion of matrix functions such as matrix exponen-
tial (expm), matrix square root (sqrtm), and
matrix logarithm (logm).

• The statistics (stats) subpackage provides a wide
variety of distribution objects for not only creat-
ing random variates but also evaluating the pdf,
cdf, and inverse cdf of many continuous and
discrete distributions.

• The optimization (optimize) subpackage
provides a collection of constrained and un-
constrained multivariate optimizers and func-
tion solvers.

• The integration (integrate) subpackage provides
tools for integrating both functions and ordinary
differential equations, including a general-purpose
integrator (quad), a Gaussian quadrature integra-
tor (quadrature), and a method that uses
Romberg interpolation (romberg).

• The interpolation (interpolate) subpackage in-
cludes cubic splines and linear interpolation in
several dimensions.

• Weave (weave) is a very useful module for call-
ing inline C code from Python, but it’s also help-
ful for building extension modules (by just
writing the actual C code that implements the
functionality).

• The Fourier transforms (fftpack) subpackage
provides Fourier transforms implemented using
a different wrapper to the fftpack library for
single and double precision as well as Hilbert and
inverse Hilbert transforms.

• The special functions (special) subpackage pro-
vides more than 250 special-function calculation
engines, most of which are available as universal
functions (ufuncs).

• The sparse (sparse, linsolve) subpackage pro-
vides sparse matrices in several different storage
schemes as well as direct and iterative solution
schemes.

• The Nd-image (ndimage) subpackage provides a
large collection of image- and array-processing
capabilities for N-dimensional arrays, including
fast B-spline interpolation, morphology, and var-
ious filtering operations.

• The signals and systems (signal) subpackage
provides routines for signal and image pro-
cessing, including N-dimensional convolution,

20 COMPUTING IN SCIENCE & ENGINEERING

fast B-spline functions, order filtering, median
filtering 1D finite impulse response (FIR) and
infinite impulse response linear filtering, filter
design techniques, waveform generation, and
various linear time invariant (LTI) system
functions.

• The maximum entropy models (maxentropy) sub-
package contains two classes for fitting maximum
entropy models subject to linear constraints on
the expectations of arbitrary feature statistics
(one class is for small discrete sample spaces,
whereas the other is for sample spaces that are
too large to sum over).

• The clustering (cluster) subpackage contains an
implementation of the K-means clustering algo-
rithm for generating a smaller set of observations
that best fit a larger set.

Naturally, this list covers only the bare bones of
what SciPy’s subpackages can do—you can find
more information at www.scipy.org. In addition,
you can use Python’s help command on the SciPy
package and all of its subpackages (using help

(scipy.<name>)) in an interactive session once
import scipy has been executed.

Due to space constraints, I’ve barely ex-
plained all the features that Python
provides to the practitioner of scientific
computing—for example, I’ve only

hinted at the myriad tools available for making it easy
to wrap compiled code. Likewise, I haven’t really dis-
cussed NumPy’s extensive C-API, which helps you
build extension modules. You can glean information
about these and much more by going to http://
numpy.scipy.org or www.scipy.org. For general
Python information, visit www.python.org—it has
additional tools not necessarily integrated into
NumPy or SciPy for doing computational work.
Hopefully, you’ll investigate and see how much eas-
ier and more efficient your daily computational work
will become thanks to this powerful language.

Travis E. Oliphant is an assistant professor of electrical
and computer engineering at Brigham Young University.
He’s a principal author of both SciPy and NumPy, and his
research interests include microscale impedance imaging,
MRI reconstruction in inhomogeneous fields, and any bio-
medical inverse problem. Oliphant has a PhD in biomed-
ical engineering from the Mayo Graduate School. Contact
him at oliphant@ee.byu.edu.

For further information go to www.siena.edu/physics/

Entrants will pick their own problems.

Judging will be based on the following 50-point scoring system:
1. A well-defined and interesting problem (10)
2. A description of the model including the algorithm (5)
3. An explanation of the numerical methods used (5)
4. The code (5)
5. The results (10)
6. A discussion of the results in the light of the problem being explored (10)
7. A critique of the work (5)

CiSE Computational Physics

Challenge for Undergraduate

Physics Students

Deadline for submission is 15 May 2007 CASH PRIZES FOR THE WINNERS

Sponsored by

MAY/JUNE 2007 THIS ARTICLE HAS BEEN PEER-REVIEWED. 21

IPython: A System for
Interactive Scientific Computing

P Y T H O N :
B A T T E R I E S I N C L U D E D

The backbone of scientific computing is
mostly a collection of high-perfor-
mance code written in Fortran, C, and
C++ that typically runs in batch mode

on large systems, clusters, and supercomputers.
However, over the past decade, high-level environ-
ments that integrate easy-to-use interpreted lan-
guages, comprehensive numerical libraries, and
visualization facilities have become extremely popu-
lar in this field. As hardware becomes faster, the crit-
ical bottleneck in scientific computing isn’t always the
computer’s processing time; the scientist’s time is also
a consideration. For this reason, systems that allow
rapid algorithmic exploration, data analysis, and vi-
sualization have become a staple of daily scientific
work. The Interactive Data Language (IDL) and
Matlab (for numerical work), and Mathematica and
Maple (for work that includes symbolic manipula-
tion) are well-known commercial environments of
this kind. GNU Data Language, Octave, Maxima
and Sage provide their open source counterparts.

All these systems offer an interactive command
line in which code can be run immediately, with-
out having to go through the traditional edit/
compile/execute cycle. This flexible style matches
well the spirit of computing in a scientific context,
in which determining what computations must be
performed next often requires significant work.
An interactive environment lets scientists look at
data, test new ideas, combine algorithmic ap-
proaches, and evaluate their outcomes directly.
This process might lead to a final result, or it
might clarify how to build a more static, large-
scale production code.

As this article shows, Python (www.python.org)
is an excellent tool for such a workflow.1 The
IPython project (http://ipython.scipy.org) aims to
not only provide a greatly enhanced Python shell
but also facilities for interactive distributed and par-
allel computing, as well as a comprehensive set of
tools for building special-purpose interactive envi-
ronments for scientific computing.

Python: An Open and General-
Purpose Environment
The fragment in Figure 1 shows the default inter-
active Python shell, including a computation with
long integers (whose size is limited only by the
available memory) and one using the built-in com-
plex numbers, where the literal 1j represents

.i 1

Python offers basic facilities for interactive work and a comprehensive library on top of
which more sophisticated systems can be built. The IPython project provides an enhanced
interactive environment that includes, among other features, support for data visualization
and facilities for distributed and parallel computation.

FERNANDO PÉREZ

University of Colorado at Boulder
BRIAN E. GRANGER

Tech-X Corporation

1521-9615/07/$25.00 © 2007 IEEE

Copublished by the IEEE CS and the AIP

22 COMPUTING IN SCIENCE & ENGINEERING

This shell allows for some customization and ac-
cess to help and documentation, but overall it’s a
fairly basic environment.

However, what Python lacks in the sophistica-
tion of its default shell, it makes up for by being
a general-purpose programming language with
access to a large set of libraries with additional ca-
pabilities. Python’s standard library includes
modules for regular expression processing, low-
level networking, XML parsing, Web services,
object serialization, and more. In addition, hun-
dreds of third-party Python modules let users do
everything from work with Hierarchical Data
Format 5 (HDF5) files to write graphical appli-
cations. These diverse libraries make it possible
to build sophisticated interactive environments
in Python without having to implement every-
thing from scratch.

IPython
Since late 2001, the IPython project has provided
tools to extend Python’s interactive capabilities be-
yond those shipped by default with the language,
and it continues to be developed as a base layer for
new interactive environments. IPython is freely
available under the terms of the BSD license and
runs under Linux and other Unix-type operating
systems, Apple OS X, and Microsoft Windows.

We won’t discuss IPython’s features in detail
here—it ships with a comprehensive user manual
(also accessible on its Web site). Instead, we highlight
some of the basic ideas behind its design and how
they enable efficient interactive scientific computing.
We encourage interested readers to visit the Web site
and participate on the project’s mailing lists.

One of us (Fernando Pérez) started IPython as
a merger of some personal enhancements to the
basic interactive Python shell with two existing
open source projects (both now defunct and sub-
sumed into IPython):

• LazyPython, developed by Nathan Gray at Cal-
tech, and

• Interactive Python Prompt (IPP) by Janko
Hauser at the University of Kiel’s Institute of
Marine Research.

After an initial development period as a mostly
single-author project, IPython has attracted a
growing group of contributors. Today, Ville
Vainio and other collaborators maintain the sta-
ble official branch, while we’re developing a next-
generation system.

Since IPython’s beginning, we’ve tried to pro-
vide the best possible interactive environment for

everyday computing tasks, whether the actual work
was scientific or not. With this goal in mind, we’ve
freely mixed new ideas with existing ones from
Unix system shells and environments such as
Mathematica and IDL.

Features of a Good
Interactive Computing Environment
In addition to providing direct access to the un-
derlying language (in our case, Python), we con-
sider a few basic principles to be the minimum
requirements for a productive interactive comput-
ing system.

Access to all session state. When working interac-
tively, scientists commonly perform hundreds of
computations in sequence and often might need to
reuse a previous result. The standard Python shell
remembers the very last output and stores it into a
variable named “_” (a single underscore), but each
new result overwrites this variable. IPython stores
a session’s inputs and outputs into a pair of num-
bered tables called In and Out. All outputs are also
accessible as _N, where N is the number of results
(you can also save a session’s inputs and outputs to
a log file). Figure 2 shows the use of previous re-
sults in an IPython session. Because keeping a very
large set of previous results can potentially lead to
memory exhaustion, IPython lets users limit how
many results are kept. Users can also manually
delete individual references using the standard
Python del keyword.

A control system. It’s important to have a secondary
control mechanism that is reasonably orthogonal

$ python # $ represents the system prompt

Python 2.4.3 (Apr 27 2006, 14:43:58)

[GCC 4.0.3 (Ubuntu 4.0.3-1ubuntu5)] on linux2

Type “help”, “copyright”, “credits” or “license”

for more information.

>>> print “This is the Python shell.”

This is the Python shell.

>>> 2**45+1 # long integers are built-in

35184372088833L

>>> import cmath # default complex math library

>>> cmath.exp(–1j*cmath.pi)

(–1–1.2246063538223773e-16j)

Figure 1. Default interactive Python shell. In the two computations
shown—one with long integers and one using the built-in complex
numbers—the literal 1j represents . i 1

MAY/JUNE 2007 23

to the underlying language being executed (and in-
dependent of any variables or keywords in the lan-
guage). Even programming languages as compact
as Python have a syntax that requires parentheses,
brackets, and so on, and thus aren’t the most con-
venient for interactive control systems.

IPython offers a set of control commands (or
magic commands, as inherited from IPP) designed
to improve Python’s usability in an interactive con-
text. The traditional Unix shell largely inspires the
syntax for these magic commands, with white
space used as a separator and dashes indicating op-
tions. This system is accessible to the user, who
can extend it with new commands as desired.

The fragment in Figure 3 shows how to activate
IPython’s logging system to save the session to a
named file, requesting that the output is logged
and every entry is time stamped. IPython auto-
matically interprets the logstart name as a call
to a magic command because no Python variable
with that name currently exists. If there were such
a variable, typing %logstart would disambiguate
the names.

Operating system access. Many computing tasks
involve working with the underlying operating
system (reading data, looking for code to execute,
loading other programs, and so on). IPython lets
users create their own aliases for common system
tasks, navigate the file system with familiar com-
mands such as cd and ls, and prefix any command
with ! for direct execution by the underlying OS.
Although these are fairly simple features, in prac-
tice they help maintain a fluid work experience—
for example, they let users type standard Python
code for programming tasks and perform common
OS-level actions with a familiar Unix-like syntax.
IPython goes beyond this, letting users call system
commands with values computed from Python
variables. These features have led some users (es-
pecially under Windows, a platform with a very
primitive system shell) to use IPython as their de-
fault shell for everyday work.

Figure 4 shows how to perform the simple task
of normalizing the names of a few files to a differ-
ent convention.

Dynamic introspection and help. One benefit of
working interactively is being able to directly ma-
nipulate code and objects as they exist in the run-
time environment. Python offers an interactive
help system and exposes a wide array of introspec-
tive capabilities as a standard module (inspect.
py) that provides functions for exploring various
types of objects in the language.

IPython offers access to Python’s help system,
the ability to complete any object’s names and at-
tributes with the Tab key, and a system to query an
object for internal details, including source code,

$ ipython

Python 2.4.3 (Apr 27 2006, 14:43:58)

Type “copyright”, “credits” or “license” for more

information.

IPython 0.7.3 — An enhanced Interactive Python.

? –> Introduction to IPython features.

%magic –> Information about IPython magic %

functions.

Help –> Python help system.

object? –> Details about object. ?object also

works, ?? prints more.

In [1]:2**45+1

Out[1]:35184372088833L

In [2]:import cmath

In [3]:cmath.exp(–1j*cmath.pi)

Out[3]:(–1–1.2246063538223773e–16j)

The last result is always stored as '_'

In [4]:_ ** 2

Out[4]:(1+2.4492127076447545e–16j)

And all results are stored as N, where _N is

their number:

In [5]:_3+_4

Out[5]:1.2246063538223773e–16j

Figure 2. The use of previous results in an IPython session. In
IPython, all outputs are also accessible as _N, where N is the number
of results.

In [2]: logstart –o –t ipsession.log

Activating auto–logging. Current session state

plus future input saved.

Filename : ipsession.log

Mode : backup

Output logging : True

Raw input log : False

Timestamping : True

State : active

Figure 3. Activating IPython’s logging system to save the session to
a named file. IPython interprets the logstart name as a call to a
control command (or magic command).

24 COMPUTING IN SCIENCE & ENGINEERING

by typing the object’s name and one or two “?”
(two for extra details). These features are useful
when developing code, exploring a problem, or us-
ing an unfamiliar library because direct experi-
mentation with the system can help produce
working code that the user can then copy into an
editor as part of a larger program.

Figure 5 shows the information returned by
IPython after querying an object called
DeepThought from a module called universe. In
line 2, we’ve hit the Tab key, so IPython com-
pletes a list of all the attributes defined for
DeepThought. Then, for the sequence Deep-
Thought??, IPython tries to find as much infor-
mation about the object as it can, including its
entire source code.

Access to program execution. Although typing
code interactively is convenient, large programs
are written in text editors for significant compu-
tations. IPython’s %run magic command lets users
run any Python file within the IPython session as
if they had typed it interactively. Upon comple-
tion, the program results update the interactive
session, so the user can further explore any quan-
tity computed by the program, plot it, and so on.
The %run command has several options to assist
in debugging, profiling, and more. It’s probably
the most commonly used magic function in a typ-
ical workflow: you use a text editor for significant
editing while code is executed (using run) in the
IPython session for debugging and results analy-
sis. Typing run? provides full details about the
run command.

Figure 6 compares IPython to the default
Python shell when running a program that con-
tains errors. IPython provides detailed exception
tracebacks with information about variable values,
and can activate a debugger (indicated by the
ipdb> prompt), from which a user can perform
postmortem analysis of the crashed code from its
in-memory state, walk up the call stack, print vari-
ables, and so on. This mechanism saves time dur-
ing development, because the user doesn’t need to
reload libraries used by a program for each new
test. It also lets the user perform expensive ini-
tialization steps only once, keeping them in mem-
ory while the user explores other parts of a
problem by making changes to code and running
it repeatedly.

A Base Layer for Interactive Environments
In addition to these minimal requirements,
IPython exposes its major components to the user
for modification and customization, making it a

In [36]: ls

tt0.dat tt1.DAT tt2.dat tt3.DAT

‘var = !cmd’ captures a system command into a

Python variable:

In [37]: files = !ls

==

[‘tt0.dat’, ‘tt1.DAT’, ‘tt2.dat’, ‘tt3.DAT’]

Rename the files, using uniform case and 3-digit

numbers:

In [38]: for i, name in enumerate(files):

....: newname = ‘time%03d.dat’ % i

....: !mv $name $newname

....:

In [39]: ls

time000.dat time001.dat time002.dat time003.dat

Figure 4. Normalizing file names to a different convention. These
code fragments show how IPython allows users to combine normal
Python syntax with direct system calls (prefixed with the “!”
character). In such calls, Python variables can be expanded by
prefixing them with “$.”

In [1]:from universe import DeepThought

In [2]:DeepThought. # Hit the Tab key here

DeepThought._doc_ DeepThought.answer

DeepThought.question

DeepThought._module_ DeepThought.name

In [2]:DeepThought??

Type: classobj

String Form: universe.DeepThought

Namespace: Interactive

File: /tmp/universe.py

Source:

class DeepThought:

name = “Deep Thought”

question = None

def answer(self):

“””Return the Answer to The Ultimate

Question Of Life, the Universe and Everything”””

return 42

Figure 5. Information returned by IPython after querying an
object called DeepThought from a module called universe.
When the user hits the Tab key (line 2), IPython lists all attributes
defined for DeepThought. For the sequence DeepThought??,
IPython finds as much information about the object as it can,
including its source code.

MAY/JUNE 2007 25

flexible and open platform. Other scientific com-
puting projects have used IPython’s features to
build custom interactive environments. A user can
declare these customizations in a plaintext file—an
IPython profile—and load them using the –profile
flag at startup time.

Input syntax processing. Underlying IPython is a
running Python interpreter, so ultimately all code
executed by IPython must be valid Python code.
However, in some situations the user might want
to allow other forms of input that aren’t necessar-
ily Python. Such uses can range from simple trans-
formations for input convenience to supporting a
legacy system with its own syntax within the
IPython-based environment.

As a simple example, IPython ships with a
physics profile, which preloads physical unit sup-
port from the ScientificPython library (http://
sourcesup.cru.fr/projects/scientific-py), and in-
stalls a special input filter. This filter recognizes
text sequences that appear to be quantities with
units and generates the underlying Python code
to define an object with units, without the user
having to type out the more verbose syntax, as
Figure 7 shows.

IPython exposes the input filtering system, which
users can customize to define arbitrary input trans-
formations that might suit their problem domains.
For example, the Software for Algebra and Geom-
etry Experimentation (Sage)2 project uses an input
filter to transform numerical quantities into exact
integers, rationals, and arbitrary precision floats in-
stead of Python’s normal numerical types. (See the
“Projects Using IPython” sidebar for a description
of this and other examples.)

Error handling. A common need in interactive en-
vironments is to process certain errors in a special
manner. IPython offers three exception handlers
that treat errors uniformly, differing only in the
amount of detail they provide. A custom environ-
ment might want to handle internal errors, or er-
rors related to certain special objects, differently
from other normal Python errors. IPython lets
users register exception handlers that will fire when
an exception of their registered type is raised.
Python’s uniform and object-oriented approach to
errors greatly facilitates this feature’s implementa-
tion: because all exceptions are classes, users can
register handlers based on a point in the class hier-
archy that will handle any exception that inherits
from the registered class. The PyRAF interactive
environment at the Space Telescope Science Insti-
tute has used this capability to handle its own in-

ternal errors separately from errors that are mean-
ingful to the user.

Tab completion. Tab completion is a simple but
useful feature in an interactive environment be-
cause the system completes not only on Python
variables but also on keywords, aliases, magic com-
mands, files, and directories. IPython lets users
register new completers to explore certain objects.

(a) (b)

Figure 6. Comparison of IPython to the default Python shell.
(a) IPython provides detailed error information and can
automatically activate an interactive debugger to inspect the
crashed code’s status, print variables, navigate the stack, and so on.
(b) The same error displayed in the default Python shell.

In [1]: mass = 3 kg

In [2]: g = 9.8 m/s^2

In [3]: weight=mass*g

In [4]: weight

Out[4]: 29.4 m*kg/s^2

We can see the actual Python code generated by

IPython:

In [5]: %history # %history is an IPython “magic”

command

1: mass = PhysicalQuantityInteractive(3, ‘kg’)

2: g = PhysicalQuantityInteractive(9.8, ‘m/s**2’)

3: weight=mass*g

4: weight

Figure 7. Code using IPython’s physics profile and input filter. The
filter recognizes text sequences that appear to be quantities with
units and generates the underlying Python code to define an object
with units.

26 COMPUTING IN SCIENCE & ENGINEERING

The PyMAD project at the neutron scattering fa-
cility of the Institute Laue Langevin in Grenoble,
France, uses this feature for interactive control of
experimental devices. The IPython console runs
on a system that connects to the neutron spec-
trometer over a network, but users interact with
the remote system as if it were local, and Tab com-
pletion operates over the network to fetch infor-
mation about remote objects for display in the
user’s local console.

Graphical Interface Toolkits and Plotting
Python provides excellent support for GUI toolk-
its. It ships by default with bindings for Tk, and
third-party bindings are available for GTK,
WxWidgets, Qt, and Cocoa (under Apple OS X).
You can use essentially every major toolkit to
write graphical applications from Python. Al-
though few scientists look forward to GUI design,
they increasingly have to write small- to medium-
sized graphical applications to interface with sci-
entific code, drive instruments, or collect data.
Python lets scientists choose the toolkit that best
fits their needs.

However, graphical applications are notoriously
difficult to test and control from an interactive
command line. In the default Python shell, if a user
instantiates a Qt application, for example, the com-
mand line stops responding as soon as the Qt win-

dow appears. IPython addresses this problem by of-
fering special startup flags that let users choose
which toolkit they want to control interactively in
a nonblocking manner.

This feature is necessary for one of scientists’
most common tasks: interactive data plotting and
visualization. Many traditional plotting libraries
and programs have Python bindings or process-
based interfaces, but most have various limitations
for interactive use. The matplotlib project (http://
matplotlib.sourceforge.net) is a sophisticated plot-
ting library capable of producing publication-qual-
ity graphics in a variety of formats, and with full
LaTeX support.3 Matplotlib renders its plots to
several back ends, the components responsible for
generating the actual figure. Some back ends (such
as for PostScript, PDF, and Scalable Vector Graph-
ics) are purely disk-based and meant to generate
files; others are meant for display in a window.
Matplotlib supports all these toolkits, letting users
choose which to use via a configuration file setting.
(The Scientific Programming department on p. 90
explores matplotlib in more detail.)

IPython and matplotlib developers have collab-
orated to enable automatic coordination between
the two systems. If given the special –pylab startup
flag, for example, IPython detects the user’s mat-
plotlib settings and automatically configures itself
to enable nonblocking interactive plotting. This

PROJECTS USING IPYTHON

S everal scientific projects have exploited IPython as a plat-
form rather than as an end-user application. Although

the vast majority of IPython users do little customization be-
yond setting a few personal options, these projects show
that there is a real use case for open, customizable interac-
tive environments in scientific computing:

• Sage (http://modular.math.washington.edu/sage), a sys-
tem for mathematical research and teaching with a focus
on algebra, geometry, and number theory, uses IPython
for its interactive terminal-based interface.

• The Space Telescope Science Institute’s PyRAF environ-
ment (www.stsci.edu/resources/software_hardware/pyraf)
uses IPython for astronomical image analysis. PyRAF pro-
vides an IPython-based shell for interactive work with sev-
eral special-purpose customizations. We made numerous
enhancements to IPython based on requests and sugges-
tions from the PyRAF team.

• The National Radio Astronomy Observatory’s Common
Astronomy Software Applications (CASA, http://casa.

nrao.edu) uses IPython in its interactive shell.
• The Ganga system (http://ganga.web.cern.ch/ganga/),

developed at the European Center for Nuclear Research
(CERN) for grid job control for the large hadron collider
beauty experiment (LHCb) and Atlas experiments, uses
IPython for its command-line interface (CLIP).

• The PyMAD project (http://ipython.scipy.org/moin/
PyMAD) uses IPython to control a neutron spectrometer
at CEA-Grenoble and the Institute Laue Langevin in
France.

• The Pymerase project (http://pymerase.sourceforge.net)
for microarray gene expression databases exposes an
IPython shell in its interactive iPymerase mode.

Based on the lessons learned from this usage, we’re currently
restructuring IPython to allow interactive parallel and distrib-
uted computing, to build better user interfaces, and to pro-
vide more flexible and powerful components for other
projects to build on. We hope that if more projects are devel-
oped on top of such a common platform, all users will bene-
fit from the familiarity of having a well-known base layer on
top of which their specific projects add custom behavior.

MAY/JUNE 2007 27

provides an environment in which users can per-
form interactive plotting in a manner similar to
Matlab or IDL but with complete flexibility in the
GUI toolkit used (these programs provide their
own GUI support and can’t be integrated in the
same process with other toolkits).

In the example in Figure 8, plots are generated
from an interactive session using matplotlib. We
use the special function and numerical integration
routines provided by the SciPy package4 to verify,
at a few points, the standard relation for the first
Bessel function

.

The last line shows matplotlib’s capabilities for ar-
ray plotting with a simple 32 � 32 set of random
numbers.

Although matplotlib’s main focus is 2D plotting,
several packages exist for 3D plotting and visual-
ization in Python. The Visualization Toolkit
(VTK) is a mature and sophisticated visualization
library written in C++ that ships with Python bind-
ings. Recently, developers have introduced a new
set of bindings called Traits-enabled VTK
(TVTK),5 which provides seamless integration
with the NumPy array objects and libraries as well
as a higher-level API for application development.
Figure 9 shows how to use TVTK interactively
from within an IPython session. Because matplotlib
has WXPython support, you can use both TVTK
and matplotlib concurrently from within IPython.

Interactive Parallel
and Distributed Computing
Although interactive computing environments can
be extremely productive, they’ve traditionally had
one weakness: they haven’t been able to take ad-
vantage of parallel computing hardware such as
multicore CPUs, clusters, and supercomputers.
Thus, although scientists often begin projects us-
ing an interactive computing environment, at some
point they switch to using languages such as C,
C++, and Fortran when performance becomes crit-
ical and their projects call for parallelization. In re-
cent years, several vendors have begun offering
distributed computing capabilities for the major
commercial technical computing systems (see the
“Distributed Computing Toolkits for Commercial
Systems” sidebar for some examples). These pro-
vide various levels of integration between the com-
putational back ends and interactive front ends. An
early precursor to these systems, whose model was
one of full interactive access to the computational

nodes, is ParGAP (www.ccs.neu.edu/home/gene/
pargap.html), a parallel-enabled version of the
open source package Groups, Algorithms, and Pro-
gramming (GAP) for computational group theory.

In the Python world, several projects also exist
that seek to add support for distributed computing.
The Python-community-maintained wiki keeps a
list of such efforts (http://wiki.python.org/moin/
ParallelProcessing). Of particular interest to scien-
tific users, Python has been used in parallel com-
puting contexts both with the message-passing
interface (MPI, http://sourceforge.net/projects/
pympi; http://mpi4py.scipy.org)6,7 and the Bulk
Synchronous Parallel8 models.

J x x d0 0

1
() cos sin

Figure 8. IPython using the –pylab flag to enable interactive use of
the matplotlib library. Plot windows can open without blocking the
interactive terminal, using any of the GUI toolkits supported by
matplotlib (Tk, WxWidgets, GTK, or Qt).

Figure 9. An IPython session showing a 3D plot done with TVTK.
The GUI toolkit used is WXPython, so IPython is started with the
-wthread flag.

28 COMPUTING IN SCIENCE & ENGINEERING

Building on Python’s and IPython’s strengths as
an interactive computing system, we’ve begun a
significant effort to add interactive parallel and dis-
tributed capabilities to IPython. More specifically,
our goal is to enable users to develop, test, debug,
execute, and monitor parallel and distributed ap-
plications interactively using IPython. To make this
possible, we’ve refactored IPython to support these
new features. We’ve deliberately built a system
whose basic components make no specific assump-
tions about communications models, data distrib-
ution, or network protocols. The redesigned
IPython consists of

• the IPython core, which exposes IPython’s core
functionality, abstracted as a Python library
rather than as a terminal-based application;

• the IPython engine, which exposes the IPython
core’s functionality to other processes (either lo-
cal to the same machine or remote) over a stan-
dard network connection; and

• the IPython controller, which is a process that ex-
poses a clean asynchronous interface for work-
ing with a set of IPython engines.

With these basic components, specific models of
distributed and parallel computing can be imple-
mented as user-visible systems. Currently, we sup-
port two models out of the box: a load-balancing
and fault-tolerant task-farming interface for coarse-
grained parallelism, and a lower-level interface that

gives users direct interactive access to a set of run-
ning engines. This second interface is useful for
both medium- and fine-grained parallelism that
uses MPI for communications between engines.
Most importantly, advanced users and developers
can use these components to build customized in-
teractive parallel/distributed applications in
Python. End users work with the system interac-
tively by connecting to a controller using a Web
browser, an IPython- or Python-based front end,
or a traditional GUI.

Specific constraints that are relevant in scientific
computing guided this design:

• It should support many different styles of paral-
lelism, such as message passing using MPI, task
farming, and shared memory.

• It should run on everything from multicore lap-
tops to supercomputers.

• It should integrate well with existing parallel
code and libraries written using C, C++, or For-
tran, and MPI for communications.

• All network communications, events, and error
handling should be fully asynchronous and
nonblocking.

• It should support all of IPython’s existing fea-
tures in parallel contexts.

The architectural requirements for running
IPython in a distributed manner are similar to
those required for decoupling a user front end from
a computational back end. Therefore, this restruc-
turing effort also lets IPython offer new types of
user interfaces for remote and distributed work,
such as a Web browser-based IPython GUI and
collaborative interfaces that enable multiple remote
users to simultaneously access and share running
computational resources and data.

The first public release of these new
components was in late 2006. While it
should still be considered under heavy
development and subject to changes,

we’ve already been contacted by several projects
that have begun using it as a tool in production
codes. Details about this work are available on the
IPython Web site.

Acknowledgments
IPython wouldn’t be where it is today if it weren’t for
its user community’s contributions. Over the years,
users have sent bug reports, ideas, and often major
portions of new code. Some of the more prolific
contributors have become codevelopers. As a Free

DISTRIBUTED COMPUTING

TOOLKITS FOR COMMERCIAL SYSTEMS

S ome vendors offer distributed computing capabilities for the ma-
jor commercial technical computing systems:

• Matlab Distributed Computing Toolbox, www.mathworks.com/
products/distribtb.

• FastDL, www.txcorp.com/products/FastDL.
• Mathematica Parallel Computing Toolkit, http://documents.

wolfram.com/applications/parallel.
• Mathematica Personal Grid Edition, www.wolfram.com/products/

personalgrid.
• Grid Mathematica, www.wolfram.com/products/gridmathematica.
• HPC-Grid, www.maplesoft.com/products/toolboxes/HPCgrid.
• Star-P, www.interactivesupercomputing.com.

Other projects seek to support distributed computing using Python
(see http://wiki.python.org/moin/ParallelProcessing).

MAY/JUNE 2007 29

Software project, it is only because of such a
community that it continues to improve. We thank Ville
Vainio for maintaining the stable branch of the project,
and Benjamin Ragan-Kelley for his continued work as
a key developer of IPython’s distributed and parallel
computing infrastructure.

This research was partially supported by US
Department of Energy grant DE-FG02-03ER25583 and
DOE/Oak Ridge National Laboratory grant 4000038129
(F. Pérez) and by Tech-X Corporation (B. Granger). We
thank Enthought for the hosting and infrastructure
support it has provided to IPython over the years.

References
1. T.-Y.B. Yang, G. Furnish, and P.F. Dubois, “Steering Object-Ori-

ented Scientific Computations,” Proc. Technology of Object-Ori-
ented Languages and Systems (TOOLS), IEEE CS Press, 1998, pp.
112–119.

2. W. Stein and D. Joyner, “SAGE: System for Algebra and Geome-
try Experimentation,” Comm. Computer Algebra, vol. 39, 2005,
pp. 61–64.

3. P. Barrett, J. Hunter, and P. Greenfield, “Matplotlib: A Portable
Python Plotting Package,” Astronomical Data Analysis Software &
Systems, vol. 14, 2004.

4. E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open Source Sci-
entific Tools for Python,” 2001; www.scipy.org.

5. P. Ramachandran, “TVTK: A Pythonic VTK,” Proc. EuroPython
Conf., EuroPython, 2005; http://svn.enthought.com/enthought/
attachment/wiki/TVTK/tvtk-paper-epc2005.pdf.

6. D.M. Beazley and P.S. Lomdahl, “Extensible Message Passing
Application Development and Debugging with Python,” Proc.
11th Int’l Parallel Processing Symp., IEEE CS Press, 1997, pp.
650–655.

7. P. Miller, “Parallel, Distributed Scripting with Python,” Third Linux
Clusters Inst. Int’l Conf. Linux Clusters: The HPC Revolution,
Lawrence Livermore Nat’l Laboratory, 2002; www.llnl.gov/tid/
lof/documents/pdf/240425.pdf.

8. K. Hinsen, “High-Level Parallel Software Development with
Python and BSP,” Parallel Processing Letters, vol. 13, s2003, pp.
473–484.

Fernando Pérez is a research associate in the Department
of Applied Mathematics at the University of Colorado at
Boulder. His research interests include new algorithms for
solving PDEs in multiple dimensions with a focus on prob-
lems in atomic and molecular structure, the use of high-
level languages for scientific computing, and new
approaches to distributed and parallel problems. Pérez
has a PhD in physics from the University of Colorado.
Contact him at Fernando.Perez@colorado.edu.

Brian E. Granger is a research scientist at Tech-X. He has
a background in scattering and many-body theory in the
context of atomic, molecular, and optical physics. His re-
search interests include interactive parallel and distributed
computing, remote visualization, and Web-based inter-
faces in scientific computing. Granger has a PhD in theo-
retical physics from the University of Colorado. Contact
him at bgranger@txcorp.com.

The American Institute of Physics is a not-for-profit membership
corporation chartered in New York State in 1931 for the purpose of
promoting the advancement and diffusion of the knowledge of
physics and its application to human welfare. Leading societies in the
fields of physics, astronomy, and related sciences are its members.

In order to achieve its purpose, AIP serves physics and related
fields of science and technology by serving its member societies,
individual scientists, educators, students, R&D leaders, and the
general public with programs, services, and publications—
information that matters.

The Institute publishes its own scientific journals as well as those
of its member societies; provides abstracting and indexing
services; provides online database services; disseminates reliable
information on physics to the public; collects and analyzes
statistics on the profession and on physics education; encourages
and assists in the documentation and study of the history and
philosophy of physics; cooperates with other organizations on
educational projects at all levels; and collects and analyzes
information on federal programs and budgets.

The Institute represents approximately 134,000 scientists through
its member societies. In addition, approximately 6,000 students in
more than 700 colleges and universities are members of the
Institute’s Society of Physics Students, which includes the honor
society Sigma Pi Sigma. Industry is represented through the
membership of 38 Corporate Associates.

Governing Board:* Mildred S. Dresselhaus (chair), David Aspnes,
Anthony Atchley, Martin Blume, Marc H. Brodsky (ex officio), Slade
Cargill, Charles W. Carter Jr., Hilda A. Cerdeira, Marvin L. Cohen,
Timothy A. Cohn, Lawrence A. Crum, Bruce H. Curran, Morton M.
Denn, Robert E. Dickinson, Michael D. Duncan, Judy R. Franz, Brian J.
Fraser, John A. Graham, Toufic Hakim, Joseph H. Hamilton, Ken
Heller, James N. Hollenhorst, Judy C. Holoviak, John J. Hopfield,
Anthony M. Johnson, Angela R. Keyser, Louis J. Lanzerotti, Harvey
Leff, Rudolf Ludeke, Robert W. Milkey, John A. Orcutt, Richard W.
Peterson, S. Narasinga Rao, Elizabeth A. Rogan, Bahaa A.E. Saleh,
Charles E. Schmid, Joseph Serene, James B. Smathers, Benjamin B.
Snavely (ex officio), A.F. Spilhaus Jr, and Hervey (Peter) Stockman.
*Board members listed in italics are members of the Executive Committee.

Management Committee: Marc H. Brodsky, Executive Director and
CEO; Richard Baccante, Treasurer and CFO; Theresa C. Braun, Vice
President, Human Resources; James H. Stith, Vice President,
Physics Resources; Darlene A. Walters, Senior Vice President,
Publishing; and Benjamin B. Snavely, Secretary.

www.a ip .or g

