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How to Drazin:

Invert what’s invertible;
leave the rest alone.
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HMMs and their transition structure

Many complex stochastic processes of interest can be modeled by
a hidden Markov model (HMM).
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HMMs and their transition structure

Any HMM will have:

some set of states S,

an alphabet A of observables,

a set of output-labeled transition matrices

TA =
{
T (x) : T

(x)
i,j = Pr(St = σj |St−1 = σi)

}
x∈A

constituting the row-stochastic state-to-state transition
matrix T =

∑
x∈A T

(x).

In principle, can calculate everything about a process directly
from HMM, but different questions require different HMM
representations.
Question about process reduces to function of appropriate
transition dynamic.
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HMMs and their transition structure

The Zero Eigenvalue, (di)Graphically

ΛA =
{
λ ∈ C : det(A− λI) = 0

}

So, 0 ∈ ΛA =⇒ det(A) = 0 =⇒ A−1 6= inv(A)
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Definitions

An Operator and its Spectrum

Spectrum

The spectrum of an operator A consists of the set of points λ ∈ C
such that λI −A is not invertible.

Resolvent

The resolvent of A, R(z;A) ≡ (zI −A)−1, where z is a
continuous complex variable, thus contains all of the spectral

information about A (and more).
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Eigenvalues

A finite square matrix and its eigenvalues

If an operator A can be represented as a finite square
matrix, then its spectrum is just the set of A’s eigenvalues:

ΛA ≡ {λ ∈ C : det(λI −A) = 0}

Algebraic multiplicity aλ

Geometric multiplicity gλ

The index νλ of the eigenvalue λ is the size of the largest
Jordan block associated with λ.
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Projection Operators

Definition

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

Aλ ≡
1

2πi

∮
Cλ

R(z;A) dz

= Res
[
(zI −A)−1, z → λ

]

If A is diagonalizable, then the projection operator can be simply
expressed as: Aλ =

∏
ζ∈ΛA\{λ}

A−ζI
λ−ζ .

If aλ = 1, then the projection operator can be simply expressed
as:

Aλ = 1
〈λ|λ〉 |λ〉 〈λ| ,

where 〈λ| is the left eigenvector of A associated with λ and |λ〉 is
the right eigenvector of A associated with λ. (Note: 〈λ| 6= |λ〉† !)
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Projection Operators

Some General Properties of Projection Operators

{Aλ} is a mutually orthogonal set:

AζAλ = δζ,λAλ

The projection operators are a resolution of the identity:

I =
∑
λ∈ΛA

Aλ
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Choosing a functional calculus

Taylor Series

Inspired by

f(a) =
∑∞

n=0
f (n)(ξ)
n! (a− ξ)n.

f(A) =

∞∑
n=0

f (n)(ξ)

n!
(A− ξI)n .

shortcomings

Limited domain of
convergence

Holomorphic Functional Calculus

Inspired by

f(a) = 1
2πi

∮
C

f(z)
(z−a) dz.

f(A) =
1

2πi

∮
CΛA

f(z)(zI −A)−1 dz

=
∑
λ∈ΛA

νλ−1∑
m=0

f (m)(λ)

m!
(A− λI)mAλ .

Extends f(A) beyond Taylor domain.

shortcomings

f(z) must be holomorphic at ΛA
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The Resolvent Resolved:
Partial Fraction Decomposition of the Resolvent:

R(z;A) = (zI −A)−1

=
C>

det(zI −A)

=
C>∏

λ∈ΛA
(z − λ)aλ

=
∑
λ∈ΛA

aλ−1∑
m=0

1

(z − λ)m+1
Aλ,m

=
∑
λ∈ΛA

νλ−1∑
m=0

1

(z − λ)m+1
Aλ
(
A− λI

)m
for z /∈ ΛA, where C is the matrix of cofactors of zI −A;
Aλ is the projection operator associated with λ.
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Choosing a functional calculus

Holomorphic Functional Calculus

Inspired by

f(a) = 1
2πi

∮
C

f(z)
(z−a) dz.

f(A) =
1

2πi

∮
CΛA

f(z)(zI −A)−1 dz

=
∑
λ∈ΛA

νλ−1∑
m=0

f (m)(λ)

m!
(A− λI)mAλ .

Extends f(A) beyond Taylor domain.

shortcomings

f(z) must be holomorphic at ΛA
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Choosing a functional calculus

Meromorphic Functional Calculus

Inspired by

f(a) = 1
2πi

∮
C

f(z)
(z−a) dz.

f(A) =
1

2πi

∮
CΛA

f(z)(zI −A)−1 dz

=
∑
λ∈ΛA

νλ−1∑
m=0

Aλ
(
A− λI

)m( 1

2πi

∮
Cλ

f(z)

(z − λ)m+1
dz

)
.

Extends f(A) beyond both Taylor and holomorphic domain.
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Meromorphic functional calculus

Meromorphic functional calculus

f(A) =
∑
λ∈ΛA

νλ−1∑
m=0

Aλ
(
A− λI

)m( 1

2πi

∮
Cλ

f(z)

(z − λ)m+1
dz

)
,

Poles and zeros of f(z) can interact with poles of resolvent.

Extends f(A) beyond holomorphic domain.



Complexity Sciences Center

Basics Functions of Operators Drazin Inverse Simple Answers for Complex Systems

Example

Powers of Matrices

AL =
∑

λ∈ΛA\{0}

νλ−1∑
m=0

(
L

m

)
λL−mAλ(A− λI)m

+ [0 ∈ ΛA]

ν0−1∑
m=0

δL,mA0A
m

for any L ∈ C, where
(
L
m

)
is the generalized binomial coefficient:(

L

m

)
=

1

m!

m∏
n=1

(L− n+ 1)

with
(
L
0

)
= 1.
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Example

Powers of Matrices

AL =
∑

λ∈ΛA\{0}

νλ−1∑
m=0

(
L

m

)
λL−mAλ(A− λI)m + [0 ∈ ΛA]

ν0−1∑
m=0

δL,mA0A
m

for any L ∈ C,
(
L
m

)
= 1

m!

∏m
n=1(L− n+ 1) with

(
L
0

)
= 1.

E.g.:(
0
m

)
= 0 unless m = 0, so:

A0 =
∑
λ∈ΛA

Aλ = I .



Complexity Sciences Center

Basics Functions of Operators Drazin Inverse Simple Answers for Complex Systems

Example

Powers of Matrices

AL =
∑

λ∈ΛA\{0}

νλ−1∑
m=0

(
L

m

)
λL−mAλ(A− λI)m + [0 ∈ ΛA]

ν0−1∑
m=0

δL,mA0A
m

for any L ∈ C,
(
L
m

)
= 1

m!

∏m
n=1(L− n+ 1) with

(
L
0

)
= 1.

E.g.:(
1
m

)
= 0 unless m = 0 or m = 1, so:

A1 =
∑

λ∈ΛA\{0}

1∑
m=0

λL−mAλ(A− λI)m + [0 ∈ ΛA]A0A

=
∑
λ∈ΛA

λAλ +
∑
λ∈ΛA

Aλ(A− λI)

= D +N = A

.

where D is diagonable, N is nilpotent, and [D,N ] = 0.
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(
L
m

)
= 1

m!

∏m
n=1(L− n+ 1) with

(
L
0

)
= 1.

E.g.:(
1
m

)
= 0 unless m = 0 or m = 1, so:

A1 =
∑

λ∈ΛA\{0}

1∑
m=0

λL−mAλ(A− λI)m + [0 ∈ ΛA]A0A

=
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Example

Powers of Matrices

AL =
∑

λ∈ΛA\{0}

νλ−1∑
m=0

(
L

m

)
λL−mAλ(A− λI)m + [0 ∈ ΛA]

ν0−1∑
m=0

δL,mA0A
m

for any L ∈ C,
(
L
m

)
= 1

m!

∏m
n=1(L− n+ 1) with

(
L
0

)
= 1.

E.g.:(−|L|
m

)
= (−1)m

(|L|+m−1
m

)
and

(
m
m

)
= 1, so:

A−1 =
∑

λ∈ΛA\{0}

νλ−1∑
m=0

(−1)mλ−1−mAλ(A− λI)m

= AD 6= inv(A) (!)

where AD is the Drazin inverse of A.
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Drazin, Drazin, Drazin

Drazin Inverse, Spectrally

AD =
∑

λ∈ΛA\{0}

νλ−1∑
m=0

(−1)mλ−1−mAλ(A− λI)m .

When A is diagonable, this reduces to:

AD =
∑

λ∈ΛA\{0}

λ−1Aλ if νλ = 1 for all λ ∈ ΛA .
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Drazin, Drazin, Drazin

Drazin inverse, Axiomatically

A−1 from the meromorphic functional calculus satisfies all of the
properties of the unique Drazin inverse as it is axiomatically
defined for matrices with index ν0:

(1ν0) Aν0ADA = Aν0

(2) ADAAD = AD

(5) [A,AD] = 0 .

So A−1 = AD,

a.k.a., the {1ν0 , 2, 5}-inverse.
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Drazin, Drazin, Drazin

Drazin inverse or Group inverse?

For ν0 = 1, AD = A].
For ν0 > 1, A] does not exist.
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We are really bad at asking novel questions!

Most questions are of the form:

〈·|TL |·〉

or 〈·| etG |·〉

or

L∑
n=0

〈·|Tn |·〉

or

∫
〈·| etG |·〉 dt

Different representations of a process (diff. T s or diff. Gs) needed
to answer different questions (using linear algebra).

Every time we ask a question like the bottom row, we invoke
the Drazin inverse.
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〈·|TL |·〉 or 〈·| etG |·〉

or

L∑
n=0

〈·|Tn |·〉 or

∫
〈·| etG |·〉 dt

Different representations of a process (diff. T s or diff. Gs) needed
to answer different questions (using linear algebra).

Every time we ask a question like the bottom row, we invoke
the Drazin inverse.
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Correlations and Power Spectra

Correlations and Power Spectra are directly about observables:
−→ T of any representative HMM will do:

γ[τ ] =
〈
XnXn+τ

〉
n

= 〈A|T |τ |−1 |A〉 .

Pc(ω) = 2 Re 〈A| (eiωI − T )−1 |A〉+ const .
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Correlations and Power Spectra are directly about observables:
−→ T of any representative HMM will do:

γ[τ ] =
〈
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Information metrics

Information metrics require distributions over states of any rep.
of process:
−→ Use W of mixed state presentation (MSP) of any rep. of
process.

E.g.,
Myopic entropy rates:

H(XL|X0:L) = hµ(L) = 〈·|Wn |·〉

Past–future mutual info:

I(X:0;X0:) = E =

∞∑
L=1

[
hµ(L)− hµ

]
= 〈·| (I −W )D |·〉
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Intrinsic Computation

Measures of intrinsic computation require distributions over
causal states:
−→ Use W of MSP of ε-machine.

. . .
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HMMs for SST

Joint Environmental-driving–System-state Dynamic

⌦

⌦

3↵A
m

�A
m

2↵A
m

k1

2�A
m

↵A
m

k2

3�A
m

k3

↵A
h

3↵B
m

�B
m

2↵B
m

k1

2�B
m

↵B
m

k2

3�B
m

k3

↵B
h

✏✏ ✏✏ ✏✏ ✏✏ ✏✏

A Bva : 1 � ✏�t

vb : ✏�t

va : ✏�t

vb : 1 � ✏�t

⌦
3↵m

�m

2↵m

k1

2�m

↵m

k2

3�m

k3

↵h

TOA climber example; driving process:
.

.

3
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HMMs for SST

Qex =
∑N

n=1Qex[xn; sn−1 → sn]

〈Qex〉 = 〈µ0|
(N−1∑
n=0

T n
)
Q(XS) |1〉

→ 〈µ0|
(∫ τ

t=0
etG dt

)
Q(XS) |1〉

= τ 〈π|Q(XS)|1〉+ 〈µ0| GD
(
eτG − I

)
Q(XS) |1〉

since
∫ τ

0 e
tG dt = τ |1〉 〈π|+ GD

(
eτG − I

)
.

For a broad subset of HMMs, the heat matrix turns out to be:

Q(XS)
ij =

Gij
βj

[
ln
(
πxj (s

i)
)
− ln

(
πxj (s

j)
)]

.
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Closing Drazinisms

Where did you come from?
Nobody knows.
But Drazin knows best.

Remove your asymptotics;
I want to see your transients.

Love,
Drazin
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