	Functions	Operators
0000000	0000	

Drazin Inverse 000

Drazin Inverse per Spectral perSpective with Applications to Complex Systems

Paul M. Riechers

Joint work with James P. Crutchfield

Complexity Sciences Center Department of Physics University of California, Davis

October 23^{rd} 2015

Support: ARO contracts W911NF-12-1-0234 and W911NF-13-1-0390 and a grant from the John Templeton Foundation

Basics 0000000	Functions of Operators	Drazin Inverse 000	Simple Answers for Complex Systems 000000
Discus	sion based on:		

J. P. Crutchfield, C. J. Ellison and P. M. Riechers. "Exact complexity: the spectral decomposition of intrinsic computation." arXiv:1309.3792 [cond-mat.stat-mech].

and

P. M. Riechers and J. P. Crutchfield.

"Spectral decomposition of structural complexity: the meromorphic functional calculus of nondiagonable dynamics." (In preparation.)

Basics	Functions of Operators	Drazin Inverse 000	Simple Answers for Complex Systems
How to	Drazin:		

Invert what's invertible; leave the rest alone.

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
• 00 0000	0000	000	000000
HMMs and the	ir transition structure		

Many complex stochastic processes of interest can be modeled by a hidden Markov model (HMM).

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
000000			
HMMs and the	ir transition structure		

Any HMM will have:

- some set of states $\boldsymbol{\mathcal{S}}$,
- an alphabet \mathcal{A} of observables,
- a set of output-labeled transition matrices $T^{\mathcal{A}} = \left\{ T^{(x)} : T^{(x)}_{i,j} = \Pr(\mathcal{S}_t = \sigma^j | \mathcal{S}_{t-1} = \sigma^i) \right\}_{x \in \mathcal{A}}$ constituting the row-stochastic state-to-state transition matrix $T = \sum_{x \in \mathcal{A}} T^{(x)}$.

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
000000	0000	000	000000
HMMs and the	ir transition structure		

Any HMM will have:

- some set of states $\boldsymbol{\mathcal{S}}$,
- $\bullet\,$ an alphabet ${\mathcal A}$ of observables,
- a set of output-labeled transition matrices $T^{\mathcal{A}} = \left\{ T^{(x)} : T^{(x)}_{i,j} = \Pr(\mathcal{S}_t = \sigma^j | \mathcal{S}_{t-1} = \sigma^i) \right\}_{x \in \mathcal{A}}$ constituting the row-stochastic state-to-state transition matrix $T = \sum_{x \in \mathcal{A}} T^{(x)}$.

In principle, can calculate everything about a process directly from HMM, but *different questions require different HMM representations*.

Question about process reduces to function of appropriate transition dynamic.

BasicsFunctions of Operators00000000000

Drazin Inverse 000 Simple Answers for Complex Systems

HMMs and their transition structure

The Zero Eigenvalue, (di)Graphically

$$\Lambda_A = \left\{ \lambda \in \mathbb{C} : \det(A - \lambda I) = 0 \right\}$$

Basics Functions of Operator 0000000 0000 Drazin Inverse 000 Simple Answers for Complex Systems 000000

HMMs and their transition structure

The Zero Eigenvalue, (di)Graphically

$$\Lambda_A = \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\}$$

So, $0 \in \Lambda_A \Longrightarrow \det(A) = 0 \Longrightarrow A^{-1} \neq \operatorname{inv}(A)$

Basics Functions of Operators

Drazin Inverse

Simple Answers for Complex Systems 000000

HMMs and their transition structure

The Zero Eigenvalue, (di)Graphically

$$\Lambda_A = \left\{ \lambda \in \mathbb{C} : \det(A - \lambda I) = 0 \right\}$$

So, $0 \in \Lambda_A \Longrightarrow \det(A) = 0 \Longrightarrow A^{-1} \neq \operatorname{inv}(A)$

Time evolution: T^n

Basics Functions of Operators

Drazin Inverse

Simple Answers for Complex Systems 000000

HMMs and their transition structure

Time evolution: T^n

The Zero Eigenvalue, (di)Graphically

$$\Lambda_A = \left\{ \lambda \in \mathbb{C} : \det(A - \lambda I) = 0 \right\}$$

So, $0 \in \Lambda_A \Longrightarrow \det(A) = 0 \Longrightarrow A^{-1} \neq \operatorname{inv}(A)$

An Operator and its Spectrum

Spectrum

The spectrum of an operator A consists of the set of points $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is not invertible. BasicsFunctions of OperatorsDrazin InverseSimpl0000000000000000000000

Simple Answers for Complex Systems 000000

Definitions

An Operator and its Spectrum

Spectrum

The spectrum of an operator A consists of the set of points $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is not invertible.

Resolvent

The resolvent of A, $\mathcal{R}(z; A) \equiv (zI - A)^{-1}$, where z is a continuous complex variable, thus contains all of the spectral information about A (and more).

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

• Algebraic multiplicity a_{λ}

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

- Algebraic multiplicity a_{λ}
- Geometric multiplicity g_{λ}

$$\Lambda_A \equiv \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$$

- Algebraic multiplicity a_{λ}
- Geometric multiplicity g_{λ}
- The index ν_{λ} of the eigenvalue λ is the size of the largest Jordan block associated with λ .

Basics ○○○○○●○	Functions of Operators 0000	Drazin Inverse 000	Simple Answers for Complex Systems
Projection C	perators		
Definit	ion		

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

$$A_{\lambda} \equiv \frac{1}{2\pi i} \oint_{C_{\lambda}} \mathcal{R}(z; A) dz$$
$$= \operatorname{Res} \left[(zI - A)^{-1}, z \to \lambda \right]$$

Basics ○○○○○●○	Functions of Operators	Drazin Inverse 000	Simple Answers for Complex Systems
Projection O	perators		
Definit	ion		

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

$$A_{\lambda} \equiv \frac{1}{2\pi i} \oint_{C_{\lambda}} \mathcal{R}(z; A) dz$$
$$= \operatorname{Res} \left[(zI - A)^{-1}, z \to \lambda \right]$$

If A is diagonalizable, then the projection operator can be simply expressed as:

$$A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$$

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
0000000	0000	000	000000
Projection O	perators		
Definit	ion		

Projection Operator

The projection operator of A associated with the eigenvalue λ is:

$$A_{\lambda} \equiv \frac{1}{2\pi i} \oint_{C_{\lambda}} \mathcal{R}(z; A) dz$$
$$= \operatorname{Res} \left[(zI - A)^{-1}, z \to \lambda \right]$$

If A is diagonalizable, then the projection operator can be simply expressed as: $A_{\lambda} = \prod_{\zeta \in \Lambda_A \setminus \{\lambda\}} \frac{A - \zeta I}{\lambda - \zeta}$. If $a_{\lambda} = 1$, then the projection operator can be simply expressed as:

$$A_{\lambda} = \frac{1}{\langle \boldsymbol{\lambda} | \boldsymbol{\lambda} \rangle} | \boldsymbol{\lambda} \rangle \langle \boldsymbol{\lambda} | ,$$

where $\langle \boldsymbol{\lambda} |$ is the left eigenvector of A associated with λ and $|\boldsymbol{\lambda} \rangle$ is the right eigenvector of A associated with λ . (Note: $\langle \boldsymbol{\lambda} | \neq | \boldsymbol{\lambda} \rangle^{\dagger}$!)

 Basics
 Functions of Operators
 Drazin Inverse
 Simple Answers for Complex Systems

 000000
 0000
 000
 0000

 Projection Operators
 000
 0000

Some General Properties of Projection Operators

• $\{A_{\lambda}\}$ is a mutually orthogonal set:

$$A_{\zeta}A_{\lambda} = \delta_{\zeta,\lambda} A_{\lambda}$$

 Basics
 Functions of Operators
 Drazin Inverse
 Simple Answers for Complex Systems

 000000
 000
 000
 000000

 Projection Operators
 000
 000000

Some General Properties of Projection Operators

• $\{A_{\lambda}\}$ is a mutually orthogonal set:

$$A_{\zeta}A_{\lambda} = \delta_{\zeta,\lambda} A_{\lambda}$$

• The projection operators are a resolution of the identity:

$$I = \sum_{\lambda \in \Lambda_A} A_{\lambda}$$

BasicsFunctions of OperatorsDrazin InverseSimple Answers for Complex Syste00000000000000000000

Choosing a functional calculus

Taylor Series

Inspired by $f(a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (a - \xi)^n.$ $f(A) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (A - \xi I)^n .$

 Basics
 Functions of Operators
 Drazin Inverse
 Simple Answers for Complex System

 0000000
 0000
 000
 000000

Choosing a functional calculus

Taylor Series

Inspired by $f(a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (a - \xi)^n.$ $f(A) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (A - \xi I)^n .$ • Limited domain of convergence

Basics Functions of Operators 0000000 0000 Drazin Inverse

Simple Answers for Complex Systems

Choosing a functional calculus

Taylor Series	Holomorphic Functional Calculus
Inspired by	Inspired by
$f(a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (a - \xi)^n.$	$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz.$
$f(A) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (A - \xi I)^n .$	$f(A) = \frac{1}{2\pi i} \oint_{C_{\Lambda_A}} f(z)(zI - A)^{-1} dz$
	Extends $f(A)$ beyond Taylor domain.
• Limited domain of	
convergence	

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Syst
0000000	0000	000	000000
The Rev	colvent Resolved		

Partial Fraction Decomposition of the Resolvent:

$$\mathcal{R}(z; A) = (zI - A)^{-1}$$

$$= \frac{\mathcal{C}^{\top}}{\det(zI - A)}$$

$$= \frac{\mathcal{C}^{\top}}{\prod_{\lambda \in \Lambda_A} (z - \lambda)^{a_{\lambda}}}$$

$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{a_{\lambda} - 1} \frac{1}{(z - \lambda)^{m+1}} A_{\lambda,m}$$

$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} \frac{1}{(z - \lambda)^{m+1}} A_{\lambda} (A - \lambda I)$$

n

for $z \notin \Lambda_A$, where \mathcal{C} is the matrix of cofactors of zI - A; A_{λ} is the *projection operator* associated with λ . Basics Functions of Operators 0000000 0000 Drazin Inverse

Simple Answers for Complex Systems 000000

Choosing a functional calculus

Holomorphic Functional Calculus
Inspired by
$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz.$
$f(A) = \frac{1}{2\pi i} \oint_{C_{\Lambda_A}} f(z)(zI - A)^{-1} dz$ $= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} \frac{f^{(m)}(\lambda)}{m!} (A - \lambda I)^m A_{\lambda} .$
Extends $f(A)$ beyond Taylor domain

Basics Functions of Operators 0000000 0000 Drazin Inverse

Simple Answers for Complex Systems

Choosing a functional calculus

Taylor Series	Holomorphic Functional Calculus
Inspired by $f(a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (a - \xi)^n.$	Inspired by $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz.$
$f(A) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\xi)}{n!} (A - \xi I)^n .$	$f(A) = \frac{1}{2\pi i} \oint_{C_{\Lambda_A}} f(z)(zI - A)^{-1} dz$ $= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} \frac{f^{(m)}(\lambda)}{m!} (A - \lambda I)^m A_{\lambda} .$
	Extends $f(A)$ beyond Taylor domain.
• Limited domain of	shortcomings
convergence	• $f(z)$ must be holomorphic at Λ_A

Basics Functions of Operators

Drazin Inverse

Simple Answers for Complex Systems 000000

Choosing a functional calculus

Holomorphic Functional Calculus

Inspired by $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz.$

$$f(A) = \frac{1}{2\pi i} \oint_{C_{\Lambda_A}} f(z)(zI - A)^{-1} dz$$
$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} \frac{f^{(m)}(\lambda)}{m!} (A - \lambda I)^m A_{\lambda}$$

Extends f(A) beyond Taylor domain.

shortcomings

• f(z) must be holomorphic at Λ_A

 Basics
 Functions of Operators

 000000
 0000

Drazin Inverse

Simple Answers for Complex Systems

Choosing a functional calculus

Holomorphic Functional Calculus

Inspired by $f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz.$

$$f(A) = \frac{1}{2\pi i} \oint_{C_{\Lambda_A}} f(z)(zI - A)^{-1} dz$$
$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} \frac{f^{(m)}(\lambda)}{m!} (A - \lambda I)^m A_{\lambda}$$

Extends f(A) beyond Taylor domain.

shortcomings

• f(z) must be holomorphic at Λ_A

Functions of Operators

Drazin Inverse 000 Simple Answers for Complex Systems 000000

Choosing a functional calculus

Meromorphic Functional Calculus

Inspired by

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz.$$

$$f(A) = \frac{1}{2\pi i} \oint_{C_{\Lambda_A}} f(z)(zI - A)^{-1} dz$$
$$= \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda} - 1} A_{\lambda} (A - \lambda I)^m \left(\frac{1}{2\pi i} \oint_{C_{\lambda}} \frac{f(z)}{(z - \lambda)^{m+1}} dz\right) .$$

Extends f(A) beyond both Taylor and holomorphic domain.

asics Functions of Operators

Drazin Inverse 000 Simple Answers for Complex Systems 000000

Meromorphic functional calculus

Meromorphic functional calculus

$$f(A) = \sum_{\lambda \in \Lambda_A} \sum_{m=0}^{\nu_{\lambda}-1} A_{\lambda} \left(A - \lambda I \right)^m \left(\frac{1}{2\pi i} \oint_{C_{\lambda}} \frac{f(z)}{(z-\lambda)^{m+1}} \, dz \right) \;,$$

- Poles and zeros of f(z) can interact with poles of resolvent.
- Extends f(A) beyond holomorphic domain.

Basics 0000000	Functions of Operators $\bullet 000$	Drazin Inverse 000	Simple Answers for Complex Systems
Example			
Powers	s of Matrices		

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} {L \choose m} \lambda^{L-m} A_{\lambda} (A - \lambda I)^{m} + [0 \in \Lambda_{A}] \sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m}$$

for any $L \in \mathbb{C}$, where $\binom{L}{m}$ is the generalized binomial coefficient:

$$\binom{L}{m} = \frac{1}{m!} \prod_{n=1}^{m} (L - n + 1)$$

with $\binom{L}{0} = 1$.

Basics 0000000	Functions of Operators 0000	Drazin Inverse 000	Simple Answers for Complex Systems
Example			
Powers	s of Matrices		

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} \binom{L}{m} \lambda^{L-m} A_{\lambda} (A-\lambda I)^{m} + [0 \in \Lambda_{A}] \sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m}$$

for any
$$L \in \mathbb{C}$$
, $\binom{L}{m} = \frac{1}{m!} \prod_{n=1}^{m} (L-n+1)$ with $\binom{L}{0} = 1$.

E.g.:
$$\binom{0}{m} = 0$$
 unless $m = 0$, so:

$$A^0 = \sum_{\lambda \in \Lambda_A} A_\lambda = I \; .$$

Basics 0000000	Functions of Operators 0000	Drazin Inverse 000	Simple Answers for Complex Systems
Example			
D	съд –		

Powers of Matrices

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} {L \choose m} \lambda^{L-m} A_{\lambda} (A-\lambda I)^{m} + [0 \in \Lambda_{A}] \sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m}$$

for any $L \in \mathbb{C}$, ${L \choose m} = \frac{1}{m!} \prod_{n=1}^{m} (L-n+1)$ with ${L \choose 0} = 1$.

E.g.:

$$\binom{1}{m} = 0 \text{ unless } m = 0 \text{ or } m = 1, \text{ so:}$$

$$A^{1} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{1} \lambda^{L-m} A_{\lambda} (A - \lambda I)^{m} + [0 \in \Lambda_{A}] A_{0} A$$

$$= \sum_{\lambda \in \Lambda_{A}} \lambda A_{\lambda} + \sum_{\lambda \in \Lambda_{A}} A_{\lambda} (A - \lambda I)$$

Basics 0000000	Functions of Operators 0000	Drazin Inverse 000	Simple Answers for Complex Systems
Example			
D	C N T		

Powers of Matrices

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} {L \choose m} \lambda^{L-m} A_{\lambda} (A-\lambda I)^{m} + [0 \in \Lambda_{A}] \sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m}$$

for any $L \in \mathbb{C}, \ {L \choose m} = \frac{1}{m!} \prod_{n=1}^{m} (L-n+1)$ with ${L \choose 0} = 1.$

E.g.:

$$\binom{1}{m} = 0 \text{ unless } m = 0 \text{ or } m = 1, \text{ so:}$$

$$A^{1} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{1} \lambda^{L-m} A_{\lambda} (A - \lambda I)^{m} + [0 \in \Lambda_{A}] A_{0} A$$

$$= \sum_{\lambda \in \Lambda_{A}} \lambda A_{\lambda} + \sum_{\lambda \in \Lambda_{A}} A_{\lambda} (A - \lambda I) = D + N = A .$$

where D is diagonable, N is nilpotent, and [D, N] = 0.

Basics 0000000	Functions of Operators 0000	Drazin Inverse 000	Simple Answers for Complex Systems 000000
Example			
Powers	of Matrices		

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} {\binom{L}{m}} \lambda^{L-m} A_{\lambda} (A-\lambda I)^{m} + [0 \in \Lambda_{A}] \sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m}$$

for any
$$L \in \mathbb{C}$$
, $\binom{L}{m} = \frac{1}{m!} \prod_{n=1}^{m} (L - n + 1)$ with $\binom{L}{0} = 1$.

E.g.:
$$\binom{-|L|}{m} = (-1)^m \binom{|L|+m-1}{m}$$
 and $\binom{m}{m} = 1$, so:

$$A^{-1} = \sum_{\lambda \in \Lambda_A \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} (-1)^m \lambda^{-1-m} A_{\lambda} (A - \lambda I)^m$$

Basics 0000000	Functions of Operators 0000	Drazin Inverse 000	Simple Answers for Complex Systems 000000
Example			
Powers	of Matrices		

$$A^{L} = \sum_{\lambda \in \Lambda_{A} \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} \binom{L}{m} \lambda^{L-m} A_{\lambda} (A-\lambda I)^{m} + [0 \in \Lambda_{A}] \sum_{m=0}^{\nu_{0}-1} \delta_{L,m} A_{0} A^{m}$$

for any
$$L \in \mathbb{C}$$
, $\binom{L}{m} = \frac{1}{m!} \prod_{n=1}^{m} (L - n + 1)$ with $\binom{L}{0} = 1$.

E.g.:

$$\binom{-|L|}{m} = (-1)^m \binom{|L|+m-1}{m} \text{ and } \binom{m}{m} = 1, \text{ so:}$$

$$A^{-1} = \sum_{\lambda \in \Lambda_A \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} (-1)^m \lambda^{-1-m} A_{\lambda} (A - \lambda I)^m = A^{\mathcal{D}} \neq \text{inv}(A) (!)$$

where $A^{\mathcal{D}}$ is the *Drazin inverse* of A.

-

Basics 0000000	Functions of Operators 0000	Drazin Inverse ●00	Simple Answers for Complex Systems
Drazin, Drazin	, Drazin		
Drazin	Inverse, Spectral	lly	

$$A^{\mathcal{D}} = \sum_{\lambda \in \Lambda_A \setminus \{0\}} \sum_{m=0}^{\nu_{\lambda}-1} (-1)^m \lambda^{-1-m} A_{\lambda} (A - \lambda I)^m .$$

When A is diagonable, this reduces to:

$$A^{\mathcal{D}} = \sum_{\lambda \in \Lambda_A \setminus \{0\}} \lambda^{-1} A_{\lambda} \quad \text{if } \nu_{\lambda} = 1 \text{ for all } \lambda \in \Lambda_A .$$

 A^{-1} from the meromorphic functional calculus satisfies all of the properties of the unique Drazin inverse as it is axiomatically defined for matrices with index ν_0 :

$(1^{ u_0})$	$A^{\nu_0}A^{\mathcal{D}}A = A^{\nu_0}$
(2)	$A^{\mathcal{D}}AA^{\mathcal{D}} = A^{\mathcal{D}}$
(5)	$[A, A^{\mathcal{D}}] = 0 \ .$

So $A^{-1} = A^{\mathcal{D}}$,

a.k.a., the $\{1^{\nu_0}, 2, 5\}$ -inverse.

Basics 0000000	Functions of Operators	Drazin Inverse 00●	Simple Answers for Complex Systems
Drazin, Drazin	, Drazin		
Drazin i	inverse or Group	inverse?	

For
$$\nu_0 = 1$$
, $A^{\mathcal{D}} = A^{\sharp}$.
For $\nu_0 > 1$, A^{\sharp} does not exist.

asics Functions of Operators

Drazin Inverse 000 Simple Answers for Complex Systems 000000

We are really bad at asking novel questions!

Most questions are of the form:

 $\langle \cdot | T^L | \cdot \rangle$

or

 $\sum_{n=0}^{L} \langle \cdot | T^n | \cdot \rangle$

asics Functions of Operators 000000 0000 Drazin Inverse 000 Simple Answers for Complex Systems 000000

We are really bad at asking novel questions!

Most questions are of the form:

 $\left\langle \cdot | \, T^L \, | \cdot \right\rangle \qquad \qquad \text{or} \ \left\langle \cdot | \, e^{tG} \, | \cdot \right\rangle$

or

$$\sum_{n=0}^{L} \langle \cdot | T^{n} | \cdot \rangle \qquad \text{or } \int \langle \cdot | e^{tG} | \cdot \rangle \ dt$$

Basics Functions of Operators 000000 0000 Drazin Inverse 000 Simple Answers for Complex Systems 000000

We are really bad at asking novel questions!

Most questions are of the form:

$$\langle \cdot | \, T^L \, | \cdot \rangle \qquad \qquad \text{or } \langle \cdot | \, e^{tG} \, | \cdot \rangle$$

or

$$\sum_{n=0}^{L} \langle \cdot | T^{n} | \cdot \rangle \qquad \text{or } \int \langle \cdot | e^{tG} | \cdot \rangle \ dt$$

Different representations of a process (diff. Ts or diff. Gs) needed to answer different questions (using linear algebra).

Basics Functions of Operators 0000000 0000 Drazin Inverse 000 Simple Answers for Complex Systems 000000

We are really bad at asking novel questions!

Most questions are of the form:

$$\left\langle \cdot \left| \, T^L \, \right| \cdot \right\rangle \qquad \qquad \text{or } \left\langle \cdot \right| \, e^{tG} \left| \cdot \right\rangle$$

or

$$\sum_{n=0}^{L} \langle \cdot | T^{n} | \cdot \rangle \qquad \text{or } \int \langle \cdot | e^{tG} | \cdot \rangle \ dt$$

Different representations of a process (diff. Ts or diff. Gs) needed to answer different questions (using linear algebra).

• Every time we ask a question like the bottom row, we invoke the Drazin inverse.

	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
			00000
Correlations ar	nd Power Spectra		

Correlations and Power Spectra are directly about observables: $\longrightarrow T$ of any representative HMM will do:

$$\gamma[\tau] = \left\langle \overline{X}_n X_{n+\tau} \right\rangle_n$$

	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
			00000
Correlations ar	nd Power Spectra		

Correlations and Power Spectra are directly about observables: $\longrightarrow T$ of any representative HMM will do:

$$\begin{split} \gamma[\tau] &= \left\langle \overline{X}_n X_{n+\tau} \right\rangle_n \\ &= \left\langle \overline{\mathcal{A}} \right| T^{|\tau|-1} \left| \mathcal{A} \right\rangle \;. \end{split}$$

$$P_{\rm c}(\omega) = 2 \operatorname{Re} \langle \overline{\mathcal{A}} | (e^{i\omega}I - T)^{-1} | \mathcal{A} \rangle + \operatorname{const} .$$

	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems	
0000000	0000	000	00000	
Information metrics				

Information metrics require *distributions* over states of any rep. of process:

 \longrightarrow Use W of mixed state presentation (MSP) of any rep. of process.

E.g., Myopic entropy rates:

 $H(X_L|X_{0:L}) = h_{\mu}(L) = \langle \cdot | W^n | \cdot \rangle$

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
Information me	etrics		

Information metrics require *distributions* over states of any rep. of process:

 \longrightarrow Use W of mixed state presentation (MSP) of any rep. of process.

E.g., Myopic entropy rates:

$$H(X_L|X_{0:L}) = h_{\mu}(L) = \langle \cdot | W^n | \cdot \rangle$$

Past-future mutual info:

$$I(X_{:0}; X_{0:}) = \mathbf{E} = \sum_{L=1}^{\infty} [h_{\mu}(L) - h_{\mu}] = \langle \cdot | (I - W)^{\mathcal{D}} | \cdot \rangle$$

Basics 0000000	Functions of Operators	Drazin Inverse 000	Simple Answers for Complex Systems $\circ \circ \bullet \circ \circ \circ$
Intrinsic Computation			

Measures of intrinsic computation require distributions over causal states:

. . .

 \longrightarrow Use \mathcal{W} of MSP of ϵ -machine.

 Basics
 Functions of Operators
 Drazin Inverse
 Simple Answers for Complex Systems

 0000000
 000
 000
 000
 000

 HMMs for SST

Joint Environmental-driving–System-state Dynamic

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems 000000
0000000	0000	000	
HMMs for SST			

$$Q_{\text{ex}} = \sum_{n=1}^{N} Q_{\text{ex}}[x_n; s_{n-1} \to s_n]$$

Basics 0000000	Functions of Operators	Drazin Inverse 000	Simple Answers for Complex Systems 000000
HMMs for SST			

$$Q_{\text{ex}} = \sum_{n=1}^{N} Q_{\text{ex}}[x_n; s_{n-1} \to s_n]$$

$$\begin{split} \langle Q_{\text{ex}} \rangle &= \langle \boldsymbol{\mu}_0 | \left(\sum_{n=0}^{N-1} \mathcal{T}^n \right) Q^{(X\mathcal{S})} | \mathbf{1} \rangle \\ &\to \langle \boldsymbol{\mu}_0 | \left(\int_{t=0}^{\tau} e^{t\mathcal{G}} dt \right) \mathcal{Q}^{(X\mathcal{S})} | \mathbf{1} \rangle \end{split}$$

For a broad subset of HMMs, the heat matrix turns out to be:

$$\mathcal{Q}_{ij}^{(XS)} = \frac{\mathcal{G}_{ij}}{\beta_j} \left[\ln \left(\pi_{x^j}(s^i) \right) - \ln \left(\pi_{x^j}(s^j) \right) \right]$$

Complexity Sciences Center

.

Basics 0000000	Functions of Operators	Drazin Inverse 000	Simple Answers for Complex Systems 000000
HMMs for SST			
$Q_{\rm ex} =$	$\sum_{n=1}^{N} Q_{\text{ex}}[x_n; s_{n-1}]$	$\rightarrow s_n]$	
	$\langle Q_{\mathrm{ex}} angle = \langle oldsymbol{\mu}_0 \left(\sum_{n=0}^{N-1} \mathcal{T} ight)$	$^{n}\Big)Q^{\left(X\mathcal{S} ight) }\left 1 ight angle$	
	$ ightarrow \langle oldsymbol{\mu}_0 \left(\int_{t=0}^ au e ight.$	$\left(\mathcal{L}^{t\mathcal{G}} dt \right) \mathcal{Q}^{(X\mathcal{S})} \left 1 \right\rangle$	
	$= \tau \langle \boldsymbol{\pi} \mathcal{Q}^{(X\mathcal{S})} $	$ 1\rangle + \langle \boldsymbol{\mu}_0 \mathcal{G}^{\mathcal{D}} ig(e^{ au t} ig)$	$\left \mathcal{J}-I ight)\mathcal{Q}^{\left(X\mathcal{S} ight)}\left 1 ight angle$
since	$e \int_0^\tau e^{t\mathcal{G}} dt = \tau \left 1 \right\rangle \left\langle \mathbf{\pi} \right $	$+ \mathcal{G}^{\mathcal{D}} (e^{\tau \mathcal{G}} - I).$	

For a broad subset of HMMs, the heat matrix turns out to be:

$$\mathcal{Q}_{ij}^{(XS)} = \frac{\mathcal{G}_{ij}}{\beta_j} \left[\ln \left(\pi_{x^j}(s^i) \right) - \ln \left(\pi_{x^j}(s^j) \right) \right]$$

.

Basics	Functions of Operators	Drazin Inverse	Simple Answers for Complex Systems
Closing Drazin	isms		

Where did you come from? Nobody knows. But Drazin knows best.

Remove your asymptotics; I want to see your transients. Love, Drazin