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Introduction

We often model synaptic plasticity as the change of a single number
(synaptic weight). In reality, there is a complex dynamical system inside a
synapse.

Semi-realistic models of synaptic plasticity have terrible memory without
synaptic complexity.

We will study the entire space of a broad class of models of complex
synapses to find upper bounds on their performance.

This leads to understanding of what structures are useful for storing
memories for different timescales.
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Synapses are complex

[Coba et al. (2009)] [Montgomery and Madison (2002)]

There is a complex, dynamic system underlying synaptic plasticity.
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Timescales of memory

Memories stored in different places
for different timescales

[Squire and Alvarez (1995)]
cf. Cerebellar cortex vs. cerebellar
nuclei.

[Krakauer and Shadmehr (2006)]

Different synapses have different
molecular structures.

[Emes and Grant (2012)]
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Section 1

Why complex synapses?
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Storage capacity of synaptic memory

A classical perceptron has a capacity ∝ N, (# synapses).

Requires synapses’ dynamic range also ∝ N.

With discrete, finite synapses:
=⇒ new memories overwrite old.

[Petersen et al. (1998), O’Connor et al. (2005)]

When we store new memories rapidly, memory capacity ∼ O(logN).
[Amit and Fusi (1992), Amit and Fusi (1994)]
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Trade-off between learning and remembering

Learning Remembering

Very plastic

Very rigid

Circumvent tradeoff: go beyond model of synapse as single number.
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Section 2

Modelling synaptic memory
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Recognition memory

Synapses given a sequence of patterns (pot & dep) to store

Later: presented with a pattern. Has it been seen before?
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Quantifying memory quality

Have we seen pattern before? Test if ~wideal · ~w(t) ≷ θ?
~wideal · ~w(∞) ∼ null distribution =⇒ ROC curve:

FPR

TPR

1

1 SNR(t) = 〈~wideal ·~w(t)〉 − 〈~wideal ·~w(∞)〉√
Var(~wideal ·~w(∞))

,

NNR(t) =
√

Var(~wideal ·~w(t))
Var(~wideal ·~w(∞)) .

Look at: SNR(τ) = 〈SNR(t)〉P(t | τ) , P(t | τ) = e−t/τ

τ .
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Models of complex synaptic dynamics

Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong
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Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation

Depression

States: #AMPAR, #NMDAR, NMDAR subunit composition,
CaMK II autophosphorylation, activating PKC, p38 MAPK,...

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]
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Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event
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Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation event

Depression event

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Models of complex synaptic dynamics
Internal functional state of synapse → synaptic weight.
Candidate plasticity events → transitions between states

weak

strong

Potentiation

Depression

Metaplasticity: change propensity for plasticity
(independent of change in synaptic weight).

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 13 / 37



Example models
Two example models of complex synapses.

Cascade model Serial model

[Fusi et al. (2005), Leibold and Kempter (2008), Ben-Dayan Rubin and Fusi (2007)]
These have different memory storage properties
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Questions

Can we understand the space of all possible synaptic models?
How does structure (topology) of model → function (memory curve)?
What are the limits on what can be achieved?
Which transition topologies saturate these limits?
Can synaptic structure be tuned for different timescales of memory?
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Parameters for synaptic dynamics

There are N identical synapses with M internal functional states.

p∞ Plasticity
events

fpot

fdep

Mpot

Mdep

p(t) wr

dp(t)
dt = rp(t)WF, WF = f potMpot + f depMdep − I,

p∞WF = 0.

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 16 / 37



Constraints

Memory curve given by

SNR(t) =
√

N(2f potf dep) p∞
(
Mpot −Mdep

)
exp

(
rtWF

)
w,

SNR(τ) =
√

N(2f potf dep) p∞
(
Mpot −Mdep

) [
I− rτWF

]−1
w.

Constraints: Mpot/dep
ij ∈ [0, 1],

∑
j Mpot/dep

ij = 1.

Eigenmode decomposition:

SNR(t) =
√

N
∑

a
Ia e−rt/τa ,

SNR(τ) =
√

N
∑

a

Ia
1 + rτ/τa

,
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Section 3

Upper bounds
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Upper bounds on measures of memory

Initial SNR:
SNR(0) = SNR(0) ≤

√
N.

1

1

Area under curve:

A =
∫ ∞

0
dt SNR(t) = lim

τ→∞
τ SNR(τ) ≤

√
N(M − 1)/r .

ε

ε

[Lahiri and Ganguli (2013)]
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Initial SNR as flux

Initial SNR is closely related to flux between strong & weak states

SNR(0) ≤ 4
√

N
r Φ−+.

Max when potentiation guarantees w→ +1,
depression guarantees w→ −1.
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Two-state model

Two-state model equivalent to previous slide:

Transitions:

1

1

=⇒ SNR(t) =
√

N (4f potf dep) e−rt .

Maximal initial SNR:
SNR(0) ≤

√
N.
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Area under memory curve

A =
∫ ∞

0
dt SNR(t), SNR(τ)→ A

τ
as τ →∞.

Area bounds memory lifetime:

SNR(lifetime) = 1
=⇒ lifetime < A.

lifetime

1

Time

S
N

R

This area has an upper bound:

A ≤
√

N(M − 1)/r .

Saturated by a model with linear chain topology.
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Proof of area bound

For any model, we can construct perturbations that

preserve equilibrium
distribution,
increase area.

details

e.g. decrease “shortcut” transitions, increase bypassed “direct” ones.
Endpoint: linear chain

The area of this model is

A = 2
√

N
r

∑
k

p∞k |k − 〈k〉| .

Max: equilibrium probability distribution concentrated at both ends.
[Barrett and van Rossum (2008)]
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Saturating model

Make end states “sticky”

ε

ε
Has long decay time, but terrible initial SNR.

lim
ε→0

A =
√

N(M − 1)/r .
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Section 4

Envelope memory curve
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Bounding finite time SNR

SNR curve:
SNR(τ) =

√
N
∑

a

Ia
1 + rτ/τa

,

subject to constraints:∑
a
Ia ≤ 1,

∑
a
Ia τa ≤ M − 1.

We can maximise wrt. Ia, τa.
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Proven envelope: memory frontier

Upper bound on memory curve at any time.

Initial SNR:
1

1

Late times:
ε

ε

[Lahiri and Ganguli (2013)]

No model can ever go above this envelope. Is it achievable?
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Achievable envelope

Serial topology:
1

1
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Models that maximise memory for one timescale
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Models that maximise memory for one timescale
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Heuristic envelope

ε

ε

ε

ε

ε

ε
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Synaptic structures for different timescales of memory

Real synapses limited by molecular building blocks.
Evolution had larger set of priorities.

What can we conclude?

Short timescales −→ Intermediate timescales −→ Long timescales

1

1
−→

1

1
−→

ε

ε

short & wide −→ long & thin

strong transitions −→ weak transitions
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Section 5

Experimental tests?
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Proposed Experimental design
Subject a synapse to a sequence of candidate plasticity events.
Observe the changes in synaptic efficacy.

EM algorithms:
Sequence of hidden states → estimate transition probabilities
Transition probabilities → estimate sequence of hidden states

[Baum et al. (1970), Rabiner and Juang (1993), Dempster et al. (2007)]

Spectral algorithms:
Compute P(w1),P(w1,w2),P(w1,w2,w3), . . . from data,

from model.
[Hsu et al. (2008)]
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Fitting algorithm
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Experimental problems

Need single synapses.
Need long sequences of plasticity events.
Need to control types of candidate plasticity events.
Need to measure synaptic efficacies.

When we patch the postsynaptic neuron → Ca washout.
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Summary

We have formulated a general theory of learning and memory with
complex synapses.
The area under the memory curve of any model < linear chain with
same equilibrium distribution.
We find a memory envelope: a single curve that cannot be exceeded
by the memory curve of any synaptic model.
Synaptic complexity (M internal states) raises the memory envelope
linearly in M for times > O(M).
We understood which types of synaptic structure are useful for storing
memories for different timescales.
Gap between envelope and what we can achieve at early times?
Trade-off between SNR at different times?

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 36 / 37



Acknowledgements

Thanks to:
Surya Ganguli
Stefano Fusi
Marcus Benna
David Sussillo
Jascha Sohl-Dickstein

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 37 / 37



References I

M. P. Coba, A. J. Pocklington, M. O. Collins, M. V. Kopanitsa, R. T. Uren,
S. Swamy, M. D. Croning, J. S. Choudhary, and S. G. Grant.
“Neurotransmitters drive combinatorial multistate postsynaptic density
networks”.
Sci Signal, 2(68):ra19, (2009) .

5

Johanna M. Montgomery and Daniel V. Madison.
“State-Dependent Heterogeneity in Synaptic Depression between Pyramidal
Cell Pairs”.
Neuron, 33(5):765 – 777, (2002) .

5

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 1 / 10

http://dx.doi.org/10.1126/scisignal.2000102
http://dx.doi.org/10.1016/S0896-6273(02)00606-2


References II

Larry R Squire and Pablo Alvarez.
“Retrograde amnesia and memory consolidation: a neurobiological
perspective”.
Current Opinion in Neurobiology, 5(2):169–177, (April, 1995) .

6

John W Krakauer and Reza Shadmehr.
“Consolidation of motor memory.”.
Trends in neurosciences, 29(1):58–64, (January, 2006) .

6

Richard D. Emes and Seth G.N. Grant.
“Evolution of Synapse Complexity and Diversity”.
Annual Review of Neuroscience, 35(1):111–131, (2012) .

6

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 2 / 10

http://dx.doi.org/10.1016/0959-4388(95)80023-9
http://dx.doi.org/10.1016/j.tins.2005.10.003
http://dx.doi.org/10.1146/annurev-neuro-062111-150433


References III

Carl C. H. Petersen, Robert C. Malenka, Roger A. Nicoll, and John J.
Hopfield.
“All-or-none potentiation at CA3-CA1 synapses”.
Proc. Natl. Acad. Sci. U.S.A., 95(8):4732–4737, (1998) .

9

Daniel H. O’Connor, Gayle M. Wittenberg, and Samuel S.-H. Wang.
“Graded bidirectional synaptic plasticity is composed of switch-like unitary
events”.
Proc. Natl. Acad. Sci. U.S.A., 102(27):9679–9684, (2005) .

9

D. J. Amit and S. Fusi.
“Constraints on learning in dynamic synapses”.
Network: Computation in Neural Systems, 3(4):443–464, (1992) .

9

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 3 / 10

http://dx.doi.org/10.1073/pnas.0502332102
http://dx.doi.org/10.1088/0954-898X_3_4_008


References IV

D. J. Amit and S. Fusi.
“Learning in neural networks with material synapses”.
Neural Computation, 6(5):957–982, (1994) .

9

S. Fusi, P. J. Drew, and L. F. Abbott.
“Cascade models of synaptically stored memories”.
Neuron, 45(4):599–611, (Feb, 2005) .

21 36

S. Fusi and L. F. Abbott.
“Limits on the memory storage capacity of bounded synapses”.
Nat. Neurosci., 10(4):485–493, (Apr, 2007) .

21

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 4 / 10

http://dx.doi.org/10.1162/neco.1994.6.5.957
http://dx.doi.org/10.1016/j.neuron.2005.02.001
http://dx.doi.org/10.1038/nn1859


References V

A. B. Barrett and M. C. van Rossum.
“Optimal learning rules for discrete synapses”.
PLoS Comput. Biol., 4(11):e1000230, (Nov, 2008) .

21 45

Christian Leibold and Richard Kempter.
“Sparseness Constrains the Prolongation of Memory Lifetime via Synaptic
Metaplasticity”.
Cerebral Cortex, 18(1):67–77, (2008) .

36

Daniel D Ben-Dayan Rubin and Stefano Fusi.
“Long memory lifetimes require complex synapses and limited sparseness”.
Frontiers in computational neuroscience, 1(November):1–14, (2007) .

36

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 5 / 10

http://dx.doi.org/10.1371/journal.pcbi.1000230
http://dx.doi.org/10.1093/cercor/bhm037
http://dx.doi.org/10.3389/neuro.10/007.2007


References VI

Subhaneil Lahiri and Surya Ganguli.
“A memory frontier for complex synapses”.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 1034–1042. NIPS, 2013.

41 49

LE Baum, T Petrie, George Soules, and Norman Weiss.
“A maximization technique occurring in the statistical analysis of
probabilistic functions of Markov chains”.
The annals of mathematical statistics, 41(1):164–171, (1970) .

73 74 75 76 77 78 79

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 6 / 10

http://papers.nips.cc/paper/4872-a-memory-frontier-for-complex-synapses
http://papers.nips.cc/paper/4872-a-memory-frontier-for-complex-synapses
http://papers.nips.cc/paper/4872-a-memory-frontier-for-complex-synapses
http://dx.doi.org/10.2307/2239727


References VII

Lawrence R Rabiner and Biing-Hwang Juang.
Fundamentals of speech recognition, volume 14 of Signal Processing.
Prentice Hall, Inc., Upper Saddle River, NJ, USA, 1993.
ISBN 0-13-015157-2.

73 74 75 76 77 78 79

A. P. Dempster, N. M. Laird, and D. B. Rubin.
“Maximum Likelihood from Incomplete Data via the EM Algorithm”.
Journal of the Royal Statistical Society. Series B (Methodological), (October,
2007) .

73 74 75 76 77 78 79

Daniel Hsu, Sham M. Kakade, and Tong Zhang.
“A Spectral Algorithm for Learning Hidden Markov Models”.
pages 1460–1480, (nov, 2008) , arXiv:0811.4413.

73 74 75 76 77 78 79

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 7 / 10

http://www.jstor.org/stable/info/2984875
http://arxiv.org/abs/0811.4413
http://arxiv.org/abs/0811.4413
http://arxiv.org/abs/0811.4413


References VIII

J.G. Kemeny and J.L. Snell.
Finite markov chains.
Springer, 1960.

101

Subhaneil Lahiri (Stanford) Complex synapses October 28, 2015 8 / 10



Techinical detail: ordering states

Let Tij = mean first passage time from state i to state j . Then:

η =
∑

j
Tijp∞j ,

is independent of the initial state i (Kemeney’s constant).
[Kemeny and Snell (1960)]

We define:

η+
i =

∑
j∈strong

Tijp∞j , η−i =
∑

j∈weak
Tijp∞j .

They can be used to arrange the states in an order (increasing η− or
decreasing η+). back
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Technical detail: upper/lower triangular

With states in order:

Endpoint: potentiation goes right, depression goes left.
back
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