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Objectives:	

(a) to	understand	and	exploit	intrinsic	
statistical	synergies	of	multivariate	
systems	

(b) apply	this	to	data	privacy	and	neural	
data	analysis	
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Today’s	menu

1.	Self-organisation

2.	O-information

3.	Data	privacy

4.	Summary	and	current	work
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1.	Self-organisation:	what	is	a	pattern	

What	is	a	pattern/structure?	

Shannon	—>	compressibility		of	an	statistical	source	
																										Regularities	/	interdepedencies	(i.e.	deviations	from	statistical	independence)	

																		
																												

													

Organisation	as	statistical	interdependency
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1.	What	is	self-organization?	

Attractor:	destination/result	of	the	evolution	
		
Linear	recurrence	/	evolution	is	simple																																simple/uninteresting	attractors	
Non-linear	evolution																																																																		interesting/strange	attractors	

Challenge:		
Is	it	possible	to	relate	the	attractors	properties	to	organization	properties?
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1.	What	is	self-organization?	

Attractor:	destination/result	of	the	evolution	
		
Linear	recurrence	/	evolution	is	simple																																simple/uninteresting	attractors	
Non-linear	evolution																																																																		interesting/strange	attractors	

Idea:	high-order	correlations	allow	to	distinguish	qualitatively	different	arrangements…	

redundancy! synergy!



1.	Self-organisation:	our	approach	

Approach	to	study	spontaneous	creation	of	correlations:	

—			Consider	an	flat	initial	distribution								(independence)	

—			Compute	it’s	time	evolution	(					)	using	the	corresponding	“master	equation”	

—			Iterate	for	many	steps,	or	until	it	reach	a	stationary	state																												.																													

—			Analyse	the	“structure	of	the	correlations”	of																															.	

Why	start	from	an	uniform	distribution?	
Because	any	correlation	found	is	due	to	the	evolution	and	not	the	initial	condition.	
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µ0
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1.	Self-organisation:	dynamics	as	sculpture…	
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“The	Atlas”	
	Michelangelo	
Circa	1530-1534

“The	Awakening	Slave”	
	Michelangelo	
Circa	1520-1523

�t

�0
t



1.	Self-organisation:	entropy	is	not	enough	

Is	easy	to	prove	that,	because	of	determinism,	the	joint	Shannon	entropy	of	the	system	is	
non-increasing.	

This	not	sufficient	to	guarantee	self-organization!!	(example:	fix	point	attractors)	
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H(X1
t+1, . . . , X

N
t+1)  H(X1

t , . . . , X
N
t )

Information	is	being	dissipated	
It	takes	more	information	to	specify	a	random	state		

than	a	point	in	an	attractor	
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Is	easy	to	prove	that,	because	of	determinism,	the	joint	Shannon	entropy	of	the	system	is	
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H(X1
t+1, . . . , X

N
t+1)  H(X1

t , . . . , X
N
t )

Information	is	being	dissipated	
It	takes	more	information	to	specify	a	random	state		

than	a	point	in	an	attractor	

Key	idea:		
The	destruction	of	information	

can	create	correlations!!	

H(X) H(Y )

H(X) H(Y )

I(X;Y )



1.	Self-organisation:	proposed	framework	
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Our	proposed	total	entropy	decomposition:

F.	Rosas,	P.A.	M.	Mediano,	M.	Ugarte,	H.J.	Jensen,	“An	information-theoretic	approach	to	self-organization:	
emergence	of	complex	interdependencies	in	coupled	dynamical	systems”,	Entropy	20,	no.	10	(2018):	793.

"Residual	entropy”

“Binding	entropy”



1.	Self-organisation:	proposed	framework	

Decomposition	by	sharing	modes:	
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by	measuring	i	agents	
can	guess	the	state	of	n…



1.	Self-organisation:	proposed	framework	

Decomposition	by	sharing	modes:	

where	
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1.	Self-organisation:	proof	of	concept	

Rule	232	
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1.	Self-organisation:	proof	of	concept	

Rule	232	
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1.	Self-organisation:	proof	of	concept	

Rule	30	
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1.	Self-organisation:	proof	of	concept	

Rule	30	
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1.	Self-organisation:	proof	of	concept	
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1.	Self-organisation:	proof	of	concept	
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Today’s	menu

1.	Self-organisation

2.	O-information

3.	Data	privacy

4.	Summary	and	current	work



2.	O-information:	fundamentals	

	1.	Interaction-information:	

2.	Total	correlation:	

3.	Dual	total	correlation:	

State	of	affairs:	

(+)		TC	and	DTC	are	metrics	of	global	correlation	strength.	

(	-	)	TC=0	if	and	only	if	DTC=0.	Besides	that,	their	relationship	is	unclear.	

(+)					

(+)																																			=	TC	-	DTC	.	

(	-	)	The	meaning	of	the	interaction-information	for	n	>	3	is	unclear.	
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is	positive	for	redundant	systems,	and	negative	for	synergistic	ones.	
I(X1;X2;X3) = I(X1;X3) + I(X2;X3)� I(X1X2;X3)

I(X1;X2;X3)

TC(Xn) =
nX

j=1

H(Xj)�H(Xn)

DTC(Xn) = H(Xn)�
nX

j=1

H(Xj |Xn
�j)

I(X1;X2; . . . ;Xn) = �
X

�✓{1,...,n}

(�1)|�|H(X�)



2.	O-information:	fundamentals	

	1.	Interaction-information:	

2.	Total	correlation:	

3.	Dual	total	correlation:	
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How	could	I	“fix”		
the	interaction-info	for	

	any	n	??

TC	or	DTC?	
that	is	the	question…

The	information-theoretic	Hamlet

TC(Xn) =
nX

j=1

H(Xj)�H(Xn)

DTC(Xn) = H(Xn)�
nX

j=1

H(Xj |Xn
�j)

I(X1;X2; . . . ;Xn) = �
X

�✓{1,...,n}

(�1)|�|H(X�)



2.	O-information:	the	two	faces	of	interdependency	

Consider	a	system																																										where																				,	described	by	a	p.d.f.																					.		
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nX

j=1

log |Xj |

N (Xn) =
X

j

log |Xj |�H(Xn)

H(Xn) = �
X

xn

pxn log pxn

Negentropy

Entropy

Xn = (X1, . . . , Xn) Xj 2 Xj pXn(xn)

H(Xn)

N (Xn)



2.	O-information:	the	two	faces	of	interdependency	

Consider	a	system																																										where																				,	described	by	a	p.d.f.																					.	
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nX

j=1

log |Xj |

Negentropy

Entropy

X1, X2 2 {0, 1}

pX1X2(0, 0) = pX1X2(1, 1) = 0

pX1X2(0, 1) = pX1X2(1, 0) = 1/2

H(X1X2) = N (X1X2) = 1

(0, 0) (0, 1)

(1, 0) (1, 1)
+

+

Example:

H(Xn) = �
X

xn

pxn log pxn

N (Xn) =
X

j

log |Xj |�H(Xn)

Xn = (X1, . . . , Xn) Xj 2 Xj pXn(xn)

H(Xn)

N (Xn)



2.	O-information:	the	two	faces	of	interdependency	
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N (X5)N (X4)N (X3)N (X2)N (X1)

TC

N (X6)

nX

j=1

log |Xj |

H(Xn) = �
X

xn

pxn log pxn

N (Xn) =
nX

j=1

N (Xj) + TC

Individual	constraints
Collective	constraints

Marginal	negentropy: N (Xj) = log |Xj |�H(Xj)

Collective	constraints: TC(Xn) = N (Xn)�
nX

j=1

N (Xj) =
nX

j=1

H(Xj)�H(Xn)



2.	O-information:	the	two	faces	of	interdependency	
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N (X5)N (X4)N (X3)N (X2)N (X1)

TC

N (X6)

nX

j=1

log |Xj |

H(Xn) = �
X

xn

pxn log pxn

N (Xn) =
nX

j=1

N (Xj) + TC

(0, 0) (0, 1)

(1, 0) (1, 1)
+

+
Example: (0, 0) (0, 1)

(1, 0) (1, 1)
+ +

N (X1X2) = 1

TC(X1X2) = 1

N (X1X2) = 1

TC(X1X2) = 0

Individual	constraints
Collective	constraints



2.	O-information:	the	two	faces	of	interdependency	
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R1
R2 R3 R4 R5

N (X5)N (X4)N (X3)N (X2)N (X1)

TC

DTC

N (X6)

R6

N (Xn) =
nX

j=1

N (Xj) + TC

H(Xn) =
nX

j=1

Rj +DTC

nX

j=1

log |Xj |

Private	randomness

Collective	constraints

Shared	randomness

Individual	constraints

Residual	entropies:

Binding	entropy: DTC(Xn) = H(Xn)�
nX

j=1

H(Xj |Xn
�j)

Rj = H(Xj |Xn
�j)



2.	O-information:	the	two	faces	of	interdependency	
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R1
R2 R3 R4 R5

N (X5)N (X4)N (X3)N (X2)N (X1)

TC

DTC

N (X6)

R6

N (Xn) =
nX

j=1

N (Xj) + TC

H(Xn) =
nX

j=1

Rj +DTC

nX

j=1

log |Xj |

Private	randomness

Collective	constraints

Shared	randomness

Example: X1 = X2 = X3

TC = 2 > DTC = 1

X3 = X1 �X2

TC = 1 < DTC = 2

redundancy! synergy!

Individual	constraints



2.	O-information:	the	two	faces	of	interdependency	
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R1
R2 R3 R4 R5

N (X5)N (X4)N (X3)N (X2)N (X1)

TC

DTC

N (X6)

R6

N (Xn) =
nX

j=1

N (Xj) + TC

H(Xn) =
nX

j=1

Rj +DTC

nX

j=1

log |Xj |

Private	randomness

Collective	constraints

Shared	randomness

Example: X1 = X2 = X3

TC = 2 > DTC = 1

X3 = X1 �X2

TC = 1 < DTC = 2

redundancy! synergy!

Individual	constraints



2.	O-information:	definition	

Occam’s	raizor		(lex	parsimoniae):	give	preference	to	the	simplest	description			

• If																												it	is	shorter	to	describe	the	allowed	states.		

• If																												it	is	shorter	shorter	to	describe	the	constraints.	
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Definition	

⌦(Xn) = TC(Xn)�DTC(Xn)O-information:

⌦(Xn) > 0

⌦(Xn) < 0

F.	Rosas,	P.A.	M.	Mediano,	M.	Gastpar,	and	H.	J.	Jensen.	"Quantifying	High-order	Interdependencies	via	
Multivariate	Extensions	of	the	Mutual	Information,”	accepted,	to	be	published	in	PRE,	2019
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Occam’s	raizor		(lex	parsimoniae):	give	preference	to	the	simplest	description			

• If																												it	is	shorter	to	describe	the	allowed	states.		

• If																												it	is	shorter	shorter	to	describe	the	constraints.	
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Definition	

⌦(Xn) = TC(Xn)�DTC(Xn)O-information:

⌦(Xn) > 0

⌦(Xn) < 0

Example:

redundancy! synergy!

X1 = X2 = · · · = Xn

TC = n� 1 > DTC = 1 TC = 1 < DTC = n� 1

Xn = X1 �X2 � · · ·�Xn�1

F.	Rosas,	P.A.	M.	Mediano,	M.	Gastpar,	and	H.	J.	Jensen.	"Quantifying	High-order	Interdependencies	via	
Multivariate	Extensions	of	the	Mutual	Information,”	accepted,	to	be	published	in	PRE,	2019



2.	O-information:	definition	

Occam’s	raizor		(lex	parsimoniae):	give	preference	to	the	simplest	description			

• If																												it	is	shorter	to	describe	the	allowed	states.		

• If																												it	is	shorter	shorter	to	describe	the	constraints.	
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Definition	

⌦(Xn) = TC(Xn)�DTC(Xn)O-information:

⌦(Xn) > 0

⌦(Xn) < 0

Definition	

1. A	system	is	redundancy-dominated	if		

2. A	system	is	synergy-dominated	if

⌦(Xn) � 0

⌦(Xn)  0



2.	O-information:	definition	

Occam’s	raizor		(lex	parsimoniae):	give	preference	to	the	simplest	description!			

• If																												it	is	shorter	to	describe	the	allowed	states.		

• If																												it	is	shorter	shorter	to	describe	the	constraints.	

Note:	

1.		n=2:																																	,	because																																																																																		
																		i.e.	shared	randomness	is	equal	to	predictability	
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Definition	

⌦(Xn) = TC(Xn)�DTC(Xn)O-information:

⌦(Xn) > 0

⌦(Xn) < 0

⌦(X1X2) = 0 TC(X1X2) = DTC(X1X2) = I(X1;X2)



2.	O-information:	definition	

Occam’s	raizor		(lex	parsimoniae):	give	preference	to	the	simplest	description!			

• If																												it	is	shorter	to	describe	the	allowed	states.		

• If																												it	is	shorter	shorter	to	describe	the	constraints.	

Note:	

1.		n=2:																																	,	because																																																																																		
																		i.e.	shared	randomness	is	equal	to	predictability	

2.	n=3:																																																																																																																														—>	interaction-information!	
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Definition	

⌦(Xn) = TC(Xn)�DTC(Xn)O-information:

⌦(Xn) > 0

⌦(Xn) < 0

⌦(X1X2) = 0 TC(X1X2) = DTC(X1X2) = I(X1;X2)

⌦(X1X2X3) = I(X1;X2)� I(X1;X2|X3) =: I(X1;X2;X3)



2.	O-information:	(1)	it	is	sum	of	triple	interaction-informations	

• Decompositions	for	the	TC,	DTC	and	o-information:
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O-information	is	an	aggregation	of	triple		
multi-informations!!	



2.	O-information:	(1)	it	is	sum	of	triple	interaction-informations	

• Decompositions	for	the	TC,	DTC	and	o-information:
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2.	O-information:	(1)	it	is	sum	of	triple	interaction-informations	

• Decompositions	for	the	TC,	DTC	and	o-information:
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HXY ZW

HXY +HZW

HXZ +HYW

HXW +HY Z

HY +HZWXHX +HY ZW HZ +HWXY HW +HXY Z

HY +HZ +HXW

HX +HW +HY Z
HX +HZ +HYWHX +HY +HZW HY +HW +HXZ HZ +HW +HXY

HX +HY +HZ +HW

HXY |ZW +HZW |XY

HXZ|YW +HYW |XZ

HXW |Y Z +HY Z|XW

HY |ZWX +HZWX|YHX|Y ZW +HY ZW |X HZ|WXY +HWXY |Z HW |XY Z +HXY Z|W

HY |ZWX +HZ|WXY +HXW |Y Z

HX|Y ZW +HW |XY Z +HY Z|XW

HX|Y ZW +HZ|WXY +HYW |XZHX|Y ZW +HY |ZWX +HZW |XY HY |ZWX ++HW |XY Z +HXZ|YW HZ|WXY +HW |XY Z +HXY |ZW

HX|Y ZW +HY |ZWX +HZ|WXY +HW |XY Z



2.	O-information:	(2)	characterization	of	extreme	values	

• Decompositions	for	the	TC,	DTC	and	o-information:	

• Upper	and	lower	bounds:	

• Characterization	of	unique	extremes	of	the	o-information:
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Maximum: X1 = X2 = · · · = Xn Minimum: Xn =
n�1X

j=1

Xj (mod k)



2.	O-information:	(3)	null	value	of	non-overlapping	pairwise	interactions	

• O-information	of	independent	subgroups	is	additive:	

• If	a	system’s	is	decomposable	in	disjoint	pairwise	interactions	then		

• The	converse	is	not	true!!	(synergies	and	redundancies	cancel	each	other)	

• Local	o-information																																																											can	give	a	fine-grained	description	of	the	system…	
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⌦(Xn,Y m) = ⌦(Xn) + ⌦(Y m)pXn,Y m(xn,ym) = pXn(xn)pY m(ym)

⌦(Xn) = 0

!i,j = I(Xi;Xj ;X
n
�i�j)



2.	O-information:	(4)	value	implies	bounds	over	different	scales	

• The	value	of	the	O-information	provide	constraints	over	the	interdependencies	of	subgroups!	

• 																													

!41



2.	O-information:	(5)	redundancy	of	trees	

• O-information	is	non-negative	in	graphical	models	with	three	structure!	

• For	Naive	Bayes,	the	o-information	is	given	by	

• For	Markov	chains,	the	o-information	is
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⌦(Xn) = C(Xn
2 ) � 0

1 2 n…3



2.	O-information:	(6)	synergy	is	pervasive	in	large	systems	

• The	mean	value	of	the	o-information	over	random	distributions	grows	negative!	
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2 4 6 8

�4

�2

0

System size n

Gaussian systems

2 4 6 8

�0.8

�0.6

�0.4

�0.2

0

System size n

⌦

Binary systems

Analytical
Monte Carlo
Approximation

(Williams & Beer, 2010)(Williams & Beer, 2010)(Williams & Beer, 2010)(Williams & Beer, 2010)



2.	O-information:	relationship	with	statistical	mechanics	

1.	Connected	information	(Schneidman	et	al.	2003):	

State	of	affairs:	

(+)		Interesting	connection	with	statistical	mechanics.	

(+)	Intuitive	interpretation.	

(	-	)	Very	hard	to	compute…		
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Con(Xn) =

Pn
k=1 H(Xj)�H(Xn

maxent)

TC(Xn)



2.	O-information:	relationship	with	statistical	mechanics	

1.	Connected	information	(Schneidman	et	al.	2003):	

• Hamiltonian	with	high-order	terms	tend	to	have	negative	O-information	
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Con(Xn) =

Pn
k=1 H(Xj)�H(Xn

maxent)

TC(Xn)



2.	O-information:	analysis	pipeline	
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Procedure	

1.	Compute																				and																					as	metrics	of	global	correlation	strength.	

2.	Compute																			to	find	dominant	global	behaviour	(redundancy	or	synergy).	

3.	Study	the	local	o-information	terms,	i.e.																																								for	all	i	and	j	,	
				as	a	measure	of	localised	behaviour.	

⌦(Xn)

I(Xi;Xj ;X
n
�i,�j)

B(Xn) C(Xn)



2.	O-information:	Case	study	on	baroque	music	scores	

Data	analysis	over	music	scores	from	the	Baroque	period	(Python,	Music21	package)	

i)	chorales	for	four	voices	by	J.S.	Bach	(1685–1750)	

!47



2.	O-information:	Case	study	on	baroque	music	scores	

Data	analysis	over	music	scores	from	the	Baroque	period	(Python,	Music21	package)	

i)	chorales	for	four	voices	by	J.S.	Bach	(1685–1750)	

Data	format:	four	synchronous	time	series,	
																										alphabet	of	13	values	(12	tones+silence)	

Database:	300~	chorales,	43k	four-note	chords	
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2.	O-information:	Case	study	on	baroque	music	scores	

Data	analysis	over	music	scores	from	the	Baroque	period	(Python,	Music21	package)	

i)	chorales	for	four	voices	by	J.S.	Bach	(1685–1750)	

				(43k	four-note	chords)	

ii)	Op.	1,	3,	4,	5	and	6	of	A.	Corelli	(1653–1713)		
				(80k	four-note	chords)	
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2.	O-information:	Case	study	on	baroque	music	scores	

Data	analysis	over	music	scores	from	the	Baroque	period	(Python,	Music21	package)	
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2.	O-information:	Case	study	on	baroque	music	scores	

Data	analysis	over	music	scores	from	the	Baroque	period	(Python,	Music21	package)	
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Synergy	allows	the	coexistence	of		
local	independency	and	global	coordination	
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Today’s	menu

1.	Self-organisation

2.	O-information

3.	Data	privacy

4.	Summary	and	current	work



3.	Synergy	and	data	privacy:	key	ideas	

Privacy	funnel:	maximize	correlation	with	feature	of	interest,		
																													while	keeping	private	stuff	secure	
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3.	Synergy	and	data	privacy:	key	ideas	

Privacy	funnel:	maximize	correlation	with	feature	of	interest,		
																													while	keeping	private	stuff	secure	

However,	it	is	often	the	case	where	the	feature	of	interest	is	unknown	

But	the	DP	inequality	make	it	seem	unfeasible…		
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3.	Synergy	and	data	privacy:	key	ideas	

Idea:	make	Y	independent	of	each	coordinate	of	X,	but	correlated	with	the	whole!!
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3.	Synergy	and	data	privacy:	key	ideas	

Idea:	make	Y	independent	of	each	coordinate	of	X,	but	correlated	with	the	whole!!
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3.	Synergy	and	data	privacy:	main	results	
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3.	Synergy	and	data	privacy:	main	results	
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To	learn	more	about	this:	
1. B.	Rassouli,	F.	E.	Rosas,	and	D.	Gunduz.	"Data	Disclosure	under	Perfect	Sample	Privacy."	Submitted	

to	IEEE	Transactions	in	Information	Forensics	and	Security	(TIFS),	under	review.	arXiv	preprint	
arXiv:1904.01711	(2019).	

2. B.	Rassouli*,	F.	E.	Rosas*,	and	D.	Gunduz,"Latent	Feature	Disclosure	under	Perfect	Sample	
Privacy."	In	2018	IEEE	International	Workshop	on	Information	Forensics	and	Security	(WIFS),	pp.	
1-7.	IEEE,	2018.	
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1.	Self-organisation

2.	O-information
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4.	Summary	and	current	work



Further	reading:	
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1. B.	Rassouli*,	F.	E.	Rosas*,	and	D.	Gunduz,"Latent	Feature	Disclosure	under	Perfect	Sample	Privacy."	
In	2018	IEEE	International	Workshop	on	Information	Forensics	and	Security	(WIFS),	pp.	1-7.	IEEE,	2018.		

2. B.	Rassouli,	F.	E.	Rosas,	and	D.	Gunduz.	"Data	Disclosure	under	Perfect	Sample	Privacy."	Submitted	to	
IEEE	Transactions	in	Information	Forensics	and	Security	(TIFS),	under	review.	arXiv	preprint	arXiv:
1904.01711	(2019).	

3. F.	Rosas,	P.A.	M.	Mediano,	M.	Ugarte,	H.J.	Jensen,	“An	information-theoretic	approach	to	self-
organization:	emergence	of	complex	interdependencies	in	coupled	dynamical	systems”,	Entropy	20,	no.	10	
(2018):	793.	

4. F.	Rosas,	P.A.	M.	Mediano,	M.	Gastpar,	and	H.	J.	Jensen.	"Quantifying	High-order	Interdependencies	via	
Multivariate	Extensions	of	the	Mutual	Information,”	accepted,	to	be	published	in	PRE,	2019



PD:	current	work	

Driving	questions:	
											1.	Is	the	brain	a	synergistic	multi-agent	system?	
											2	.Is	consciousness	related	with	high-order	statistics?	
											3.	Can	PID	principles	help	us	to	understand	the	effect	of	psychedelic	drugs?	

!61

!!!
!!Imperial)College)London)
))Centre)for)Complexity)Science)

!

!

Complexity

Science



Acknowledges:	

This	work	is	the	result	of	the	fortunate	collaboration	with	

- Pedro	Mediano	(Imperial	College	London)	
- Henrik	J.	Jensen		(Imperial	College	London)	
- Michael	Gastpar	(EPFL)	
- Martin	Ugarte	(Université	libre	de	Bruxelles)	
- Borzoo	Rasouli	(University	of	Essex)	
- Deniz	Gündüz	(Imperial	College	London)	

Special	thanks	for	the	Marie	Slodowska-Curie	program	from	H20202	and	the	European	Commission.

!62



!63

Thank	you!

Contact	information:	

Fernando	Rosas	

f.rosas@imperial.ac.uk	


