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> . > Task

Z is a learned z j@i

/ *
representation of X E.g., parametrized by :

neural network

Jutline:
“Disentangling”
“Fair” representation learning

Lossy Compression in representation learning
e Gaussian vs Echo compression
* Higher order interactions

Slides with all paper links: http://bit.ly/ST

* Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new perspect
transactions on pattern analysis and machine intelligence, 35(8): 1798-1828, 2013.



<L is King

In machine learning, Kullback-Leibler divergence and
related quantities are dominant: Maximum likelihood,
cross entropy loss, variational inference, Mutual
information

But there are practical issues for machine learning:

e Estimation is hard

Often rely on loose bounds

Usage is incorrect / inappropriate / poorly motivated

Highly non-convex optimization

Underflows lead to numerical errors with rare events, log 0 = - oo



Other information measures in ML?

Smoother optimization (than KL divergence) with Wasserstein distance
(earth mover distance for distributions) p ka (
A

e Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN,
https://arxiv.org/abs/1701.07875

Other (in)dependence measures: Hilbert-Schmidt Independence Criterion
(HSIC) / Maximum-Mean Discrepancy (MMD) / kernel trick

* Introduced: Gretton et al 2007
* Example usage: InfoVAE, arXiv:1706.02262

Almost never in ML: Renyi, info decomposition, synergy, intersection,
common info

* Wyner common information: arXiv:1606.02307
* Synergy: arXiv:1710.03839
* Hierarchical decomposition of total correlation: arXiv:1410.7404




Disentangling™ - encourage Z; to matj
intuitive” factors of variation (W|thout |

abels)

, Tian Qj, et af.
ting sources of
tanglement in

tional
ancoders.” NIPS 2018
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(a) Baldness (-6, 6) (b) Face width (0, 6) (¢) Gender (-6, 6) (d) Mustache (-6, 0)
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Z)=E, |log
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)apers working on this angle... with dubious results, see review:
0 Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Scholkopf, and OlivierBachem. Challenging con

ions in the unsupervised learning of disentangled representations. arXiv preprint arXiv:1811.12359, 2018.



[he Grue Language doesn’t have words
or “blue” or “green”

Grue = Green during the day, blue at night
Bleen = Blue during the day, green at night

Bleen
Grue

- -




Needlessly complicated?

slish is needlessly complicated because: Grue lang
speake

en = Grue during day and bleen at night

=
e = Bleen during day and grue at night ((:\'l _,J
S——=

(Also, what is deal with “the”
and “a”? Why you have these

useless words?)



2ush the bleen button and we let you
JO...

Elaborate
\ windowless c:




srue language is synergistic

me and grue > time only or grue only
nplete info)  (no info) Y\ @

predicting what you will see

Is there hope for a plausible information-theoretic
principle of “disentangling”? And one that can be
optimized for learning?



-air and Invariant
rRepresentations

BRIEF HISTORY Of FAIRNESS IN ML

OH, CRAP.

PAPERS

LOL FAIRNESS!!

] |
20 202 203 204 20 2006 2017

https://towardsdatascience.com/a-tutorial-on-fairness-
in-machine-learning-3ff8ba1040ch




An Information-theoretic notion of
airness

A Age: 37
Income :
erough AnY approval

‘constraint. decision decision
D _l ké7 D) - process
Gender, race...

Application : > A > Q > $$$ Loa n

Example: your task is to approve loans
To be fair, you don’t want to discriminate based on protected variable
For historical reasons, S may be correlated with X

By removing information about S from the representation Z that we L
for decision making, we make it impossible to be biased against S



Adversarial approach

Make sure an adversary
cannot reconstruct S from Z

This doesn’t guarantee that
1(Z;S) is small! Adversaries
only provide lower bounds
on mutual information.

(Nevertheless adversarial
learning revolutionized
some problems)

S
Adv/_
Encoder
e 4
q(zx) Cond. Dec. %
S p(x|z,s)

C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel.
variational fair autoencoder. arXiv preprint arXiv:151
2015.

Q. Xie, Z. Dai, Y. Du, E. Hovy, and G. Neubig. Controlla
invariance through adversarial feature learning. Neur



A direct, information-theoretic approach

We derive an upper bound on I(Z;S)

that can be tractably optimized Comp"ess'on Constant
(450) & —lg Uogpgx\z S)J + Lg\ 45
|
Conditional
reconstruction > Compressed .
code
. Encoder 5 Cond. Dec.
Main idea in NIPS 2018, arXiv:1805.09458 a(z|x) p(x|z,s)

Application to fMRI: arXiv:1904.05375 S

When and how to remove information? L ik SRR ORIE S QRS



.o

Z is a compressed representation of X,
that should be useful for reconstruction

_0Ssy compression (and
VAE'S)

ariational auto-encoders (VAEs) are our motivating example. They have an interpretation in terms of
enerative models as well as with rate-distortion, as discussed in several papers:

lemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., and Murphy, K. Fixing a broken ELBO. In
iternational Conference on Machine Learning, pp. 159-168, 2018.

ezende, D. J. and Viola, F. Taming VAEs. arXiv preprint arXiv:1810.00597, 2018.

rekelmans, Moyer, Galstyan, and Ver Steeg. "Exact Rate-Distortion in Autoencoders via Echo
oise." arXiv preprint arXiv:1904.07199 (2019).



/ariational Auto-Encoder (VAE)

p(X|:
- NG o
Observed (variational (generative
distribution approximation to model)

p(z|x))

1coder and decoder parametrized by neural nets
oal is to maximize likelihood of observations under generative model



/ariational Evidence Lower BOund

ELBO)
—y "TTOoOr v\, —

_(1 - T O LTV \(T) - .lX.LJL‘_’]_%L

q log po (x|z) — DKL[

True for any p(z). The choice with the tightest bound is p(z)=q(z)
Lg(x) 108 Po\X) = Lq, 105 Po(X|Z)

111AXN J_L‘Jqu LlUépQ \Alb}J —

0,

Distortion / Compression
reconstruction loss



Jompression: bounds and a
1ew exact approach with echo
10IS€e



nformation in a noisy channel

Noisy channel v

3 q\Z,X) = q|

(= Dicr Il

information

Input X
distribution QKX QKZ




2roblem

q(z) =/ dx q(z|
| |

High-d Could be complex
integral (images, audio,
gene expression...)



pproximate as Gaussian for (MaxEnt)

pper bound
Zi — Lq t e; ~ JV (L

\pproximate q(z) as Normal: p(zi) = N (1L(x;), Var(

I(Z;X) <y log kl +

)nly tight if the input is Gaussian, and each channel is independent



-cho noise

vy choosing a more flexible noise channel, we can exactly specify information rate:

or arbitrary inputs ‘ : Y : I



—cho noise: make the noise look like the’
signal
Vhy?

* For correlated Gaussian noise, optimal signal is correlated in same basis
e Key property for analytic mutual information under arbitrary input



=cho noise: make the noise look like the)
signal

low do we make the noise look like the signal?

= J(X)-
= JRY) 4 () 54 f(x9)
= f(x) + SU'(X\”’) + sf(x\") 4 /\

W
Multiply out and re-label iid samples.... g -
these are the same (in distribution)!




-xample: a non-Gaussian input
listribution

\ uniform distribution in R? with a shape that strikes fear into the hear:
f villains and Gaussians

g\ X



-cho example, z=x+s ¢, with s=1/2

+
I




Sample-dependent noise scaling

[V R VI

Z:J‘QX) N }.

C >

TEV H(1Q(X\(C,‘ ‘ X _ Translation invarian

N . | de_ J. /‘
Hi(se)=H(2)-
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Scale property



lutual information for the echo noise
hannel

H(Z) — H(g) Sample-dependent noise s

Self-similar noise (Echo)

Z,X) — H(Z) — H(Z‘Mutualinformationdecon
(43 A ) = —IL10g |

[ VI



lutual information for the echo noise
hannel

Works for any input (sampling noise requires samples of input)
Set S(x) = s to get a simple, exact Ml =-log s

But S(x) is controllable (e.g. specify with a neural net) - a powerful
way to get more flexible noise models

(45 X ) = —IL10g |



=cho results: arXiv:1904.07199

Exact mutual information, rather than bound
Better log likelihood bounds
Better rate-distortion trade-offs

Simpler than other state-of-the-art methods that require a
complicated “autoregressive flow” model to parametrize non-

Gaussianity

Bigger question: How should we compress?
imple noise (Gaussians, dropout) may not be optimal.



/ariational Evidence Lower BOund
ELBO)

111AX .Ll_‘dqu LlUé ye \A|ZJ}J -
0,
Distortion / Compression
reconstruction loss



rReconstruction and higher
rder Interactions



1igher order dependence

Total Correlation / multlvarlate mutual information (Watanabe, 1960

7
e Maximized when variables are redundant

“Cohesion” measure of order k
C(X) = = > H(X
(k—l) XAEgk

* Papers discussing: (Fujishige, 1978), Nihat Ay information geometry
2007/2011

* Maximizers correspond to error correcting codes: arXiv:1811.10839




-LBO for higher order interactions

Normal ELBO (can be derived from TC)

I 10g P\L) = p IO P\LG |2,

New ELBO based on Ck
j >

I Tog p(@

o Q) logp(x
(k—l) X AEEL

Can we use it to optimize VAEs to detect higher order interactions?
(preliminary results: maybel!)



Jetect embedded synergies?
challenge idea?)

1
L] LD L3 L
|
»
»
»
»

Kristian: information lost in high order correlations



_onclusion/questions

Manipulating information in (high-d) representation learning
* Does it matter how we compress? (E.g. Gaussian vs echo)
What do we want to reconstruct? (marginals versus higher order interactions)
Fair / invariant representations - How to omit sensitive info?
Is there an information principle to disentangle?
Puzzles about the success of adversarial learning Synergy

Do information bottlenecks improve generalization? ;‘%\(

Practical issues:

* Appropriate measures, that also have: Grue S Fair |
» Efficient estimates or bounds, and
 Differentiable / smoothly optimizable

Appllcatlon
Age: 37
Income:
enough
Zip: 90031

Contact: gregv@isi.edu
Get these slides: http://bit.ly/STEEG BS




Jisentangling toy data: dSprites

Suppose we observe the following dataset:

Factors:

- Scale

- Shape

- Orientation

This is part of a common artificial test set you’ll see in the literature. Generally, we
need a test set with known ground truth factors for evaluation



Adversarial learning and Jensen

N " Examples generated by StyleGAN arXiv:18
>hannon Divergence S
nerative Adversarial Networks are the ¥ S 18 Sk

ite-of-the-art way to generate realistic
ages.

nsen-Shannon Divergence (JSD) tells us
)W easily we can distinguish two
stributions: in this case “real images” and
enerated images”.

stead of minimizing JSD, adversaries that
/ to distinguish provide a lower bound on
D which is then minimized

Figure 2. Uncurated set of images produced by our style-
generator (config F) with the FFHQ dataset. Here we used a



Neural nets as information bottlenecks
lll'ob)&l\i , x ) — /Ul
T

A
wartz-Ziv and N. Tishby. Opening the black 10 —
X of deep neural networks via information.
Xiv:1703.00810, 2017.

N. Nets function as bottlenecks with a
fitting phase” and “compression phase”

_ompression aids generalization

inputs) - T ( representation) — Y (labels to predict)

o
©

o
o

Prediction
I(T;Y)

© ©
N RS

o
o

O
=
3

xe et al. “On the information bottleneck
eory of deep learning”, ICLR 2018.

“ounter-examples for each of Tishby’s claims

Compression



Jne problem for Tishby's analysis is
2stimating mutual information

For continuous random variables, if z=f(x), I(Z;X) = o<
Tishby discretizes to estimate the mutual information...

If you discretize differently (or apply invertible transformations with
the same discretization), you get different results

Alternatives:
 Add noise to bound mutual information of continuous variables

e Other estimators?



Jse neural nets to estimate mutual
nformation

Mixture of Gaussians
e Kolchinsky and Tracey, arXiv:1706.02419

Donsker-Varadhan (lower bound on KL/mutual information)
* Belghazi, Mohamed Ishmael, et al. "Mine: mutual information neural
estimation." arXiv preprint arXiv:1801.04062 (2018)

* Poole, Ben, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and Georg
Tucker. "On variational lower bounds of mutual information." In NeurlPS

Workshop on Bayesian Deep Learning. 2018.

Impossible with few samples?
 McAllester, David, and Karl Statos. "Formal Limitations on the Measurement
of Mutual Information." arXiv preprint arXiv:1811.04251 (2018).



Jther papers | forgot

The Information Complexity of Learning Tasks, their Structure and
their Distance. Alessandro Achille * & Giovanni Paolini T & Glen
Mbeng ¥ & Stefano Soatto *

Information-Theoretic Lower Bounds on BayesRisk in Decentralized
Estimation. Aolin Xu and Maxim Raginsky Senior Member, IEEE



Error Plots — Prisma 30 to Connectom 30

Mirzaalian et al. (2018) Baseline vs Single-site Proposed Method
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nterpretability through mutual informatior
egularization

i Chen, Yan Duan, Rein Houthooft, John Schulman, llya Sutskever, Pieter Abbeel (2016) InfoGAN:
1terpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Guide most information into a special neuron, c,

Max Loss + I(c,; x)

Another example of this phenomenon: arXiv:1802.05822




