
Predicting and controlling systems of interdependent networks: Exploiting interdependence for control

FY2013 Multidisciplinary University Research Initiative (MURI) Topic: Controlling Collective Phenomena in Complex Networks

U. S. Army Research Laboratory and the U. S. Army Research Office contract/grant number W911NF-13-1-0340

- Raissa M. D'Souza, UC Davis
- Jim Crutchfield, UC Davis
- Leonardo Duenas-Osorio, Rice University
- Jessica Flack, University of Wisconsin
- David C. Krakauer, University of Wisconsin
- Mehran Mesbahi, University of Washington
- Michael Roukes, California Institute of Technology

A diverse team, spanning an array of fields: Network Science, Information Theory, Control Theory, Critical Infrastructure, Sensitivity Analysis, Statistics, Nonlinear Dynamics, Animal Behavior, Nanoscale device physics...

State-dependent, dynamic networks

Dynamics of networks coupled to dynamics on networks, especially in noisy, dynamic environments

• Task 1. Collective Computation

• Task 2. Interdependent and layered networks

• Task 3. Exploiting interdependence for control

Task 1. "Collective Computation"

- Task 1.1: Network Information Theory and Functional Pattern Formation: Crutchfield (Lead), Flack & Krakauer, Roukes (pattern formation)
- Task 1.2: Collective Computation (Game theoretic underpinnings: Network function and structure): Flack (Lead), Krakauer, Crutchfield, Roukes (node knock-out experiments; subsystems with competing objectives)
- Task 1.3: Control of state-dependent dynamic networks: Mesbahi (Lead), Flack, Crutchfield, D'Souza, Roukes (state-dependence)

Task 2. Interdependent and layered networks

- Task 2.1: Structure of interdependent networks: D'Souza (Lead) & Dueñas-Osorio
- Task 2.2: Function of interdependent networks: D'Souza & Dueñas-Osorio (co-leads), Roukes (synchronization)
- Task 2.3: Beyond the adjacency matrix: New mathematical representations for networks of networks: Mesbahi (Lead), D'Souza, Dueñas-Osorio
 - Cartesian products
 - Kroneker graphs
 - hypergraphs

Task 3. Exploiting interdependence for control

- Task 3.1: Multi-modal recovery and distributed control: Dueñas-Osorio (Lead), D'Souza, Mesbahi
- Task 3.2: Control theory formulations: Mesbahi (Lead), Dueñas-Osorio, D'Souza, Roukes (layered arrays?)

Fundamental objectives stated in proposal

- To understand the mechanisms for the emergence of structure and function and for controlling them.
- To identify feedback, co-evolution and opportunities for control.
- To assess fundamental bounds on effective means of influencing dynamic networks through control- and system-theoretic formalisms.
- To create new mathematical models of interdependent networks.
- To uncover coupling and recovery processes from empirical databases.
- To reveal feasible control strategies for critical infrastructure, coupled systems, and social response.
- To reveal the mechanisms for emergence of synchronization and global clocks in noisy dynamic environments.
- To quantify the effects of node knock-out and compensatory perturbations for multi-system control.
- To build a vibrant community of researchers actively working on control of collective phenomena in complex multi-networks.
- To provide transdisciplinary training to the next generation of scientists and engineers.

Anticipated Outcomes

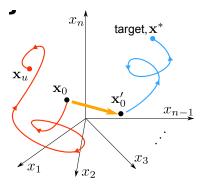
- Network interventions that prevent cascades of failure in critical infrastructures
- Novel control schemes relying on control actions and local interventions
- Rigorous principles for multi-modal recovery of heterogenous systems
- Designing incentives that align human behavior with the capabilities of technological networks
- Design of networks of nonlinear NEMs oscillators that exploit coupling and nonlinearity to create coherent motion
- New mathematical structures for representing and analyzing networks-of-networks, especially with respect to control theory
- Fundamental bounds on controllability of interdependent networks and rigorous techniques to identify which network layers are easiest to steer.

Summary of deliverables (details on pg 19-20)

	Schedule of Major Project Activities
Year 1	– Proposal for semester program in Year 3 sent to IPAM board for approval* (In ${\rm progress})$
	– Team meeting at UCD; intro to KeckCAVES (Nov 12, and today)
	 Mini-conference on control of interdependent networks at UC Davis (Leverages NSF funded "Shocks cascading through coupled networks" conference) (NetSci 2014: Tutorials & Satellite meeting)
	– First postdoc and student rotations (continue throughout project)
	- First student and faculty visits to ARL (cont throughout project)
Year 2	- Students attend SFI Summer School (1-2 students now and in each subsequent year)
	- Team meeting at Santa Fe Institute (or partner inst)
	 Sessions on control of interdependent networks organized at intl. conferences
	 New graduate courses developed in support of this MURI (materials released online)

*(Simmons Inst might also work as well as IPAM)

	Schedule of Major Project Activities, cont.
Year 3	– Semester program at IPAM
	– Team meeting at Caltech, University of Wisconsin or SFI
	- Special volume of J. Complex Networks on control of interdepen-
	dent networks
	– First batch of postdocs move onto positions in Academia, Industry
	or National Labs
Year 4	– Team meeting and mini-conference at UC Davis showcasing Keck-
	CAVES tools
	- Sessions on control of interdependent networks organized at intl.
	conferences
	- First PhD students trained under this MURI graduate
Year 5	 Team meeting (at Wisc, SFI, Rice or Wash.)
	- Postdocs move onto positions in Academia, Industry or National
	Labs
	 Final PhD students trained under this MURI graduate
	- Culminating international conference at Santa Fe Institute


Some accomplishments to date

- Team-wide, in-person meeting at UCD on Nov 12th.
 - Cross-cutting threads articulated (e.g., synchronization; spectral statistics; systems of multiple components with only partially aligned interests)
 - Concrete research projects (e.g., Cartesian products for critical infrastructure; NEMs systems to model collective computation; spillover in layered networks)
- Airlie Chapman joins team as postdoctoral scholar and rotation to UCD.
- Flack, D'Souza and Spencer (Google, letter of support for MURI) co-editors of a special volume of *IEEE Spectrum*.
- Crutchfield visit to UWisconsin, Nov 2013.
- NetSci 2014 events organized: Tutorials (Airlie Chapman);
 Satellite meeting on control of networks (Mesbahi, D'Souza)

- Make more crisp the concrete research projects and collaboration plans
- Guidance from Sam Stanton vision for success
- Deeper understanding of the experimental systems and real-world data sets
 - NEMs Oscillators today and planning 2-3 years out
 - Macaque monkey societies
 - Critical infrastructure

Controlling networks

A network with *n* nodes an *n*-dimensional phase space:

S.P. Cornelius, W.L. Kath, and A.E. Motter, arXiv:1105.3726 (2011), Nature Communications (2013). • Strong Control: want to control the state of each node.

• Weak/Partial Control: want to steer the system.

• Controlling self-organizing systems especially challenging: the system responds to the controller.

• State dependence: of system, including the environment