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• Jaynes’ information-theoretic formulation of statistical mechanics

• Two directions: 

- Macroscopic framework: Coarse-graining of patterns

- Microscopic framework: Order/disorder in correlations

BEYOND SHANNON—The Structure & Meaning of Information

Institute of Advanced Studies, University of Amsterdam, May 6-8, 2019



Information theory and statistical mechanics
(Jaynes, 1956)

Derivation of statistical physics distributions using the maximum entropy 
principle, under physical constraints, which gives the general form of the Gibbs 
distribution (as an equilibrium characterization).

Entropy:

Constraints: 
1) energy

2) # of molecules

3) normalization

Gibbs distribution:

Lagrangian variables:

Lagrangian variables

pressure p temperature T chemical potential μk



Two frameworks, illustrating different directions:

1. The macroscopic direction, with coarse-graining, exemplified by patterns in 
chemical reaction-diffusion dynamics [1].

2. The microscopic direction, where we identify characteristic features of 
microstates that reflect thermodynamic properties; example given by 
reversible Ising dynamics in 1D [2].

Information theory and statistical mechanics
(Jaynes, 1956)

[1] (Eriksson & Lindgren, 1987; Lindgren et al, 2004; Lindgren, 2015)
[2] (Lindgren & Olbrich, 2017)



The macroscopic direction — thermodynamics

The entropy of the Gibbs distribution results in Gibbs equation

Consider a system (V, U, Nk, S) in an environment characterized by (p0, T0, 
μk0). A relevant quantity is the relative information (or Kullback-Leibler 
divergence) between the corresponding Gibbs distributions, p and p(0):

This results in the relation (dating back to Gibbs, 1873)

where E is the exergy or available energy, i.e., the maximum work obtainable 
when bringing the system into equilibrium with the environment p(0).



For patterns in a chemical system we focus on μk, and we may assume constant 
temperature and pressure, T=T0 and p=p0, which with Gibbs equation results in

where we have assumed ideal solutions,                 , where ck are concentrations, 
and also showing the generalization to spatial patterns ck(x) in the system.

K is a relative information quantity that captures the physical information in a 
chemical pattern described by ck(x) with respect to an equilibrium reference ck0.

Information in a chemical pattern



This information K can be decomposed with respect to position and length scales 
(using coarse-graining). First we note that

where      is the average concentration in the system. Kspatial and Kchem quantifies 
deviation from spatial homogeneity and chemical equilibrium, respectively.

Information in a chemical pattern



Gray-Scott model (self-replicating spots)
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Gray & Scott, Chem Eng Sci (1984),
Pearson, Science (1993), and Lee et al, (1993).

Reaction-diffusion dynamics:
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Resolution – length scale

• We define the pattern of a certain component i at resolution r by 
”kernel smoothing” (convolution) of ci(x) with a Gaussian of 
width r

• with the properties
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Resolution – length scale

• We define the pattern of a certain component i at resolution r by 
”kernel smoothing” (convolution) of ci(x) with a Gaussian of 
width r

• with the properties
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Information density in the Gray-Scott model

• The information density for two resolution levels r illustrates 
the presence of spatial structure at different length scales.

Concentration of V:
cV (x, t)

Information density: 
k(r=0.01, x, t) k(r=0.05, x, t)

Good resolution Worse resolution



Continuity equation for information

R
es

ol
ut

io
n 

(le
ng

th
 s

ca
le

) 

x

y

r

Kspatial 

Kchem 



Dynamics of ck(x, t) given by reaction-diffusion equations (with possible flow Bk 
across system boundary in case of an open system),

Information in the chemical pattern is destroyed by the processes of diffusion and 
reactions, due to entropy production σ

Information change driven by reaction-diffusion dynamics

σdiffusion ≥ 0 σreactions ≥ 0



Dynamics of ck(x, t) given by reaction-diffusion equations (with possible flow Bk 
across system boundary in case of an open system),

Information in the chemical pattern is destroyed by the processes of diffusion and 
reactions, due to entropy production σ

Flows of chemicals across the system boundaries may lead to sustaining a certain 
level of chemical information Kchem, which may drive a pattern formation (or 
maintenance) process.

Information change driven by reaction-diffusion dynamics

σdiffusion ≥ 0 σreactions ≥ 0



Continuity equation for information
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Continuity equation for information
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on the microscopic level



Decomposition of information in entropy (disorder) and redundancy (order) 
provides us with a framework for investigating how (apparent) disorder may 
increase in reversible dynamics.

We will assume the system to be a lattice system in 1 dimension with n 
possible states per site. The total information per site of Itot = log n is then

where 

The terms km adding up to the total redundant information can be interpreted 
as correlation information over sequences of length m 

The microscopic direction

( entropy density  +  redundant information )

( Sm is the entropy for m-length sequences )



One key characteristic of such a system is its excess entropy η 
which is proportional to the average correlation length 

The microscopic direction



In a closed physical system obeying a reversible time dynamics, the 
entropy (and hence the redundancy) is a conserved quantity.

The entropy density as we defined it, can in the thermodynamic 
limit (infinite system size) be associated with a single microstate. 
(Assuming spatial ergodicity.)

It is also the case that in equilibrium, for a spatially discrete 
system, the entropy density of a such a microstate equals the 
statistical mechanics entropy of the macrostate.

The question is then: How can a reversible microdynamics with a 
conserved entropy be understood for a system that approaches (or 
appears to approach) an equilibrium state with a higher entropy?

The microscopic direction



If the system is closed, the answer must include how redundant 
information is spread out over increasing correlation lengths.

We illustrate how this happens in detail by the Q2R model 
(cellular automaton) that with local energy conservation flips spins 
in a one-dimensional Ising system[1].

The microscopic direction

[1] (Lindgren & Olbrich, 2017)



A reversible and energy conserving Ising dynamics

The Q2R rule[1] in one dimension: 
• Update spins by alternating between the two sub-lattices, of odd 

and even positions respectively. 
• Interaction energy u given by: u(↑↑) = –1, u(↑↓) = +1. 
• A spin in an updating state is flipped if energy is not changed.

Updating state:  _
Quiescent state:  . 

t

[1] Vichniac, 1984

t + 1



Reversible Ising dynamics in 1D

magnetization, m(t)

time step, t

Showing 250 sites from a system of length 214.
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Evolution of correlation information

correlation lengths, m

correlation information, km(t)

— correlation information at equilibrium

Showing the correlation information km, including the density information k1, 
up length m = 51, over time (t = 0, 1, 2, ..., 60).

Contributions to correlation information — ordered information
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