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Algorithmic Basis of Probability



Kolmogorov-Chaitin Complexity Theory

The question:
Algorithmic foundation for probability?

History:
| 776: Treatise on probability theory (Laplace)
1 920s: Frequency stability (von Mises)
| 930s: Foundations of probability theory (Kolmogorov)
| 940s: Information theory (Shannon ... Szilard 1920s!)
| 940s: Automata & computing theory (Turing)

1960s: KC Complexity Theory
(Kolomogoroyv, Chaitin, Solomonoff, ...)



Kolmogorov-Chaitin Complexity

Turing’s machine (1937):

Finite-state controller +
Infinite read-write tape

Machine M :
Device to generate output x = 1010111... from programp:

M(p) ==z



Kolmogorov-Chaitin Complexity
Universal Turing Machine: U
Sufficient states, control logic, and tape alphabet

=> Calculate any input-output function

UTM programs generate output: U(p) = x

(Python interpreter w/ infinite memory.)

Kolmogorov-Chaitin Complexity:
Size of smallest program p that generates object x

K(z) = min{|p|: U(p) = x}



Kolmogorov-Chaitin Complexity

Consider Python program:
def generate x():
print x

And so:

K(x) < |x| 4 constant

For most objects:

K(z) ~ |z|

Kolmogorov-Chaitin Complexity is not computable.

(Theorem: No program can calculate K(x).)



Kolmogorov-Chaitin Complexity

Exercise! Which has high, which low K (x)?
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Kolmogorov-Chaitin Complexity

Lessons:
A random object is its own shortest description.
K () maximized by random obijects.

Probability of objects:

Pr(z) ~ 2~ K@)

Alternatives?

Computable?
Scientifically applicable?



Information



Information ...

Information as uncertainty and surprise:

Observe something unexpected:
Gain information

Bateson:“A difference that makes a difference”



Information ...

Shannon Entropy: X ~ P reX={12,...,k}
P=A{Pr(x=1),Pr(x =2),...}

— > p(x)log, p(a

reA Note: Olog0 =0

Units:
Log base 2: H (X ) = |bits]
Natural log: H (X ) = [nats]

Properties:
. Positivity: H(X) > 0
2. Predictive: H(X) =0 & p(z) =1 for one and only one
3.Random: H(X)=log, k & p(z)=U(x)=1/k



Information ...
Event Space Relationships of Information Quantifiers:

H(X,Y)

N




Why information!

|. Accounts for any type of co-relation
e Statistical correlation ~ linear only
* Information measures nonlinear correlation
2. Broadly applicable:
* Many systems don’t have “energy”’, physical modeling precluded
* Information defined: social, biological, engineering, ... systems
3. Comparable units across different systemes:
e Correlation: Meters v. volts v. dollars v. ergs v. ...
* Information: bits.
4. Probability theory ~ Statistics ~ Information
5. Complex systems:
* Emergent patterns!
* We don’t know these ahead of time



Information ...

Real Communication Theory:
How to compress a process:

Can’t do better than H (X))
(Shannon’s First Theorem)

How to communicate a process’s data: H(X) <C
Can transmit error-free at rates up to channel capacity
(Shannon’s Second Theorem)

Both results give operational meaning to entropy.
Previously, entropy motivated as a measure of surprise.



George Carlin (1937-2008)



Information In
Processes



Information in Processes ... .
Entropy Growth for Stationary Stochastic Processes: Pr(,S)

Block Entropy:

H(L) = H(Pr — Y Pr(s")log, Pr(s")
ste A

Monotonic increasing: H(L) > H(L — 1)

Adding a random variable cannot decrease entropy:

H(S51,5%,...,5.) < H(S1,5%,...,50,5041)

No measurements, no information: H(0) = 0



Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...

Block Entropy ...

Fair Die lID (Gaussian, Poisson, ...)

Llog, |A| LH(1)

H(L) Generic process

Period-P Process:
H(L > P) = log,(P)




Information in Processes ...
Entropy Rates for Stationary Stochastic Processes:

Entropy per symbol is given by the Source Entropy Rate:

H(L) < Lh
h, = lim H(L) :
H L—o0 L

(When limits exists.)

Interpretations:
Asymptotic growth rate of entropy
Irreducible randomness of process
Average description length (per symbol) of process



Memory in Processes ...
Excess Entropy:

As entropy convergence:  H(])

B = Z[hu([’) — hy] N hy(L)
"Th (AL = 1 symbol) m \
E ||l
1, LT
Properties:
(1) Units: E = [bits] 1

(2) Positive: E > 0
(3) Controls convergence to actual randomness.

(4) Slow convergence < Correlations at longer words.
(5) Complementary to entropy rate.



Memory in Processes ...
Excess Entropy ...

Mutual information between past and future: Process as channel

{ 3 . — —
Process Pr(X, X ) communicates past X to future X :

4 )

Past —>» Present —> FHuture

Information

Rate h, Channel

Capacity C

Excess Entropy as Channel Utilization:

E=I[X;X]




Memory in Processes ...

Information-Entropy Roadmap for a Stochastic Process:
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Memory in Processes ...

What is information?
Depends on the question!

Uncertainty, surprise, randomness, ....
Compressibility.

Transmission rate.

Memory, apparent stored information, ....
Synchronization.

Created and actively stored.

Created and forgotten.

Predictive information.

Predictable information.



Algorithmic Basis of Information

Kolmogorov-Chaitin Complexity versus Shannon Information



KC Complexity versus Shannon Information

Consider average KC Complexity of source Xg.p:
K(é) — <K(x0:€)>realizations

Recall Block Entropy:
H({) = HPr(Xg.p)]

Their growth rates equal the Shannon entropy rate:
H(/ K (/¢
h, = lim ()zlim ()

f— 00 / f— 00 1

KC Complexity of typical realizations from an information source
grows proportional to the Shannon entropy rate [Brudno |1978].



KC Complexity versus Shannon Information

Again, KC Complexity is a measure of randomness,
unpredictability, surprise, ...

As well as being a measure of the deterministic computing
resources requires to exactly reproduce a given finite string.

KC Complexity and entropy rate maximized by IID processes.



KC Complexity versus Statistical Complexity

KC Complexity Theory:
Great mathematics.
Uncomputable.
Not quantitative: constants of proportionality unknown

Quantitative sciences use Information Theory instead.



Intrinsic Computation



The Learning Channel:

System  Instrument Process Modeller

Central questions:
What are the states!
What is the dynamic?



The Learning Channel ...
Causal States:

Causal State:

Set of pasts with same morph Pr(g> s).
Set of histories that lead to same predictions.

Predictive equivalence relation:




The e-Machine ...

Process = Predictive equivalence = € — Machine

<>

Pr(S) = g/w = ¢ — Machine

M= {547, 5 e )

Unique Start State:
So = [Al
PI‘(SO,S1,SQ, . ) — (1, O, O, . )

Recurrent
States

Transient States

Recurrent States



The e€-Machine ...

Machine of a Process ...

The €-

Denumerable

Causal States

Continuous



The €-Machine ...

Summary:

eM:
(1) Optimal predictor: Lower prediction error than any rival.
(2) Minimal size: Smallest of the prescient rivals.
(3) Unique: Smallest, optimal, unifilar predictor is equivalent.
(4) Model of the process: Reproduces all of process’s statistics.

(5) Causal shielding: Renders process’s future independent of past.



Measures of Intrinsic Computation ...

A complex process’s intrinsic computation:

(1) How much of past does process store!
Cl
(2) In what architecture is that information stored!?
{S, (T s e A}}
(3) How is stored information used to produce future behavior?

o



Intrinsic Computation ...
Analysis narrative:

System Instrument Process Modeller
Forms of Chaos: Measurement Theory: How random? Universal model:

Deterministic sources Partitions A\ H(L) h e — Machine

of novelty Optimal Instrument: 7 R Pattern defined
Mechanlsms th'c.lt. produce max h,, How structured? Causal Architecture

unpredictability {P} Intrinsic Computation
Sensitive dependence on min CM C,Lm E7 T7 G) R

initial condition {P}

Sensitive dependence on
parameter



Intrinsic Computation ...

A system is unpredictable
if it has positive entropy rate: h,, > 0

A system is complex
if it has positive structural complexity measures: C,, > 0

A system is emergent
if its structural complexity measures increase over time:

C,(t") > Cut), if t' >t

A system is hidden
if its crypticity is positive: x = C, — E >0

Complexity Lecture 3: Computational Mechanics (CSSS 2017); Jim Crutchfield



Algorithmic Basis of Information ...

Kolmogorov-Chaitin Complexity versus Statistical Complexity



KC Complexity versus Statistical Complexity

We saw that:
KC complexity of typical realizations from an information
source grows proportional to the Shannon entropy rate:

K (z) o hy 2

Thus, KC complexity is a measure of randomness.



KC Complexity versus Statistical Complexity

What’s the relationship to Statistical Complexity C',?

Since randomness drives Kolmogorov-Chaitin complexity,
let’s discount for generating randomness:

Programs consist of model mand data d (random part
unexplained by m).

Sophistication of object:

Sk(x) =min{|m|: p=m+d and |p| — K(x) < k}

Also, uncomputable.



KC Complexity versus Statistical Complexity

Consider the average sophistication:

S(£) = (So(zo:))

It is statistical complexity:

C’u Xe>1 S(é)
Since program = model + data:

K(é) — S(Z) T <‘d‘>x0:e
We have:
K{)~C,+h,t

Since a process has a structure, as / gets large,
with probability | each possible xq., has the same model.



KC Complexity versus Statistical Complexity

Recall the Block Entropy

H{l)~C,+ h,/t

Similar scaling.

K (¢)versus H({):

E quantifies the amount of information observed as / gets
large, whereas C', quantifies how much information it takes
to predict as {gets large.



KC Complexity versus Statistical Complexity

Kolmogorov-Chaitin Theory versus Computational Mechanics

First, E-machine describes distribution over a system’s behaviors,
including individual realizations.

Second, one can exactly calculate the Shannon entropy rate for a
system’s behaviors.

Third, the computational model is a probabilistic UTM:
a Bernoulli-Turing Machine.



KC Complexity versus Statistical Complexity

Computational Mechanics was introduced to be a calculable,
quantitative version of KC Complexity Theory.

Constructive! For finite eMs, all complexity/information measures
- can be calculated in closed form.
- O(1) computational complexity.

So, much computational complexity in KC Theory and in
Information Theory obviated.



“To know how to criticize is good,

to know how to create is better.”

Henri Poincaré, “Les Définitions en Mathématiques”, L’Eliseignement des
Mathématiques 6 (1904) 255-283.

—, Mathematical Definitions in Education, Georges Carré, Paris (1904) Part Il.
Ch. 2 p. 129.



Thanks!



