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The Learning Channel:
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Central questions:
	

 What are the states?
	

 What is the dynamic?
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The Learning Channel ...
The Prediction Game

Rules:

	

 1. I give you a data stream (an observed past sequence).

	

 2. You predict its future.

	

 3. You give a model (states & transitions) describing the process.
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The Learning Channel ...
The Prediction Game ...

Process II: 
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The Learning Channel ...
The Prediction Game ...
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Your model is?

Process III: 
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The Learning Channel ...

Theory? Algorithms?

     Computational Mechanics
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The Learning Channel ...
Goal:
	

 Predict the future
	

 	

 using information from the past

→

S
←

S

But what “information” to use?

We want to find the effective “states”
	

 and the dynamic (state-to-state mapping)

How to define “states”, if they are hidden?

All we have are sequences of observations
	

 Over some measurement alphabet
	

 These symbols only indirectly reflect the hidden states

A
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Process is in the same “state”
  when the future looks the same:
     State(t) ~ State(t+2)

Process is in different “states”
  when futures look different
      State(t)     State(t+1)!

10Wednesday, June 12, 13



Complexity Lecture 2: Intrinsic Computation (CSSS 2013) Jim Crutchfield

The Learning Channel ...

Effective for what?
	

 What’s a prediction?

           A mapping from the past to the future.

	

 Process

	

 Future:

	

 Future Morph:                        (the most general mapping)

	

 Refined goal:
         Predict as much about the future   ,

	

 	

 using as little of the past    as possible.

Pr(
↔

S ) :
↔

S=
←

S
→

S

←

S

→

S

→

S

L

Pr(
→

S

L

|
←

s )

Particular past:
�
s
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The Learning Channel ...
How Effective are the Effective States?

Effective Prediction Error Rate:

	

 Entropy rate given effective states

Effective Prediction Error: 

	

 Uncertainty about future given effective states
H[

→

S

L

|R]

hµ(R) = lim
L→∞

H[
→

S

L

|R]

L

RCandidate “rival” model
    A given mapping from pasts to future morphs

How to measure goodness?

(Think some HMM)
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The Learning Channel ...
How Effective are the Effective States?

Statistical Complexity of the Effective States:

Cµ(R) = H[R] = H(Pr(R))

Interpretations:

     Uncertainty in state.

	

 Shannon information one gains when told effective state.

	

 Model “size”

	

 Historical memory used by    .R

∝ log2(number of states)
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The Learning Channel ...
Goals Restated:

Question 1:
   Can we find effective states that give good predictions?

Question 2:
   Can we find the smallest such set?

hµ(R) = hµ

H[
→

S

L

|R] = H[
→

S

L

|
←

S ]

or

minCµ(R)
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The Learning Channel ...

Effective States:
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The Learning Channel ...
Causal States:

Causal State:
	

 Set of pasts with same morph                .
	

 Set of histories that lead to same predictions.

Pr(
→

S |
←

s )

Predictive equivalence relation:

←

s
′

,
←

s
′′

∈

←

S

←

s
′

∼
←

s
′′

⇐⇒ Pr(
→

S |
←

S=
←

s
′

) = Pr(
→

S |
←

S=
←

s
′′

)
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The Learning Channel ...
Causal State Components

Causal State = Pasts with same morph: Pr(
→

S |
←

s )

S = {
←

s

′

:

←

s

′

∼
←

s }

Set of causal states:

S =

←

S/ ∼ = {S0,S1,S2, . . .}

ε(
←

s ) = {
←

s

′

:
←

s

′

∼
←

s }

ε :

←

S → S

Causal state map:
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The Learning Channel ...
Causal States ...

We’ve answered the first part of the modeling goal:

We have the effective states!

Now,

    What is the dynamic?
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The Learning Channel ...
Causal State Dynamic ...

Causal-state Filtering:

⇤
s = . . . s�3 s�2 s�1 s0 s1 s2 s3 . . .

�(
⇤
s ) = . . . �(

⇥
s�3)�(

⇥
s�2)�(

⇥
s�1)�(

⇥
s 0)�(

⇥
s 1)�(

⇥
s 2)�(

⇥
s 3) . . .

⇤
S = . . . St=�3 St=�2 St=�1 St=0 St=1 St=2 St=3 . . .

Pr(
�
S )

Causal-state process:

19Wednesday, June 12, 13



Complexity Lecture 2: Intrinsic Computation (CSSS 2013) Jim Crutchfield

The Learning Channel ...
Causal State Dynamic ...

State-to-State Transitions:

{T (s)
ij : s ∈ A, i, j = 0, 1, . . . , |S|}

T
(s)
ij = Pr(Sj , s|Si)

= Pr
(

S = ε(
←

s s)|S = ε(
←

s )
)

Conditional transition probability:
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The   -Machine ...ε

M =

{

S, {T (s), s ∈ A}
}

Recurrent States

Transient States

Unique Start State:
S0 = [λ]

Pr(S0,S1,S2, . . .) = (1, 0, 0, . . .)

State State

Transient
States

Recurrent
States

BA

D

C

1| 2
3

1| 3
4

0| 1
4

0| 1
3

0| 1
2

1| 1
2

1|1

Pr(
�
S ) �

�
S / � � ��Machine

Process � Predictive equivalence � ��Machine
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The Learning Channel ...

The   -Machine of a Process ...ε

Denumerable
Causal States

Fractal

Continuous
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Central questions:
	

 What are the states?   Causal States
	

 What is the dynamic?  The   -Machineε
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The   -Machineε
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The   -Machine ...ε

A Model of a Process           :

Pr(s1),Pr(s2),Pr(s3), . . .

s
L

= s1s2 . . . sL

Pr(sL) =
L∏

l=1

T
(sl)
i=ε(sl−1),j=ε(sl)

Pr(
�
S )

Initially,                  .Pr(S0) = 1

  -Machine reproduces the process’s word distribution:

Pr(sL) = Pr(S0)Pr(S0 �s=s1 S(1))Pr(S(1)�s=s2 S(2))
· · ·Pr(S(L� 1)�s=sL S(L))

ε

S(t = 0) = S0
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Causal shielding:
     Past and future are independent given causal state

The   -Machine ...ε

Process: Pr(
↔

S ) = Pr(
←

S
→

S )

Pr(
←

S
→

S |S) = Pr(
←

S |S) Pr(
→

S |S)

Causal states shield past & future from each other.

Similar to states of a Markov chain, but for hidden processes.
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The   -Machine ...

are Unifilar:εMs (St, s) → unique St+1

ε

 (in automata theory, “deterministic”)

Consequence:

	

 Unifilarity: 1-1 map between state-sequences & symbol-sequences.

     Entropy rate expression requires this 1-1 mapping.

	

 Can use      to calculate entropy rate     .
          (Any unifilar presentation will do.)

εM hµ
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The   -Machine ...ε

are Optimal Predictors:εMs

Compared to any rival effective states   :R

H

[

→

S

L

|R

]

≥ H

[

→

S

L

|S

]
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The   -Machine ...ε

Prescient Rivals    :
      Alternative models that are optimal predictors

R̂

(Prescient rivals are sufficient statistics for process’s future.)

H[
→

S

L

|R̂] = H[
→

S

L

|S] R̂

R̂

R

S

�R � �R
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Minimal Statistical Complexity:

The   -Machine ...ε

For all prescient rivals,       is the smallest:εM

Cµ(R̂) ≥ Cµ(S)

Consequence:

	

 (1)      measures historical information process stores.

	

 (2) This would not be true, if not minimal representation.

Cµ

Remarks:
	

 (1) Causal states contain every difference (in past)
	

 	

 that makes a difference (to future) (Bateson “information”)

	

 (2) Causal states are sufficient statistics for the future.
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    :

(1) Optimal predictor: Lower prediction error than any rival.

(2) Minimal size: Smallest of the prescient rivals.

(3) Unique: Smallest, optimal, unifilar predictor is equivalent.

(4) Model of the process: Reproduces all of process’s statistics.

(5) Causal shielding: Renders process’s future independent of past.

The   -Machine ...ε

εM

Summary:

31Wednesday, June 12, 13



Complexity Lecture 2: Intrinsic Computation (CSSS 2013) Jim Crutchfield

Measures of Intrinsic Computation
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A complex process’s intrinsic computation:

   (1) How much of past does process store?

   (2) In what architecture is that information stored?

   (3) How is stored information used to produce future behavior?

Measures of Intrinsic Computation ...
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A complex process’s intrinsic computation:

   (1) How much of past does process store?

   (2) In what architecture is that information stored?

   (3) How is stored information used to produce future behavior?

hµ

Cµ

n

S, {T (s), s 2 A}
o

Measures of Intrinsic Computation ...
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Information Measures Interpretation

Entropy Rate Intrinsic Randomness

Excess Entropy Info: Past to Future

Total Predictability Redundancy

Transient Information Synchronization

Measures of Structural Complexity:

How related to statistical complexity     ?

How to get from      ?εM

Cµ

Measures of Intrinsic Computation ...

hµ

E

G

T
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Measures from the      :εM

Entropy Rate of a Process:

hµ(Pr(
⇥
S )) = lim

L�⇤

H(L)
L

Measures of Intrinsic Computation ...

Entropy Rate given      :    

hµ(S) = −
∑

S∈S

Pr(S)
∑

s∈A,S′∈S

T
(s)
SS′ log2 T

(s)
SS′

     where          is casual-state asymptotic probability.Pr(S)

Possible only due to      unifilarity!
   1-1 mapping between measurement sequences & internal paths.

εM

εM
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Measures from the      ...εM

Cµ(S) = −
∑

S∈S

Pr(S) log2 Pr(S)

Pr(S)     where          is casual-state asymptotic probability.

Measures of Intrinsic Computation ...

Statistical Complexity of a Process:

Meaning:
     Shannon information in the causal states. 
     The amount of historical information a process stores.
     The amount of structure in a process.
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Excess Entropy: Three versions, all equivalent for 1D processes

Measures from the      ...εM

How to get, given     ?

Special cases: When       is IID, periodic, or spin chain.

General case: Need a new framework.

E =
��

L=1

[hµ(L)� hµ]

E = lim
L�⇥

[H(L)� hµL]

E = I[
�
S ;
⇥
S ]

εM

εM

Measures of Intrinsic Computation ...
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Measures from the       ...εM

Bound on Excess Entropy:

E ≤ Cµ

Proof sketch:
	

 (1)

	

 (2) Causal States:

	

 (3)

E = I[
→

S ;
←

S ] = H[
→

S ] − H[
→

S |
←

S ]

H[
→

S |
←

S ] = H[
→

S |S]

E = H[
→

S ] − H[
→

S |S]

= I[
→

S ;S]

= H[S] − H[S|
→

S ]

≤ H[S] = Cµ !!

Measures of Intrinsic Computation ...
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Measures from the       ...εM

Bound on Excess Entropy ...

But, the bound is saturated!

Even Process:

When does this occur?

    In general, need a new framework for answering this question:
              Directional Computational Mechanics.

A B
1| 1

2
0| 1

2

1|1

T
(0)

=

(

1
2 0

0 0

)

T
(1)

=

(

0
1
2

1 0

)

πV = (2/3, 1/3)

Cµ = H(2/3) � 0.9182

E � 0.9182

Measures of Intrinsic Computation ...
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Measures from the       ...εM

Bound on Excess Entropy ...

Consequence: The Cryptographic Limit

  Can have            when             .

	

 Excess entropy is not the process’s stored information.

	

     is the apparent information,
               as revealed in measurement sequences.

	

 Statistical complexity is stored information.

E

E� 0 Cµ � 1

Measures of Intrinsic Computation ...

40Wednesday, June 12, 13



Complexity Lecture 2: Intrinsic Computation (CSSS 2013) Jim Crutchfield

Measures from the       ...εM

Bound on Excess Entropy ...

Executive Summary:

               is the amount of information the process uses

    to communicate

    bits of information from the past to the future.E

Cµ

Measures of Intrinsic Computation ...
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Measures from the       ...εM

Bound on Excess Entropy: E ≤ Cµ

Consequence:

     The inequality is Why We Must Model.

     Cannot simply use sequences as states.

           There is internal structure not expressed by this.

Measures of Intrinsic Computation ...
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Information Diagrams for Processes
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Information Diagrams for Processes
Process I-diagram:
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Information Diagrams for Processes
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X | �X ]

E =

I[
 �
X ;
�!
X ]H[
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Process I-diagram:

44Wednesday, June 12, 13



Complexity Lecture 2: Intrinsic Computation (CSSS 2013) Jim Crutchfield

Process I-diagram using ε-machine:

Start with 3-variable I-diagram and whittle down:
Past as composite random variable:
Future as composite random variable:
Causal states:

Information measures:

                                    ...                        ...

There are 8 = 23 atomic information measures.

Information Diagrams for Processes

S 2 S

 �
X�!

X

H[S]H[
 �
X ] H[

�!
X ] I[

�!
X ;
 �
X ;S] H[

�!
X,
 �
X,S]
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Process I-diagram using ε-machine ...
Information Diagrams for Processes
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Information Diagrams for Processes
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Process I-diagram using ε-machine ...
Information Diagrams for Processes

H[
�!
X ]H[

 �
X ]

H[S]

I
h �
X ;
�!
X |S
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Process I-diagram using ε-machine ...
Information Diagrams for Processes

H[
�!
X ]H[

 �
X ]

H[S]

I
h �
X ;
�!
X |S

i

= 0
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Process I-diagram using ε-machine ...
Information Diagrams for Processes

H[
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 �
X ]

H[S]
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= 0
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Process I-diagram using ε-machine ...
Information Diagrams for Processes

H[
�!
X ]H[

 �
X ]

H[S]

H
h �
X |S

i

> 0 !
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Information Diagrams for Processes

ε-Machine I-diagram:
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Information Diagrams for Processes

H[
�!
X ]H[

 �
X ]

H[S] = Cµ

H[
 �
X |S] H[S|�!X ] H[

�!
X |S]

ε-Machine I-diagram:

E =

I[S;�!X ]

What do we
know

about this?

What is this
Mystery
Wedge?
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Information Diagrams for Processes

What is             ? H[
�!
X |S]

H[
�!
XL|S] = LhµUnpredictability:

Proof Sketch:
H[
�!
XL|S] = H[

�!
XL| �X ]

= H[X0X1 . . . XL�1|
 �
X ]

= H[X1 . . . XL�1|
 �
XX0] +H[X0|

 �
X ]

= H[X1 . . . XL�1|
 �
X ] +H[X0|

 �
X ]

...

= H[XL�1|
 �
X ] + · · ·+H[X1|

 �
X ] +H[X0|

 �
X ]

= LH[X0|
 �
X ]

= Lhµ
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Information Diagrams for Processes
What is Mystery Wedge?
   Uncertainty of causal state given future. Implications?

H[S|�!X ]

Recall Bound on Excess Entropy: E ≤ Cµ

Proof sketch:

!!

E = I[
 �
X ;
�!
X ]

= H[
�!
X ]�H[

�!
X | �X ]

= H[
�!
X ]�H[

�!
X |S]

= I[
�!
X ;S]

= H[S]�H[S|�!X ]

 H[S]
= Cµ
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Information Diagrams for Processes
What is Mystery Wedge?
   Uncertainty of causal state given future. Implications?

H[S|�!X ]

Recall Bound on Excess Entropy: E ≤ Cµ

Proof sketch:

!!

I am the
Mystery Wedge!

E = I[
 �
X ;
�!
X ]

= H[
�!
X ]�H[

�!
X | �X ]

= H[
�!
X ]�H[

�!
X |S]

= I[
�!
X ;S]

= H[S]�H[S|�!X ]

 H[S]
= Cµ
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Information Diagrams for Processes
What is Mystery Wedge? H[S|�!X ]

Wedge is the inaccessibility of hidden state information!

Controls how much internal state information is observable.

H[S|�!X ] = Cµ �E

The Process Crypticity:

� = Cµ �E

H[
�!
X ]H[

 �
X ]

H[S] = Cµ

H[
 �
X |S] H[S|�!X ] H[

�!
X |S]

E =

I[S;�!X ]

Wedge controls Internal - Observed
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How to get     from     ?E ✏M
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• Theorem:

• Effective transmission capacity of channel between 
forward and reverse processes.

• Time agnostic representation: The BiMachine.

E = I[S+;S�]

Directional
Computational Mechanics

J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, “Time's Barbed Arrow: Irreversibility, Crypticity, 
and Stored Information”, Physical Review Letters 103:9 (2009) 094101.
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  Forward-Reverse ε-Machine
Information Diagram
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Intrinsic Computation ...

Complexity Lecture 2: Computational Mechanics (CSSS 2012); Jim Crutchfield

Analysis narrative:

0
1

1

1 0

...001011101000...

ModellerSystem

A

B

C

ProcessInstrument

α

δ

γ β
1

0

0

00

0

1

1 1
1

Forms of Chaos:
  Deterministic sources
	

 of novelty
  Mechanisms that produce
	

 unpredictability
  Sensitive dependence on
	

 initial condition
  Sensitive dependence on
	

 parameter

How random?

λ, H(L), hµ

How structured?

Cµ,E,T,G,R

Measurement Theory:
  Partitions
  Optimal Instrument:

max

{P}
hµ

min
{P}

Cµ

Universal model:

  Pattern defined
  Causal Architecture
  Intrinsic Computation

ε − Machine
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Complexity Lecture 2: Computational Mechanics (CSSS 2012); Jim Crutchfield

A system is unpredictable
      if it has positive entropy rate:

A system is complex
      if it has positive structural complexity measures:

A system is emergent
      if its structural complexity measures increase over time:

A system is hidden
     if its crypticity is positive:

hµ > 0

Cµ > 0

Cµ(t
0) > Cµ(t), if t0 > t

� > 0
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Thursday: Information Theory for Complex Systems
    Complex Processes
    Information & Memory in Processes
    Interactive Labs: Nix

Friday: Intrinsic Computation
    Measuring Structure
    Intrinsic Computation
    Optimal Models
    Interactive Labs: Nix

See online course:
    http://csc.ucdavis.edu/~chaos/courses/ncaso/

Complexity!
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