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Thursday: Information Theory for Complex Systems
    Complex Processes
    Information & Memory in Processes
    Interactive Labs: Nix

Friday: Intrinsic Computation
    Measuring Structure
    Intrinsic Computation
    Optimal Models
    Interactive Labs: Nix

See online course:
    http://csc.ucdavis.edu/~chaos/courses/ncaso/

Complexity
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References? For example:
Stanislaw Lem, Chance and Order, New Yorker 59 (1984) 88-98.
T. Cover and J. Thomas, Elements of Information Theory,

Wiley, Second Edition (2006) Chapters 1 - 7.
M. Li and P.M.B. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications,

Springer, New York (1993).
J. P. Crutchfield and D. P. Feldman,

“Regularities Unseen, Randomness Observed: Levels of Entropy Convergence”,CHAOS 
13:1 (2003) 25-54.

J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney,
“Time's Barbed Arrow: Irreversibility, Crypticity, and Stored Information”,
Physical Review Letters 103:9 (2009) 094101.

R. G. James, C. J. Ellison, and J. P. Crutchfield,
“Anatomy of a Bit: Information in a Time Series Observation”,CHAOS 21:1 (2011) 
037109.

J. P. Crutchfield,
“Between Order and Chaos”, Nature Physics 8 (January 2012) 17-24.

See http://csc.ucdavis.edu/~cmg/

Complexity
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Applications?
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Computational Mechanics:
Application to Experimental

Molecular Dynamics Spectroscopy

C.-B. Li, H. Yang, & T. Komatsuzaki, Proc. Natl. Acad. Sci USA 105:2 (2008) 536–541.
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Computational Mechanics:
Application to Experimental

X-Ray Diffraction

ε-MSR

D. P. Varn, G. S. Canright, J. P.  Crutchfield, “Discovering Planar Disorder in Close-Packed Structures from 
X-Ray Diffraction: Beyond the Fault Model”, Phys. Rev. B 66: 17 (2002) 174110-2.
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Cellular Automata Computational Mechanics
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Processes and Their Models

Measurement Channel

System of Interest Instrument
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Processes and Their Models

Measurement Channel

System of Interest Instrument
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Processes and Their Models ...

Main questions now:

	

 How do we characterize the resulting process?

        Measure degrees of unpredictability & randomness.

        What correlational structure is there?

	

 How do we build a model from the process itself?

	

 How much can we reconstruct about the

        hidden internal dynamics?
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Processes and Their Models ...

Stochastic Processes:

Chain of random variables:

L-Block:

Word:

Past:

Future:

SL
t � StSt+1 . . . St+L�1

sL
t � stst+1 . . . st+L�1 � AL

�
S t = StSt+1St+2 . . .

⇥
S t = . . . St�3St�2St�1

↔

S ≡ . . . S−2S−1S0S1S2 . . .

Random variable: St AAlphabet:
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Processes and Their Models ...

Stochastic Processes ...
Process:

Pr(
↔

S ) = Pr(. . . S−2S−1S0S1S2 . . .)

Sequence (or word) distributions:

{Pr(SL
t ) = Pr(StSt+1 . . . St+L�1) : St � A}

{Pr(SL
t ) : �t, L}

Process:

Pr(SL�1
t ) =

�

St+L�1

Pr(SL
t )

Consistency conditions:

Pr(SL�1
t+1 ) =

�

St

Pr(SL
t )
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Processes and Their Models ...

Stationary process:

Assume stationarity, unless otherwise noted.

Notation: Drop time indices.

Pr(StSt+1 . . . St+L�1) = Pr(S0S1 . . . SL�1)

Types of Stochastic Process:
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Processes and Their Models ...

Models of Stochastic Processes:

Markov chain model of a Markov process:

States:

Transition matrix:

Stochastic matrix:

v ∈ A = {1, . . . , k}
↔

V = . . . V−2V−1V0V1 . . .

Tij = Pr(vt+1|vt) ≡ pvv′

T =







p11 · · · p1k

.

.

.

.
.
.

.

.

.

pk1 · · · pkk







kX

j=1

Tij = 1

A B

C

pAA

pAB

pAC

pBA

pBB

pBC

pCA

pCB

pCC

14Wednesday, June 12, 13



Complexity Lecture 1: Processes and information (CSSS 2013) Jim Crutchfield

Processes and Their Models ...

Models of Stochastic Processes ...
Example:
  Fair Coin: A = {H, T}

Pr(H) = Pr(T ) = 1/2

T =

(

1

2

1

2
1

2

1

2

)

1

2

1

2

1/2

1/2

H T

Asymptotic invariant distribution:
⇡ = ⇡T

⇡ ⌘ Pr(H,T )
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Fair Coin ...

Pr(vL) = 2−LSequence Distribution:

s
L
∈ [0, 1]

Word as binary fraction:

“s
L
” =

L∑

i=1

si

2i

s
L

= s1s2 . . . sL
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Fair Coin ...

Pr(vL) = 2−LSequence Distribution:

s
L
∈ [0, 1]

Word as binary fraction:

“s
L
” =

L∑

i=1

si

2i

s
L

= s1s2 . . . sL

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Processes and Their Models ...

Models of Stochastic Processes ...
Example:
  Biased Coin: A = {H, T}

T =

(

p 1 − p

p 1 − p

)

H Tp

1 − p

p

1 − p

Pr(H) = p

Pr(T ) = 1� p

⇡ = Pr(p, 1� p)
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Biased Coin ...

Sequence Distribution:

Pr(sL) = pn(1 − p)L−n,

n =Number Hs in sL

18Wednesday, June 12, 13
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Biased Coin ...

Sequence Distribution:

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Pr(sL) = pn(1 − p)L−n,

n =Number Hs in sL
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Processes and Their Models ...

Models of Stochastic Processes ...
Example: Golden Mean Process = “No consecutive 0s”
  Markov chain over 1-Blocks:

1

2

A = {0, 1}

T =
�

1
2

1
2

1 0

⇥

1 0

1

2

1

As an order-1 Markov chain.
A minimal-order model of the GM Process.

⇡ = Pr(V = 1, V = 0)

=
�
2
3 ,

1
3

�
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Processes and Their Models ...

Models of Stochastic Processes ...
Example:   Golden Mean Process ...
  as a Markov chain over 2-Blocks:

π =

(

1

3
,

1

3
,

1

3

)

1

2

1

2

1

2

1

2

A = {10, 01, 11}

10 11

01

1

4

1

4

1

41

4

10 01 11

T =

�

�
1
2 0 1

2
1
4

1
2

1
4

1
4

1
2

1
4

�

�

Previous model and this:
      Different presentations of the same Golden Mean Process
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Processes and Their Models ...

Models of Stochastic Processes ...
Example:
  Golden Mean:

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

21Wednesday, June 12, 13



Complexity Lecture 1: Processes and information (CSSS 2013) Jim Crutchfield

Processes and Their Models ...

Models of Stochastic Processes ...

Two Lessons:

    Structure in the behavior:

    Structure in the distribution of behaviors:

supp Pr(sL)

Pr(sL)

22Wednesday, June 12, 13
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Processes and Their Models ...
Models of Stochastic Processes ...

Internal:

Observed:

A = {A, B, C}

T =





pAA pAB pAC

pBA pBB pBC

pCA pCB pCC





A B

C

s|pAB

s|pAA

s|pAC

s|pBC

s|pBB

s|pBA

s|pCA

s|pCB

s|pCC

B = {0, 1}

T (s)
=





pAA;s pAB;s pAC;s

pBA;s pBB;s pBC;s

pCA;s pCB;s pCC;s





symbol | transition probability

pAA =

∑

s∈B

pAA;s

Hidden Markov Models of Processes:
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Processes and Their Models ...
Models of Stochastic Processes ...

Types of Hidden Markov Model:

“Unifilar”: current state + symbol “determine” next state

“Nonunifilar”: no restriction

A
B

C

1

0

A
B

C

1

1

Multiple internal edge paths can generate
same observed sequence.

Pr(v�|v, s) =

�
1
0

Pr(v�|v) =
�

s�A
p(s|v)

Pr(v�, s|v) = p(s|v)
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Golden Mean Process as a unifilar HMM:

Internal: A = {A, B}

T =

(

1

2

1

2

1 0

)

Observed: B = {0, 1}

πV = (2/3, 1/3)

T
(0)

=

(

0
1
2

0 0

)

T
(1)

=

(

1
2 0

1 0

)

A B
1| 1

2
0| 1

2

1|1

BA
n

= 1
n

AA
n

= 1
n

Initial ambiguity only:

Sync’d: s = 0 ⇒ v = B

At most 2-to-1 mapping

Irreducible forbidden words: F = {00}

s = 1� v = A
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Golden Mean Process ... Sequence distributions:
Internal state sequences

(A = 1; B = 0)
Observed sequences

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Same!
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Processes and Their Models ...
Models of Stochastic Processes ...
Example: Even Process = Even #1s
  As a unifilar HMM:

Internal (= GMP): A = {A, B}

T =

(

1

2

1

2

1 0

)

T
(0)

=

(

1
2 0

0 0

)

T
(1)

=

(

0
1
2

1 0

)

Observed: B = {0, 1}

πV = (2/3, 1/3)

A B
1| 1

2
0| 1

2

1|1

No finite-order Markov process can model the Even process!
Lesson: Finite Markov Chains are a subset of HMMs.

v
L

= . . . AABAABABAA . . .

s
L

= . . . . 0 1 1 0 1 1 1 1 0 . . . s
L

= {. . . 01
2n

0 . . .}

F = {010, 01110, 0111110, . . .}Irreducible forbidden words:
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Even Process ... Sequence distributions:
Internal states (= GMP)

(A = 1; B = 0)
Observed sequences

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Rather different!
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Even Process ... Sequence distributions:
Internal states (= GMP)

(A = 1; B = 0)
Observed sequences

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Rather different!

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Simple Nonunifilar Source:

Internal (= Fair Coin): A = {A, B}

Observed: B = {0, 1}

T
(1)

=

(

1
2

1
2

0
1
2

)

T
(0)

=

(

0 0
1
2 0

)

T =

(

1

2

1

2
1

2

1

2

)

πV =

(

1

2
,

1

2

)

A B
1| 1

2

0| 1
2

1| 1
2

1| 1
2

Many to one: 1111111 ⇐







































AAAAAAAA . . .

ABBBBBBB . . .

AABBBBBB . . .

AAABBBBB . . .

. . .

BBBBBBBB . . .

Is there a unifilar HMM 
presentation of the 
observed process?
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Simple Nonunifilar Process ...

Internal states (= Fair coin)
(A = 1; B = 0)

Observed sequences
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Simple Nonunifilar Process ...

Internal states (= Fair coin)
(A = 1; B = 0)

Observed sequences
5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
  Simple Nonunifilar Process ...

Internal states (= Fair coin)
(A = 1; B = 0)

Observed sequences
5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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What to do with all of this complicatedness?

    1. Information theory for complex processes

    2. Measures of complexity

    3. Optimal models and how to build them

Labs:
    Track these topics.
    Nix will give a tour in evening session.
    Work through labs on your own.

Processes and Their Models ...
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Information!

Sources of Information:

   Apparent randomness:
	

 Uncontrolled initial conditions
     Actively generated: Deterministic chaos

  Hidden regularity:
	

 Ignorance of forces
	

 Limited capacity to model structure
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Information ...
Information as uncertainty and surprise:

	

 Observe something unexpected:
            Gain information

	

 Bateson: “A difference that makes a difference”
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Information ...
Information as uncertainty and surprise ...

How to formalize?
	

 Shannon’s approach:
	

      A measure of surprise.
         Connection with Boltzmann’s thermodynamic entropy

∝ − log Pr(event)

− log 1 = 0

� log
1

Number of Events
= log(Number of Events)

	

 Self-information of an event                             .

	

 	

 Predictable: No surprise

	

 	

 Completely unpredictable: Maximally surprised
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Information ...
Shannon Entropy:

Units:
	

 Log base 2:
	

 Natural log:

H(X) = [bits]
H(X) = [nats]

H(X) = �
�

x�X
p(x) log2 p(x)

Properties:
   1. Positivity:
   2. Predictive:
   3. Random:

H(X) � 0

H(X) = log2 k � p(x) = U(x) = 1/k
H(X) = 0 � p(x) = 1 for one and only one x

x � X = {1, 2, . . . , k}X � P

Note: 0 log 0 = 0

P = {Pr(x = 1),Pr(x = 2), . . .}
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Information ...

Example: Binary random variable     (Biased Coin)

X = {0, 1}

Binary entropy function:

Pr(1) = p & Pr(0) = 1 − p

H(p) = −p log2 p − (1 − p) log2(1 − p)

Fair coin:

H(p) = 1 bit

p =
1

2

Completely biased coin: p = 0 (or 1)

H(p) = 0 bits

X

0 · log 0 = 0Recall:

H(X) ?
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Information ...

Example: Independent, Identically Distributed (IID) Process
   over four events

X = {a, b, c, d} Pr(X) = ( 1

2
, 1

4
, 1

8
, 1

8
)

H(X) = 7

4
bitsEntropy:

Number of questions to identify the event?
	

 x = a? (must always ask at least one question)
	

 x = b? (this is necessary only half the time)
	

 x = c? (only get this far a quarter of the time)

1 · 1 + 1 ·
1

2
+ 1 ·

1

4
= 1.75Average number: questions

Interpretation? Optimal way to ask questions.
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Information ...

Example: IID Process over four events ...

1 · 1 + 1 ·
1

2
+ 1 ·

1

4
= 1.75Average number: questions

a?

b?

c?

c d

b

a

1
2

1
2

1
2

1
2

1
2

1
2

Pr(X) = ( 1

2
, 1

4
, 1

8
, 1

8
)
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Information ...

Example: IID Process over four events ...

d?

c?

b?

a b

c

d

Average number: questions1 · 1 + 1 · 7
8 + 1 · 6

7 � 2.7
Query in a different order:

7
8

1
8

6
7

1
7

2
3

1
3

Pr(a, b, c) = ( 4
7 , 2

7 , 1
7 )

Pr(a, b) = ( 2
3 , 1

3 )

Pr(X) = ( 1

2
, 1

4
, 1

8
, 1

8
)
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Information ...

Example: IID Process over four events

H(X) = 7

4
bitsEntropy:

Theorem:
   Entropy gives the smallest number of questions
   to identify an event, on average.

At each stage, ask questions that are most informative.

Choose partitions of event space that give “most random”
    measurements.

40Wednesday, June 12, 13



Complexity Lecture 1: Processes and information (CSSS 2013) Jim Crutchfield

Information ...

Interpretations of Shannon Entropy:

	

 Observer’s degree of surprise in outcome of a random variable

	

 Uncertainty in random variable

	

 Information required to describe random variable

	

 A measure of flatness of a distribution
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Information ...

Joint Entropy: Average uncertainty in X and Y occurring

(X, Y ) ∼ p(x, y)Two random variables:

H(X, Y ) = −

∑

x∈X

∑

y∈Y

p(x, y) log2 p(x, y)

Independent:

X � Y � H(X, Y ) = H(X) + H(Y )
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Information ...

Conditional Entropy: Average uncertainty in X, knowing Y

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log2 p(x|y)

H(X|Y ) = H(X, Y ) − H(Y )

H(X|Y ) != H(Y |X)Not symmetric:
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Information ...
Common Information Between Two Random Variables:

X ∼ p(x) & Y ∼ p(y)

(X, Y ) ∼ p(x, y)

I(X;Y ) =
∑

(x,y)∈X×Y

p(x, y) log2
p(x,y)

p(x)p(y)

Mutual Information:
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Information ...

Mutual Information ...

Interpretations:
	

 Information one variable has about another
	

 Information shared between two variables
	

 Measure of dependence between two variables

Properties:

	

 (1)

	

 (2)

	

 (3)

	

 (4)

	

 (5)

     (6)

I(X;Y ) ≥ 0

I(X;Y ) = I(Y ;X)

I(X;Y ) = H(X) − H(X|Y )

I(X;Y ) = H(X) + H(Y ) − H(X, Y )

I(X;X) = H(X)

X ? Y ) I(X;Y ) = 0
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Information ...
Event Space Relationships of Information Quantifiers:
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Information ...
Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )
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Information ...
Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )

d(X;Y )
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Why information?
1. Accounts for any type of co-relation

• Statistical correlation ~ linear only
• Information measures nonlinear correlation

2. Broadly applicable:
• Many systems don’t have “energy”, physical modeling precluded
• Information defined: social, biological, engineering, ... systems

3. Comparable units across different systems:
• Correlation: Meters v. volts v. dollars v. ergs v. ...
• Information: bits.

4. Probability theory ~ Statistics ~ Information
5. Complex systems:

• Emergent patterns!
• We don’t know these ahead of time
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Information in Processes ...
Communication channel:

Information
Source Encoder Decoder ReceiverChannel

Noise

X ∈ X

. . . x3x2x1 . . . C(x3)C(x2)C(x1) . . . Ĉ(x3)Ĉ(x2)Ĉ(x1)

X → C Ĉ → Xp(Ĉ|C)

. . . x3x2x1

Messages Codewords
Corrupted
Codewords

Inferred
Messages
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Information in Processes ...

Real Information Theory:
	

 How to compress a process:
	

 	

 Can’t do better than
	

 	

 (Shannon’s First Theorem)

	

 How to communicate a process’s data:
	

 	

 Can transmit error-free at rates up to channel capacity
	

 	

 (Shannon’s Second Theorem)

	

 Both results give operational meaning to entropy.
	

 Previously, entropy motivated as a measure of surprise.

H(X)  C

H(X)
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Information in Processes
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Information in Processes ...

Block Entropy:

H(L) = H(Pr(sL)) = −

∑

sL∈A

Pr(sL) log2 Pr(sL)

Monotonic increasing: H(L) ≥ H(L − 1)

Adding a random variable cannot decrease entropy:

No measurements, no information: H(0) = 0

Entropy Growth for Stationary Stochastic Processes: Pr(
↔

S )

H(S1, S2, . . . , SL) � H(S1, S2, . . . , SL, SL+1)
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Information in Processes ...

Block Entropy ...
Entropy Growth for Stationary Stochastic Processes ...

H(L)

L

L log2 |A| LH(1)

0
0

Fair Die IID (Gaussian, Poisson, ...)

Generic process

Period-P Process:
H(L ≥ P ) = log2(P )
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Information in Processes ...
Entropy Rates for Stationary Stochastic Processes:
    Entropy per symbol is given by the Source Entropy Rate:

hµ = lim
L→∞

H(L)

L

(When limits exists.)

Interpretations:
	

 Asymptotic growth rate of entropy
	

 Irreducible randomness of process
	

 Average description length (per symbol) of process

L0

0

H(L) / Lhµ

53Wednesday, June 12, 13



Complexity Lecture 1: Processes and information (CSSS 2013) Jim Crutchfield

Information in Processes ...
Entropy Rates for Stationary Stochastic Processes ...

Length-L Estimate of Entropy Rate:

ĥµ(L) = H(sL|s1 · · · sL−1)

ĥµ(L) = H(L) − H(L − 1)

Conditioning cannot increase entropy:
Monotonic decreasing: ĥµ(L) ≤ ĥµ(L − 1)

H(sL|s1 · · · sL−1) ≤ H(sL|s2 · · · sL−1) = H(sL−1|s1 · · · sL−2)

L0

0

hµ(L) ⇠ slope

H(L)
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Information in Processes ...
Entropy Rates for Stationary Stochastic Processes:
	

 Entropy rate ...

ĥµ = hµ

Alternate entropy rate definitions agree:

Interpretations:
	

 Uncertainty in next measurement, given past
	

 A measure of unpredictability
	

 Asymptotic slope of block entropy 

ĥµ = lim
L→∞

ĥµ(L) = lim
L→∞

H(s0|
←

s
L
) = H(s0|

←

s )
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Information in Processes ...
Entropy Rate for a Markov chain: {V, T}

Assuming asymptotic state distribution:
	

 Process in statistical equilibrium
	

 Process running for a long time
	

 Forgotten it’s initial distribution

hµ = −

∑

v∈V

pv(∞)
∑

v′∈V

Tvv′ log2 Tvv′

Closed-form:

hµ = lim
L→∞

hµ(L)

= lim
L→∞

H(vL|v1 · · · vL−1)

= lim
L→∞

H(vL|vL−1)

~p(n) = ~p(0)Tn

~p(1) = ~p(1)Tn

56Wednesday, June 12, 13



Complexity Lecture 1: Processes and information (CSSS 2013) Jim Crutchfield

Information in Processes ...
Entropy Rate for Markov chains ...

Examples:
	

 (1) Fair Coin:

	

 (2) Biased Coin:

	

 (3) Period-2 Process:

hµ = 1 bit per symbol

hµ = H(p) bits per symbol

hµ = 0 bits per symbol

H T

1

2

1

2

1

2

1

2

H T
p

p

1 − p

1 − p

A B
1

1
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Information in Processes ...
Entropy Rate for Unifilar Hidden Markov Chain:

Internal:
Observed:

{V, T}
{T (s)

: s ∈ A}

hµ = −

∑

v∈V

pv(∞)
∑

s∈A

∑

v′∈V

T
(s)
vv′ log2 T

(s)
vv′

Closed-form for entropy rate:

Due to unifilarity:
	

 Observed sequences are (effectively) unique state paths
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Information in Processes ...
Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal:
Observed:

{V, T}
{T (s)

: s ∈ A}

Entropy rate: No closed-form!

Upper and Lower Bounds:
H(SL|V1S1 · · ·SL−1) ≤ hµ(L) ≤ H(SL|S1 · · ·SL−1)

Unrealistic for inference: Must know about internal states.
Unrealistic for analysis: Simulate chain, do empirical estimate.

hµ 6= �
X

v2V

⇡v

X

s2A

X

v02V

T (s)
vv0 log2 T

(s)
vv0

Entropy rate? But there exists a way ... stay tuned!

⇡v = pv(1)
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Entropy Convergence:
  Length-L entropy rate estimate:

0 L

H(1)

1

log  |A|2

0

H(1)

hµ

h  (L)µ

H∆
hµ(L) = H(L) − H(L − 1)

Monotonic decreasing:   

hµ(L) = ∆H(L)

Process appears less random 
	

 as account for longer correlations    

hµ(L) ≤ hµ(L − 1)

Information in Processes ...
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Memory in Processes
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Motivation:

	

 Previous: Measures of randomness of information source
	

 	

 Block entropy
	

 	

 Entropy rate

	

 Current target point:
	

 	

 Measures of memory & information storage

	

 Big Picture:
	

 	

 Complementary.

H(L)
hµ

Information in Processes ...
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Motivation:

	

 Previous: Measures of randomness of information source
	

 	

 Block entropy
	

 	

 Entropy rate

	

 Current target point:
	

 	

 Measures of memory & information storage

	

 Big Picture:
	

 	

 Complementary.

H(L)
hµ

Information in Processes ...

Randomness

Memory

Predictable Unpredictable

Simple

Structurally
Complex
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Memory in Processes ...
Excess Entropy:

As intrinsic redundancy:

Properties:
	

 (1) Units:
	

 (2) Positive:
	

 (3) Controls convergence to actual randomness.
	

 (4) Slow convergence ⇔ Correlations at longer words.
	

 (5) Complementary to entropy rate.

As entropy convergence:

E =
∞∑

L=1

[hµ(L) − hµ]

E =
∞∑

L=1

r(L)

E ≥ 0

E = [bits] 1 L

h (L)µ

hµ

E

H(1)

(�L = 1 symbol)
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Memory in Processes ...
Excess Entropy ...

Asymptote of entropy growth:

E = lim
L→∞

[H(L) − hµL]

H(L) ∝ E + hµL

0 L

µ+ h  L
E

E

H(L)

0

Y-Intercept of entropy growth

That is,
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Memory in Processes ...
Excess Entropy ...

Mutual information between past and future: Process as channel

    Process                 communicates past     to future     :Pr(
 �
X,
�!
X )

⇥�
X

�⇥
X

Past Future

Channel

Present

Excess Entropy as Channel Utilization:

E = I[
⇥�
X ;
�⇤
X ]
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Memory in Processes ...
Excess Entropy ...

Mutual information between past and future: Process as channel

    Process                 communicates past     to future     :Pr(
 �
X,
�!
X )

⇥�
X

�⇥
X

Past Future

Channel

Present

CapacityC

Information
Rate hµ

Excess Entropy as Channel Utilization:

E = I[
⇥�
X ;
�⇤
X ]
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Memory in Processes ...
Examples of Excess Entropy:

Fair Coin:

Biased Coin:

Any IID Process:

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

H
(L

)

L

H(L): Fair Coin
H(L):  Biased Coin, p=.7hµ = 1 bit per symbol

hµ = H(p) bits per symbol

hµ = H(X) bits per symbol

E = 0 bits

E = 0 bits

E = 0 bits
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Memory in Processes ...
Examples of Excess Entropy ...

Period-2 Process:  010101010101

0 1 2 3

H(L)

L

1

2

3

H(1) = 1

H(2) = 1

H(3) = 1

hµ(1) = 1

hµ(2) = 0

hµ(3) = 0

E = 1 bit

Meaning:
	

 1 bit of phase information
	

 0-phase or 1-phase?

hµ = 0 bits per symbol

1 2 3

h  (L)

L

1
µ

0
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Memory in Processes ...
Examples of Excess Entropy ...

Period-16 Process:

Period-P Processes:

E = log2 P bits

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18

H
(L

)

L

H(L)
E + hµL

(1010111011101110)∞

E = 4 bits

hµ = 0 bits per symbol

Cf., entropy rate does not distinguish periodic processes!

hµ = 0 bits per symbol

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

h µ
(L
)

L

hµ(L)
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Memory in Processes ...
Examples of Excess Entropy ...

Golden Mean Process:

R-Block Markov Chain:

E ≈ 0.2516 bits
0-

0.5-

1-

1.5-

2-

2.5-

3-

3.5-

4-

4.5-

H
(L

)-

H(L)-
E + h-µ−L-

1- 2- 3- 4- 5- 6-
L-

0-

1- 2- 3- 4- 5- 6-
L-

0-

0.2-

0.4-

0.6-

0.8-

1-

1.2-

h-µ−

h-µ−(L)-

0-

E = H(R) − R · hµ

(E.g., 1D Ising Spin System)

hµ = 2

3
bits per symbol
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Memory in Processes ...
Examples of Excess Entropy:

Finitary Processes: Exponential entropy convergence

0-

2-

4-

6-

8-

10-

12-

14-

H
(L

)-

H(L)-
E + h-µL-

2- 4- 6- 8- 10- 12- 14- 16- 18-
L-

0-

Random-Random
   XOR (RRXOR) Process:

St = St−1 XOR St−2

0-

0.2-

0.4-

0.6-

0.8-

1-

1.2-

h-µ−

h-µ−(L)-

2- 4- 6- 8- 10- 12- 14- 16- 18-
L-

0-

E =
H(1) − hµ

1 − 2−γ

hµ(L) − hµ ≈ 2−γL

Finitary processes:
  Exponential convergence:

hµ = 2

3
bits per symbol

γ ≈ 0.30

E � 2.252 bits
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Memory in Processes ...
Examples of Excess Entropy:

Infinitary Processes:

Excess entropy can diverge:
	

 Slow entropy convergence
	

 Long-range correlations
	

 	

 (e.g., at phase transitions)

0

2

4

6

8

10

12

14

H
(L

)

H(L)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5
h µ

(L
)

L x 1000

hµ(L)

0
0.2
0.4
0.6
0.8

1

0 10 20 30
L

0

E → ∞

Morse-Thue Process:
	

 A context-free language
	

 From Logistic map at onset of chaos

hµ = 0 bits per symbol
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Memory in Processes ...

Information-Entropy Roadmap for a Stochastic Process:

0 L

H(L)

µ+ h  L
E

E

H(L)

0

T

h  Lµ

E
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Memory in Processes ...

What is information?

	

 Depends on the question!

	

 Uncertainty, surprise, randomness, ....
	

 Compressibility.
	

 Transmission rate.
	

 Memory, apparent stored information, ....
	

 Synchronization.
	

 ...
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Thursday: Information Theory for Complex Systems
    Complex Processes
    Information & Memory in Processes
    Interactive Labs: Nix

Friday: Intrinsic Computation
    Measuring Structure
    Optimal Models
    Structure = Computation
    Interactive Labs: Nix

See online course:
    http://csc.ucdavis.edu/~chaos/courses/ncaso/

Complexity
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