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Complexity

Thursday: Information Theory for Complex Systems
Complex Processes
Information & Memory in Processes
Interactive Labs: Nix

Friday: Intrinsic Computation
Measuring Structure
Intrinsic Computation
Optimal Models
Interactive Labs: Nix

See online course:
http://csc.ucdavis.edu/~chaos/courses/ncaso/
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Computational Mechanics:
Application to Experimental
Molecular Dynamics Spectroscopy

Multiscale complex network of protein
conformational fluctuations in
single-molecule time series

Chun-Biu Li*"*, Haw Yang*®, and Tamiki Komatsuzaki*™
*Nonlinear Sciences Laboratory, Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan; "Core

Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; 'Department
of Chemistry, University of California, Berkeley, CA 94720; and "Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
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Computational Mechanics:
Application to Experimental

X-Ray Diffraction
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D.PVarn, G.S. Canright, J. P. Crutchfield,“Discovering Planar Disorder in Close-Packed Structures from
X-Ray Diffraction: Beyond the Fault Model”, Phys. Rev. B 66: 17 (2002) 174110-2.
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Cellular Automata Computational Mechanics
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Processes and Their Models
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Processes and Their Models
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Processes and Their Models ...

Main questions now:

How do we characterize the resulting process?
Measure degrees of unpredictability & randomness.
What correlational structure is there!

How do we build a model from the process itself?

How much can we reconstruct about the

hidden internal dynamics?
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Processes and Their Models ...

Stochastic Processes:

Chain of random variables: <§ = ...5.25_1505152...
Random variable: S; Alphabet: A

Past: St

.. 0t—35t—25t 1

Future: St = St5t4+15t42 ...

L-Block: S}

StSt41 - Ot+L—1

Word: Sf StSt4+1.--St+IL—1 € AL
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Processes and Their Models ...

Stochastic Processes ...
Process:

Pr(S) = Pr(...S_2S_15051S5...)

Sequence (or word) distributions:

{PI’(S&L) — PI’(StSH_l c e St—I—L—l) . St - ./4}

Process:
(Pr(SF) : vt, L}

Consistency conditions:

Pr(S; 1) Z Pr(S}) Pr(S t+1 ZPI (S))

St4r—1
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Processes and Their Models ...

Types of Stochastic Process:

Stationary process:

PI'(StSt_|_1 “ . St—I—L—l) — PI’(S()Sl .« . SL—l)

Assume stationarity, unless otherwise noted.

Notation: Drop time indices.
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Processes and Their Models ... DAA

Models of Stochastic Processes:

Markov chain model of a Markov process:

States: v € A =A1,...,k}
V=.. VoV VVi...

Transition matrix: T;; = Pr(vey1|ve) = powr

P11 - Pik
T —

Pk1 - Dkk

k
Stochastic matrix; ZT i = 1
j=1
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Processes and Their Models ...

Models of Stochastic Processes ...

Example:
Fair Coin: A= {H,T}

1/2

1 1
r(i 1) {H_ (1))
2 3 )

Pr(H)=Pr(T)=1/2

Asymptotic invariant distribution: 7 = Pr(H, T))
T =ml
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Processes and Their Models ...
Models of Stochastic Processes ...

Example: Sequence Distribution: Pr(v™)
Fair Coin ...

Word as binary fraction:

SL — S8189...85,
L
ccSLw _ ﬁ
22
1=1
st € 10,1]
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Processes and Their Models ...

Models of Stochastic Processes ...
Sequence Distribution: Pr(v™)

Example:
Fair Coin ...

Word as binary fraction:

SL — S8189...85,
L
ccSLw _ ﬁ
22
1=1
st € 10,1]

5

log P

1
WD W

log P

1
WD W

log P

-3

L=1

L=2

L=3

0

sk 10
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Processes and Their Models ...

Models of Stochastic Processes ...

Example:
Biased Coin: A ={H, T}
T (p 1 —p>
p 1—p 1 —0p
p
Pr(H)=1p
Pr(T)=1—-p

T = Pr(p, 1 _p)
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Biased Coin ...

Sequence Distribution:

Pr(s") =p™(1 —p)~ ",

n =Number Hs in s
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Processes and Their Models ...

Models of Stochastic Processes ...

PI‘(SL) _ pn(l . p)L—n’
L

n =Number Hs in s~ 3

5

Example: L= (=2 =3
Biased Coin ... |
log P ; .
| 1 |
| — -
_3. |
5
L=4 L=5 L=6
Sequence Distribution:
- W
L=8 .
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Processes and Their Models ...

Models of Stochastic Processes ...

Example: Golden Mean Process = “No consecutive 0s”
Markov chain over |-Blocks: A = {0,1}

1 1
— | 2 2
=11 o >
1
X (1) 1o
T=Pr(V =1,V =0) 1

- (3.9

As an order-1 Markov chain.
A minimal-order model of the GM Process.
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Processes and Their Models ...

Models of Stochastic Processes ...

Example: Golden Mean Process ...
as a Markov chain over 2-Blocks: A = {10,01,11}

10 Ol |l
1 1 1
= 0 2 =
T — i 1 i .
t 11
4 2 4
1 1 1
™= (33 3)

Previous model and this:
Different presentations of the same Golden Mean Process
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Processes and Their Models ...

Models of Stochastic Processes ...

5

Example: L=1
Golden Mean:

log P

1
WD W

log P _|_

1
WD W

log P ][

-3

I

I

0 s|_

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield

10

Wednesday, June 12, 13

21



Processes and Their Models ...

Models of Stochastic Processes ...

Two Lessons:

Structure in the behavior: supp Pr(s”)

Structure in the distribution of behaviors: Pr(s™)

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield

Wednesday, June 12, 13

22



Processes and Their Models ...
Models of Stochastic Processes ...

Hidden Markov Models of Processes:
Internal: A ={A,B,C}

DAA PAB DPAC
T=|pBa pPBB PBC
PCA PCB PCC

Observed: B = {0, 1}

PAA:s PAB:s PAC:s
T(S) — | PBA:;s PBB:;s PBC:s
PCA:s PCB:s PCC:s

PAA — E PAA;s
seb
Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Processes and Their Models ...
Models of Stochastic Processes ...

Types of Hidden Markov Model:

“Unifilar”: current state + symbol “determine” next state

1
Pr(v'|v, s) = ) 1

Pr(v', s|lv) = p(s|v) @

Pr(v|v) = 3 pls[o)

sc A
L _(B)
“Nonunifilar’: no restriction @

Multiple internal edge paths can generate
same observed sequence.
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Golden Mean Process as a unifilar HMM:
Internal: A ={A, B} 1|5 0/5
O8O
T = (% 8) v = (2/3,1/3) 1)1

Observed: B = {0,1}

1 1
o_ (0 3} pm_(2 0
=) =y
Initial ambiguity only: At most 2-to-|1 mapping
BA™ =1 Syncd: s=0 =v=20D

AA" =1" s=1=v=A
Irreducible forbidden words: F = {00}

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Golden Mean Process ... Sequence distributions:
Internal state sequences Observed sequences
(A=1;B=0)
og log P _l_
~ L L L |
log P —|_‘ In h |’L H‘" H[ log P ‘|_‘ ][] ]_‘ L_]_ LW LL"\
-
log P l } [ l [ ||l| log P H} H[ ||]|
Same!
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Processes and Their Models ...
Models of Stochastic Processes ...

Example: Even Process = Even #ls 0] F

As a unifilar HMM:
Internal (= GMP): A = {A, B} (e_@
11

11::<% g) = (2/3,1/3)
Observed: B = {0, 1}

1 1
o _ (3 U W _ (U 3
o= (5 o) =0 )

vl = ... AABAABABAA ...

sk=....011011110... st=1{...012"0...}

Irreducible forbidden words: F = {010,01110,0111110,...}
No finite-order Markov process can model the Even process!
Lesson: Finite Markov Chains are a subset of HMM:s.
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Even Process ... Sequence distributions:
Internal states (= GMP) Observed sequences
(A=1;B=0)
log P —
| [ A
lm I lm m

P:ather different!

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Processes and Their Models ...

Models of Stochastic Processes ...

Example:
Even Process ...

Internal states (= GMP)

Sequence distributions:
Observed sequences

L=

2

L=

3

- (/ij ;B =0) L=3 .

og P 1 og P

- e R A e
MO A 1
il (I

P:ather diffeorentSL!
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Simple Nonunifilar Source:

Internal (= Fair Coin): A = {A, B}

11
_ (32 3 _ (11
r=1 1) m=1(32)
2 2 |
Observed: ::-{0,1} ‘
11
7(0) — 1 T = (2 32
2 0 3
[ AAAAAAAA...
ABBBBBBB...
AABBBBBB. ..
. 1111111
Many to one =\ AAABBBBB...
| BBBBBBBB...

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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presentation of the
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2
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0|2

2
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Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Simple Nonunifilar Process ...

Internal states (= Fair coin)
(A=1;B=0)

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield

Observed sequences

Wednesday, June 12, 13

30



Processes and Their Models ...
Models of Stochastic Processes ...

Example:
Simple Nonunifilar Process ...
Internal states (= Fair coin) Observed sequences
(A =1;B=0)
log P
log P
log P

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Processes and Their Models ...

Models of Stochastic Processes ...

log P

log P

log P

-3

Example:

Simple Nonunifilar Process ...

Internal states (= Fair coin)

(A=1;B=0)
L=1 L=2 L=3
L=4 L=5 L=6
L=7 L=8 L=9
0 oL 10 oL 10 oL 1

Observed sequences

log P _|_,_
" Al
) m’m ’mm’h‘ “‘|||I|_||.|.||

0 sk 10 sk 10 sk 1
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Processes and Their Models ...

What to do with all of this complicatedness!?
|. Information theory for complex processes
2. Measures of complexity

3. Optimal models and how to build them

Labs:

Track these topics.
Nix will give a tour in evening session.
Work through labs on your own.
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Information!

Sources of Information:

Apparent randomness:
Uncontrolled initial conditions
Actively generated: Deterministic chaos

Hidden regularity:

lgnorance of forces
Limited capacity to model structure

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield

Wednesday, June 12, 13

32



Information ...
Information as uncertainty and surprise:

Observe something unexpected:
Gain information

Bateson:“A difference that makes a difference”
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Information ...
Information as uncertainty and surprise ...

How to formalize!?
Shannon’s approach:
A measure of surprise.
Connection with Boltzmann’s thermodynamic entropy

Self-information of an event o< — log Pr(event).
Predictable: No surprise —logl =0

Completely unpredictable: Maximally surprised

1
—1 = log(Number of Event
% Number of Events og(Number of Events)

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield

Wednesday, June 12, 13

34



Information ...

Shannon Entropy: X ~ P reX ={1,2,...,k}
P=A{Pr(zx=1),Pr(x =2),...}

Z p(x)logy p(

rEX Note: 0log0 =0

Units:
Log base 2: H (X ) = |bits]
Natural log: H (X ) = [nats]
Properties:
| Positivity: H(X) > 0

2. Predictive: H(X) =0 < p(z) =1 for one and only one x
3.Random: H(X)=logy, k < p(x)=U(z) =1/k

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information ...

Example: Binary random variable X (Biased Coin)

|
1 -

0.8

X ={0,1} Pr(1)=p & Pr(0)=1-0p
H(X): S
Binary entropy function:

06

H(p) = —plogyp — (1 —p)logy(1 —p) |

Fair coin: p = % 02 |
H(p) =1 bit "L

Completely biased coin: p =0 (or 1)
H(p) = 0 bits

Recall: 0-log0 =20

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information ...

Example: Independent, Identically Distributed (lID) Process

over four events

X ={a,b,c d} Pr(X)= (5,75 §)

NP

Entropy: H(X) = £ bits

Number of questions to identify the event!
x = a! (must always ask at least one question)
x = b? (this is necessary only half the time)
x = ¢! (only get this far a quarter of the time)

Average number: 1-1+1-2 4 1.5 = 1.75 questions

Interpretation? Optimal way to ask questions.
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Information ...

Example: [ID Process over four events ...

Average number: 1.1 +1- % +1-

4

1 — 1.75 questions
Pr(X) = (5,73

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information ...

Example: [ID Process over four events ...
Query in a different order:

Average number: 1-1+1- % +1 -g

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information ...

Example: [ID Process over four events

Entropy: H(X) = £ bits

At each stage, ask questions that are most informative.

Choose partitions of event space that give “most random”
measurements.

Theorem:

Entropy gives the smallest number of questions
to identify an event, on average.
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Information ...

Interpretations of Shannon Entropy:
Observer’s degree of surprise in outcome of a random variable
Uncertainty in random variable
Information required to describe random variable

A measure of flatness of a distribution
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Information ...

Two random variables: (X,Y) ~ p(z,y)

Joint Entropy: Average uncertainty in X and Y occurring

H(X,Y)==Y Y p(z,y)log,p(z,y)

reEX ye)y

Independent:

X1Y=HXY)=HX)+H(Y)
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Information ...

Conditional Entropy: Average uncertainty in X, knowing Y

H(X|Y)==> Y plx,y)log, p(z|y)
reX yey

H(X|Y)=H(X,Y)— H(Y)

Not symmetric: H(X|Y) # H(Y |X)
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Information ...
Common Information Between Two Random Variables:

X ~p(r) &Y ~ p(y)
(X,Y) ~ p(z,y)

Mutual Information:

I(X;Y)= Y plz,y)log, Ass
(x,y)EX XY

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information ...

Mutual Information ...

Properties:
(1) I(X;Y) >0
(2) I(X;Y) =I(Y; X)
(3) I(X;Y) = H(X) — H(X]Y)
(4) I(X;Y)=H(X)+HY)-H(X,Y)
(5) 1(X; X) = H(X)
6)X LY =I(X;Y)=0

Interpretations:
Information one variable has about another
Information shared between two variables
Measure of dependence between two variables

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information ...
Event Space Relationships of Information Quantifiers:
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Information ...
Event Space Relationships of Information Quantifiers:
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Information ...
Event Space Relationships of Information Quantifiers:
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Information ...
Event Space Relationships of Information Quantifiers:
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Information ...
Event Space Relationships of Information Quantifiers:

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield

Wednesday, June 12, 13

46



Information ...

Event Space Relationships of Information Quantifiers:

H(X,Y)
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Information ...

Event Space Relationships of Information Quantifiers:

H(X,Y)
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Information ...

Event Space Relationships of Information Quantifiers:

H(X,Y)
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Information ...

Event Space Relationships of Information Quantifiers:

H(X,Y)
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Information ...
Event Space Relationships of Information Quantifiers:

H(X,Y)

N\
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Why information!?

|. Accounts for any type of co-relation
e Statistical correlation ~ linear only
* Information measures nonlinear correlation
2. Broadly applicable:
* Many systems don’t have “energy”’, physical modeling precluded
* Information defined: social, biological, engineering, ... systems
3. Comparable units across different systemes:
* Correlation: Meters v. volts v. dollars v. ergs v. ...
* Information: bits.
4. Probability theory ~ Statistics ~ Information
5. Complex systems:
* Emergent patterns!
* We don’t know these ahead of time
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Information in Processes ...
Communication channel:

Corrupted Inferred
Messages Codewords Codewords Messages
. T3Tex1 L C(z3)C(22)C(x1) ... C(x3)C(22)C(x1) - - - T3Taln
Inf ti
" grma on —>» Encoder M Channel M Decoder ) Receiver
ource > A
X € X X—-C p(C1C) C— X

Complexity Lecture |: Processes and information (CSSS 2013) Jim Crutchfield
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Information in Processes ...

Real Information Theory:
How to compress a process:

Can’t do better than H (X))
(Shannon’s First Theorem)

How to communicate a process’s data: H(X) <C
Can transmit error-free at rates up to channel capacity

(Shannon’s Second Theorem)

Both results give operational meaning to entropy.
Previously, entropy motivated as a measure of surprise.
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Information in Processes
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Information in Processes ... _
Entropy Growth for Stationary Stochastic Processes: Pr(,S)

Block Entropy:

H(L) = H(Pr — ) Pr(s*)log, Pr(s")
steA

Monotonic increasing: H(L) > H(L — 1)
Adding a random variable cannot decrease entropy:

H(Sla‘SQa .- °7SL) < H(Sla‘927 . '7SL7‘9L+1)

No measurements, no information: H(0) = 0
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Information in Processes ...
Entropy Growth for Stationary Stochastic Processes ...
Block Entropy ...

Fair Die lID (Gaussian, Poisson, ...)

Llog, |A| LH(1)

H(L) Generic process

Period-P Process:
H(L > P) = log,(P)
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Information in Processes ...

Entropy Rates for Stationary Stochastic Processes:
Entropy per symbol is given by the Source Entropy Rate:

H(L) o< Lh
h, = lim H(L) :
H L— o0 L

(When limits exists.)

Interpretations:
Asymptotic growth rate of entropy
Irreducible randomness of process
Average description length (per symbol) of process
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Information in Processes ...

Entropy Rates for Stationary Stochastic Processes ...

Length-L Estimate of Entropy Rate:

AN

hu(L) = H(L) — H(L — 1) —
hu(L) = H(sp|sy- sp-1) H(L)

P

Monotonic decreasing: h, (L) < EM(L — 1)

Conditioning cannot increase entropy:
H(sp|s1---sp—1) < H(spls2 - sp—1) = H(sp-1]s1---SL-2)
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Information in Processes ...

Entropy Rates for Stationary Stochastic Processes:
Entropy rate ...

AN

~ L —
h,= lim h,(L)= lim H(so|s )= H(so|s)

L— o0 L— o0

Interpretations:
Uncertainty in next measurement, given past
A measure of unpredictability
Asymptotic slope of block entropy

Alternate entropy rate definitions agree:

AN

h, = hy,
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Information in Processes ...
Entropy Rate for a Markov chain: {V,T'}

h,= lim h,(L)

L—o0

lim H(vp|vi---vp_1)
L—o0

lim H(UL‘UL_l)

L—o0

Assuming asymptotic state distribution:
Process in statistical equilibrium
Process running for a long time
Forgotten it’s initial distribution

Closed-form:

h, = — va(oo) Z Ty 1logs Ty

veV v'ev
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Information in Processes ...

Entropy Rate for Markov chains ...

1
Examples: 2
(1) Fair Coin: %M%
1
2

h, = 1 bit per symbol

Lop
(2) Biased Coin: pmﬁq —

p
h,, = H(p) bits per symbol
1
(3) Period-2 Process: @_@
1

h,, = 0 bits per symbol
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Information in Processes ...
Entropy Rate for Unifilar Hidden Markov Chain:

Internal: {V,T'}
Observed:{T(%) : s € A}

Closed-form for entropy rate:

== pe(00) 3 D Ty log, T

veV scAv' eV

Due to unifilarity:
Observed sequences are (effectively) unique state paths
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Information in Processes ...

Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal: {V,T'}
Observed: {T*) : s € A}

Entropy rate: No closed-form!

ha# =m0 Y > Torloga T, Ty = Pu(0)

veV scAv' eV

Upper and Lower Bounds:

H(SL|ViS1 -+ Si_1) < hu(L) < H(SL|S1 -+ Si_1)

Unrealistic for inference: Must know about internal states.
Unrealistic for analysis: Simulate chain, do empirical estimate.

Entropy rate! But there exists a way ... stay tuned!
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Information in Processes ...

Entropy Convergence:
Length-L entropy rate estimate:

AH
hy(L)=H(L)— H(L—1) log, Al —

h,(L)=AH(L) H(1)
Monotonic decreasing:
(L) < hu(L — 1) -
0

Process appears less random
as account for longer correlations
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Memory in Processes
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Information in Processes ...

Motivation:
Previous: Measures of randomness of information source
Block entropy H (L)
Entropy rate h,,

Current target point:
Measures of memory & information storage

Big Picture:
Complementary.
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Information in Processes ...

Motivation:

Previous: Measures of randomness of information source
Block entropy H (L)
Entropy rate h,,

Current target point:
Measures of memory & information storage

Structurally
Big Picture: Complex
Complementary. Memory
Simple
Randomness
Predictable Unpredictable
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Memory in Processes ...
Excess Entropy:

As entropy convergence:  H(])

E=) [hu(L)—hy N h(L)
L=1

(AL = 1 symbol) m
As intrinsic redundancy:

D

00 K
E=> rL) 111
L=1

Properties:

(1) Units: E = [bits] 1
(2) Positive: E > 0
(3) Controls convergence to actual randomness.

(4) Slow convergence < Correlations at longer words.
(5) Complementary to entropy rate.
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Memory in Processes ...
Excess Entropy ...

Asymptote of entropy growth:
E = lim [H(L)—h,L]

L— o0

That is,

H(L) xE+h,L H(L)

Y-Intercept of entropy growth
E —

0
0
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Memory in Processes ...
Excess Entropy ...

Mutual information between past and future: Process as channel

{ 3 . — —
Process Pr(X, X ) communicates past X to future X :

4 )

Past —> Present —> Future

Channel

Excess Entropy as Channel Utilization:

E=I[X;X]
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Memory in Processes ...
Excess Entropy ...

Mutual information between past and future: Process as channel

{ 3 . — —
Process Pr(X, X ) communicates past X to future X :

4 )

Past —> Present —> Huture

Information

Rate h, Channel

Capacity C

Excess Entropy as Channel Utilization:

E=I[X;X]
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Memory in Processes ...
Examples of Excess Entropy:

Fair Coin:
h,, = 1 bit per symbol

E = 0 bits

Biased Coin:

h,, = H(p) bits per symbol 2|

-

-

-
-
-
-
-
-~

O - 1

E = 0 bits

Any IID Process:

16

14 |

h,, = H(X) bits per symbol

E = 0 bits

H(L): Fair Coin

H(L): Biased Coin, p=.7 -------

0 2 4 6 8 10
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Memory in Processes ...
Examples of Excess Entropy ...

Period-2 Process: 010101010101

H(1) =1 HL) hu(l)
H2)=1 3 hu(2)
H(3) =1

’ 1 (3)

)V

O I 2 3 L

h,, = 0 bits per symbol
E =1 bit

Meaning;
| bit of phase information
O-phase or |-phase!
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Memory in Processes ...

Examples of Excess Entropy ... 4'3 _______________________________
Period- 16 Process: >l
(1010111011101110)*° 2|
h,, = 0 bits per symbol o Sy
E — 4 bits

1.4 }

Period-P Processes:
h,, = 0 bits per symbol
E = log, P bits

0 2 4 6 8 10 12 14 16 18
L

Cf., entropy rate does not distinguish periodic processes!
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Memory in Processes ...

Examples of Excess Entropy ...

Golden Mean Process:
hy,
E

% bits per symbol
0.2516 bits

¢

R-Block Markov Chain:
E=H(R)—R- h,

(E.g., ID Ising Spin System)

4.5-

3.5-F

2.5-F

1.5-F

1.2-

0.8-

0.6-f

0.4-}

0.2-f

H(L)- ——
| E + hyL- oo
0.5-
1- 4- 5
L-
\ o
0- 1- 4- 5
L-
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Memory in Processes ...
Examples of Excess Entropy:

Finitary Processes: Exponential entropy convergence

Random-Random E
XOR (RRXOR) Process: o
St — St—l XOR St_g z Z
h, = % bits per symbol 4  H—
E ~ 2°252 bitS O-O- 2 4 6 8 1l0- 12- 14- 16- 18

Finitary processes:

1- hg(L)- ——
Exponential convergence: 0_8_\
h_

h,u (L) . h,u ~ 2_7[/ N
_ ) = Dy N

=277 1 x030 o
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Memory in Processes ...
Examples of Excess Entropy:

Infinitary Processes:

E —

Excess entropy can diverge:
Slow entropy convergence
Long-range correlations

(e.g., at phase transitions)
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Memory in Processes ...

Information-Entropy Roadmap for a Stochastic Process:

H(L)
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Memory in Processes ...

What is information!?
Depends on the question!

Uncertainty, surprise, randomness, ....
Compressibility.

Transmission rate.

Memory, apparent stored information, ....
Synchronization.
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Complexity

Thursday: Information Theory for Complex Systems
Complex Processes
Information & Memory in Processes
Interactive Labs: Nix

Friday: Intrinsic Computation
Measuring Structure
Optimal Models
Structure = Computation
Interactive Labs: Nix

See online course:
http://csc.ucdavis.edu/~chaos/courses/ncaso/
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