# A Brief History of Partial Information Decomposition

Randall D. Beer Cognitive Science Program Program in Neuroscience Center for Complex Networks and Systems Research School of Informatics, Computing, and Engineering Indiana University

rdbeer@indiana.edu

http://mypage.iu.edu/~rdbeer/

# The Dynamics of Brain-Body-Environment Systems



Beer, R.D. (1992/1995). A dynamical systems perspective on agent-environment interaction. *Artificial Intelligence* **72**:173-215.

-10

 $n_2$ 

-15

# **Examples**

### Sensorimotor Behavior



### Minimally Cognitive Behavior



Visually-Guided Catching Perception of Body-Scaled Affordances Object Categorization Short-Term Memory Selective Attention Relational Categorization Referential Communication

### Learning Behavior



Sequential Decision Learning Food Edibility Learning Temperature Learning

### **Empirically-Grounded Applications**



C. elegans Visually-Guided Braking



# Two Motivating Examples

### **Relational Categorization**





Williams, P.L., Beer, R.D., and Gasser, M. (2008). An embodied dynamical approach to relational categorization. In B.C. Love, K. McRae and V.M. Sloutsky (Eds.), *Proceedings of the 30th Annual Conference of the Cognitive Science Society* (pp. 223-228).

Williams, P.L., Beer, R.D., and Gasser, M. (2008). Evolving referential communication in embodied dynamical agents. In S. Bullock et al. (Eds.), *Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems* (pp. 702-709). MIT Press.

### **Referential Communication**





## Some Questions



- How is absolute object size extracted?
- Where is information about absolute object size stored?
- How is information about relative object size extracted?
- Where is information about relative object size stored?
- How does this information move through the system over time?
- How is this information combined into a classification decision?

## **Some Special Features**



- Deterministic system
- Causal diagram is available
- Interested in information about an external stimulus feature
- Temporal aspect is crucial

## The Dynamics of Information I

Stimulus Information in a Stochastic Process

 $I(S; X_t)$ 

Information Gain

$$I_G(S; X_t) = I(S; X_t | X_{t-1})$$

Specific Information/Surprisal

$$I(S = s; X) = \sum_{x \in X} p(x \mid s) \log \frac{p(x \mid s)}{p(s)}$$

Williams, P.L. and Beer, R.D. (2010). Information dynamics of evolved agents. In S. Doncieux et al. (Eds), *From Animals to Animals 11: Proceedings of the International Conference on Simulation of Adaptive Behavior* (pp. 38-49). Springer-Verlag.

### The Structure of Multivariate Information



### $I(S; R_1, R_2) = \text{Unq}(S; R_1) + \text{Unq}(S; R_2) + \text{Rnd}(S; R_1, R_2) + \text{Syn}(S; R_1, R_2)$

Williams, P.L. and Beer, R.D. (2010). Nonnegative decomposition of multivariate information. arXiv:1004.2515

Williams, P.L. (2011). *Information Dynamics: Its Theory and Application to Embodied Cognitive Systems*. Ph.D. Dissertation, Cognitive Science Program, Indiana University.

### **Measuring Shared Information**

$$I_{\min}(S; \mathbf{A}_1, \dots, \mathbf{A}_n) = \sum_{s \in S} p(s) \min_{\mathbf{A}_i} I(S = s; \mathbf{A}_i)$$

$$I_{\cap}(S; \mathbf{A}_1, \dots, \mathbf{A}_k)$$

Axiom 1 (symmetry):  $I_{\cap}$  is symmetric in the  $A_i$ 's Axiom 2 (self-redundancy):  $I_{\cap}(S; A) = I(S; A)$ Axiom 3 (monotonicity):  $I_{\cap}(S; A_1, ..., A_k) \le I_{\cap}(S; A_1, ..., A_{k-1})$ with equality when  $A_{k-1} \subseteq A_k$ 

### The Partial Information Lattice



12

Partial Information Decomposition  

$$I_{\cap}(S; \alpha) = \sum_{\beta \leq \alpha} I_{\partial}(S; \beta)$$

$$I(S; R_1, R_2) = I_{\partial}(S; \{1\}) + I_{\partial}(S; \{2\}) + I_{\partial}(S; \{1\}\{2\}) + I_{\partial}(S; \{12\})$$
Unique Unique Redundant Synergistic

$$\begin{split} I_{\partial}(S; \{1\}\{2\}) &= I_{\cap}(S; R_{1}, R_{2}) \\ I_{\partial}(S; \{1\}) &= I(S; R_{1}) - I_{\cap}(S; R_{1}, R_{2}) \\ I_{\partial}(S; \{2\}) &= I(S; R_{2}) - I_{\cap}(S; R_{1}, R_{2}) \\ I_{\partial}(S; \{12\}) &= I(S; R_{1}, R_{2}) - I(S; R_{1}) - I(S; R_{2}) + I_{\cap}(S; R_{1}, R_{2}) \end{split}$$

### Partial Information Decomposition



### Some Consequences

### Interaction Information

$$I(S; R_1; R_2) = I_{\partial}(S; \{12\}) - I_{\partial}(S; \{1\}\{2\})$$
  
Synergistic Redundant

# Conditional Information $I(S; R_1 | R_2) = I_{\partial}(S; \{1\}) + I_{\partial}(S; \{12\})$ Unique Synergistic

**Transfer Entropy** 

$$T_{X \to Y} = I(Y_t; X_{t-1} | Y_{t-1}) = I_{\partial}(Y_t; \{X_{t-1}\}) + I_{\partial}(Y_t; \{X_{t-1}, Y_{t-1}\})$$
  
Unique Synergistic  
(state-independent) (state-dependent)

Williams, P.L. and Beer, R.D. (2011). Generalized measures of information transfer. arXiv:1102.1507. Beyond Shannon 2019/Beer

## The Dynamics of Information II

Stimulus Information in a Stochastic Process

 $I(S; X_t)$ 

Specific Information/Surprisal

$$I(S = s; X) = \sum_{x \in X} p(x \mid s) \log \frac{p(x \mid s)}{p(s)}$$

Information Gain

$$I_G(S; X_t) = I(S; X_t) - I_{\min}(S; X_{t-1}, X_t)$$

**Information Transfer** 

$$I_T(S; X_{t-1} \to Y_t) = I_{\min}(S; Y_t, \{X_{t-1}, Y_{t-1}\}) - I_{\min}(S; Y_{t-1}, Y_t)$$

### Where is Cue Object Size Stored?



Beer, R.D. and Williams, P.L. (2015). Information processing and dynamics in minimally cognitive agents. *Cognitive Science* **39**:1-38. Beyond Shannon 2019/Beer

## **Cue Stage Information Flow**



### **Probe Stage Information Flow**



# A Biological Application: Caenorhabditis elegans



## Information Architecture of C. elegans Klinotaxis



Izquierdo, E.J., Williams, P.L. and Beer, R.D. (2015). Information flow through a model of the *C. elegans* klinotaxis circuit. *PLoS ONE* 10(10):e0140397. doi:10.1371/ journal.pone.0140397.

# Many Other Applications

### Computation is concentrated in rich clubs of local cortical networks

Samantha P. Faber<sup>1</sup>, Nicholas M. Timme<sup>2</sup>, John M. Beggs<sup>3</sup>, and Ehren L. Newman<sup>1</sup>

### High-Degree Neurons Feed Cortical Computations

Nicholas M. Timme<sup>1</sup>\*, Shinya Ito², Maxym Myroshnychenko³, Sunny Nigam<sup>1</sup>, Masanori Shimono<sup>4</sup>, Fang-Chin Yeh<sup>5</sup>, Pawel Hottowy<sup>6</sup>, Alan M. Litke², John M. Beggs<sup>1</sup>

#### Apical Function in Neocortical Pyramidal Cells: A Common Pathway by Which General Anesthetics Can Affect Mental State

William A. Phillips<sup>1</sup>, Talis Bachmann<sup>2</sup>\* and Johan F. Storm<sup>3</sup>

# Maternal deprivation induces alterations in cognitive and cortical function in adulthood

Sarine S. Janetsian-Fritz<sup>1</sup>, Nicholas M. Timme<sup>1</sup>, Maureen M. Timm<sup>1</sup>, Aqilah M. McCane<sup>1</sup>, Anthony J. Baucum II<sup>2</sup>, Brian F. O'Donnell<sup>3</sup> and Christopher C. Lapish<sup>1,4,5</sup>

### The Partial Information Decomposition of Generative Neural Network Models

Tycho M.S. Tax <sup>1,\*,†</sup> , Pedro A.M. Mediano <sup>2,\*,†</sup> and Murray Shanahan <sup>2</sup>

### Multivariate Mutual Information of Interferometric Radar Altimeter

For an Application to Terrain-Referenced Navigation

Synergistic Information Processing Encrypts Strategic Reasoning in Poker

Seth Frey,<sup>a,b,c</sup> Dominic K. Albino,<sup>d,†</sup> Paul L. Williams<sup>c</sup>

#### Information Theoretical Study of Cross-Talk Mediated Signal Transduction in MAPK Pathways

Alok Kumar Maity $^{1,\dagger}$ , Pinaki Chaudhury $^1$  and Suman K. Banik $^{2,\ast}$ 

Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables

Allison E. Goodwell<sup>1</sup> 💿 and Praveen Kumar<sup>1,2</sup> 💿

## Dynamic process connectivity explains ecohydrologic responses to rainfall pulses and drought

Allison E. Goodwell<sup>a,b</sup>, Praveen Kumar<sup>a,1</sup>, Aaron W. Fellows<sup>c</sup>, and Gerald N. Flerchinger<sup>c</sup>

### Nonlinear higher order abiotic interactions explain riverine biodiversity

Masahiro Ryo<sup>1,2,3</sup> | Eric Harvey<sup>1,4</sup> | Christopher T. Robinson<sup>1,5</sup> | Florian Altermatt<sup>1,4</sup>

#### Stem Cell Differentiation as a Non-Markov Stochastic Process

Patrick S. Stumpf,<sup>1,2</sup> Rosanna C.G. Smith,<sup>1,2</sup> Michael Lenz,<sup>3,4,5</sup> Andreas Schuppert,<sup>3,4</sup> Franz-Josef Müller,<sup>6,7</sup> Ann Babtie,<sup>8</sup> Thalia E. Chan,<sup>8</sup> Michael P.H. Stumpf,<sup>8</sup> Colin P. Please,<sup>9</sup> Sam D. Howison,<sup>9</sup> Fumio Arai,<sup>10</sup> and Ben D. MacArthur<sup>1,2,11,12,\*</sup> <sup>1</sup>Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK

<sup>2</sup>Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK

<sup>3</sup>Joint Research Center for Computational Biomedicine, RWTH Aachen University, 52056 Aachen, Germany

<sup>4</sup>Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, 52062 Aachen, Germany <sup>5</sup>Maastricht Centre for Systems Biology, Maastricht University, 6229 ER Maastricht, the Netherlands

<sup>6</sup>Zentrum für Integrative Psychiatrie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Niemannsweg 147, 24105 Kiel, Germany
<sup>7</sup>Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany

<sup>8</sup>Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College, London SW7 2AZ, UK <sup>9</sup>Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

<sup>10</sup>Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan <sup>11</sup>Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK

12Lead Contact

Hyochoong Bang