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We describe a method for determining the approximate fractal dimension of an attractor. Our technique fits linear 
subspaces of appropriate dimension to sets of points on the attractor. The deviation between points on the attractor and 
this local linear subspace is analyzed through standard multilinear regression techniques. We show how the local 
dimension of attractors underlying physical phenomena can be measured even when only a single time-varying quantity 
is available for analysis. These methods are applied to several dissipative dynamical systems. 

1. Introduction 
Recent progress in dynamical systems theory 

has strengthened the connection between 
“strange” or “chaotic” attractors and aperiodic 
behavior found in nature [I, 2, 3, 41. Further- 
more, Couette flow experiments performed near 
the transition from laminar to turbulent 
behavior suggest that fluid motion in the weakly 
turbulent regime can be understood in terms of 
low-dimensional chaotic attractors [5,6]. Thus it 
is possible that weakly turbulent fluid flow, 
which in principle must be considered as an 
infinite-dimensional system, can be modeled by 
a system with relatively few phase-space 
dimensions. Many natural phenomena, in con- 
trast to this, exhibit aperiodic behavior that can 
only be explained by a model with a very large 
number of dimensions. A model of thermal 
noise in a resistor, for instance, must account 
for the motions of the individual electrons 
within the resistor; the number of electrons 
involved is so large that any signal derived from 
the system appears “noisy”. As a first step in 
modeling systems exhibiting aperiodic behavior, 
then, we must distinguish between those having 
an underlying low-dimensional chaotic attractor, 
and those requiring a large number of phase- 
space dimensions for a dynamical description. 

Current techniques of data analysis, applied 
to aperiodic physical phenomena, cannot 
resolve these two fundamentally different 
sources of behavior. Power spectral analysis, 
for example, characterizes aperiodic behavior 
by the presence of broadband noise in the 
power spectrum, but broadband noise can be 
produced by systems requiring either a small or 
large number of phase-space dimensions. Thus 
the power spectrum fails to make this dis- 
tinction. Low- and high-dimensional aperiodi- 
city must instead be distinguished by a direct 
measurement of the number of coordinates 
needed to specify the state of the physical sys- 
tem under observation. Applied to fluid tur- 
bulence, this measurement might indicate that a 
chaotic attractor underlies weakly turbulent 
fluid flow. If a chaotic attractor exists for such 
flows, then the dimension would provide an 
experimental classification of turbulent flows. 

We will describe a technique that measures 
the dimension of attractors in dissipative sys- 
tems. More precisely, the technique measures 
the approximate fractal dimension by examin- 
ing small regions of an attractor and determining 
whether or not the points of the attractor in 
each small region lie in or close to linear sub- 
spaces of dimension less than that of the phase 
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space used to represent the system’s states. 
From this perspective, the limit cycle attractor 
of the Van der Pol oscillator (a two-dimensional 
dynamical system) appears one dimensional, 
since lines (one-dimensional linear sub-spaces) 
are a suitable approximation to local regions of 
the attracting limit cycle. The simplest chaotic 
dynamical systems in three dimensions (such as 
those of Lorenz [l] and Riissler [7]) have 
attractors that appear locally two-dimensional. 
The method we introduce relies on standard 
multilinear regression techniques that measure 
the goodness of fit of linear subspaces to local 
regions of the attractor. 

The application of this method requires an 
experimentalist to first develop a phase space 
representation of the dynamics under obser- 
vation. Many experiments provide no clue at all 
as to which measured quantities might cor- 
respond to useful phase space coordinates. We 
will discuss these problems, and give examples 
for which unambiguous results can be obtained 
using phase space coordinates reconstructed 
from a single time series [S, 91. 

2. Geometry of strange attractors 

Since we are seeking a description of 
experimentally observable chaotic dynamics, we 
now review some geometrical and topological 
features of simple chaotic systems. 

The phase space of a dissipative dynamical 
system can be divided into regions in which 
motion is unbounded and regions in which the 
motion is attracted into compact subsets. These 
compact subsets are called attractors, the set of 
all phase space points which asymptotically 
tend to an attractor is called its basin of attrac- 
tion. 

Certain asymptotic properties of a dynamical 
system’s attractor are characterized by the 
attractor’s spectrum of Lyapunov characteristic 
exponents (LCE’s). There are as many charac- 
teristic exponents as there are dimensions in the 
phase space of the dynamical system. The 

LCE’s measure the average rate of exponential 
convergence of trajectories onto the attractor 
when negative, and the average rate of 
exponential divergence of nearby trajectories 
within the attractor when positive. The mag- 
nitude of an attractor’s positive exponents is a 
measure of its “degree of chaos” [lo, 111. 

The spectrum of LCE’s yields a useful 
classification of attractors. For example, in 
three dimensions a dynamical system with all 
negative exponents is a fixed point: the LCE 
spectrum is denoted by (---). A limit cycle 
attractor has an LCE spectrum of (0--). A 
two-torus attractor has an LCE spectrum of 
(00-). Chaotic attractors in three dimensions 
have an LCE spectrum of (+ 0 -). In this case 
the positive exponent indicates exponential 
spreading within the attractor in the direction 
transverse to the flow and the negative exponent 
indicates exponential contraction onto the 
attractor. Under the action of such a flow, phase 
space volumes evolve into sheets, as illustrated 
in fig. 1. For attractors in three dimensions then, 
the spectrum of characteristic exponents gives a 
rough measure of dimension. As a first step 
toward a dimensional classification of attractors, 
we can identify the dimension of an attractor 
with the number of non-negative characteristic 
exponents (we will make this notion more pre- 
cise later): the (- - -) fixed point is zero- 
dimensional, the (0- -) limit cycle is one- 
dimensional, and the (00-) two-torus is two 
dimensional. 

Fig. 1. Under the action of 3-dimensional flows with local 

exponential spreading transverse to the flow and exponential 

contraction in the other dimension, phase space volumes 
evolve into sheets. 
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The (+0-) chaotic attractor is also two 
dimensional, but its structure is actually more 
complicated than simple sheets: exponential 
divergence of nearby trajectories within a 
compact object requires the “folding” of sheets. 
A simple example of this process is illustrated in 
fig. 2. Trajectories diverge exponentially within 
a sheet; then the sheet folds and connects back 
to itself, forming an attractor which bears a 
striking resemblance to the attractor (shown in 
fig. 3) in a system due to Rijssler [7], 

.i=-y-z, 

j = x + ay, 

i=b+xr-cz, 

(1) 

with parameter values of a = 0.2, b = 0.2, and 
c = 5.7. The attractor is not simply a sheet with 
a single fold, but a sheet folded and refolded 
infinitely by the flow. A line segment which cuts 

a 

Fig. 2. (a) Exponential divergence of nearby trajectories 
within a compact object requires folding of sheets: connec- 
ting points A and A’ together and B and B’ together results 

in the object of (b). 

Fig. 3. X-y projection of Rijssler attractor. 

the attractor transverse to these sheets will in- 
tersect the attractor in a Cantor set. The attrac- 
tor has topological dimension two, but a fractal 
dimension [12] greater than two. 

To clarify the notion of fractal dimension, 
imagine a box which contains a small region of 
an attractor. If this box is subdivided into 
smaller boxes, some fraction of the smaller 
boxes will contain pieces of the attractor, while 
the rest won’t. For example, if the small region 
of the attractor is a simple plane, and if a 
3-dimensional box which contains it is divided 
by 10 in each dimension (for a total of 1000 
smaller boxes), then roughly 100 of these 
smaller boxes will contain pieces of the plane. 
The number of piece-containing boxes will scale 
as Ld, where L is the factor by which each 
dimension of the box is divided. This con- 
struction defines the fractal dimension [13]: 

d = lim log N(~) 
r4 logWE) ’ (2) 

where N(E) is the number of boxes, whose sides 
have length E, necessary to cover the attractor. 
For a plane d is 2 by this construction, the same 
as the topological dimension. The simplest cha- 
otic attractors (those lying in a 3-dimensional 
phase space) have fractal dimension between 2 
and 3; d then measures how “closely packed” 
the sheets of an attractor are. 

Mori [14] conjectured one relationship be- 
tween an attractor’s fractal dimension and its 
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spectrum of Lyapunov exponents, but numeri- 
cal evidence [IS] supports a conjecture by 
Kaplan and Yorke [16], 

(3) 

where we assume the Lyapunov exponents to 
be ordered, A, > hz > . . . . > ANI and where j is 
the largest integer so that A, + . . . + hi > 0. The 
Rossler attractor, with parameter values a = 0.2, 
b = 0.2, c = 5.7, has an LCE spectrum of (0.075, 
0, - 5.372) [17]. According to eq. (3) then, this 
attractor has a fractal dimension of 2.014. 

In discussing global properties, Williams [19] 
and Shaw [20] “collapse” the fractal structure to 
simple folded sheets by taking a neighborhood 
of the attractor and identifying all points within 
the neighborhood that become arbitrarily close 
under the action of the flow. They call the 
resulting object the attractor’s “branched mani- 
fold”. Any experiment, either physical or 

numerical, through its finite resolution automa- 
tically makes this identification: at any degree of 
resolution an observer sees only a branched 
manifold. 

3. Phase space reconstruction 

Certain experimental systems can be modeled 
by systems of ordinary differential equations. 
Stirred chemical reactions [9] are an example: 
the concentrations of various compounds and 
intermediates serve as coordinates in phase 
space. In these cases one can make an unam- 
biguous identification between the available 
experimental quantities and the phase space 
coordinates of our dynamical systems approach. 
With these coordinates, determination of the 
attractor’s dimension should be straightforward. 

An experimental system modeled by partial 
differential equations presents greater difficul- 
ties. To obtain a complete dynamical description 
of a fluid its velocity at every point must, in 
principle, be known. But to determine the 

dimension of a low-dimensional attractor only a 
few independent quantities are needed: as few 
as the fractal dimension of the attractor rounded 
to the next high integer. Even if a low-dimen- 
sional attractor underlies fluid flow, the 
experimentally accessible quantities which con- 
tain the information necessary to reconstruct a 
phase space picture of the dynamics are not 
given a priori. The notion of obtaining a picture 
of a system’s dynamics by viewing attractors 
projected onto a space of experimentally ac- 
cessible quantities was first introduced by R. 
Abraham [21], who called these projections 
“matrons”. 

The problem of reconstructing a finite- 
dimensional phase space picture that gives a 
faithful representation of fluid motion (after 
transients have died away) is not yet settled. 
Packard et al. [8] mention as possibilities time 
derivatives, time delays [22], and even spatially 
separated sampling. J.C. Roux et al. [9] recon- 
structed a chaotic attractor from chemical tur- 
bulence using one time-varying signal and its 
derivatives. Although in the following sections 
we use time delays as an example of a recon- 
struction technique, the experimentalist must 
take our suggestions as tentative, not final. The 
relative merits of different techniques must be 
carefully considered for each new experimental 
situation. 

In reconstructing a phase space it is necessary 
that the fractal dimension of the attractor lying 
in the original and reconstructed phase spaces 
be the same. For systems of ordinary differen- 
tial equations the meaning of “original phase 
space” is clear. For a physical system the ori- 
ginal phase space is the space of all possible 
initial conditions, which in general will have a 
much larger dimension (possibly infinite) than 
that of the attractor describing the asymptotic 
state of the system. 

A simple and adequate technique for recon- 
structing an N-dimensional phase space, from a 
single time series with time delay At between 
samples, equates the reconstructed phase space 
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point with N successive points of the time 
series separated by a delay nAt. The next phase 
space point is found by advancing each previous 
point by a time At. Unfortunate choices for N, 
n, or At may grossly distort the phase space 
portrait of the original attractor: although the 
dimension may not change, it may for practical 
purposes become nearly impossible to measure. 

Fig. 4 shows the Rossler attractor recon- 
structed from a single time series using this 
method. There is an obvious similarity between 
this attractor and the original attractor shown in 
fig. 3. In section 5 we show that the two attrac- 
tors have the same approximate fractal dimen- 
sion. As an example of an unfortunate choice of 
variables, the reconstructed Rbssler attractor 
would be unrecognizable if the time delay At 
were simply rationally related to the average 
period of this system. 

This technique reconstructs an object in an 
N-dimensional phase space from a single time 
series. But in experimental situations N need 
not equal the dimension of the phase space of 
the phenomenon studied. In the next section we 
will show that, as long as N is chosen greater 
than the dimension of the attractor in the ori- 
ginal phase space, the attractor’s approximate 
fractal dimension can be determined unam- 
biguously. 

4. Local determination of the approximate fractal 

dimension 

The concept of dimension evolved slowly 
from the turn of the century when Poincare set 
out its basic definitions [23]. Practical ap- 
plication of these notions, however, flourished 
only with the advent of modern computers, 
which allowed for the development of tech- 
niques for dimension measurement. Questions 
about the dimension associated with a given 
data set were first addressed by Shepard in 1962 
[24] to measure the number of significant 
parameters in psychological experiments. Since 
then, techniques have been refined to measure 

Fig. 4. X-y projections of Riissler attractor reconstructed 
from a time series: At = 0.2, N = 3, n = 1. This recon- 
structed attractor fits in a three dimensional box roughly 20 

units on a side. 

the “intrinsic” dimension of data [25] in a wide 
range of fields including signal analysis [26] and 
pattern recognition 1271. We shall now extend 
some ideas related to this earlier line of inquiry 
to the context of dynamical behavior. 

Packard et al. [8] discuss several techniques 
that measure the approximate fractal dimension 
of attractors. Takens [28] has also recently 
proposed a technique for measuring the fractal 
dimension as well as the topological entropy of 
an attractor. Unfortunately, these methods ap- 
pear to be sensitive to instrumental noise, and 
they require an unduly large number of data 
points. In what follows we present a practical 
algorithm which is substantially less sensitive to 
noise. 

After collecting N-dimensional phase space 
points that presumably lie on an attractor with 
approximate fractal dimension N-l or less, we 
require for the following discussion that the 
phase space be partitioned so that each portion 
of the imbedded attractor is approximately flat. 
This partition is accomplished by sorting the 
phase space data into N-dimensional “boxes” 
according to their coordinate value in each 
dimension. If the phase space points in each box 
lie close to a piece of a manifold or branched 
manifold we can describe these points as lying 
approximately in a linear space of dimension 
less than N. Multilinear regression is the natural 
analysis to apply to these points: on N-dimen- 
sional phase space point it finds the best hyper- 
plane (dimension N-l or less) that fits the data. 
By using smaller dimensional phase spaces we 
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can fit smaller-dimensional linear subspaces. 
The goodness of fit in each box is measured by 
x2, the sum of the squares of the deviations 
from this hyperplane divided by the number of 
degrees of freedom. 

If the dimension of the hyperplane is too 
small the fit will typically be poor and x2 will be 
large. When the dimension is increased so that 
the hyperplane gives a good fit to the data, x2 
will drop sharply. The dimension of this hyper- 
plane provides the closest integer approximation 
to the fractal dimension, which we call the ap- 
proximate fractal dimension. 

We display the results of this Local Linear 
Regression (LLR) in a histogram of the 
logarithm of x2, showing the number of occur- 
rences of ranges of x2 for regions of the attrac- 
tor where the analysis is applicable. In the fol- 
lowing histograms five columns represent a fac- 
tor of ten difference in x2; every tick mark on 
the vertical axis represents ten occurrences of a 
particular range of x2. 

Figure 5 shows the x2 histograms for Riissler 

attractor. The greatest number of occurrences 
of x2 for planes occurs lower by a factor of one 
million than the peak in occurrences for points 
and lines, indicating that the Rijssler attractor 
looks locally planar. That some local regions 
have poor plane fits is due to the branched 
manifold structure mentioned above. 

There is another quantity arising in LLR 
which also characterizes the dimension of an 
attractor. If too many phase space coordinates 
are chosen the system of equations determining 
the hyperplane is overdetermined: the resulting 
correlation matrix will be singular. (With noise 
in the system the correlation matrix will be 
approximately singular.) This fact can be used 
to determine the number of independent quan- 
tities needed to specify a physical system, al- 
though we will not develop this approach here. 

x2 of multilinear regression measures the 
deviation of the “dependent variable” from the 
best fit hyperplane, not the perpendicular devi- 
ation of the points from a hyperplane. Thus x2 

. 
III 

0 r 

log x2 
Fig. 5. Chi-squared histograms for RGssler attractor using 
natural coordinates, At = 0.2, box size = 0.5, noise (r = 0.01 
(= 0.1%) added, 10,000 3-D points: (it_(iii) best fit points, 
lines, and planes. On this and all succeeding histograms, 
every five columns on the horizontal axis represent a factor 
of 10 difference in x2; every tick mark on the vertical axis 

represents 10 occurrences of a particular range of x2. 

would be measured as overly large if one or 
more slopes were appreciable, and the x2 his- 
togram would not accurately reflect the actual 
deviations from a hyperplane. As a practical 
remedy we perform multilinear regression twice 
for each local region. The first calculation of 
best fit hyperplane is used to rotate the points in 
the local region so that all slopes are zero; then 
for the second multilinear regression the devia- 
tion of the dependent variable from a hyper- 
plane is approximately the true perpendicular 
deviation. 

5. Choosing a delay time 

We have given evidence that the system of 
phase space coordinates reconstructed from a 
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time series can be a suitable replacement for the 
original (possibly unknown) system. The time 
interval between successive samples in a time 
series is as yet undetermined. For the state 
space construction from a time series to be of 
practical use, we must either specify a way to 
choose an optimum time interval, or show that 
the results are relatively insensitive to the time 
interval chosen. Systems with chaotic attractors 
offer an upper limit to this time interval, cor- 
responding roughly to the average time between 
“folding” of adjacent sheets of the attractor. If 
trajectories from different sheets approach one 
another exponentially, then in some finite time 
they will for all practical purposes become 
identified; a bit of information is lost, cor- 
responding to which sheets the trajectories were 
on. Thus if we choose too long a time interval 
we can no longer make a one-to-one cor- 
respondence with points of the time series and 
the original attractor. For attractors that are not 
chaotic (solutions lying on an n-torus, for in- 
stance) there is no upper limit on the time 
interval. In our numerical studies we typically 
chose the delay time to be approximately 10% 
of the folding time. 

A qualitative lower limit also exists. If the 
time interval is chosen too small, then the N 
successive points are all approximately equal; 
the attractor appears “stretched out” along the 
x=y=z=... direction. This problem with 
short time intervals could be alleviated by tak- 
ing appropriate differences between coordinates 
and dividing by the time interval (analogous to 
taking derivatives), but this procedure intro- 
duces noise into the phase space picture. 
Choosing nAt of our reconstruction technique 
sufficiently large obviates the need for this 
noise-producing procedure. 

Our experience indicates that any time inter- 
val between these extremes is a suitable one. Of 
course, if the system is periodic or quasi- 
periodic and one chooses a time interval simply 
rationally related to a period, the results will be 
misleading. 

As a check on the relative insensitivity of 
results with time interval (within extremes), we 
have performed LLR on the Rijssler attractor 
reconstructed from a time series by the method 
in section 3. Fig. 6 shows the histograms for the 
Rossler attractor for time increments of 0.1, and 
delays of 5, 10, and 20 time increments between 
coordinates. The results show that for each time 
interval, a local 2-dimensional surface (plane) 
fits the data much better than lines or points. 

Fig. 6 also illustrates the effect of choosing 
too many coordinates to describe a system. A 
four-dimensional phase space was reconstructed 
from the time series using delays, although only 
three independent quantities are needed to des- 
cribe points on the attractor. The correlation 
matrices needed to calculate x2 are ap- 
proximately singular when trying to fit 3-D 
linear subspaces to 4-D points; still, the x2 his- 
tograms for these indicate fits as good as those 
for planes. Normally one would check the 
values of the correlation matrix to avoid any 
possible problems. 

Notice that the time interval we recommend 
is of the same order as typical sampling times 
used in power spectral analysis. In fact, the 
same time series used for power spectral analy- 
sis may be used for LLR with absolutely no 
change. 

6. Noise and curvature 

The technique of LLR naturally accom- 
modates deviation from a hyperplane. But two 
sources (excluding branched manifold structure) 
contribute to this deviation: (1) observational 
noise in the data and (2) curvature of the 
attractor. 

It is possible to distinguish these two sources 
of deviation. If the box size is decreased the 
deviation from a hyperplane will decrease, since 
the deviation due to curvature is decreased. As 
the box size decreases, eventually observational 
noise becomes the only source of deviation. 

The ability to measure the dimension of an 
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Fig. 6. Chi-squared histograms for Rijssler attractor reconstructed from a time series, At = 0.2, box size = 1.0, 10,000 4-D points. 
noise (T = 0.01 (= 0.1%) added: (a) delay = 5 time intervals: (i)-(k) best fit subspaces of 0, 1,2, and 3 dimensions;(b) delay = IO time 
intervals: (it_(iv) best fit subspaces of 0, 1.2, and 3 dimensions; (c) delay = 20 time intervals: @(iv) best fit subspaces of 0,1,2 and 3 

dimensions. 
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Fig. 7. Chi-squared histograms of Riissler attractor reconstructed from a time series, At = 0.2, time delay = 5 box size 2.0, 
5,000 points: (a) noise u = 0.1 (= 1%) added: (i)_(iii) best fit points, lines, and planes; (b) noise (r = 0.2 (= 2%) added: @-(iii) best fit 

points, lines, and planes. 
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attractor in the presence of noise depends on 
both the magnitude of the noise compared to the 
size of the attractor, and the box size. To reli- 
ably detect a hyperplane the size of the box 
must be larger than the noise. But if the noise is 
too large we must choose a box whose size is of 
the same order of magnitude as (or larger than) 
the curvature of the attractor and any attempt to 
fit a hyperplane must result in a large x2; the 
hyperplane fit fails. 

By this method the dimension of chaotic 
attractors can be reliably measured even when 
observation noise is appreciable, if the geometry 
of these attractors is simple. Fig. 7 shows x2 
histograms for the Riissler attractor, with zero- 
mean Gaussian random noise of standard devi- 
ations 0.1 and 0.2 added to the signals. These 
correspond roughly to 1% and 2% noise relative 
to the size of the attractor. In both cases planes 
fit the data significantly better than points or 
lines. For noise levels much greater than this a 
determination of the dimension becomes 
difficult. 

7. The effect of fractal structure 

The Riissler attractor shown in fig. 3 has 
strong contraction of phase space volumes 

effectively truncating its fractal structure to a 
branched manifold after a small fraction of a 
revolution around the attractor. To examine the 
effect of fractal structure on determining the 
dimensionality of chaotic attractors we have 
studied the scaling properties of the H&on map 
[29] which has weak convergence of adjacent 
folds of the attractor. 

Xi+1 = yi + 1 - tlXi 

yi+l = bXi. (4) 

This 2-dimensional system clearly reveals many 
leaves of the fractal structure. Fig. 8 shows the 
H&on map and x2 histograms for the H&on 
map. The histograms are qualitatively the same 
for the different box sizes, showing that even 
for substantial fractal structure we can 
confidently determine the approximate fractal 
dimension of an attractor. 

8. Direct calculation of the fractal dimension 

The sorting necessary to use LLR offers the 
information necessary to estimate the fractal 
dimension using the scaling construction of eq. 
(2). For 20,000 2-dimensional points we measure 

a 

Fig. 8(a) 
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lwX2 
Fig. 8. (a) H&on map, a = 1.4, b = 0.3, 1000 2-D points, noise CT = 0.0001 ( = .Ol%) added (b) box size = 0.005: (i)-(ii) best fit points 

and lines (c) box size = 0.01: (i)-(ii) best fit points and lines; (d) box size = 0.02: (i)-(ii) best fit points and lines 

a fractal dimension 

d = 1.19, 

while eq. (3) gives a fractal dimension of 

d = 1.26, 

and Simb [30] finds 

d = 1.2365. 

Since we define the surface of the attractor by 
the points lying on it, we expect our scaling 
construction to underestimate the fractal 
dimension because as we take smaller boxes, 
some will not contain any points, simply 
because they have not yet been visited, although 
pieces of the attractor lie within them. Un- 
fortunately, this simple estimate of the fractal 
dimension becomes even more inaccurate for 
higher-dimensional attractors, and its use appears 
impractical for even sheet-like structures for 
this reason. 

9. Data acquisition requirements 

In principle, the LLR technique will work for 
attractors of any dimension. Unfortunately, 
there are practical limitations that prevent this 
from being feasible for attractors of dimension 
greater than about five. These limitations are 
also present, and in fact they are more severe, 
for the straightforward determination of the 
fractal dimension as outlined in section 8. 

In order to fit an m-dimensional hyperplane, 
at least m + 1 points are required. Thus for a 
given box it is necessary to collect points from 
the time series until at least m + 1 points have 
been found that lie inside the box. The length of 
the time series that is needed to do this may be 
estimated by assuming that the points of the 
sampled time series are uniformly distributed 
over the attractor. Using D-dimensional boxes 
of diameter E, the number of boxes required to 
cover the attractor is N(R) = RD, where R = l/e 
is the resolution used in constructing the cover 
of boxes. The probability of finding a point in 
any box is roughly l/N, so the number of points 
that must be examined to make it likely to find a 
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single point in any given box is = N. For a sition to turbulence. For fully developed tur- 
successful determination of the dimension of bulence this technique, or any technique that 
the best fit hyperplane for the points in a box, at requires sufficient data points to cover the 
least D + 1 points are needed. The number of attractor with moderate resolution, will certainly 
data points n that must be taken is therefore be impractical. 

n=(D+l)iv=(D+l)RD. 10. Other systems 

For reasonable values of R, this number 
becomes very large when D exceeds 5. For 
example, if R = 20 and D = 5, n = 2 X 10’. For 
typical rates of data acquisition, it is often im- 
practical to gather or process this many data 
points. 

Fig. 9 shows the results of LLR for x-y-z 
coordinates of the Lorentz system [l] 

For LLR the situation is improved slightly 
because it is not necessary to gather sufficient 
points in every box, but rather only to gather 
points in enough boxes to gain a representative 
sample of boxes covering the attractor. Since 
the points on an attractor do not typically have 
uniform distribution, the more probable boxes 
will fill out much earlier than others, reducing 
the number of data points that must be 
examined. 

i = - 10x + lOy, 

jr=-xzt28x-y, (5) 

i = xy - (8/3)z. 

We interpret the results as indicating that local 
2-D surfaces are almost everywhere good fits; 
not all plane fits are good, indicating the bran- 
ched manifold structure of the attractor. 

A nonuniform distribution of points works 
against a direct measurement of the fractal 
dimension based on eq. (2), such as that made for 
the H&on map in section 8. To measure the 
fractal dimension directly from the definition it is 
necessary to count the number of boxes required 
to cover the attractor at several levels of resolu- 
tion. For a uniform distribution, this typically 
takes considerably more than n = RD points; if 
the distribution is uneven, this problem becomes 
worse. In addition, for a direct determination, 
sufficient computer memory must be allocated to 
cover the attractor. For many applications this 
proves to be a more severe constraint than does 
the problem of gathering and processing sufficient 
data. 

: 

In summary, we have shown that this tech- 
nique may be feasibly applied to physical sys- 
tems that are described by low dimensional 
attractors. Thus, this may be useful for studying 
fluid flows such as those found near the tran- 

20:: 
44x2 

Fig. 9. Chi-squared histograms for Lorentz system, At = 0.2, 
time delay = 5, box size = 1.0, noise (T = 0.01 (= 0.1%) ad- 
ded, 10,000 3-D points: @-(iii) best fit points, lines, and 

planes. 
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It is difficult for LLR to distinguish between 
LCE signatures of (+ 0->, a branched manifold 
attractor, and (00 -), a torus. However, LLR 
analysis, in conjunction with power spectral 
analysis, does distinguish these two very 
different types of attractor. A power spectrum 
of a 2-torus has sharp peaks corresponding to 
two incommensurate frequencies (along with 
harmonics and sums and differences of 
frequencies) but no broadband noise, while a 
chaotic system is characterized by broadband 
noise in its power spectrum. Thus we see that 
power spectral analysis and LLR give com- 
plementary information. 

For 4-D systems LLR apparently cannot dis- 
tinguish-even with power spectral analysis-be- 
tween a (++O-) system and a (+OO-) system: 
both will exhibit branched manifold structure 
and have broadband noise in their power spec- 
tra. An example of a ( + +O-) system is the 
Hyperchaos system of Riissler [31]: 

i=-y-z, 

9 = x + 0.25 y + w, 

i=3+xz, (6) 

ti = - 0.52 + 0.05w. 

Fig. 10 shows the x2 histograms for this system. 
Locally 3-dimensional subspaces are better fits 
than points, lines, or planes. This agrees quite 
well with the fractal dimension d = 3.006 com- 
puted with eq. (3) from the characteristic 
exponent spectrum (0.121, 0.021, 0.005, - 23.7) 

[171. 

11. Conclusions 

The method of multilinear analysis on neigh- 
boring points in phase space determines the 
dimension of an attractor. Phase space points 
may be chosen from successive points in the 
time series of some variable in a physical sys- 
tem when no a priori choice is clear. The 
dimension of simple attractors we have studied 
(as measured by a histogram of the logarithm of 

200 -__ 

iv 

0 - .-__-- 

logX2 

Fig. IO. Chi-squared histograms for hyperchaos system 

reconstructed from a time series, At = 0.2, time delay = 5, 

box size = 2.0, noise (r = 0.01 (-0.1%) added, 20,000 4-D 

points: (i)-(iv) best fit local subspaces of 0, I, 2, and 3 

dimensions. 

x2) is independent of this choice of phase space 
points; it is also relatively independent of the 
choice of time interval between successive 
points in a time series, and of the definition of 
propinquity of phase space points (size of box 
chosen). 

The information obtained in performing local 
linear regression may also give quantitative in- 
formation concerning the fractal nature of 
strange attractors. Furthermore, we hope to 
extend the method of LLR to calculate directly 
the Lyapunov characteristic exponents-either 
from known phase space coordinates or from a 
time series-in order to provide a classification 
of dynamical behavior found in physical sys- 
tems. In light of these results LLR analysis may 
prove useful in fluid, chemical, and solid state 
turbulence experiments and in the understand- 
ing of other chaotic phenomena for which 
power spectral analysis proves inadequate to 
characterize a system’s behavior. 
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