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INTRODUCTION 

Edward Lorenz used the phrase “deterministic nonperiodic flow” to describe the 
first example of what is now known as a “strange” or “chaotic” a t t ra~tor . ’ -~  
Nonperiodicity, as reflected by a broadband component in a power spectrum of a time 
series, is the characteristic by which chaos is currently experimentally identified. In  
principle, this identification is straightforward: Systems that are periodic or quasi- 
periodic have power spectra composed of delta functions; any dynamical system whose 
spectrum is not composed of delta functions is chaotic. 

We have found that, to the resolution of  our numerical experiments, some strange 
attractors have power spectra that are superpositions of delta functions and broad 
backgrounds. As we shall show, strange attractors with this property, which we call 
phase coherence, are chaotic, yet, nonetheless. at least approach being periodic or 
quasi-periodic in a statistical sense. Under various names, this property has also been 
noted by Lorenz (“noisy peri~dicity”),~ Ito et al. (“nonmixing ~ h a o s ” ) , ~  and the 
authors6 The existence of phase coherence can make it difficult to discriminate 
experimentally between chaotic and periodic behavior by means of a power spectrum. 
In  this paper, we investigate the geometric basis of phase coherence and demonstrate 
that this phenomenon is closely related to the mixing properties of attractors. 

The theory of dynamical systems provides two useful measures of chaos: the 
Kolmogorov entropy’ and the Lyapunov characteristic  exponent^.^,^ The application of 
this theory to strange attractors is not well understood, but it is at least a commonly 
expressed conjecture, supported by numerical evidence,” that these quantities can be 
defined for strange attractors, and that the appropriately normalized Kolmogorov 
entropy is equal to the sum of the positive Lyapunov characteristic exponents.”.’* The 
presence of chaotic behavior in a dynamical system is signaled by a positive 
Kolmogorov entropy. We have discovered, however, that neither of these quantities 
distinguish between phase coherent and phase incoherent chaos. Since attractors with 
a long term average periodicity are intuitively “more orderly” than incoherent 
attractors, these quantities provide an inadequate measure of the chaotic properties of 
a strange attractor. 

Phase coherent strange attractors may be the correct models for many physical 
systems. In Couette flow, for example, through certain parameter ranges, wavy Taylor 
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vortices preserve large scale order despite turbulent motion on smaller length scales 
within the vortices. A power spectrum of the fluid motion a t  a point reveals a sharp 
peak. which corresponds to a ~ i m u t h a l  waves. superimposed on a broad background, 
which Corresponds to small scale turbulence. (See Walden and Donnelly” or 
Fenstermacher. Swinney, and Gollub“). Thus. this problem is of practical as well as 
theoretical interest. 

DESC-RIPTION OF- PHASE COHERENCE 

We will study three examples in detail. One of these is due to Loren;.,’ 

i- = 1 0J. - I0 .Y 

1 = SJ’ y,z. 

1 %  = -J’ ~ sz + R.x 

When R = 28 we will refer t o  this as “the Lorenz attractor.” The other two examples 
are due to Rossler,” 

.Y = -0’ + 2 )  

I’ = .Y + a)’ 

1 = h + . Y I  ~ ( ‘2  

When u = 0.333, h = 1.82, and c = 9.75. wc will refer to this as “the funnel,” and, 
when a = 0.7, h = 0.2. and c = 5.7. 3s “the simple Rossler attractor.” All of these are  
strange attractors with one positive Lyapunov exponent. Phase space projections and 
power spectra are  shown i n  FlGlJRES I ,  2. and 3. Notice the constrast between a power 
spectrum of r ( t )  of the Lorenz attractor, which is almost featureless (F IGURE Ib),  and 
a power spectrum of the simple Rossler attractor (F IGURE 3b). which is composed of 
sharp peaks superimposed on a broad background. The peak a t  0.1 7 and its harmonics 
are instrumentally sharp. The width is due solely to the finite length of the data;  sine 
waves added to the data give peaks just as broad. Thus. to the resolution of our 
experiments. it is a good approximation to assume that these peaks are delta functions. 
The linearity of the Fourier transform then implies that x ( t )  of the simple Rossler 
system can be written as the sum of a periodic and a nonperiodic part: 

.r(r) = x , ( t )  + x,,(f ). (3) 

This implies that the autocorrelation function may be written a s  the sum of a 
component that decays to zero Jnd a periodic component that  does not decay. 

For signals of the form of equation 3, the nonperiodic component introduces some 
uncertainty into the measurement of the time for one cycle of the periodic component. 
On the other hand, this uncertainty is the same as the uncertainty in a measurement of 
the time for many cycles. The uncertainty in phase does not grow with time. This is the 
origin of the term “phase coherence.” 

I n  order to quantify this property, wc introduce the following statistical quanti- 
ty: 
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FIGURE I .  A Lorcnz attractor with R = 28. (a) An x; projection of a sample trajectory. (b) A 
power spectrum of x ( r ) .  ( c )  A power spectrum of z ( I ) .  
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FIGURE 2. "The Funnel." equation 2 
wi th  o = 0.343. h = 1.82. c = 9.75. (a) 
.A perspective view of a sample trajcc- 
tory. (b )  A power spectrum of x ( r ) .  
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frequency 

rave(;) is the average time for i maxima to recur, and T,(i) is the time for i maxima to 
recur during a particular ( the nth) trial: i may be thought of as a discrete time. Insofar 
as maxima occur at  a particular "phase." this statistic measures the mean cumulative 
deviation of the phase after a time I .  For convenience i n  performing machine 
computations, we chosc to use absolute values rather than a root-mean-square 
statistic. Note that, when measured in units of T,,,( l ) ,  AT is independent of a change 
of timescale, t -- t ' ,  i n  the equations under study. 

The results of applying this statistic t o j ' ( t )  and z ( t )  of the Lorenz attractor and to 
~ ( t )  of the simple Rijssler attractor are shown in FIGURE 4. j i ( t )  and z ( t )  of the Rossler 
give results similar to x ( t ) ;  x ( t )  of the Lorenz attractor is similar to ~ ( 1 ) .  Notice that 
ATof the Rossler attractor grows a negligible amount after 1000 cycles. On a greatly 
expanded scale, AT for i = 1 has a small but finite value of 0.015 average periods. 
However, a t  the resolution of our sxperinient, the incrcase after 1024 cycles in AT for 
the simple Riissler attractor is negligiblc. This demonstrates that  the fractional 
spreading of phase for the simple Riissler attractor is less than 0.015/1024. or, 
equivalently, that the peaks in the power spectrum of this attractor are  sharp to a t  
least one part in 68.000. 

An example of a bifurcation from a coherent to an incoherent attractor is 
presented i n  F I G U R F  5 (see also Reference 5 ) .  Through 3 wide range of paranieter 
values, the phase coherence is instrumentally sharp snd  the attractor keeps the 
topological form of the simple Rossler attractor scen in F I G U R E  5a. A t  a = 0.18, the 
topology of the attractor change:; sharply, and the spectrum broadens, as seen in 
F I G U R E  Sc. This continues in a smooth manner until the spectrum takes the broadband 
form seen in F I G U R E  5f. 
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I t  appears that instrumentally sharp phase coherence is not atypical of simple 
dynamical systems. E. N.  Lorenz has observed this phenomenon in equations I at 
R = 200.' On the other hand, it is unclear exactly what geometrical features 
distinguish instrumentally sharp phase coherence. For example, we have found 
another attractor with the same topology as the simple Rossler attractor. which is only 
partially phase coherent. Furthermore, a sufficiently strong perturbation of (2) can 
broaden the peak of the simple Rossler attractor. even though the topology remains 
the same. 

There is often a connection between the occurrence of phase coherence and the 
period-doubling bifurcation sequence.' The strange attractors near the accumulation 
point of a period-doubling bifurcation sequence are bandlike, or ~erniperiodic,~ and are 
always somewhat phase coherent. For example, consider an attractor composed of 
very thin bands. The motion on the attractor takes place approximately on a closed 
curve, causing a peak in the power spectrum. However, the phase coherence of 
different dynamical systems varies considerably and depends on factors that we have 
not been able to determine. Phase coherence has also been observed with no easily 
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FIGURE 3. The simple Rijssler attractor. equation 2. I n  all of the examples discussed in the text 
we used o = 0.2. h = 0.2, and c = 5.7, except for FIGURE 3b, in which we used b = 0.4. (a )  An .xy 
projection of a sample trajectory. (b) A power spectrum of x ( t ) .  Note that, because of the 
symmetry of the broad component about the peak, a stronger statement than that of equation 3 
can be made about the form of ~ ( 1 ) .  See Appendix 11. 
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FICCRE 4. Loss of phase coherence A T  for X ( I )  of the Lorenz attractor. z ( r )  of the Lorenz 
a t t rx tor ,  and X ( I )  of the simple Rossler attractor. To make this plot independent of a rescaling of 
the time in the equations, both vertical and horizontal axes are shown in units of the average time 
between maxima. The number of samples. A’. was I543 and 91 1 for y ( r )  and z ( r )  of the Lorenz 
attractor. and I330 for the Rossler attractor. Best fits for curves of the form a . r* are shown for 
the Lorenz attractor. For y(i), a = 0.309. 6 = 0.516; for z ( r ) .  a = 0.0679, b = 0.495. 

discernable nearby period-doubling bifurcation, for example, Walden and Donnelly’s 
reemergent peak.“ Thus, it appears that association with a period-doubling sequence 
implies some degree of phase coherence. but is not a necessary condition for its 
occurrence. 

In  order for phase coherence to be seen in a numerical simulation, or observed in a 
physical system, the property of phase coherence must persist in  the presence of small 
fluctuations. A small fluctuation can be modeled by an ensemble, or “cloud,” of 
neighboring points; the behavior of the system with fluctuations can then be studied by 
following the points in  the ensemble. As we shall see, the long-time behavior of these 
trajectories in  fact determines the caherence properties of the attractor. Thus, the 
coherence of a dynamical system is fixed by its response to small fluctuations, which is 
closely related to its mixing properties. 

I f  an attractor is mixing. a cloud of initially adjacent points will be spread 
throughout the attractor by the flow. The density of points eventually approaches an 
asymptotic probability distriburion, which is also called an invariant measure because 
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it is carried into itself by the Row. The final distribution is independent of the location 
or nature of the initial ensemble and, as it is approached, no information about the 
initial time or position of the ensemble remains. But, if an attractor has a high degree 
of phase coherence, it must propagate phase information far into the future. This in 
turn implies, at best, very slow mixing by the flow. The cloud of points of the ensemble 
must remain localized for a very long time; their distribution approaches an invariant 
measure slowly, if at all. 

Each of the strange attractors studied here has a spectrum of Lyapunov 
characteristic exponents consisting of one positive exponent, one negative exponent, 
and one exponent equal to zero. The positive exponent implies that the size of a 
localized cloud of points will grow (on the average) exponentially in a direction 
transverse to the flow. The zero exponent implies that, on the average, in a direction 
along the flow, the cloud will neither grow nor shrink. The negative exponent implies 
that, in directions transverse to the attractor, the cloud can only shrink. With the 
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FIGURE 5. A bifurcation from instrumentally sharp phase coherence to incoherent behavior in  
the Rossler dynamical system (2). In each case, the power spectra were computed using h = 0.4 
and c = 8.5; a is varied. (a)  a = 0.15; the attractor is phase coherent with a spectrum similar to 
that of FIGURE 3b. (b) a = 0.17 ( c )  a = 0.18; the topology of the attractor is now like that of the 
funnel; the peak broadens as coherence is lost. (d) a = 0.19 (e) a = 0.2 ( f )  a = 0.3; trajectories 
now pass very close to the fixed point at the center of what used to be the hole; notice that the 
spectrum no longer drops off at zero frequency. 
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passage of time, the ensemble will grow in length a t  an exponential ratc into a 
“filament“ whose thickness (determined by thc zero exponent) is roughly that of the 
initial distribution. Thus, mixing in directions transverse to the flow is guaranteed. and 
proceeds in a continuous manner. In  contrast. mixing along the flow, and hence the 
coherence properties of ;in attractor. depends on the long-time behavior of these 
filaments. 

To illustrate the diKerences between the mixing properties of phase coherent and 
phase incoherent attractors. we habe made a n  animated movie. Unfortunately, the 
geographically distant reader will have to be content with FIGURES 6. 7.  and 8. In each 
case. we begin with a finite ensemble of randomly selected points whose intial 
separation is on the order of 10 ‘. This is small enough that the entire ensemble is 
initially visually indistinguishable from a single point. (The size of the attractor in 
each case is on the order of 10.) The trajectory of  each point is integrated 
simultaneously. and the position of the points is displayed after varying intervals of 
time. 

FIGURE 6a shows this on the Lorenz attractor after a sufficient time has passed for 
the ensemble to look like a filament. Notice how the filament is stretched by the saddle 
point in the bottom center of the figure ( F I G U R E  hb).  After the passage of time very 
few points of the tilament remain near the fixed point ( F I G U R E  6c). Although the 
tilament is continuous in principle. it is effectively split into t w o  fragments. Successive 
passes near the tixed point repeatedly split each fragment and the number of  
apparcntlg distinct fragments grows exponentially. The cloud of points is very quickly 
distributed over the entire attractor ( F I G U R E  6 f ) .  No information about the initial 
time or position of the ensemble remains. This distribution now forms an experimental 
approximation to the relevant invariant measure of the attractor. 

For the Lorenz attractor. the tixed point provides the mechanism that destroys 
phase coherence. This can be understood from two points of view: 

I ,  Because points move very slowly when they pass close to the tixed point. small 
fluctuations can have a significant effect on the time i t  takes for them to pass the fixed 
point. and any coherence will be destroyed. 

2. The splitting of filaments allows the ensemble to mix very quickly and cover the 
entire attractor. If ,  after the passage of a short time. a point can be found anywhere on 
the attractor. depending on the particular fluctuations it  encounters or the exact 
location i t  had i n  the initial ensemble, then there can be no coherence to the 
motion. 

With the approximation that the filamentary fragments seen in FIGURES 6c and 6d 
are distinct, explanation 2 easily leads to a random walk model for the loss of  phase 
coherence. If the position within the initial locali7ed ensemble is picked a t  random, 
then the fragment in which the point is located at  a later time is also randomly 
selected. As is particularly apparent in F I G U R E  6d. different fragments are  associated 
with different “phases.” in the sense that some fragments appear “ahead of ”  or 
“behind” others. Any fluctuation i n  the initial condition will create a distribution of 
phasea that is approximately binomial and that. i n  the limit of many splittings, 
becomes Gaussian. in accordance with the central limit theorem. This implies that the 
phase coherence will be lost a t  an asymptotic rate of r ” ’ ,  which is roughly what is 
observed in the numerical experiment of FIGURE 4. 
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FIGURE 6. The mixing process of the Lorenz attractor. This illustrates the evolution of an 
ensemble of points that were initially close enough together to be visually indistinguishable from 
a single point. Each frame shows an x z  projection of the ensemble after varying intervals of time. 
A sample trajectory is shown lightly in the background to outline the attractor. Time is given in 
units where the average time between maxima of z equals one, which may be thought of as 
"number of passes around the attractor." (a) Ten different strobes are shown, at times varying 
f r o m t = 6 . 9 t o t - 7 . 8 . ( b ) O n e s t r o b e , a t t = 8 . 2 . ( c ) t = 8 . 5 . ( d ) t =  1 2 . 1 . ( e ) t =  1 8 . 2 . ( f ) f =  
27.7. I n  a+, each ensemble contains 256 points; in  d and e,  1024 points; in f, 3072 points. 
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Thus we see that a strange attractor containing a fixed point will mix rapidly and 
therefore be incoherent. However, this is not a necessary condition for incoherence, as 
can be seen by studying the funnel ( F I G U R E  7) .  For conceptual convenience, think of 
the attractor as being made of two parts. the “band” on the left of the figure, and the 
“funnel” on the right. As the ensemble passes the funnel, the part of the filament that 
was on the inside of the band emerges from the funnel before the part that was on the 
outside. When the entire filament emerges onto the band ( F I G U R E  7f), it is folded 
across the band. This process repeats itself until the filament takes on the complicated 
form seen i n  FIGURE 71. In  very little time, the ensemble approaches a smooth 
distribution that covers the entire attractor, just as it does in the case of the Lorenz 
attractor. Thus, this “asynchronous folding” is another mechanism that can bring 
about mixing. 

In  FIGURE 8, we illustrate the siinple Rossler attractor, which, a t  least within the 
resolution of our experiments, is phase coherent. Notice that the filaments fold down 
close, but not exactly onto themselves ( F I G U R E  8c). Thus we see that asynchronous 
folding is not a sufficient condition for incoherence. After several more revolutions 
( F I G U R E  8d). the filament crosses and recrosses itself. A comparison with the same 
experiment done on a limit cycle demonstrated that this phase spreading after 20 
revolutions is not due to numerical errors. I n  spite of the initial spreading of the 
filament, after almost 5000 revolutions ( F I G U R E  8f) the ensemble remains confined 
and does not spread over the entire attractor. A comparison with a limit cycle after 
5000 revolutions shows a similar amount  of spreading due to numerical errors, 
demonstrating that the phase coherence of the simple Rossler attractor is comparable 
to that of a limit cycle. I t  is this confinement that preserves information about the 
initial phase and causes sharp peaks in the power spectrum. (The question now is, 
What causes the confinement’?) 

ISOCHRONS: A POSSIBLE EXPLANATION 

One explanation for the phase coherence phenomenon might be that, for phase 
coherent dynamical systems, there always exists a coordinate transformation, 

(X.?’. z) - ( u .  i ,  81, 

after which the differential equations take the form 

u = J L t ( U ,  i ,  0 )  

( 5 )  
ci = constant J 

This is the form of a periodically driven system for which many examples of chaotic 
behavior are known.I6 I’ If such a transformation exists, then the attractor can be 
decomposed into subspaces where 0 -~ constant, or isochrons ( F I G U R E  9). lsochrons 
are mapped into one another by the llow and a given isochron is mapped into itself 
after some time T.  For this reason. it is clear that an initially localized cloud of points 
cannot spread along the flow in such a system, since any spreading i n  the 0 direction 
would imply that some isochrons were not being carried into themselves. Mixing can 
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FIGURE 8. The mixing process of the simple Rossler attractor: xy projections of the evolution 
of an ensemble of initially neighboring points. (a) 1 1 strobes, 64 points, beginning at t = 6.8. (b) 
1 1 strobes, 128 points, beginning at  r = 12.30. (c) 1 1 strobes, 256 points, beginning at  I = 13.67. 
(d) 6 strobes, 256 points, t = 20. (e) 11 strobes, 256 points, t = 159. ( f )  2 strobes, 64 points, t = 
4723. 
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only occur in the transverse direction to the flow. Driven oscillator systems are of this 
form by construction and they possess instrumentally sharp peaks in their power 
spectra at the driving frequency. lsochrons of stable limit cycles, which are, of course, 
phase coherent, are discussed i n  References 20 and 21. If a flow can be decomposed 
into isochrons, i t  is called a constant t h e  suspension. (See Appendix 111 for a more 
detailed discussion.) 

Bowen has proven that an Axiom A flow is a constant time suspension if and only 
if  the flow is not mixing.*’ Unfortunately, the simple Rossler attractor is not an Axiom 
A flow; we shall now discuss numerical evidence that indicates that the phase 
coherence of the simple Rossler attractor cannot be explained in terms of iso- 
chrons. 

DOWNFALL OF k O C H R O N S  

The fact that the folding of filaments is not synchronous, i.e., that the filaments of 
FIGURE 8 do not fold down onto themselves, even for the simple Rossler attractor, 

F I G U R E  9. A schematic drawing 
showing hypothetical isochrons on 
an attractor such as the simple 
Rossler, 

indicates that continuous isochrons do not exist. I f  continuous isochrons did exist, they 
would form a continuous family of nonintersecting curves on the attractor. Two 
neighboring points remain close to the same isochron. Thus, the spreading of an 
initially localized cloud of points would eventually trace out an isochron. The fact that 
the filaments seen in FIGURE 8d are not simple curves indicates that continuous 
isochrons do not exist. 

However, since a cross section of ;I strange attractor reveals a fractal s t r ~ c t u r e , ~ ~ . ’ ~  
one might suspect the existence of discontinuous isochrons. winding around on 
different leaves of the Cantor set structure. A demonstration that, even if  they are 
discontinuous, isochrons cannot explain phase coherence is provided by the fact that 
the period of the unstable lowest-period limit cycle contained in the attractor is not the 
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same as the average period. (5.881 for the limit cycle versus 5.857 for the average 
period as measured from both maxima and zero crossings.) To be relevant to phase 
coherence, the period of the isochron must be the same as that of the fundamental 
peak in the power spectrum, which is the average period. But  the isochron must also 
include a point on the unstable limit cycle, which leads to a contradiction. Thus, the 
long-term periodicity of the simple Rossler, and presumably of other examples, must 
be a statistical effect. A rough qualitative idea of how this comes about for the simple 
Rossler attractor can be garnered by examining FIGURE 8d. Although the filaments do 
not fold exactly onto themselves as they pass around the attractor, they do come close; 
the resulting tangled band is thin compared to the distance around the attractor. 
Furthermore, trajectories that take a longer time to get around the attractor tend to be 
followed by trajectories that take a shorter time. The standard deviation of the time 
for many cycles grows at a very slow rate. Presumably, then, the phase coherence of 
the Rossler is not perfect. Nevertheless, the phase spreading can be slow enough to be 
comparable to that of a limit cycle in the presence of small fluctuations. 

Prediction and Time Evolution of the Entrop,v 

If at some time an observation is made of a physical system, how precisely can the 
behavior of the system at some later time be predicted? An observation can never be 
made with infinite precision; a t  best a highly localized probability distribution can be 
prescribed. Thus, prediction must be discussed in terms of ensembles of initial 
conditions rather than in terms of the behavior of individual points. A natural way to 
do this is to partition the attractor by dividing it into a fine mesh of discrete cells. All 
the points within each cell may be lumped together to specify a "state" of the system, 
modeling the finite precision of a measuring instrument. This division, which is also 
sometimes called "coarse graining," enables one to make numerical computations and 
to assign a quantity of information or entropy to a continuous probability distribu- 
tion. 

distribution p is 
The entropy of a time-dependent distribution, p(r) .  

where {p , ]  is the set of probabilities p, induced by a 

relative to the asymptotic 

(6) 

partition of a continuous 
distribution p. For the examples we are considering. p ( t )  describes the distribution of 
points in an ensemble. To an observer whose only knowledge of the state of the system 
is given by the asymptotic distribution of the attractor, the amount of new information 
gained in knowing the initial probability distribution is approximately - H,,, (0). At 
time t ,  because of the action of the flow, this information will decay to -H,,, ( t ) ;  for a 
system that is mixing, p ( t )  - and H,,, - 0 as t - a. H,,, ( t )  provides a quantitative 
measure of the information remaining after an observation. 

On a strange attractor. if the system is isolated into a single state at 1 = 0, the 
number of states that are filled will, on the average, initially grow at a rate given by 
e", where k is the Kolmogorov entropy of that a t t r a ~ t o r . ' " * ~ . ~ ~  Thus, the relative 
entropy will initially grow in a linear rate given by k ,  and, as long as there is no 
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t = I  1 Z - T  
, K  t 

,2K H 
F I G C ~ R E  10. Evolu t ion  of the 

relative entropy as a function of 
t ime for a phase coherent strange 
attractor and an incoherent attrac- 
tor. For convenience. i t  is assumed 
that they have the same Kolmo- 
gorov entropy, k .  and that the two 
coordinates needed to dcscribe posi- 
tions on the attractor are picked in  
such a way that the initial informa- 
tion, I. is dividcd evenly between 
them.  

significant overlap between the resulting filaments, it will continue to grow at the 
same rate. However, once the filaments become sufficiently tangled. so that many of 
them are expanding into regions of the attractor that are already filled by others, this 
rate will decrease. (For examples, see FIGURES 6f and 7e. For a numerical 
demonstration with a one-dimensional map, see Shaw.”) 

We can now infer the qualitative behavior of H,,, ( I )  from the ensemble evolution 
experiments of FIGURES 6. 7. and 8. Let the information associated with the initial 
distribution of points be I = - H,, ,  (0 ) .  Since the topological dimension of the 
attractors we are studying is two. the initial distribution can be described, in  principle, 
by two coordinates. Assume for convenience that the initial information is divided 
evenly between them so that there is 1 / 2  in each. Furthermore, imagine that 
coordinate patches are placed so that one of the coordinates is a phase coordinate that 
locally increases along the flow, and the other increases in directions transverse to the 
flow. 

For attractors with broad spectra. such as the Lorenz attractor, the relative 
entropy H,,, ( t )  increases at a linear rate equal to k unti l  the attractor is almost 
covered and the relative entropy is close to zero. This occurs after a time I l k .  (See 
Shaw.“) In  contrast, for attractors wi th  a high degree of phase coherence, although 
the initial rate of increase is equal to k ,  once the ensemble filaments cross the attractor 
several times. the rate of increase of the entropy becomes much smaller. At this point, 
which occurs roughly after a time I / Z k ,  most of the transverse information is lost even 
though phase information persists (F’ICIIRE lo). 

For coherent attractors, then, phase information is lost at a rate significantly 
different from that of transverse information. The rate of loss of transverse 
information is an average local property. This rate is given by the Kolomogorov 
entropy, which is a n  average local measure. as may be seen through its relation to the 
positive Lyapunov exponents.”,” For incoherent attractors, the rate of loss of phase 
information is closely coupled to the transverse information loss rate. for example by 
the action of a fixed point on the attractor. This coupling is absent, or a t  least weak. in  
coherent attractors. An example of the insensitivity of the Kolmogorov entropy to the 
propagation of phase information is provided by a comparison of the Lorenz and 
Rossler attractors: The Kolmogorov entropy of the Lorenz attractor has been directly 
measured to be 0.98, whereas the positive Lyapunov exponent of the simple Rossler 
attractor, which is believed to equal the Kolmogorov entropy, is 0.63.L0.18 (Niimbers 
are given in bits per crossing of a Poincart section.) Thus, in the case of phase 
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coherence, the Kolmogorov entropy characterizes only the rate of transverse mixing, 
and not that for mixing along the flow. 

POWER SPECTRAL MEASURES OF PHASE COHERENCE 

Apparently, two strange attractors can have the same Kolmogorov entropy and yet 
have very different coherence properties. This indicates that the Kolmogorov entropy 
and the Lyapunov characteristic exponents are only partial indicators of the “chaotic 
properties” of a strange attractor. What is needed, then, is another measure that will 
distinguish between the coherence properties. 

We have found two ad hoc measures that make this distinction. One of these, the 
“production of spectral entropy,” has recently been reported on by Percival and Powell 
for Hamiltonian systems.z7 We call the other “production of new degrees of freedom.” 
I t  is based on “degrees of freedom,” a quantity that may be familiar from spectral 
analysis.’8 For N samples taken at intervals A t g f  a record of length T ( N  = T/A t ) ,  the 
number of degrees of freedom is 

where S, are the components of a power spectrum. Note that this quantity is uni ty  for 
a perfectly sharp peak and N for white noise. The production of new degrees of 
freedom is defined to be 

where T2 > T, .  A practical computation of this measure gives a negative result for a 
periodic signal, a small but positive result for a coherently chaotic signal, and a 
significantly larger result for an incoherent signal. A few of our results are shown in 
TABLE 1 .  (We used At  = 0.1, T2 = 409.6, and T ,  = 204.8.) 

CONCLUSIONS 

A strange attractor can have an instrumentally sharp peak in a power spectrum. 
This means that, at least to a high degree of accuracy, the solution can be written as 
the sum of a periodic and a nonperiodic part, and that there is a nondecaying 

TABLE I 

Production of new degrees of 
Dynamical system freedom = AD/AT 

Rossler limit cycle -6.4 I O - ~  
Simple Rossler strange attractor 
Rossler funnel (FIGURE 5f) 

4.0 x 
5.9 x 
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component of the autocorrelation function. W e  call this phenomenon phase coher- 
ence. 

There is a continuum between coherent and incoherent behavior; bifurcations 
between the two are  possible. However, in the bifurcation we observe, there appears to 
be a specific parameter value where incoherence sets in, which is associated with a 
changc in the topology of the attractor. 

The degree of phase coherence is related to the rate of mixing along the flow. A 
high degree of phase coherence indicates slow mixing along the flow, although the 
mixing transverse to the flow may be quite fast. 

Kolmogorov entropy or Lyapunov exponents do not reflect the coherence proper- 
ties of an attractor. 

W e  have isolated two mechanisms that can bring about mixing along the flow: 

1 .  a fixed point on the attractor 
2. asynchronous folding. 

1 is a sufficient condition for incoherence; 2 is not. 
Phase coherence is often associated with a pcriod-doubling bifurcation. 
The loss of phase coherence for the Lorenz attractor proceeds a t  a rate of f”*, 

which can be understood in terms of a random walk model. 
Phase coherent strange attractors are not necessarily constant time suspensions, 

or, in other words, phase coherence cannot in general be explained in terms of 
isochrons. 

Care must be taken in using power spectra to determine the onset of turbulence (if 
i t  is due to dynamics), since, with limited experimental resolution, a phase coherent 
strange attractor may look like a limit cycle. For example, z ( t )  of the simple Rossler 
attractor shows a sharp peak in the power spectrum six orders of magnitude above the 
broad background. 

Phase coherence in a strange attractor may provide a good model for fluid flows 
that preserve large scale order on a background of small fluctuations. 

What is the mechanism that causes phase coherence? I s  there a topological or 
geometric condition that is sufficient to ensure instrumentally sharp phase coherence? 
For extremely coherent attractors, such a s  the simple Rossler or the Loren7 a t  
R = 200. what is the intrinsic width of the spectral lines? 
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APPENDIX I 

This appendix contains a few details about numerical computations. 
Unless otherwise stated, all simulations were done with Systron Donner model 

3300 and model 10/20 analog computers. However, whenever there was any question 
of sensitivity to numerical errors, the computations were checked digitally to double 
precision. 

The power spectra were obtained by taking a series of trials of 8 192 samples of a 
given coordinate, each of which was then transformed using the fast Fourier 
transform. The sum of the squares of the real and imaginary parts of the Fourier 
components for a given frequency gives the power of that frequency component; to 
eliminate statistical fluctuations, many trials were averaged to yield a power spectrum 
for that frequency. The exact number of trials we used varies, but is typically SO, and 
never less than 10. To reduce side lobes in peaks, the signal was smoothed using a 
cosine bell over the first and last ten percent of the samples. 
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APPENDIX 1 1  

Using Fouricr analysis, i t  is possible to infer a n  interesting property of the simple 
Rossler attractor at  the parameter values of F IGURE 3 .  Notice the approximate 
symmetry of the broad component of the spectrum about the peaks in FIGURE 3b. The 
Fourier transform of the product of two functions is the convolution of the Fourier 
transform of each function. In  particular, the convolution of a delta function located a t  
w,, with a broad function is a broad function symmetric about H ' ~ .  This suggests that  
the nonperiodic part in equation 3 is the product of a chaotic part and a periodic part. 
X,, = X ,  . X c .  I t  seems that, for this attractor, the following is true: 

X ( r )  = X , ( r )  [ I  + A', ( t ) ]  (9 )  

This symmetric pattern is repeated around each harmonic of the sharp peak. However, 
the successive sidebands may overlap. The resulting pattern is dominated by the lower, 
stronger harmonic. This is apparently the reason for the one-sided repetition of the 
broad band between the harmonics. 

APPENDIX I l l  

This appendix outlines how isochrons are defined mathematically. A global cross 
section for a continuous flow @ = {@,) on a compact space M is a closed subset S C M 
for which U,, ,o,n,&S = M for some n > 0 ( t h e  isochrons sweep across the entire state 
space). and Ll,,-,o,6,$,S is an open subset of M disjoint from S for some 6 > 0 (the 
isochrons are,  roughly speaking. transversal to the flow). There is then a homeomor- 
phism r:S - S and a positive continuous function 14:s - R given by 

u ( x )  = smallest time I > 0 with 4, A' C S 

and 

r( .v)  = @"(,,.I. 

the map r:S S is the "return map" for the section S and the flow q5 is the suspension 
of r .  u is the time of return function for the section S ,  so S is called an "isochron" i f  u is 
constant over S. In this case. + is a c o n m n t  time suspension of r .  


