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Power spectra for chaotic transitions in three dimensions are presented for a dynamical system first proposed by Rossler.
Relations between the spectra and the topology of the corresponding strange attractor are discussed.

Modern experiments in Couette and Bénard flows
often use power spectral analysis as a measure of the
temporal behavior of fluid motions, and the transi-
tion to turbulence [1]. At the same time there is in-
terest in the study of simple dynamical systems which
may exhibit chaotic behavior owing to the existence
of a “strange attractor” [2]. The most familiar exam-
ple is the highly idealized model for Bénard convec-
tion of Lorenz [3]. It is natural to study the power
spectra of simple dynamical systems, in the hope of
gaining insight for the interpretation of the spectra of
real fluids.

There has been some work on the power spectra of
strange attractors, by Ueda [4], Holmes [5] and oth-
ers, but there remains a need for systematic studies of
the changes in power spectra of dynamical systems as

they bifurcate from one attractor topology to another.

We present here results for a particular bifurcation
sequence, one which occurs widely in the transition to
chaotic behavior of vector fields in three dimensions.
The construction of digital computer solutions to
dynamical systems followed by power spectral analy-
sis is time-consuming. We have developed a hybrid
computer system by solving the equations on an ana-
log computer and performing power spectral analysis

* This research was supported at U of O by an NSF Grant,
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on a digital computer. The analog computer is only
accurate to a percent or so, but high accuracy is not
needed for these largely qualitative studies.

Fig. 1 displays the transition in a system originally

‘studied by Réssler [6]:

Xx=—(y+2),

2=02+xz-Cz,

y=x+02y,
(1)

as the parameter C is varied. Projections onto the x—y
plane of these equations after transients have been al-
lowed to die out are shown. We chose this particular
system for study because the “branched manifold”
[7,8], enclosing its attractor has the simplest topology
which will still produce a strange attractor.

To obtain these power spectra we solved the equa-
tions on an analog computer, with the natural time
unit taken to be 0.01 s, sampled the solutions until
4096 points were accumulated, and used an FFT to
compute the discrete spectra. For each parameter
value this process was repeated 10 times and the re-
sulting spectra averaged. Some of the results for time
series obtained from z(¢) are shown in fig. 1. The time
series derived from x(¢) and y (¢) gave similar results.

The sequence of bifurcations is schematically repre-
sented in fig. 2. The bifurcation sequence for C<C,,
~ 4.20, consisting of the successive appearance of
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Fig. 1. Plots of the solutions of eq. (1) on the x—y plane after transients have died out. Directly below each phase trajectory is the
corresponding power spectral density (PSD) as a function of frequency. Details of these plots are contained in table 1.
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Fig. 2. The bifurcation sequence obtained from the data of
fig. 1. X increases from left to right. The shaded regions de-
note strange bands.

2

subharmonics, is familiar from the work of May on
one-dimensional maps [9], was mentioned by Bru-
novsky [10], was observed by Feit in two-dimensional
maps [11] and has been reported in a driven oscillator
system by Coullet et al. [12]. At each step the limit
cycle “unwinds”, roughly doubling the period of a
complete orbit. This bifurcation was known to Poin-
caré [13].

The doubling process reaches an accumulation
point at C,,, however, and is succeeded by a qualita-
tively different behavior. The largest non-zero Lia-
punov characteristic exponent X (see fig. 3) becomes
positive, reflecting the exponential divergence of tra-
jectories [14—16]. Families of orbits remain confined
to thin bands, which rejoin in a pairwise manner, as
illustrated. A complete bifurcation sequence has been
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Fig. 3. Plot of the largest non-zero characteristic exponent X
as a function of C. Letters refer to the plots of fig. 1. A line
has been drawn through around 300 calculated points.

described by Shimada and Nagashima [17] and is visi-
ble in a figure in a paper by Liand Yorke [18]. This
sequence occurs quite generally in maps or flows con-
taining simple folds. It has been observed in the Ross-
ler system, the Lorenz system for high values of the R
parameter [17], and we have observed it in the driven
Van der Pol equations, the driven Duffing equations
[19], and several other sets of equations, and one-
dimensional maps. Periodic orbits, or other behavior,
may be interspersed in the sequence, however.

Table 1
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Fig. 1 displays the corresponding power spectra.
Each subharmonic bifurcation doubles the number
of sharp frequency components, and each pairwise
rejoining broadens every other sharp spike. The fun-
damental, at about 16 Hz, moves little during the
series. Typical parameters are given in table 1.

A remarkable feature of this transition is the pres-
ence of sharp frequency components in a chaotic at-
tractor. Even at the final stage, when the trajectories
fill out the complete Rassler attractor, the spectrum
retains a peak which appears to be instrumentally
sharp. We believe this to be a feature of some attrac-
tors whose branched manifolds are simply connected,
in the sense that all trajectories are constrained to re-
volve about a single hole {20]. Attractors containing
fixed points, such as the familiar Lorenz, do not have
this property, and do not have sharp spikes in their
power spectra. ‘

It would be convenient to have a simple measure
over the power spectrum of ““chaos”. Several mea-
sures are capable of distinguishing sharp spikes from
broad features in power spectra, but it is unclear to
the writers which, if any, might have a close relation
to the topology or the characteristic exponents of the
underlying attractor.

One such quantity is tabulated in table 1. The num-
ber of “degrees of freedom” of a discrete spectrum of
n frequencies is given by:

Data for the bifurcation sequence shown in figs. 1 and 2. fand T refer to the natural frequency (~16 Hz) and period of the system.
Subharmonic bifurcations occur where the curve of fig. 3 has a point of tangency with the line X = 0.

Fig. c Phase trajectory Spectral lines 103N
1A 2.6 period 17 limit cycle f, and harmonics 1.17
1B 3.5 period 27 limit cycle % £, f and harmonics 2.40
1C 4.1 period 4T limit cycle 4f> 3/ f and harmonics 2.19
1D 4.18 period 87 limit cycle 1£,%£, 3.1 and harmonics 1.99
a)

1E 4.21 broadening of band of period ~ 87 3£, 31,31 f and harmonics 1.86

(weak 1—16 f present)

1F 4.23 broadening of band of period ~4T ‘l‘ £ % f, f and harmonics 1.84
1G 4.30 broadening of band of period ~ 27T -12- £, f and harmonics 2.73
1H 4.60 broadening of band of period ~T f and harmonics 5.97

3) The accumulation point Co occurs near here. We are able to resolve a period 167 limit cycle and band of period ~ 16T, not illus-
trated.
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N=(éPi)2/néP?, (2

where P; is the power at the ith frequency. For a sine
wave, N = 1/n, for white noise, N = 1. One can see
from table 1 that changes in NV reflect bifurcations in
the system, but are decisive only when the single
strange band appears as in fig. I|H. Another measure
can be obtained by normalizing the spectral power
density and summing P; log P;. This measure tends to-
ward log » for a sine wave, and is equal to zero for
white noise. Still another measure of the P log P type,
due to Aikake [21], has been used by Yahata [22] to
characterize theoretically derived power.spectra relat-
ing to Couette flow. We have used the measures N
and P; log P; in some unpublished experimental re-
search on transitions in Couette flow. We are not con-
vinced that they are experimentally useful measures of
the power spectra, and expect further work is required
on the characterization of power spectra.
The transition from a simple to a chaotic attractor
' occurs, in three dimensions, in one of a few distinct
ways. Each of these has a characteristic signature in
the power spectra domain. We have presented one in
this letter, the others, as well as some higher dimen-
sional results, will be detailed in a forthcoming paper.

We would like to acknowledge, with thanks, discus-
sions with Professors Ralph Abraham, W.L. Burke and
Michael Tabor, and the assistance of Harold Froehling.
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