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Abstract:
We describetheeffectsof fluctuationson theperiod-doublingbifurcationto chaos.We studythedynamicsof mapsof the interval in theabsence

of noiseand numericallyverify the scalingbehaviorof the Lyapunovcharacteristicexponentnearthe transitionto chaos.As previously shown,
fluctuationsproduceagap in theperiod-doublingbifurcation sequence.We showthat this implies ascalingbehaviorfor thechaotic thresholdand
determinethe associatedcritical exponent.By consideringfluctuationsas a disorderingfield on thedeterministicdynamics,we obtain scaling
relationsbetweenvariouscritical exponentsrelatingtheeffect of noiseon theLyapunovcharacteristicexponent.A rule is developedto explain the
effectsof additivenoiseat fixed parametervalue from thedeterministicdynamicsat nearbyparametervalues.
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1. Introduction

Chaotic dynamical systems provide a significant new addition to the conventionaldynamical
repertoireof equilibrium and periodic oscillation. Central to their usefulnessin describingobserved
randombehavioris the issueof their stability andthe observabilityof their bifurcation sequencesin the
presenceof noise sources.In particular,given the fact that fluctuationsare an importantaspectof
many-bodysystems,one would like to understandthe role of fluctuationsvis a vis the chaoticbehavior
generatedby deterministicnonlineardynamics.

Recentlywehaveshown [1] that for a certainclassof processesthe effectof externalfluctuationson
the onset and propertiesof chaoscan be describedin fairly simple fashion. For systemsdisplaying
period-doublingbifurcationswefound that the presenceof noiseleadsto both a gapin the bifurcation
sequenceand a renormalizationof the chaotic threshold. Furthermore,we noticed that for fixed
parametervalues the addition of noise to a nonlineardeterministicequation producesadditional
bifurcations,twhich can beobservedin measurablepropertiessuchas powerspectra.Theseeffectsare
of importanceto current attemptsat understandingturbulentbehaviorof fluids andsolidsin terms of
chaotic,deterministicmodels.

In this paperwediscussin detail the effectsof fluctuationson the cascadebifurcation to chaos.By
the cascadebifurcation we shall meannot only the infinite sequenceof subharmonicbifurcations,at
eachstageof which the period of a limit cycle is doubted,but alsothe symmetricbifurcationsequence
abovethechaoticthreshold,in which n bandsof achaoticattractormergepairwiseto form an n/2-band
attractor.Ample illustration of the cascadebifurcation follows in the nextsection.

Previouswork discussedthe effect of external fluctuationson the cascadebifurcation found in a
driven nonlinearoscillator [1]. That study was motivated in part by the fact that in condensedmatter
systemsthermal fluctuationsplay an importantrole which had to be incorporatedinto the nonlinear
equations leading to solid-state turbulence [2]. More generally, though, the cascadebifurcation
sequenceandits alterationin thepresenceof fluctuationsis of interest in systemsthat rangefrom fluid
flows [3,41to noisephenomenain solid-statesystems[5]. Moreover,this bifurcationsequenceis found
in numericalstudiesof a wide rangeof mathematicalmodels,including nonlinearordinary [6,7] and
partial [8] differential equations.In the experimentalobservationof bifurcation sequencesin Bénard
flow [3] and sphericalCouetteflow [4] one observesonly a finite number(<4) of bifurcationsin the
cascadesequence,whereasthe scaling theory developedby Feigenbaum[9] andCollet andEckmann
[10] for the period-doublinghalf of the cascaderequiresthat the dynamicsundergoan infinite number
of bifurcationsbeforethetransitionto chaos.Indeed,it is in just thislimit of infinite bifurcation that the
scaling theory becomesexact. As previously suggested[1], this discrepancycan be explainedby the
interactionof externalfluctuationsandthe deterministicsequenceof bifurcations.

From a study of the geometryof the attractorsfound in the driven anharmonicoscillator [1], we
foundthat increasednoiselevelscould inducea transitionto chaoticbehavior.Furthermore,ratherthan
destabilizingor erradicatingchaoticmotions in the phasespace,noiseenhancedthe chaoticbehavior,
while destroyingperiodic orbits.That is, the local instabilities responsiblefor the deterministicchaotic
behavioractually increasedthe observability of chaosin the presenceof fluctuations. Using Feigen-
baum’sscaling theory andthe existenceof the bifurcationgap,we deriveda scalingrelationshipfor the
noise dependenceof observablebifurcations in a cascade.These featureswere also found in a
one-dimensionalmap typical of thosefor which the universalscalingtheory wasdeveloped[ii.

Thepresentpaperreportsin moredetail theresultsof our studyof one-dimensionalmaps,that is, of

t weemploy abroaderdefinition of bifurcation thanis typical: anobservable,qualitativechangein a system’sbehaviorasa control parameteris
slowly varied.
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nonlinear transformationsof the unit interval onto itself. The main results of our paper can be
summarizedas follows. In the absenceof noise, we verify numerically the scaling predictionsof
HubermanandRudnickfor the behaviorof the Lyapunov characteristicexponentA anddiscussseveral
otherfeaturesof A found in the cascadebifurcation. The Lyapunov characteristicexponentcan be
thoughtof as a disorderparameterfor chaos[11]. We show that the existenceof a bifurcation gap
implies ascalingbehaviorfor thechaoticthresholdanddeterminetheassociatedexponent.By realizing
that fluctuationsact as a disorderingfield on the deterministicdynamics,we obtain a scalingrelation
betweenvariouscritical exponentsrelatingthe effect of noiseon A, anddevelopthe notion of a noise
susceptibility.We also show that even in the periodic regimethereis a non-trivial effect of external
fluctuationson the period-doublingbifurcations.This is reflectedin the fact thatnot only higher periods
becomeobliterated by increasingnoise, but the bifurcation points themselvesbecome blurred. In
particular,at the pointsof bifurcation, A no longer vanishesas it doesin the deterministiclimit.

In section2 we review the dynamicsof mapsof the interval in the absenceof noise.We presenta
typical mapwhich displays the cascadebifurcation and analyzeit in detail. We summarizethe scaling
theory of bifurcationsanddiscussthe Lyapunov characteristicexponentas a measureof the stability of
the asymptoticbehavior.Section 3 considersthe effectsof noiseon the cascadebifurcation sequence
andthe onsetof chaos.A rule is developedthat allows the effectof noiseata fixed parametervalueto
bepredictedfrom the knowledgeof the purely deterministicdynamicsat adjacentparametervalues.In
section4 wediscussthe role of noiseas a disorderingfield andthe scalingbehaviorof the noisecritical
exponents.Section 5 containsa summaryof the scalingideasand discussesthe applicability of these
ideas to physical systems.We then mention other questionsrelated to the interaction of chaotic
dynamics,external fluctuations,and observationalnoise.A set of appendicesdiscussesdetails of the
effect of fluctuationson adriven anharmonicoscillator,the scalingof thecharacteristicexponentwithin
the period-doublingregime, andthe noiseequivalencerule of section3.

2. Dynamicsin the absenceof fluctuations

Dynamicalsystemstheory [121describesthetime evolutionof asystemas a trajectory,or an orbit, in
a phasespaceof the system’spossiblestates.Typically, the physically interestingbehaviorof a systemis
that which is observedafterinitial transientshavediedaway.The set of stateswhich an orbit eventually
visits is called the system’sattractor.The studyof dynamicalsystemsconsidersnot only the structureof
attractorsbut alsothequalitativechange,or bifurcation, from onetypeto anotherassomeparameteris
smoothlyvaried.

Sincethe first physically-motivatedstudyof chaoticdynamicsby Lorenz [13], one-dimensional(1D)
mapshaveplayeda fundamentalrole in the field’s developmentdespitetheir apparentsimplicity. The
1D map obtainedfrom a system of ordinary differential equationscapturesthe essentialgeometry
underlying the chaotic dynamics.Although such a reduction of dimension (from three to one, in
Lorenz’s case)cannotbe uniformly appliedto all dynamicalsystems,for manyproblemsthe technique
provides more than sufficient heuristic insight into the processesresponsiblefor chaotic behavior.
Specifically,by identifying all the pointswhich asymptoticallymerge, that is, all the pointson the same
stablemanifold, it is possibleto summarizemanyof the propertiesof a simplechaoticattractorin three
dimensionsby a ID map.

For dissipativesystemswith a chaoticattractorthat appearslocally two-dimensional,a crosssection
throughtheattractorintersectsit in somecurve. Onecan thenconsiderthedynamicsas amapfrom this
crosssectiononto itself; this mapis called the Poincarémap. By parametrizingpointson the curveof
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intersection (from 0 to 1) and collecting a set of successive points {x1, x2, x3,.. .} as an orbit passes
through the section, the dynamics of the attractor can be summarizedin a one-dimensionalmapof the
form

x,,~1 = f(x~), n = 1, 2,3, - . . , (2-1)

wherex~is the nth crossingof theorbit throughthe sectionandwheref is a nonlinear function on the
unit interval.In thissense,discretetime mapssummarizethedynamicsunderlyingchaoticbehaviorfound
in higherdimensionalsystems.Fromtheir simplicity, 1Dmapshavedevelopedasprototypicalmodelsin the
studyof chaoticdynamics[14].

For dissipative dynamicalsystems,such as discretemappingsand ordinary and partial differential
equations,that exhibit cascadingbifurcations,the dynamicscan be describedin practiceby a 1D map
with asingle smoothmaximum.An exampleof suchmapsis providedby thelogistic equation,which is
definedby

Xn+irxn(1Xn), O<Xn<1, (2-2)

and where the bifurcation parameter r (0< r <4) determines the height of the quadratic function
f(x) = x(1 — x). As a graphic example of the complexity present in this class of maps,the bifurcation
diagram of fig. 1 presentsthe changein the attractorof eq. (2-2) as a function of the bifurcation
parameterr in the regime[3,4].

At afixed parametervaluein the bifurcation diagram,a periodic orbit consistsof a countableset of
points, while a chaotic attractorfills out densebandswithin the unit interval. Figure 2 shows the
probability densityfor the two bandsat r = 3.59687.The dominantbifurcation sequenceseenin fig. 1 is
the single2~cascade,through which theattractorfirst becomeschaoticandeventuallyfills the interval
via the pairwise mergingof bands.The period-doublingand band mergingaccumulatesat a value

P-2 P-4 P-B P-7 P-B P-4
I I

{x~} ~

0
3.0 r r~p-~ P-5 P-3 4.0

Fig. I. The attractorversusbifurcation parameterr for the logistic map, eq. (2-2), x~+1= rx,,(1 — x~).700 iterationsplotted after an initial 500
iterationsfor eachincrementin thebifurcation parameter.The parameterwas incremented1000times in the interval [3,4]. For thesakeof clarity
andresolution,only thebifurcation diagramfor r in [3,4] is shown.For r in [0, 1], x~= 0 is thestablebehavior;andfor r in [1,3], onehasastable
fixed pointdescribedby x = (r — 1)/r.
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4.0

r=3.59687

Fig. 2. Normalizedprobability density P(x) of thetwo band attractorat r = 3.59687 shown on a logarithmic scale.P(x) is a histogram of i0
7

iterationsof eq. (2-2) partitionedinto 1000 bins.The peaksin P(x)aresuccessiveimagesof themaximum,or critical point, x~.Note that eachband
is a mirror imageof theother.

r~= 3.569945672...after an infinite numberof bifurcations. In the chaoticregimeabove r~,onefinds
smallwindowsof higherperiod cascadeswith periodsq x 2~,with q an integerandwheren denotesthe
degreeof the period-doublingof a fundamentalperiodic orbit of period q. Within eachsuchwindow,
onealsofinds the associatedreversebifurcation [7] of q x 2”~’bandsmerginginto q X 2” bands.In what
follows we will call q the periodicity of the cascade;q = 1 for theprimarycascadedescribedabove[15].

To describein moredetail the structureapparentin fig. 1 we now focuson the successiveimagesof
themap’smaximum,calledthemap’scritical pointx~,wherethe slopevanishes.Oneof themorestriking
featuresof thebifurcationdiagramabover~is theveil-like structurehighlightedby dark lineswhich vary
smoothlywith theparameter.As theattractorsin thechaoticregimeconsistof densesubsetsof theinterval
ratherthandiscretepoints,oneneedsto considerthe actionof the mapon aprobabilitydistribution.The
darklinesin thediagramcorrespond,then,to successiveimagesof thecritical pointandindicateregionsof
high probability density.Theseare seenin fig. 2 as spikesin the probability density.To describetheir
dependenceon the bifurcationparameterr, it is usefulto write

x~÷
1= F(r, x~), (2-3)

with F(r, x) = rx(1 — x) in our example. Then the mth image of th~critical point, x~= 0.5, is a
polynomialin r, F

m(r, 0.5),whereFm(r, x) = F(F”’(r, x)). For example,abover~,the first imageof x~
definesthe upperboundon {x~};it is the straight line

F(r, x~)= r/4, (2-4)

seenin fig. 1. Similarly, the secondimagedefinesthelower boundon {x~}which is given by

F2(r, x~)= ~- (i — ~). (2-5)

Furtheriteratesof the critical point must lie betweenthesetwo. For example,the third iterate
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F3(r, x~)= ~ (i — ~) (i — ~- (i — (2-6)

is a lower boundon the upperbandin the two-bandregion.Similarly, the fourth iterateF4(r, x~)is an
upperboundon the lower bandin the two bandregion.Thepair of bandsmergesinto oneband at a
parametervaluermergedeterminedby the intersectionof F3(r, x~)andF4(r, xe), that is, where

F3(r, x~)= F4(r, x~)= F(r, F3(r, xe))

or (2-7)

1 = r(1—F3(r,x~))

whichgives rmerge= 3.67857351-... It is now apparentthat eachof thedark lines in the chaotic region
of the bifurcation diagramcorrespondsto oneof the imagesof the critical point Xc.

The appearanceof stableperiodic orbits within the chaotic regimeis signalledby the qth iterateof
thecritical pointmappingonto itself; that is,

Fm~(rx~)= Fm(r, xe), m = 1, 2,3 (2-8)

As can be seen in the diagram,the labeledq-periodic regimescoincidewith the crossingof the qth
iterateof the critical point F~(r,x~)through x~= 0.5. In fact, the period q orbit becomesstablejust
beforethis pointwhich is thepoint of superstability.The numberof windowsof aparticularperiodicity
increaseswith q and eachof thesewindowsis generallyof differentwidth. Furthermore,the width of
thesewindowsdecreasesrapidly with increasingq [7].

In the chaoticregime,onecan seethe unstableremnantsof the orbits of period 2” whichwerestable
below r,~.Indeed,oncean orbit comesinto existenceat a given parametervalue it doesnot vanishat
higherparametervalues,althoughits stability may change.Theseremnantsareapparentas particularly
low valuesin the probability densitywithin the chaoticbandsandemanatefrom thepointsat whichthe
bandsjoin. Thewhite streakscorrespondingto theseunstableorbits areseenmost readilywhenviewing
fig. 1 from the side,looking parallelto the r-axis in the direction of decreasingr.

Despitethe existenceof suchdetailedstructure,the bifurcation diagram exhibitsa high degreeof
self-similarity. By self-similarity we meanthe propertyof objectswhosestructure,as observedon one
lengthscale,is repeatedon successivelysmallerscales[16].To describethis, we denotethe valueof r at
a bifurcation by rmn, where, if m <n, a periodic orbit bifurcatesfrom period m to period n and, if
m > n, m bandsmergeinto n bands.If we considerthe bifurcation diagramfor r in [1,4] as the first
scale,wherethe attractorbeginsjust above r = 1 as a period 1 orbit and endsat r = 4.0 as a single
chaoticband,then this structureis repeatedtwiceon a reducedscalewithin the parametersubintervaj_
[r

1_2,r2_i] = [3, 3.67857.. .], four timesin the still smallerregime[r2..4,r42] = [3.44944..., 3.59257...]
andso on. In this manner,the period 6 regimecan be thoughtof as two copiesof the period 3 regime.
Thus one need only describein detail the periodic regimesin [r21, 4] = [3.67857... , 4] in order to
understandthe periodic regimesin [re,r21] = [3.56995..., 3.67857.. .]. Within this scheme,the period
7 window just below r = 4.0 gives rise to a period 14 counterpartjust below r21. Suchself-similarity is
alsofoundwithin eachwindow of higher periodicity.

Feigenbaum [9] has developed a scaling theory for the non-chaoticperiod-doublingside of the
cascade bifurcation in 1D maps which exactly describesthis self-similarity in the limit of highly
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bifurcatedattractors.This theory predictsthatthe parametersr,, at the bifurcation from a period2” to a
period 2” ~‘ orbit scaleaccordingto

(re— r,,)— es” (2-9)

where 8 = 4.69920.. . dependsonly on the (quadratic) nature of the maximum of the map. It also
predictsthat the width of bifurcation “forks” in the periodic regimewhich stradlex~decreasesby a
spatial rescalingconstant a = 2.502907876....Lorenz [7], in turn, hasshown that the bifurcation
parametersfor the bandjoinings in the chaotic regimealso scalein this mannerandthat the width of
the bandcontainingx~scalesby a atband-mergingbifurcations.GrossmanandThomaewereapparently
the first to measurethe scalingfactor8 for both the period-doublingandband-mergingbifurcations[15].
Furthermore,thebifurcationparametersdescribingthecascadesin all of thewindowsof higherperiodicity
exhibit this scalingbehavior.

In the studyof chaoticdynamicsit is often usefulto havesomemeasureof thedegreeof randomness
generatedby the deterministicequations.Severalquantitieshavebeendevelopedfor this, but we shall
only consider those related to orbital stability. Orbital stability for a given orbit dependson the
behaviorof its neighboringorbits. If points nearan orbit convergetowardit, then it is stableto small
perturbations and is said to belocally stable.An orbit will be attracting,that is asymptoticallystable,if
on the a~veragealongthe orbit it is locally stable.If neighboringpointsdivergeaway from an orbit, the
correspc~ndingbehaviorwill be sensitiveto smallperturbations.In this case,the instability will amplify
the perturbationsandtheorbit will be locally unstable,evenif the orbit initially convergedtowardsome
attractor.

In the caseof 1D maps,thesestability criteriaaremeasureddirectlyby theslopeof the mapatpoints
visited by an orbit. In particular,if the slopeat a point is lessthanone, nearbypointswill be brought
closerto it at the next iterationof the map.Similarly, if the slopeat apoint is greaterthanone,nearby
points will be spread apart under iteration of the map. An asymptoticallystableorbit, then,requiresthe
geometric average of theseslopesalongtheorbit to belessthanone.Whenthisaverageisgreaterthanone
theorbit is unstableand,consequently,initially smalldeviationsfrom theorbitwill increaseunderiteration
of the map.

This sensitivity to small deviations has important consequences for the physical behavior associated
with chaoticdynamicalsystems. For if these deviations are due to some initial uncertainty in specifying
or measuringa state, then this uncertaintywill grow (exponentially, at first) until one can no longer
predict the state of the system within the attractor. The informationaboutthe initial stateof the system
is lost in afinite amountof time andsothe systemis effectively unpredictable[18,19]. This sensitivityto
smallerrorscan beconsideredoneof thedefining featuresof chaos[20].This in turn leadsto a physical
interpretationof the degreeof randomness,given by the averagelocal stability, as the rate at which
information about states is lost [18,19].

The measureof averagelocal stability, the LyapunovcharacteristicexponentA, can be expressedin
two different, but related,ways [21].The first is the information-theoretic entropy, given in the caseof
1D maps [19] by

A(r) = J P(x)lnIf’(r, X~)Idx (2-10)
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where P(x) is the asymptotic probability distribution of an orbit at a given parametervalue, such as
shown in fig. 2, and!’ is the slope of the map. If oneassumesergodicityof the orbit within the attractor,
thereis an alternativeform for computingA(r). It is given by

A(r) = In If’(r, x~)l. (2-11)

With this definition the measureof averagelocal stability is such that if
(i) A(r)<0, the orbit is stable and periodic;
(ii) A(r) = 0, the orbit is neutrally stable;

and (iii) A(r) >0, the orbit is locally unstableandchaotic.
Many of the featuresfound in the bifurcation diagram of fig. 1 are reflected in the curve of the

characteristicexponentas a functionof r. Thiscurve is shownin fig. 3 for theparameterregimeof fig. 1.
For r < r~,A (r) � 0, indicating the existenceof periodic orbits only. In this regime,the period-doubling
“pitchfork” bifurcationsoccurwhereA vanishes.That is, an orbit must first passthrough a neutrally
stableattractorbefore it can takeon a qualitatively different structure.Betweenthesebifurcations,A
approaches—oc as the critical point x~becomesa point on the periodic orbit. The orbit is said to be
superstable.The logarithmic divergenceof A at this valueof the parameteris easily inferredfrom eq.
(2-10)or (2-11)becausethe slopeat the critical point vanishes(seeappendixB). Therelaxationof initial
transientsonto the periodicorbit differs on eithersideof thesesuperstablebifurcations.For r less than
the bifurcation value TsuperstabIe, the approachof an initial transientis (eventually) from only oneside;
while for r> rsu~rstab1e,a transientorbit alternatesfrom onesideof pointson the periodic orbit to the
other.For example,the period 1 orbit becomessuperstableat r = 2. For r <2, any initial conditionwill
approachfrom the left of x~,even though it may havestartedfrom the right half of the interval. For
r >2, initial transientsalternatesides as they approachthe periodic orbit. The period 2 orbit which
becomessuperstableat r = 3.236068...consistsof two points. The transientsin this casefor r <

Tsuperstabie eventuallyapproachonly from the lower side of each point, while for r> rsui,~ystabIethey
approachthe points of the attractor from each side. The changein stability associatedwith the
superstablebifurcation is clear in the A(r) curve, despitethe fact that it is not at all visible in the
bifurcationdiagramof fig. 1.

:2.03~~

Fig. 3. Characteristicexponentversusbifurcation paranset~rfor the logisticequationcalculatedusingeq. (2.11)for 30000 iterationsateachof 7000
incrementsof r in [3,4].
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Finally at r = r~,A = 0 and one sees a bifurcation to chaoticbehavior indicatedby positive A for
r> r~.Hubermanand Rudnick [22] have recently shown that the envelopeof A near r~displays
universalbehaviorreminiscentof an orderparameternearthe critical point of aphasetransition.That
is, onecan write

A(r) = Aq(r — r~)~ (2-12)

with r = In(2)/ln(8)= 0.4498069...and Aq a constant.Cascadesof higher periodicities in the chaotic
regimeareindicatedby windowsof negativeA in which A goesthrougha period-doublingsequenceof
pitchfork andsuperstablebifurcations.Above the accumulationpoint in eachwindow the envelopeof
positiveA scalesas in eq. (2-12) exceptthat the constantAq dependson the periodicityq andthe width
of thewindow. Fromnumericalstudiesof the characteristicexponentusingeq. (2-11), wehaveverified
this scaling behaviorfor various periodicities. For example, for q = 1, 3 and 5, r = 0.45+ 0.01, and
A1 = 0.84, A3 = 1.7 andA5 = 1.6.Figure4 showsA(r) andeq. (2-12)graphedwith the valuesfor q = 1 and
3.

An estimateof Aq can be basedon the observation that at band joinings A is inversely proportional
to the numberof bands.Specifically, at a bifurcation from q 2” to q - 2”’ bands,the characteristic
exponentis given by

~ r~)~ ‘2-13
‘‘ q2” qk’ ‘

that is,

(214)

where the approximation is less than a few percent and k is the constantof proportionality of (2-9)

which depends on the periodicity q [23].

I.0

r r~3.885

Fig.4. CharacteristicexponentcurveAfr) from 11g. 3 on anexpandedscalefrom r~to r = 3.885.Thetwo smoothcurvesshowthefit of eq. (2-12) to the
envelopeof theq 2” cascades.For q = I andq = 3, wefind A, = 1.01 andA3 1.7 in fitting eq. (2-12).Thecurvefor theq = 3 chaoticregimehasbeen
extendedbeyondits rangeof validity to makeit easierto seeits fit to theenvelopeof positivecharacteristicexponent.
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When one looks for the featurein A (r) correspondingto bandsmerging the self-similarity again
becomes apparent in the A(r) curve of fig. 3. There is a peculiar upturn of A(r) toward ln(2) near r = 4.0
[24].This upturn also displays a critical behavior given by [10]

A(r) -= 1 — b(4.0— r)~2 (2-15)

whereb is a constant.In this regime, thereis a conspiciousabsenceof negativedips in A(r) indicating
the existenceof little observable periodic behavior. These features also occur for values of r <4.0 at
which bandsmerge.Severalof the corresponding“steps” in A(r) can be seenin fig. 3. Oneof them is
shown magnified in fig. 5 near the merging of two bandsinto one. Using eqs. (2-13) and (2-15), we
obtain the following expression for A(r) near band joinings

A(r) = Aq(r — r~)~(1 — bq(Tband — r)112) (2-16)

where bq dependson the periodicity q. Thus,as onewould expect,the entire A(r) curveexhibitsthe
same type of self-similarity as the bifurcation diagram. A(r) in eachof theseself-similar subintervalsis
very near one-half of that in the preceding subinterval. Again, knowledge of the structureof the A(r)
curve in [r

2..1,4.0] is sufficient to (qualitatively)determinethe entirecurvefor [re,4.0].
Although A (r) is continuousin the chaotic regime, it does not convergeto a limit curve with

increasingresolutionin r. It is a curve of infinite length that admits of no closed form representation.
Some of the featuresassociatedwith this propertycan be describedby different typesof self-similarity.
Furthermore,theseself-similar featurescan be describedby a “fractal” dimension[161.

To emphasizetheunusualnatureof the A (r) curve, we shallmentionthreeoccurrencesof self-similar
structure. The first is the global self-similarity found in the bifurcationdiagram.The featuresbetween
r2_1 and r 4.0 are repeatedon smallerscales(reducedby a factor of 8) as one approachesr~from
above. This self-similarity has already been discussed above. Another property of the A(r) curve in the
chaotic regime is that at every degreeof resolution in r, thereare windows of periodic behavior
correspondingto the negativedips in A(r). The width of the windowsrapidly decreaseswith increasing
periodicity q. The numberof windowsobservedat a given resolution in r appears,from our numerical

0.4

X(r)

02~__
3.65 r r21 3.7

Fig. 5. A(r) neartwo bandsmerginginto oneat r2_1 = 3.67857.... The kink in A(r) at r2~as seen in thefigure is characteristicof bandsmerging.
Notethat A(r2_,)~-ln(2)/2 —0.35. This pictureis takenfrom thedataof fIg. 3.
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work, to be roughly independent of the resolution at which A(r) is studied. This is the second
self-similar featureof A(r): a local self-similarity. It dependson the parameter r and gives a measure of
the densityof periodicwindowsin the chaoticregime.

Thesetwo features,andthe self-similarcharacterthey lendto A(r), canbe summarizedby thefractal
dimensionof the A(r) curveitself. We havemeasuredthefractal dimensionof A(r) for r in [re,41 usinga
standardalgorithm discussedby Mandeibrot[16]. The fractal dimensionof a curvedescribeshow the
curve’s length increaseswhen measuredon smaller scales.To apply this to the curve of fig. 3, we
measurethe lengthof A(r) in units of s ~r, wheres is somemultiple of the increment~r in parameter
used in making fig. 3. The fractal dimension/3 is obtainedthen by varying the size of the measuring
unit. The number N of measuringunits of size s ~r is given by

N = As~, (2-17)

whereA is someconstantdependenton t~r.The resultsof theselengthmeasurementsareshownon a
log—log plot in fig. 6. Wehave taken s = 2”, n 0, 1,..., 11, andfound/3 = 1.69 and A = 4.63 X iO~for r
in [re,4]. The fact that b is not 1, as would be the case for a simple smooth curve, indicates that as the
measuringunit is decreasedby 2 (say), morethantwice as manyunits arerequiredto coverA(r). Thus,
as the resolution is increasedmore featuresin A(r) becomeapparent,so that in the limit the length,
1 = Ns~r, of A(r) is infinite.

The last self-similar feature we shall mention is the fractal dimensionof the attractorsthemselves.
Periodicorbits and chaoticattractorshavetrivial fractal dimensions0 and 1, respectively.The former
consistof acountablenumberof discretepointsandthe latterfill out densebandsin the interval.At the
transitionsto chaos,however, whereA (r) vanishes,the attractorshave a self-similar structure:the
uncountablenumberof pointson theseorbits aredistributedby factorsof Feigenbaum’sspatialscaling
constanta. The fractal dimensionof theseattractorshasrecently beencalculatedto be dtransition=

0.538...[25].
These self-similar featuresare substantiallymodified in the presenceof fluctuations. The fractal

dimensionof each,though, still gives a qualitativemeasureof the level at which fluctuationstruncate
the self-similar structure.We shallreturn to this point at the endof the following section.

0.0 Ins 13.0
Fig.6. Log—log plotof the lengthof theA(r) curve,for r in [re,4] versusthescaleof measurements.N is thenumberof measuringunitsof length s
necessarytocoverA (r),wherei~ris theincrementin C usedto computeA (r) in fig. 3. Accordingto eq.(2-17), theslopeoftheline is thefractaldimension~.

For r in thechaotic regime [re,4] we havefound thefractal dimension8 = 1.69.
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As a concludingremark, we should point out that self-similarity also leads to scaling predictions
relatingto the behaviorof the powerspectraassociatedwith deterministicnoise[26]. Onceagain,one
can associateuniversalexponentswith both the growth of deterministicnoise as a function of the
control parameter and the width of the bands past the bifurcation cascade.

This endsour review of the dynamicsof 1D mapsin the absenceof fluctuations.In thissection,we
haveemphasizedthe self-similarity of the dynamicsas a function of the bifurcationparameterr. In the
following sectionsweshall discusshow this self-similarityallows for ascalingdescriptionof the effectof
fluctuationson the cascadebifurcation. In particular, we will study the effect of noise on the fractal
attractorat r~and will find that noise can be describedby a scaling theory, suchas foundin the theory
of critical phenomena. This noise scaling is also of interest in the study of the effect of noiseon the
fractal structure of chaoticattractorsin higherdimension,evenawayfrom period doubling bifurcations.

3. Dynamicsin the presence of fluctuations

The nature of the fluctuations introduced into a dynamical model depends on the coupling between
the physical process to be describedand the sourceof randomperturbations.In describinga physical
systemspecifiedby a set of differentialequations,dynamicalsystemstheory considersthe actionof a
flow on a suitablephasespaceof states.Fromthis perspectivefluctuationscanenterin two ways: first,
as an “external” stochasticforce that perturbsthe phasespacetrajectory; and second,as a random
perturbationof the parametersspecifying the flow itself. We shall call the first additive noiseand the
second parametric noise. The analog of additivenoisefor 1D mapsis of the following form,

x~±1=f(r, x~)+p~ (3-1)

where p~represents a random deviation from the deterministic orbit. For parametric noise, the
fluctuations perturb the form of the nonlinear function or the parameters in the map. For example, if we
write the deterministic equation as

= rf(x~) (3-2)

with r as the bifurcationparameter,then parametricfluctuationswould be of the form

= (r+ q~)f(x~) (33)

or

= rf(x0)+ q~f(x~) (3-4)

with q~representingthe fluctuationsin the parameterr. In the caseof 1D maps, the two physically
distinct typesof fluctuationreduceto basically the sameform, namelythat of eq. (3-1), exceptthat eq.
(3-4) hasdifferent statisticsfor the “external” stochasticforce: q~f(x~) ratherthan just p,,. This will
introduce higher-order correlations, but for small fluctuationsthe systemsof eqs. (3-1) and (3-4) will
exhibit the samebehavior. In what follows we shall discuss the effect of changesin the level of
fluctuations on the behavior of eq. (3-1) with f(r, x) = ix(1 — x). We shall take p~ as a Gaussian or
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~x~}

0
3.0 r 4.0

Fig. 7. Bifurcation diagram in thepresenceof zero-meanGaussianfluctuationswith standarddeviation,or noise level, ci = iO~.Computational
detailsarethesameasin fig. 1, exceptthat eq. (3-1) was used.

uniform random variable with standarddeviationu andzeromean.Wehavefound that the resultsdo
not depend significantly on the choice of distribution. We will refer to o- as the noise level of the
fluctuations.

A heuristicdescriptionof fluctuations,asimposingaminimumscaleof deterministicresolution,leads
one to properly anticipate the bifurcation diagram in the presenceof noise. Figure 7 illustrates the
effects of noise on the 1D map, with p,, a Gaussian random variable of standard deviation ~- = iO~.As
can be seen in comparing figures 1 and 7, the fluctuations truncate the detailed structure by smearing
the sharpfeaturesof the probability distribution of the attractorsseenin fig. 1. An exampleof this
effect on two bandsis shownin fig. 8 for r = 3.7 ando~= iO~.This shouldbe comparedto fig. 2. The
periodic regime, where the orbits are slightly broadened, is easily distinguished from the chaotic regime,
wherethedistribution of pointswithin the bandsappearsmoreuniform thanin fig. 1. Whenfluctuations
of sufficient amplitude are added, periodic orbits broaden into bands similar to chaotic attractors. As
onewould expect,the reverseprocessof chaoticattractorsturninginto periodicorbits doesnot happen.

0.0‘Th L,
Fig.8. Logarithmicplot of the(unnonualized)probabilitydensityP(x)of thetwo bandattractorat r = 3.59687in thepresenceof ci = iO~noiseas
in fig. 7. Comparethis with fig. 2 in which thereis no addednoise.P(x) is a histogramof iO~iterationsof eq. (3-1) with p~a uniformly distributed
randomvariableof standarddeviationci = iO~.The pointshavebeenpartitionedinto 10’ bins.
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In other words, fluctuationsgenerally increasethe degreeof randomnessor chaosin the dynamics,
while destroyingthe periodic windows encounteredin the chaotic regime. This enhanced“obser-
vability” of the chaotic behaviorin the presenceof fluctuationsoriginatesin the local instabilities
underlying the deterministic chaos. Thus fluctuations affect the local stability propertiesof the
attractors, while leaving their global stability relatively unchanged.

Some of the structureobservedin the deterministiclimit (o- = 0) is still visible abover~when noise is
added. In particular, it is evident from fig. 7 that in the chaotic regime a period three orbit is still
present, although,windows of higher periodicity are not. The cascadesof higher periodicity become
unobservable at noise levels whose intensities are proportional to the parameter width of the window.
Also, as shown in figures 7 and 8, the images of the critical point still appear as regions of higher
probability, but with fewer of the higher iteratesencounteredin the deterministiclimit. Furthermore,
for the noiselevel of fig. 7, a period of four is the highest that remains in the primary 2” cascade,while
all higher periods are washed out.

To summarizetheeffectsof noisefor a given cascade,we will define~ as the noise level that results
in a maximum observable period p. This quantity determines a lower boundon thoseperiodswhich
have been washed out. The effect on the primary 2” cascadeis illustratedby a diagram,shownin fig. 9,
displaying a gap in the observable periods which increases with noiselevel. Thisgaprepresentsthe set
of attractors(both periodicorbits andchaoticbands)of periodsgreaterthanp which areinaccessibleat
aparticular noise level o~,. Figure 9 showsthe qualitativedependenceof the gap on the noise level,
wheretheverticalaxis denotestheperiod p = 2” of periodic orbitsor thenumberof bandsp = 2” of the
chaotic attractor. The deterministic limit a- = 0 correspondsto the full cascadebifurcation. With
increasing noise level, though, a symmetric gap in the bifurcation sequenceappears, rendering
unobservable successively more periodic and chaotic bifurcations. The gap in fig. 9 symbolizes a set of
forbidden attractors whose periods cannot be observed at a given noise level. Both the largest

Chaotic

2 ~//hllh/llhI//I//I/I/III/I/III//I/II/I///IA
P ~g ii~iiiii~

4 ~- iiiiiiiii~8 ~.~~#i/ii1/IIihI/IIIIIIIIJI//I/II/II//I/I/II/I/III1~”I1I.II/jiiiii/,j1f/jii/i///jfjii
4

2 Periodic

1 I I I
0 0.01

Fig. 9. The setof observableattractorsfor thecascadebifurcation asa functionof (normalized)noiselevel. Theverticalaxisdenotestheperiodp of
anattractorgiven(I), in thecaseof adriven oscillator[1],by theratio of theresponseperiodto theperiodof thedriving force,or (ii), in general,by
theperiod(numberof bands)of theperiodic(chaotic)attractor.Thenoiselevelci alongthehorizontalaxiscorrespondsto thestandarddeviationof
thermal-likefluctuationsin which thesystemis immersed.Theshadedarearepresentstheset,or “gap”, of unobservableattractorsobliteratedby a
given levelof fluctuations.
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observableperiodandmaximumnumberof observablebandsdecreasewith increasingnoiselevel a-. As
an exampleof the alterationof the cascadebifurcationwith noiselevel, considerstartingin fig. 9 from a
period 4 orbit at a- 0. As the noiselevel is increasedfrom this point, the gap is finally reachedat
a- -~-~5 x i0~wherethe attractor appears almost like a 4 band chaotic attractor. The attractors observed
at highernoiselevelsarethosealongtheupperboundaryof thegap,within the chaoticregime.That is,
increasing noise levels strengthenthe band-like characterof the attractor, eventually inducing a
transition to a chaotic attractor. This transition from a noisy periodic attractor to a chaotic one
corresponds to a vertical jump across the gap. The attractor reaches another transition point at
a- -= 10~wherethefluctuationshavebecomestrongenoughto broaden the four chaotic bandsinto two
bands.A similar transition takesplace, in principle, at a- -~2 x 102 where the 2 bandattractorwill
broaden into one band. Similarly, at a fixed noise level in fig. 9, one encounters a transition to a chaotic
attractorat parametervalueswhich decreasewith increasingnoiselevel. Thus the existenceof thegap
alsoillustratesthe fact that fluctuationscan induce a transitionto chaosat a lower threshold.

Since the exact values of a- and p for which a gap appears depends on the determination of when a
given period becomesunobservablewith increasingnoise, we havecalculatedthe Lyapunovcharac-
teristicexponentcurveto provideaconsistentmeasureof theonsetof chaosasafunction of noiselevel.
When noise is added,the distinction betweenperiodic orbits and chaoticattractorsis no longer as
straightforward as in the deterministic limit: all attractors eventually fill out intervals whose width
depends on the noise level. Nevertheless,there is a qualitative difference between the stability
properties of the two types of noisy attractors, a difference which is reflectedin the behaviorof the
characteristic exponent. In calculatingthe characteristicexponentin the presenceof noise,we usedeq.
(2-il) with f’ the derivative of the deterministic mapevaluated at points alongan orbit {x0} takenfrom
iteratesof eq. (3-1).

Figure 10 shows our computation of A(r) at the samenoiselevel as the bifurcation diagram of fig. 7.
When this is compared to the deterministic case, fig. 3, several changes are immediately apparent. First,
the small parameter windows of periodic behavior in the chaotic regime disappear.Second, the
higher-order period-doubling bifurcationsmergeinto a singlesmoothcurvenearr~.Third, bifurcations
betweenperiodic orbits,whereA = 0 in the absenceof noise,becomemorestablewhenfluctuationsare
added. Fourth, the first transition to positive A occurs earlier in the bifurcation sequence. We will
continue to associate this latter feature with the onset of chaotic behavior. And finally, the value of A at
parameter values that are chaotic in the deterministic limit is effected substantiallylessthan for the case

Fig. 10. Characteristicexponentversusbifurcation parameterr at thenoiselevel of fig. 7: ci = ~~_3• Detailsof thecalculationarethesameas in fig.
3, exceptthat eq. (2-11)wasusedwith iteratesof eq.(3-1).
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of periodicbehavior.In mostchaoticregimestheaddition of noiseleavesA unchangedoversomerange
of noiselevel.

Figures 7 and 10 were constructedusing additivenoiseat fixed parametervalues.A study of these
figuresmakesit clearthat it is difficult to anticipatetheeffect of addingnoiseunlessthebehaviorof the
deterministicsystem is known at adjacentparametervalues.Roughly speaking,adding fluctuations
altersadeterministicorbit so that it wanders over points on the attractors at adjacent parameter values.
This suggestsa simple model for the action of noise on the deterministicbehavior: the effect of
fluctuations is to average the structure of deterministic attractorsover some range of nearby
parameters.That is to say, there is an equivalence between a perturbationof an orbit and a
perturbation of the map itself, in the sensethat at eachiterationthe effect of a perturbationof an orbit
can also be obtainedby a suitablechangein parameter.With this equivalence,all of thefeaturesof the
bifurcationdiagram,fig. 7, andthe A(r) curve, fig. 10, can be understood,aswell asotherconsequences
of addingnoise.

To understandwhy this averagingof parametersis effective, consideran orbit {x0} of eq. (3-1),
generatedby someparticularsequenceof fluctuations{p,,}. If justthe right sequenceof fluctuations{q~}
occurs,an identicaltrajectorywill be producedby a parametricnoiseprocessof the form of eq. (3-3) or
(3-4). This sequence{q~}can be found by equatingthe trajectoriesstepby step,that is,

= rf(x~)+p~= (r+q~)f(x~). (3-5)

For the casef(x)= x (1 — x) we obtain the following equationfor q~

~ (1—x,)~ (3-6)

That is, at each iteration the effectiveparametervalue is r’ = r + q~.For this particulariteration, the
noisysystembehavesjust like a purely deterministicsystemat parametervaluer’, exceptthat the point
x,, is not necessarilyon the attractorfor thisparameter.Therefore,the attractorof the noisysystemcan
be approximatedby an appropriately weighted averageof the deterministic attractorsat nearby
parametervalues.

As maybeseenfrom eq. (3-6),the statisticalpropertiesof {q,,} arequite different from thoseof {p~}.
Sinceq~dependson x~,its statisticsmaybe as complicatedas thoseof x~.For example,supposethe
deterministicattractoris a period 2 orbit andthe additive fluctuationsp,. are small. Becausethe two
pointsof the orbit havedifferent values,eq. (3-6) saysthat the fluctuationsq~with odd n will on the
averagehave a different magnitude than those with n even. Thus, in this case, if the additive
fluctuationsare ergodic, the parametricfluctuationsare not. In addition, {q~} neednot be Gaussian,
evenif {p~} is.

To calculate the statistical propertiesof {q,,} exactly would require simulating the orbit {x~}.
Nevertheless,very crude estimatesof a few moments of q~,together with a knowledge of the
deterministicbifurcations,providea good understandingof the effect of additivenoise.In what follows,
wewill estimatethe first two momentsof the equivalentparametricnoiseq,,. We will then discusshow
this can beused to explain the observedeffectsof noiseon figures 1 and3.

We will now computethe averageof q~.Sincethe fluctuationsp,, arestatistically independentof x~
we can write
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(q,~)= (p~J(x~(i—x~))) = (p~~(lI(x~(i— x,,))) = 0 (3-7)

where (. . .~‘ denotes time average and where we have assumed (p,,~ = 0. Thus the average of q~ is zero.
Estimating the second moment is more difficult. Squaring eq. (3-6) and again making use of the fact

that p~and x~are uncorrelated, we obtain

~‘ 2
(q~)= ~ (1/(x~(1— x~))~), (38)

which, unfortunately, depends on an unknown moment of x~. However, in many cases this moment can
be estimated. For example, if the deterministic orbit approaches a fixed point, and the additive noise is
small, the value of the fixed point can be used to obtain a good estimate of (q~). To do this for a limit
cycle, the fluctuations about each point on the deterministic orbit must be considered separately, since
in this case the fluctuations q~are not ergodic.

A simpler, but less accurate, expression may be obtained by rewriting x,, (1 — x~)in terms of x,,+1,

x,, (1—x~) = (x~±1— Pn)/T. (39)

Squaring,substitutingthisinto eq. (3-8), and expanding the denominator,weobtain

2 ~‘

(q~)= ~(rp,,Jx~±1))~1—2p,,Jx,,±i +3(pJx~±1)—...) (3-10)

with p,, and x,÷1 correlated. If p. is small, however,the dominantfactordeterminingx,,÷1is x,,, and p,,

will be approximately uncorrelated with x~±1.With this assumption, we find

cr0 -~-ra-,~1/x
2)”2 (3-11)

where 0q and o-~ are the standard deviations of q~and p

0, respectively. To estimate (1/x
2), we define

t~x2 = x2 — (x2). If (1~x2)~ (x2), then (1/x2) can be expanded to give

O~q ~ (i — (~))h/2, (3-12a)

which is a good approximation for periodic orbits. For chaotic attractors there is no reason to assume
(z~x2) ~ (x2) unless the probability density is sharply peaked or consists of bands. From numerical
calculations, however, the moments in eqs. (3-8), (3-11) and (3-12a) all agree to within less than a percent
for rin [3,4].

In practice, then, very coarse approximations are effective. For example, if we take r = 4.0 where the
chaotic attractor fills the entire interval, approximate (x2)”2 by its median value of 0.5, and take z~x2= 0,
we can obtain a crude approximation from eq. (3-12a) for the standard deviation of the equivalent
parametric noise level 0~qfor a given additive noise level a-p. This estimate is given by

a-
0 ~‘8cr,,. (312b)

With this equivalence, it is possible to construct a good approximation to the noisy bifurcation
diagram of fig. 7 from the deterministic bifurcation diagram of fig. 1. We have the following rule:
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the behavior in the presenceof noise can be determinedby a weighted averageover nearby
deterministic dynamics with a distribution in r of standarddeviationa-0. For example, uniform averaging
over a fixed range in r yields a good approximation to observed effects of fluctuations. To obtain the
bifurcation diagram for fig. 7 from that of fig. 1, the averaging should use a window in r several standard
deviations wide. Specifically, the standarddeviation for parameteraveragingin this caseshould be
a-0 8 x llT~.Appendix C discussesthe useof this rule in moredetail.

This rule provides a simple explanation of the bifurcation gap schematically shown in fig. 9. In the
deterministic limit, for parameters close to r~,it is possible to resolve a periodic orbit or a chaotic
attractor of arbitrarily high period. If noise is added, however, the higher periods become unresolvable.
According to the rule, this is due to the noise averaging over adjacenthigher and lower period
attractors. In particular, the transition to chaos lowers with increasing noise level as the behavior is
averaged over a wider range of parameters so that periodic orbits at successively lower parameters are
averaged with chaotic attractors.

Above r~,the averagingovernearby parameters smears out all windows of periodic behavior,except
the large period 3 window. As has been observed by Mayer-Kress and Haken [27],the effect of noise on
the asymptotic probability density of this particular orbit is quite different thanthe effect of noise on
(say) the period 4 orbit in the main period-doubling sequence. The probability density for the period 4
orbit consists of four delta functions in the deterministic limit. As fluctuations are added to the system,
these delta functions broaden, with essentially zero density in between them. As more noise is added,
this process continues until eventually the peaks merge pairwise so that the period of four is lost,
leaving only two bands. The behavior of the period 3 orbit is quite different, as shown in the noise
bifurcation diagram of fig. 11. As noise is added, in addition to some thickening of the three delta
functions, a broad background suddenly fills in between the peaks. The sequenceof probability
distributions of fig. 12 illustrate the noise-induced bifurcations in more detail. With further increases in
noise level, this background rises until the peaks are eventually washed out, as seen in fig. 12c. The
changes in structure of P(x)are also reflected in the characteristic exponent versus noise level curve of
fig. 13. The rapid rise of A for small noise corresponds to the broadening of the delta functions of the

0.0 0~ 0.001
Fig. II. Noisebifurcation diagramat superstableperiod3 orbit: attractorversusnoiselevel ci at fixed parameterr3 = 3.831874....500 iteratesof
eq. (3-I) areplotted afteran initial 500 iterationsateachof the750 incrementsin ci.
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Fig. 12. Logplot of (unnormalized)probability densityat thesuperst- Fig. 13. CharacteristicexponentA at thesuperstableperiod3 orbit asa
ableperiod3orbit, r~= 3.831874... , for threedifferentnoiselevels:(a) functionof noiselevelci. At eachnoiselevel, A wascalculatedwith 106
ci=~ i0~,(b) ci= iO~and (c) ci= 102. 106 iteratesof eq. (3.1) were iterationsofeq.(3-1)usingeq.(2-11).TherapidriseinAforverysmallci
partitionedinto 10’ bins. (b) showstheprobabilitydensityasseenin the correspondsto the broadeningof thedelta functions of theperiodic
bifurcationdiagramof fig. 7. The noiseinducesabifurcationfrom the orbit, while thenearlylinearincreasein A formoderateci correspondsto
periodthreeorbit to asinglebandatalower noiselevelthan(say)in the theriseof thesingleband“floor” in P(x)seenin theprevioussequence
2~cascade,asit is closer, in thesenseofequivalentparametricnoise,to of figures.
thesingle largechaoticbandat slightly lower parameter.

deterministicperiod 3 orbit, while for larger a- the nearly linear increasein A reflects the rise of the
background “floor” in P(x) seen in figures 11 and 12.

To understand this effect in terms of equivalent parametric noise, notice that the period 3 orbit is
closeto achaoticattractorthat is asinglebandaswide asthe period3 orbit itself. At asufficiently large
noise level this chaotic attractoris averagedwith the period 3 orbit, thereby creating the broad
backgroundin the probabilitydensity.
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In contrast to the sensitivity of periodic behavior to added noise, we find that within various
parameterregimeschaoticbehavioris relatively insensitiveto noiseover a wide rangeof noiselevels.
As an example of this, consider the single bandattractorat r = 3.7. Figure 14 contains probability
distributions showing the attractor at r = 3.7 in the presence of noise at two different levels. Although
increased noise obliterates the detailed delta-function structure in the distributions, the gross features,
such as the width and average height of P(x), are unchanged. As a quantitative measure of this
insensitivity, fig. 15 shows the characteristic exponent as a function of noise at r = 3.7. Over a range in
noise level similar to the previous figure, there is essentially no change in the characteristic exponent.
This behavior is found for many chaotic regimes, although the corresponding range of noise levels
depends on the particular band structure. As long as the noise affects only the delta-function structure,
the characteristic exponent will change little, but once the noise starts to widen the chaotic bands the
exponent will change noticeably.

10.0
(a)

In~x) 0.8

40
0.0 >,.

(b)

InP(x) 02

0.0 o- 0.001
Fig. 15. CharacteristicexponentA for thesingle bandat r = 3.7 as a
functionof noiselevelci. At eachnoiselevelA wascalculatedwith 106
iterationsofeq.(3-1)usingeq. (2-11).Asthefigure shows,noiseaffectsA

4.Oo______ very little at chaoticparametervaluesover wide rangesof noiselevel.
X This dependson the degreeto which noisechangesthe probability

Fig. 14. Logarithmicplotof (unnormalized)probabilitydensityfor the density (say)by wideningit orby filling gaps.For the caseof a single
singlebandatr = 3.7 andtwo noiselevels:(a)ci = iO~and(b) ci = iO’. band,noiseobliteratesthepeakstructure,but this doesnot contribute
The noiseobliteratesthedetailedstructureof thedeltafunctions,but significantlyto thevalueof A, andsoA is relativelyindependentof noise
otherwisedoesnot changethewidth or height of P(x). level.

Wecan extend the equivalent parametric noise rule to describe the noise-induced changes in A(r).
Ratherthan averagingattractorsat adjacentparametervalues,we simply averagethe value of the
characteristic exponent at nearby parameters. The deterministic A(r) curveof fig. 3 may be smoothed
with a Gaussiandistributionof standarddeviationa-0 — 8 x iO~to obtainan approximation to the A(r)
curve of fig. 10. The result of this is shown in fig. 16.

The fractal dimensionof the A (r) curve, mentionedat the endof the previoussection,provided a
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Fig. 16. Gaussianaveragingof deterministicA(r) iftfig. 3 over datapointswithin two standarddeviations.Theequivalentparametricnoisestandard
deviation ci~wascomputedfrom eq. (3-12b); i.e., cig = 8ci~= 0.008. The averagingof A(r) with equivalentparametricnoisegives good qualitative
agreement.

roughmeasureof the sensitivity of the self-similar dynamicsto the addition of noise.In light of our
discussionof the approximateequivalencebetweenadditiveandparametricnoise,we expectthat at a
given additive noise level o~.periodic windows in the chaotic regimeof size cr0 or smaller will be
unobservable. Thus, in the sense that the fractal dimension of A (r) quantifies the repetition of
bifurcationstructureon successivelysmallerscales,it is alsoa measureof howthis detail is washedout
at a given noiselevel. As a first approximation,the noiselevel a- at which we can no longer observea
window of parameterwidth w is simply proportional to w. If we associatethis noisewidth with the scale
of resolution L~sr s used to derive eq. (2-17), then the length 1 = N L~r s of the A(r) curve at a given
noise level a- is

o~°~’~= a-°
6°. (3-13)

We see, then, that the fractal dimension does yield a qualitative measure of the effect of noise on the
detailed structure found in A(r) in the chaotic regime. Before concluding this section, we should also
mention a different type of chaoticbehaviorwhich is encounteredwhenevera tangentbifurcation
occurs. This new phenomenon, which was originally studiedin the context of the Lorenz model by
Yorke and Yorke [28] and Pomeauand Manneville [291,is characterizedby intermittency,or the
appearanceof noisybursts in betweenlaminaror periodicsequences.In what follows, we will consider
it in the context of tangentbifurcationsin systemsexhibiting period doubling behavior [31—331.

Consider the third iterate of the map as given by

F~3~(x)= F(F(F(x))) (3-14)

with F = Rx(x— 1) and R = R~= 1 + \/8. For this value of R the map is just tangentto the line x at
x~= (0.160,0.514,0.956). For R > R~,F°~(x)passesthroughtheline x giving rise to six newfixed points of
which threearestable.Thisphenomenonof tangentbifurcation is responsiblefor the way in which the
periodicwindowsappearin thechaoticregime[14].Now considereq. (3-14)for Rslightly smallerthanR~.
A sequenceof third iteratesthen would generateboth a laminarphase(the iteratesmoveslowly in a
staircasefashioncloseto anyof thex~,values)andachaoticburstastheiteratesmoveerraticallyunderthe
mapbeforebeingreinjectedinto anyof thex~values.
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A number of predictions can be made on the basis of this picture. Expanding F°~(x,R) about Xc
and R~one has

F°~(x,R) x~+ (x — x~)+a~(x— x~)2+ b~(R~— R). (3-15)

Settingy~= (x~— x~)/b~the recursion relation for the three-fold iteratetakesthe form

Yn+lYn+aY2n+� (316)

with � = R~— R. For the logistic map a = 68.5. Since the basicstep size in the passage near x~is small
the recursionrelation nearX~is well describedby the differential equation

dyldl = ay2+ �. . (3-17)

Integrating this equation for � >0 givesfor thenumberof stepsbetweeny~,
1and Yout,

l(Yout, yj~,)= ç~Lr[tan_1(yout/V�/a)— tanl(y1n/\/�/a)]. (3-18)

To find the averagelength of alaminarregion, y1,, is averaged over the probabilityP~~(y1~)of entering
someacceptanceregion (— G, G) and Yout is set equalto G. So long as G~‘ V~, it is given by

= tanl(G/V�/a), (3-19)

a resultobtainedif the probability distributionP1~(y~~)is takento be uniform over (—G, G).
In order to look for this intermittent routeto chaosin the presenceof externalnoise,one hasto

study

= RX~(1— X~)+O~n. (320)

Here~,, is a Gaussianrandomvariablewith (~4) = 5,,~.. Proceeding as before, the 3-fold iteratecan be
representednearthe contactpointby the Lagevin equation

dy/dl = ay
2+ � + a-c. (3-21)

Here~(l) is a Gaussianwhite noisesourcesuchthat

(~(l)e(1’)) = 5(1 — 1’) (3-22)

and a- is proportionalto o~.Introducingthe correspondingFokker—Planckequation,onecan solve for
the averagepath length in the presenceof noise[31].Herewe considerthe scalinglimit valid for small
�. In this limit it can be shownthat the averagepathlength in the presenceof noisesatisfiesthescaling
relation

(1) = ~=f(a-2/�3’2). (3-23)
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As u2/�312 vanishes, f goesto a constantand we recover the previousresult,eq. (3-19). Fora-2/�3~’2>1,
f(x)— x”3 so that in the limit of large noise

(1)— 1/a-2’3 (3-24)

and a chaotic burst as the iterates were erraticallyunderthe mapbeforebeingreinjectedinto anyof the
X~values.

In this section we have described severalimportanteffectsthat additivenoisehason the dynamicsof
the quadratic1D map. We havealso indicatedthat thesecan be understoodin termsof averagingthe
dynamics over nearby parameterswith an equivalentparametricnoiseandthat the fractaldimensionof
A(r) gives a qualitative measure of the sensitivity of the bifurcation featuresto noise.In the nextsection
we shallconsidera morequantitativedescriptionof thescalingbehaviorof noisenearthe accumulation
points of period-doubling bifurcations.

4. Noiseas a disorderingfield

Several features of the A(r) curveshown in fig. 10 allow the definition of a criterion for the lowering
of the chaotic threshold. First, as any amount of noise obliterates at some scale the detailed
self-similaritynearr~,the first positive transition of A near,~becomeseasier to detect. The transition to
chaos(fig. 10) is not only lower thanin the deterministiclimit (fig. 3), but the slopeof theenvelopeof
A (r) at the zero-crossingis no longer infinite. Second,the pointsof neutralstability (A — 0) correspond-
ing to the period-doublingbifurcationsbelow r~,are mademorestableby the addition of fluctuations.
In fig. 10, for example,the A (r) curve is smoothedandmademorenegative,indicating greaterstability
at the pointsof bifurcation. Thesetwo featurestakentogethermakethe first positivetransition of A
unambiguous.Hence,wecan definethe onsetof chaos,r~(o-),as the valueof the parameterr at noise
level a- for which A (r) first becomespositive. For conveniencewe will usethe normalizedparameter
F = (r — r~)/r~.Froman extensivestudyof A(r) versusnoiselevel a-, in conjunctionwith the correspond-
ing bifurcation diagrams,wecan summarizethe effect of fluctuationson the cascadebifurcation in fig.
17, which avoidscertainambiguitiesassociatedwith fig. 9. Thus wecan nowfollow differing bifurcation
pathsto the samepoint in the diagramof fig. 17 unambiguouslyand without the needfor a special
transitionrule as is the casefor fig. 9.

Onefeaturethat becomesapparentin the diagramof fig. 17 is the scalingbehaviorof the onsetof
chaos r~(a-)as a function of noise level a-. If we denoteby r~(a-)the value of r for which the
characteristicexponentbecomespositiveat fixed noiselevel, we can write

k
0a-

1’ (41)

wherey is a critical exponentsummarizingthe power law behaviorof the onsetof chaosas a function
of noise level and k

0 is a constant of proportionality depending on the periodicity of thecascade.Using
eq. (2-11), we have determinedthe exponenty and constantk0 from numericalexperiments to be

y=O.82±0.Ol (4-2)
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0 a- 2x10 -35.0 In ~ -5.0
Fig.17. A renditionofthebifurcation “gap” whichdoesnothaveanyof Fig. 18. Loweringofthechaoticthresholdr~with increasingnoiselevel
theassociatedambiguitiesof fig. 9. Periodp andbifurcationvaluesof the ci forthe2” cascadeon alog—logscale.Theabsolutevalueofr~is usedas
parameterversuslogarithm of the noise level ci. The dashedline r~<0. The10 ordersof magnitudein r~correspondto orbitsof periods
representsr~(ci) (definedin text)versusci andindicatesthathighernoise from2~to 216, in thedeterministiclimit. Thenoiselevelrangesover12
levels induceanearliertransitionto chaos.For numericaldetailsofr~(ci) ordersof magnitude.Eachdatapointcomesfrom abinarysearchatfixed
refer to thefollowing figure. Abovethedashedline theattractorsare r of aA vs. ci curvefor thezero-crossingof A.During thesearcheachA
chaotic,below periodic. was calculatedwith N = 106 or 10’ (small ci) in eq.(2-li).

for both q = 1 and3, and

k1 = 0.60±0.01, k3 = 0.40±0.01. (4-3)

Figure 18 shows a log—log plot of r~versus a- over 12 ordersof magnitudein a-. The range in r
corresponds,in the deterministiclimit, to orbits from period2~to period 216.

If we recall the definition of a-,. as the noiselevel at which onecanobserveanorbit of at mostperiod
p andif we define r~(a-~)= r, then eq. (2-9) written in termsof thenormalizedparametergives

= 5 (4-4)

and,also,

~ = 5. (4-5)

Using eq. (4-1), we then obtain [1]

= S~. (4-6)

Thusfor acascadewhereonecanobserveatmostaperiodof p at a given noise level a-,,, onemustreducethe
noiselevel by a factor of 5k” — 6.6in order to resolveaperiod of 2p•

Thebehaviorof A nearr~in theabsenceandpresenceof noiseas shownin figures9 and 17, leadsto
the notion of externalfluctuationsacting as a disorderingfield on the deterministicdynamics.As we
pointedout in section2, in the deterministiclimit A behavesas adisorderparameterfor chaos,with a
powerlaw given by eq. (2-12). As the strengthof theexternalnoiseis increased,A acquiresafinite value
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Fig. 19. CharacteristicexponentA versusnoiselevel ci at r~for the2” cascade.A was calculatedwith N = 106 in eq. (2-11)for 100 valuesof ci. The
stepscorrespondto thenoise-inducedmergingof bands.The overall powerlaw behavior,though,can be summarizedby thecritical exponentB of
eq. (4-7).

at r~,while the zero crossing is renormalized according to eq. (4-1). Furthermore,sincethepresenceof a
bifurcationgapimplies the smearingof bandsin the chaoticregime, A will no longer possessan infinite
slopeat the thresholdin the presenceof a disorderingfield.

Theseconsiderationsleadus naturally to expectthat at r~,the Lyapunov characteristicexponentA
will scalewith noiseaccordingto

A(r, s)= Aa-° (4-7)

where 0 is a universalexponentwhich plays a role similar to the isothermalexponentin critical
phenomena[34]. Figure 19 showsthe dependenceof the characteristicexponentat r = r~on the noise
level a-. In addition to an overallpowerlaw behavior,several“steps”areapparentin thecurveof A (a-).
The stepsareseparatedby factorsof S —j 6.6 in the noiselevel andcorrespondto the noise-induced
merging of bands.The sequenceof probability distributions of fig. 20 illustratesthe rescalingof the
dynamicsby changesin the noiselevel of factorsof ~ As the noise increasesby 5~”from (a) to (b)
and againfrom (b) to (c), the structureof the band probability distribution is seen to be the same,
exceptfor a spatialrescaling.Figure 19 alsoshowsthat A increasesrelatively linearly with noiselevel
until bandsmerge,at whichpoint A levelsoff with increasingnoiselevel becausetheprobability density
changeslittle. This is verified by the noisebifurcationdiagramof fig. 21 which shows16 bandsmerging
intO 8 and8 bandsmerginginto 4 at noiselevels correspondingto the stepsin A(a-) of fig. 19.

In order to determinethe validity of eq. (4-7) we havemeasuredthe changeof A at r = r~with
increasingnoiselevel over 9 ordersof magnitudein a-. As can be seenin fig. 22, a log—log plot of the
datarevealsa straightline from whichwe can extractthe values

0~0.37±0.01, A10.58±0.01 (4-8a)

for theperiod 1 cascadeand

0 =0.37±0.01, A3= 1.13±0.01 (4-8b)
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Fig. 20. Logarithmicplot of (unnormalized)probabilitydensityat theaccumulationpoint r, = 3.569945.. . of the2” cascadefor threedifferent noise
levelsseparatedby factorsof 8’~—6.6: (a) ci = 2.3x i0’, (b) ci = 1.5 x iO~,and (c) ci = iO~.The last correspondsto the noiselevel of fig. 7 in
which4 bandsareapparent.Thesequenc.eillustratestheband-mergingbifurcationsat r~inducedby increasingnoise levels.Again, 106 iterationsof
eq. (3.1)werepartitionedinto 10’ bins. The differencein noiselevels is chosento illustrate thenoisescalingstructureof P(x).

for theperiod 3 cascade.Thedeviationsfrom astraight line, seenas groupingsof 2 and3 datapointsin
fig. 22, aredueto the noise-inducedbandsmergingsfound in fig. 19.

Theseresultstogetherwith the Huberman—Rudnickscalingof the characteristicexponent,eq. (2-12),
and recentscaling theories[35,361, suggestthe existenceof a homogeneousscaling function F[F, a-]
suchthat

A(Pa-)zrr_~—F[F,a-] (4-9)
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Fig. 21. Noisebifurcation diagramdiagramat 2” accumulationpoint: attractor{x~}versusnoise level ci at r~= 3.56995 500 iteratesof eq. (3-1)
areplotted afteran initial 500 iterationsat eachof thell)~incrementsin ci./

-10.0
30.0 no- 0.0

Fig. 22. Log—log plot of A versusnoiselevel ci showingthedatausedto obtain B = 0.37and A
1 = 0.58 for eq. (4-7). Thegroupingsof 2 and3 data

points reflect the noise-inducedband mergings.A was calculatedwith N = 106 in eq. (2-11)at 30 values of ci which ranged over 9 orders of
magnitude.

and satisfying a scaling behavior, i.e.

F[La~p,L°’~a-]= LF[F~ a-], (4-10)

wherea~anda~arescalingparameters.
In particular, when a- = 0, eqs. (4-9) and(4-10) imply

A(F, 0) = (~F)°~=~’A(—1,0) (4-11)

which togetherwith eq. (2-12) gives

r= (1— a,~)/a,. (4-12)
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Similarly, we can expressthe exponent0 in termsof the scalingparametersar anda~.Setting r = 0 in
eqs.(4-9) and (4-10) andletting a-—*0, we obtain

A(0, a-) = a-~”A(0, 1) (4-13)

which, togetherwith eq. (4-7) gives

0 (1—a,~)/a,,.. (4-14)

In order to obtain an explicit relation between T and 0, we can introduce a noise susceptibility
X(F~a-) defined as

X(F~a-) dA/da-. (4-15)

The magnitude of the noisesusceptibilityX gives a measure of the sensitivity of the dynamics to the
addition of noise.For example,at the transitionsto chaosand at points of superstability,X diverges,
although nearbyit is finite and positive. Actually, nearthe transition to chaos,the behaviorof X is
complicatedsomewhatby the accumulationof self-similar structure.The additionof a smallamountof
noise, however,truncatesthis structureso that the natureof the divergenceat the transitioncan be
studiedin practice.Nearr~,then,X shouldalso obeyascaling law

X(F~0) = cF~. (4-16)

Taking derivatives of eqs. (4-9) and (4-10) we obtain

w = (2a~— 1)/a. (4-17)

which together with eqs. (4-12) and (4-14) lead to the relation

w r(01—1). (4-18)

Using the known values for r and 0, eq. (4-18) yields a prediction for the noisesusceptibilitycritical
exponent of w = 0.77. In the previous section we noted that the addition of noise lowered the
characteristicexponentat the period-doublingbifurcations.Thus X is negative nearperiod-doubling
bifurcations and apparently diverges at this point of bifurcation too. We also pointed out that for a
single chaotic band the characteristicexponentis affectedvery little overa wide rangeof noiselevel. In
suchcases,the noisesusceptibilitywill be very small, if not zero.

The results of this section show that the existenceof a homogeneousscaling function F with
universalpropertiesleadsto scaling relationsvery similar to thoseencounteredin critical phenomena.
In particular,one is able to accuratelypredict the value of the exponentsthat relate the effect of
external fluctuations on the chaotic behavior of deterministic systemsexhibiting period-doubling
cascadebifurcations.Recentwork [35,36] pointsto a renormalizationgroupdescriptionof the scaling
behavior revealed by the above numerical investigations.In fact, these approachesyield critical
exponentsin excellentagreementwith thosereportedabove.
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5. Concluding remarks

Using the simplest dynamical systemwhich undergoescascadebifurcationswe studiedin aquan-
titative mannerthe fluctuation effects reportedearlier in a system of nonlinearordinary differential
equations[1]. In particular,we havedescribedthe fluctuation-inducedgapin the cascadebifurcation
sequenceand the scaling behavior of both the threshold noise and the disordering field. Our
investigationsprovidestrongevidencefor theconsiderationof the Lyapunovcharacteristicexponentas
a disorderparameterfor chaos.We havealsoderivedthe scalingbehaviorof the effectsof fluctuations
using resultsfrom the universalscalingtheory for the period-doublingbifurcation. Thus theseresults
shouldbe relevantto otherdynamicalsystems,including weakly turbulent fluid flows, which undergo
cascade bifurcation.

The existence of deterministic models that show chaotic or unpredictable behavior puts in a newlight
questionson the physicalorigins of noiseprocesses.With this in mind, we would like to considerthe
larger context in which this papershould be placed.For modelsof classicalphysical systemswe can
distinguishthreetypes of fluctuation. The first, observationalnoise,is due to the finite resolution of
physicalmeasurements,that is, instrumentationerror. Problemsassociatedwith observationalnoiseare
oftenconsideredtheprovinceof the mathematicaltheory of communication,which describestheeffect
of randomerrorson a signal representingsomephysical quantity [37]. When a physical system is in
contactwith a “heat” bath in which alargenumberof particles(or degreesof freedom)areexcited,a
secondtypeof fluctuation,externalnoise,appears.This secondtypeof noiseaddsa stochasticforce to
the dynamicalequationsandthe resultingnon-deterministicproblemis solved with statisticalassump-
tions and techniques[38].The LangevinequationdescribingBrownian motion exemplifiesthisclass of
stochasticmodel.Finally, chaoticdynamicalsystemsexhibit stochasticityor randombehavior,although
theyarecompletelydeterministic.This deterministicrandomnessis the third type of fluctuation,which
we shall call intrinsic noise.It is of interest,for example,to the studyof nonlineardifferential equations
whosephasespacedescriptionsrequireat leastthreedimensions.

In current attemptsto relatedeterministicchaoticmodelsto turbulentphysicalsystems,one of the
outstandingproblemsis the interactionbetweeneachof thesetypesof fluctuation.On onehand, noise
appearsas an everpresentbut undesirableartifact which, moreoften than not, complicatesexperimen-
talists’ interpretation of their data. On the other hand, from the theoretical point of view, the
introductionof fluctuationsin a problemimplies a simplification of a model. Suchan ansatzrepresents
an explicit lower boundon the level of descriptionbelow which the detaileddynamicsare not to be
considered.The results we havepresentedhere and previously [1] suggesta role for fluctuations
intermediatebetweenthe extremesof experimentalcomplexity and theoreticalsimplicity. We have
shownthat abroadclassof transitionsto chaoticbehaviorcan be characterizedby its alterationin the
presenceof thermal-like noise. In principle, this should aid in distinguishing the type of model
appropriate to describe observed, random behavior.

Aside from the particularbehaviordiscussedherefor the cascadebifurcation, we wish to emphasize
the importanceof consideringfluctuations in modeling turbulent physical systems.From an under-
standingof the changesinducedby fluctuationsin the geometryof the phasespaceflow, one maybe
able to elucidate the relationshipbetweensimple chaotic dynamicsand turbulent physical systems,
such as turbulent fluid flow [39] and noisy solid state systems[1,5]. Currently, simple chaotic
models serve only as metaphors for turbulent behavior in continuous(infinite dimensional)physical
systems. Although one finds electronic and mechanicalsystemscorrespondingto chaotic models[40]
and recent application of phasespacereconstructiontechniquesto stirred chemicalreactions[41],there
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is as yet no direct experimentalevidencethat chaoticdynamicsdescribesobservedrandombehaviorin
continuumsystems,such as turbulentfluid flow. At present,the comparisonof bifurcationsequencesof
powerspectrabetweenexperimentandmodel systemsandthe reconstructionof phasespacepictures
provide the only methods of validation of the conjecture. Hopefully, an understanding of the
relationship between the three types of fluctuation (observational, external and intrinsic) in model
systems will lead to experimental tests which will determine the relevance of chaotic dynamics to noisy
physical processes.

We should mention another approach to distinguishing between types of intrinsic noise that is of
interest in distinguishing between intrinsic and thermal noise. It considers, first of all, the reconstruction
of phase space dynamics from a single experimental variable and then determinesthe number of
independentvariables underlying the reconstructed dynamics, that is the intrinsic dimensionality of a
phasespacedescription[42,43]. According to this approach,different typesof intrinsic noiserequire
different numbersof phasespacedimensions.Thermal noise, consideredas a deterministicprocess,
would be characterizedby a relatively large numberof phasespacedimensions.It is still an open
questionwhetherpracticalalgorithmscan bedevisedto distinguishbetweenthermalandintrinsic noise
when the dimensionof the underlyingphysical processis inherentlylarge. At the presenttime, there
appearto be substantialcomputationaldifficulties for the experimentaldeterminationof the intrinsic
dimension of physical processes even when the dimensionis as low as 5 (say), not to mention the
problems of visualizing a chaotic attractor of that dimension with the reconstruction techniques
currently proposed.The utility of thesetechniqueswill probably be limited in answeringquestions
about the interaction of thermal noise and chaotic dynamics. Nonetheless, the conceptual framework
that thesetechniquesprovide allows one to understandthe transition from low dimensionalchaotic
dynamicsto high dimensional,deterministic,thermal-likenoiseprocesses.

From a different perspective,Ruelle [44] and Shaw [19] estimate that the time necessary for a
thermalfluctuationto affect themacroscopicmotion of fully-developedturbulencein afluid is relatively
short, being on the order of secondsfor air. Ruelle concludes,however,that in this regime, because
thermal fluctuationsmust competewith many other perturbationsof similar energywhich are also
amplified by the flow, changes in the level of thermal fluctuations would probably not be experimentally
observable. In the weakly turbulent regime though, the changesin the level of thermal fluctuations
could be quite noticeable, as suggested by our results on the cascade bifurcation to chaos. Fluctuations
are of interest from a mathematicalpoint of view, thermal fluctuationsmay also play an important
role in selecting the relevant stationary measure on the chaotic attractor describing turbulence. In
principle,therearemanysuchmeasures,but, as Kifer [45]hasshownfor Axiom-A systems,only oneis
stableundersmall stochasticperturbations.

The picture of microscopicfluctuationsdeterminingmacroscopicbehavior is one that is generally
associatedwith locally unstableor chaoticdynamics.Shaw [19] developsthis notion by considering
chaotic dynamical systems as sources of information; this information originatesin the microscales
beyond experimental resolution. He discusses the unpredictability of chaoticsystemsin termsof finite
measurementresolution,or observationalnoise, to usethe aboveterminology. As an example, he
estimates how long it takesa chaoticsystemto becomeunpredictable.If the stateof a systemcan be
determined to within somefinite resolution a- (measuredrelative to the total numberof resolvable
states) and if one knows a priori the information loss rate A0 (such as the maximum Lyapunov
characteristicexponent),then the system is effectively unpredictablea time t = ln(cr)/Ao after a
measurement. As a first approximation to an observation theory of chaos, this argument raises an
interestingquestionfor experimentalists:Without knowing the rate of information loss, how can the
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rate itself be measured experimentally in the presence of observational noise? Or, indeed, in the
presence of the other types of noise mentioned above? [461.

As an explicit example of the relationship between thermal-like fluctuations and intrinsic noise, we
have studied a model exhibiting chaotic behavior, eq. (3-1), which included a stochastic force. This
“thermal fluctuation” term was in practice a deterministic pseudo-random number generator im-
plementedon a digital computer.Its iterative algorithmwas operatedon a different time scalethanthe
ID map in order to let the correlationsdie out and so give the desiredstatistics.This time scale is
determined by the degree of randomness of the algorithm which can be measured with a characteristic
exponent,that is, a measureof the divergenceof nearbystates.The introductionof pseudo-random
noise imposed a scale of resolution below which we did not consider the dynamics. This “thermal” noise
was characterized by suitable statistical quantities, such as the mean and standard deviation, although it
was a deterministicprocess.From the oppositeperspective,this suggests that in pursuing the under-
standingof a noisyphysicalprocessto finer degreesof resolution,the “noise source”may appearas a
deterministicnonlinearsystemwith chaotic dynamics.This certainly was the casefor our numerical
experiments.
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Appendix A. Fluctuations in a driven anharmonic oscillator

Although characteristic exponents provide an unambiguouscriterion for the earlytransition to chaos
inducedby increasingnoiselevels,for systemsmorecomplexthan 1D maps,their calculationbecomes
quite time consuming. In the caseof the driven anharmonicoscillator initially studied[1] one can
observe this effect in the variation of Poincaré sections with noiselevel more readily, in fact, than in
changes in the 1D mapattractorswith noiselevel. Generally,chaoticbehaviorappearswith a particular
degreeof mapping,or folding, of orbitsonto eachother.Calculationof characteristicexponentsgivesthe
bestdeterminationof when this folding occursin 1D maps.For driven oscillators,and otherchaotic
systemswhoseattractorsappearsheet-like(of topologicaldimensiontwo), on the otherhand,thispoint
is reachedwhen the first folding appearsin the attractor’sgeometry, as revealedin a sequenceof
Poincarésections.From the underlyinggeometryof the attractoronecan then infer the transitionto
chaos.

We includeheretwo setsof Poincarésections(figures Al andA2), takenat differentnoiselevels for
the oscillator of ref. [1], to illustrate in another context the qualitativeeffectsof fluctuationsdiscussedin
this paper. The anharmonic oscillator studiedthereis given by

I+g~+ax—bx3=Fcos(wt). (A-i)
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~ (e} / (d) / / (c) . (b)

Fig. Al. A setof phase-zeroPoincarésectionsat different driving frequenciesalongthe horizontalaxis for theanharmonicoscillatorstudiedin ref.
[1] for a (nornalized) noiselevel a= iO~.The set (a)—(f) showsa cascadebifurcation asthedriving frequencyis lowered (toward the left in the
figure). At this noiselevel only a maximumperiodof four can be observed.The folding geometryis apparentfor the bandattractorsin (d)—(f).

(d) (c) (b) (a)

/ j../ /

Fig.A2. Thesetof Poincarésections(a)—(d) aresimilar to thefirst setin figure Al, exceptthey aretakenat anoiselevel ci = 10_2. Only a maximum
periodof two is presentfor this noiselevel. Noticealsothat thefluctuationsspreadmore in thedirectionalongtheunstablemanifold(bands)than
alongthestablemanifold (transverseto thebands).

Figures9 and17 summarizetheobservableperiodsat agiven noiselevel andperiodicity, as is seenin
figures Al and A2. An important featurerevealedby the Poincarésectionsis that the fluctuations
spreadout the orbits morealong the “soft” directionswithin the attractor(the unstablemanifold) than
in the transversedirections (stable manifold), along which orbits contract very rapidly onto the
attractor.The explanationfor the inducedtransition to chaoswith increasingnoiselevel, then,is that
the fluctuations fill out the folds of the attractor, causingthe orbits to describea geometrywhich is
effectively chaotic. The existenceof such folding geometry cannot be easily inferred from the
bifurcationdiagramsof the 1D map.

Appendix B. Characteristic exponentsin period-doubling regimes

The characteristicexponentin periodic regimes,as seen in fig. 3, hasa distinctive shapebetween
period-doublingbifurcations. Although the dependenceof the characteristicexponent A on the
parameterr cannotbe analytically calculatedin general,it can be straightforwardlydeterminedfrom
eq. (2-10) for a few simple cases.The nature of the divergenceat superstableorbits can also be
elucidatedusing eq. (2-10). Furthermore,oncewe havetheseresults,a scaling of A(r) in the periodic
regime,analogousto the scalingabover~of eq. (2-12),follows easily.

A period p orbit consistsof the set of stablefixed points~x1},i = 1,. . . , p, of the pth iterateof the
map.Thesearegiven by the equation

x=f”(r,x~). (B-i)

Eq. (B-i) implicitly determinesthe dependenceof the fixed points x1 on r. Thus,the bifurcation of
periodic orbits reducesto the studyof the real rootsx, of the polynomial in r, x~— f”(r, x.). Only p of
theseroots correspondto the pointsof the stableorbit; the otherscorrespondto unstableorbits. For
period 1 orbitsof the logistic equation,we havethe roots x = 0 and
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x1=(r—l)/r. (B-2)

The root x1 describesthe stableperiod 1 orbit for r in [1,3]. For period 2, therearefour rootsof the
polynomial

x —f(r, x) = x — r
2x(1 — x)(l — rx(1 — x)). (B-3)

The period 1 root andx = 0 are alsoroots of this polynomial, but they correspondto unstableorbits.
The remainingtwo roots describethe stableperiod 2 orbit for r in [3,r

2_4]; theyare

~±= 1+r±(r
22~3)1~’2~ (B-4)
2r

Generally,a periodp orbit is determinedby the roots of a polynomialof order2”. For aperiod2~orbit,
the roots corresponding to the unstable orbits of periods ~ ~ and1, can be factoredout of
the polynomial x — f”(r, x), in principle. This would leave a 2~-orderpolynomial whose roots arethe
pointsof the stable2” orbit.

From the equationsfor the dependenceof the periodic orbits on r, the dependenceof the
characteristicexponentcan beobtainedfrom eq. (2-10).For aperiodp orbit {x,}, the probabilitydensity
P(x) is a set of p deltafunctions, cS(x — xe). In this case,eq. (2-10) becomes

A(r) = ~ ln~f’(r,x~)I. (B-5)

For the logisticequationwe havestudied,the slopeis given by

f’(r, x~)= r(i — 2x,). (B-6)

For the period 1 orbit, then,the characteristicexponentis

A(r) = 1n12— rI, (B-7)

for r in [1, 3]. The argumentof the logarithmindicatesthat the bifurcations,whereA —~0, from x = 0 to
the period 1 occursat r = 1 and from period 1 to period 2 occursat r = 3. It also shows that the
superstableorbit, whereA —~ —oc, is found at r = 2. Similarly for the period 2 orbit, we find

A(r)= lnlr2— 2r—41, (B-8)

for r in [3, r
2_41. The argumentof the logarithmyields r2_4= 1+ \/6 andfor the superstableperiod 2

orbit r= i+V5.
The characteristicexponentdivergesat superstableorbits {x,} as oneof the x, approachthe critical

point x~= 0.5, wherethe slope vanishes.To show this, in general,we must first determinehow the
particular x in question,denotedby x *, approachesx,, as the parameterapproachesthe superstable
valuer~.x” is given by onebranchof roots of the polynomial x —~(r,x). This gives x” implicitly as a
function of r; that is, if g(r) is the single branchcontainingXc, then wewrite
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x*(r)=g(r) (B-9)

wherex~= g(rs). As can beseenfrom thebifurcation diagramof fig. 1, g(r) is a smooth curvenearr~.If
wedefinedr = r — r~,then

dx*(r) = ~- g(r) dr. (B-b)

Closeto r~,the slopeof g(r) is very nearlya constantk = (d/dr)g(r~),whichgives

dx*~~~kdr. (B-il)

Next, we must determinehow the slope changesnearr~.If we define dx = x* — x~and dr as above,

simpleexpansiongives

f’(r, x *) = f’(r5, x~+ dx) —~f’(r~,x~)+ f’(r~,x~)dx + O(d
2x). (B- 12)

By definition the first, third andhigher, termsvanish.Furthermore,f(r, x) = —2r so that we have

f(r, x*) = —2r~dx (B-13)

nearr~.Fromeqs. (B-li) and(B-13), the slope’sdependenceon r near r. is thengiven by

f’(r, x*).~~—2r
5k dr. (B-14)

Thedivergenceof A (r) is dominatedby the termin eq. (B-5) whoseslopeis vanishing,andsowe can
ignore the contributionsfrom the other(p — 1) pointsalongthe orbit. Thus,we seefrom eq. (B-5) that
the divergenceof A(r) is logarithmic nearr~andgiven by

A(r)-’-- lnl2r~kdr~—~lnIr~—rj . (B-15)

We now turn to the scalingpropertiesof the superstabledips. As r approachesr~the width w,, of the
nth dip in A (r) decreasesexponentiallyatarategiven by

w,, = r~±1— r,, -= ö~”. (B-16)

Furthermore,astheperioddoublesfor eachsuccessivedip, themagnitudeof A (r) decreases by a factor of
two from its valueon the previousdip. Within asingle dip then, we can write

A~(r)=~ln 2(r~—r) , (B-17)
2 w,,

whereA0 is a constantand r~is the valueof the parameterr at the superstableorbit. The depthof the
superstabledips, as seenin fig. 3, decreasesas r approachesr~,although in principle, A(r) is infinite at
the superstableorbits.Thiseffect is due to theresolutionin r at which fig. 3 was made,but alsoreveals



80 J.P. Crutchfie!d a a!., Fluctuations and simple chaotic dynamics

a scalingbehaviorof the superstabledips.This behaviorcan beaccountedfor by calculatingtheaverage
of A(r) betweenperiod-doublingbifurcations.This averageis givenby

A~=-~--J~ln~2(Ts~ dr. (B-18)

Since the dips are nearly symmetric, the lower limit can be changed from r,, to r~.Performing the
integration we find

A~= —A0/2”. (B-l9)

Solving eq. (2-9) for n in termsof r, we find

A(r) = —A~(r— r~)
1 (B-20)

whereT = In(2)/ln(~) = 0.4498...,and A~is a constant. Thus, we see that the averagevalue of A(r)
scales in a manner analogous to the envelope of positive characteristicexponentabover~,as shown in
ref. [22].

Admittedly thesearesimple considerations.A moredetailedanalysisalongtheselines,as developed
by Daido [47],shows that the argument of the logarithm in eq. (B-i7) approaches a universal polynomial.
Eqs. (B-7) and (B-8) are the first approximationsto the universalexpressionfor the Lyapunovexponent
in the period doubling regime.

Appendix C. Equivalenceof parametric and additive noise

The equivalent parametricnoise rule, introduced in section 3, allows one to construct a good
approximationto the noisybifurcationdiagramof fig. 7 from the deterministicbifurcationdiagram of
fig. 1. Simply stated,the noisybifurcation diagramis obtainedby the convolution of the deterministic
bifurcation diagram with a Gaussianprobability distributionin r whose standard deviation is given by
eq. (3-12b).A goodapproximationof this processcanbeconstructedin thefollowing manner:In apiece
of paper cut a slit that is parallel to the x axis of fig. 1. The width of the slit in the r direction should be
equal to several standard deviations of the equivalent parametricfluctuations.To estimatethe noisy
attractor at any particular value, place the slit over fig. 1 so that its midline lies at the parametervalue
of interest. Now project all the pointsof the neighboringattractorsthat arevisible within the slit onto
the midline. If the width of the slit is appropriately chosen, the resultingdistributionof pointswill give
the attractor in the presence of noise.

As a first estimateof the properslit width, we assumethat the slit width is constantin x anduseeq.
(3-12b). If the slit width is set at 3a-q, then 99.9% of the equivalentparametricfluctuationswill have
magnitudes that lie within the slit. For the example of fig. 7 the magnitudeof the additive fluctuationsis
a-,.. = iO~andthe estimatedslit width is 3a-q= 24a-~ = 0.024.That is, the slit width to be used with fig. I
to obtain fig. 7 should be 2.4% of the horizontal axis.

Let us now construct an approximation of fig. 7 usingsuch a slit andfig. 1. Notice that the slopes of
the bifurcationcurvesin fig. 1 arelarge nearthe period-doublingbifurcation to period 4. Consequently,
the noisy bifurcation curves of fig. 7 are broadened near this point by the projectionontothe midlineof
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the slit. Similarly, the bifurcation to the period 8 orbit is so close to the period 16 that the values of x
visible within the slit neverseparate.The period 8 orbit, and all higher periodorbits, neverbecome
visible in the noisy bifurcation diagram of fig. 7. The other noise effects discussed in section 3 can be
explainedin an analogousmanner.

This approximationneglectsthe x-dependenceof the equivalentparametricfluctuations.Notice, for
example,that the width of the upperfork of the period 2 bifurcationcurve is muchthinner thanthat of
the lower fork. One of the reasonsfor thisis apparentfrom the slit construction:the upperbifurcation
curvehas a smaller slope. Another reason is that the equivalent fluctuations arenot ergodic.Eq. (3-6)
predictsthat the q,, fluctuations are larger when x,. — 0.8, i.e. the upper fork, than they are when

0.5, i.e. the lower fork. At first glancethis may appearto havean effect counterto that which we
aretrying to explain. However,the influenceof the largerfluctuationson the upperfork is only felt on
the succeedingiteration, that is, by the lower fork. Both of theseeffectscombineto makethe upper
branch for fig. 7 considerably narrower than the lower.

In order to take this second effect into account automatically,ratherthan usinga slit of fixed width,
the width can be varied as a function of x. To do this it is necessaryto considerthe amplitude of the
parametricfluctuationsas a function of the value of x on the next iteration, when they are most
strongly felt. From eq. (3-5) we see that

p~=q~f(x~) (C-I)

andthat

f(x~)=(x~+1—p~)/r. (C-2)

Assuming p,, ~ 1 and eliminating f(x~)from eqs. (C-i) and (C-2), we find

q,. — rp,,Jx~÷i. (C-3)

The fluctuation q,~ is felt on the (n + 1)st iteration; that is, q~affects X~+i.Thus, atanygiven valueof x

the slit width w(x) is given by
w(x)= 3a-q(x)= 3ra-,.,/x, (C-4)

if onetakesthreestandarddeviations.
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