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Spatio-Temporal Complexity in 
Nonlinear Image Processing 

JAMES P. CRUTCHFIELD 

Ahsfruct -This is a pictorial survey of pattern dynamics in video feed- 
back and in related numerical models. After a short introduction to video 
feedback apparatus and concepts from dynamical systems theory, a range 
of phenomena are presented, from simple attractor types to homogeneous 
video turbulence. Examples of complex behavior include symmet~y-locking 
chaos, spatial amplification of fluctuations in open flows, dislocations, 
phyllotaxis, spiral waves, and noise-driven oscillations. Video experiment5 
on nonlinear transformations of the plane are also described. The suney 
closes with a discussion of the relationship between dgnamical systems and 
nonlinear, iterative image processing. 

Keywords - Attractor, basin, chaos, coherence, complexity, dimension, 
dislocations, entropy, flows, image processing. lattice dynamical system\, 
limit cycle, mappings, partial differential equations, phyllotaxi5. reaction- 
diffusion, spatially extended systems, spiral waves, transients, turbulence, 
video feedback. 

I .  INTRODUCTION 
HAOS is now the most notorious [l] and well-studied C [2], [ 3 ]  source of complex behavior arising in nonlin- 

ear deterministic processes. The specific complexity-gener- 
ating mechanisms referred to under this rubric are not the 
entire story, however. As the following pictorial survey will 
demonstrate, complexity in spatio-temporal systems de- 
mands substantial generalizations to the basic theory of 
dynamical systems and to our present appreciation of the 
diverse forms manifested by the interplay of randomness 
and order. Although chaos is only one of many complex 
phenomena, the rapid progress made in its understanding 
gives hope that the diversity of spatio-temporal behavior 
will also yield to a similar “experimental mathematical” 
approach [4]. 

Indeed, the particular spatial systems presented in the 
following, video feedback [SI and lattice dynamical systems 
[6], were taken up in order to address the larger questions 
of just how dynamical systems theory, as developed for 
understanding low-dimensional chaos, could be applied to 
a wider range of physical processes, viz. those whose 
behavior depends on time and on space. Along the way a 
number of new phenomena and connections with well- 
known behavior were discovered. This pictorial survey is 
concerned with this phenomenology as it  appears in two 
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spatial dimensions. First, though, basic notions from dy- 
namical systems and the apparatus of video feedback must 
be introduced. After presenting a range of different phe- 
nomena in video feedback and related numerical models, 
the discussion closes by addressing several general ques- 
tions of interest to enginecring. Specifically, the last section 
considers the relevance of the experimental-mathematical 
approach to the “engineering” of nonlinear image pro- 
cessing systems. 

11. VIIEO FEEDBACK 
Space does not allow a detailed introduction to the 

topics covered in the following sections (the reader is 
referred to a paper [SI and references therein. and to a 
videotape [7] for this). I n  the former, a more complete 
discussion of the experiment5 and related video physics is 
presented. In the latter. excerpts from various experiments 
can be seen evolving in time. Since one of the major focal 
points is the complexity of time-dependent behavior, the 
videotape is a substantid improvement over the static 
images required by a conventional publication format. An 
even better approach is for the reader to experiment with 
video feedback directly. which is highly encouraged. Al- 
though scientific experimi:nt.ition requires careful calibra- 
tion and instrumentation quality equipment. most of the 
phenomena described below can be observed in consumer 
grade video equipment M ith patient investigation. For an 
introduction to luttice d lwm;cu l  systrnis, a class of numeri- 
cal models that evolved out of the video feedback investi- 
gations. see [6]. 

The basic configuratioil of a video feedback system is 
quite simple. When a vidvo camera is directed at a display 
monitor, to which it is connected, a feedback loop is 
closed. Two-dimensional images I( x. JI) from the monitor 
screen impinge on the camera’s photodetector after passing 
through space and optical processing elements. The camera 
dissects the image into ai1 electronic signal V ( t )  by ruster 
scanning the intensity profile on the photodetector into a 
temporal sequence of horizontal lines. The video signal 
V ( t )  gives the intensity of a point, or pixel, along a raster 
scan line at time t .  The signal arrives at the monitor after 
electronic processing and is reconstructed as a two-dimen- 
sional image on its screcn. Thus as i t  flows around the 
loop, there are two dom;iins in which the image informa- 
tion can be processed: optic;il and electronic. 

Optical image processing often consists passing the image 
through various lens s, stems that control the light inten- 
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sity gain (iris), image focus, and spatial magnification and 
filtering. There might also be nonlocal image processing, 
such as image translation or rotation. The latter can be 
effected by mounting the camera so that it rotates about 
its optical axis. Electronic processing provides spatially 
local image processing as it operates directly on the in- 
stantaneous intensity signal V( t ) ,  that is, on horizontal and 
possibly vertical pixel neighborhoods. Electronic image 
processors provide modules to handle the basic video 
frame and line~synchronization, to add and multiply images 
point by point, and to perform nonlinear pixel and pixel 
neighborhood transformations [8]. Spatially nonlocal elec- 
tronic image processing can be performed by manipulating 
the raster geometry itself and displaying the result on a 
suitably modified monitor [9]. 

A question that frequently arises in using electronic 
systems to investigate theoretical problems of complexity 
is whether the process involved is a simulation or an 
experiment. The distinction is somewhat moot as long as 
science is served. Nonetheless, it should be said that once 
the functional elements are well characterized, video feed- 
back as an experiment becomes video feedback as simula- 
tion. This is simply a change in the experimenter’s attitude 
rather than in the apparatus or the phenomena observed. 
Speaking broadly, as a simulator video feedback allows 
one to study the class of systems, called reaction-diffusion 
partial differential equations introduced by Alan Turing 
[lo]. It can do much more than this, though, such as 
simulate spin glasses, neutral networks, delay-partial-dif- 
ferential equations, multi-species chemical reactions, and 
so on. Discussion of these systems is beyond this survey’s 
scope. 

111. DYNAMICAL SYSTEMS 
A central motivation in studying video feedback has 

been to understand how the geometric picture and statisti- 
cal methods of dynamical systems theory can be gen- 
eralized to explain the complexity observed in time- 
dependent pattern generating systems. Thus to put the 
investigation in the proper framework, the following sec- 
tion introduces a few notions from dynamical systems 
theory [2], [3] that will be used later on. 

The primary abstraction of dynamical systems theory is 
that the instantaneous configuration of a process is repre- 
sented as a point, or state, in a space of states. The 
dimension of the space is the number of numbers required 
to uniquely specify the configuration of the process at each 
instant. With this, the temporal evolution of the process 
becomes the motion from state to state along an orbit or 
trajectory in the state space. 

For video feedback the space of states is the space of 
two-spatial-dimension patterns I (  x, y ). For a mono- 
chrome system I ( x ,  y )  is the intensity at a point (x, y )  on 
the screen; for color, I consists of a vector of red, green, 
and blue intensity components. The dimension of the 
equivalent dynamical system is given by the effective num- 
ber of pixels. For the behavior described below a (rough) 
upper bound of the dimension of the state space is 

250 000 ( = 5122). The temporal evolution of patterns is 
thus abstractly associated with a trajectory in this high-di- 
mensional state space. If the behavior is simple, however, 
then the trajectory can be pictured as moving in a much 
lower dimensional subspace. 

If a temporal sequence of patterns is observed to be 
stable under perturbations, then we assume that the 
trajectory lies on some attractor in pattern space. One of 
the main contributions of dynamical systems theory’ is the 
categorization of all long-term behavior into three attrac- 
tor classes: fixed point, limit cycle, and chaotic attractors. 
A fixed point attractor is a single, isolated state toward 
whch all neighboring states evolve. A limit cycle is a 
sequence of states that are repetitively visited. One can 
also have a “product” of limit cycle oscillators, called a 
torus and denoted T“ where n is the number of con- 
stituent cycles. These attractors describe predictable be- 
havior: two nearby states on such an attractor stay close as 
they evolve. Unpredictable behavior, for which the latter 
property is not true, is described by chaotic attractors. 
These are often defined negatively as attractors that are 
neither fixed points, limit c!cles, nor tori. 

Aside from attractor classification, another significant 
contribution of dynamical systems theory is a geometric 
picture of how transients relax onto the attractors. An 
attractor’s basin of attraction is the set of all points that 
evolve onto the attractor. There can be multiple basins and 
attractors, so that radically different behavior may be seen 
depending on the initial Configuration. The complete cata- 
log of attractors and their basins for a given dynamical 
system is called its attractor-basin portrait. 

Finally, dynamical systems theory is also the study of 
how attractors and basin structures change with the varia- 
tion of external control parameters. A bifurcation occurs if ,  
with the smooth variation of a control, the attractor-basin 
portrait changes qualitatively. 

To summarize, dynamical systems theory is a language 
that describes how complexity arises in (i) asymptotic 
behavior, (ii) basin structure, and (iii) bifurcations. I t  
forms a natural framework with which to explore the 
complex spatio-temporal dlnamics of video feedback. The 
pictorial essay which follows is organized along the par- 
ticular phenomena that ha\e been observed in video feed- 
back. The sections are mort: or less independent. 

IV. BASIC SPATIO-TEMPORAL ATTRACTOR TYPES 
This section demonstrates the basic attractor types: fixed 

points as time-independent equilibrium patterns, limit 
cycles as periodic image sequences, and a chaotic attractor 
arising from the competition of marginally stable symme- 
tries. 

Photo 1 shows a time-independent and stable pattern. 
The dynamical system description of this is a fixed point 
in the space of patterns. Although there are very simple 
fixed point patterns, such AS an entirely dark image, the 
one shown is complex. This emphasizes an important 

Only dissipative dynamical systi’ms will be described here. 
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distinction with conventional theory in whch one does not 
associate any intrinsic complexity with a fixed point. In 
the case of spatially-extended systems, measuring the com- 
plexity even of fixed points is clearly desirable. Quantifica- 
tion of spatial complexity, however, is fraught with diffi- 
culties at present. 

Photos 2, 3 and 4 give three snapshots during one cycle 
of a periodic sequence of patterns. This is a limit cycle in 
pattern space and is stable under small perturbations. 

Photos 5 through 8 show a sequence of snapshots from 
an aperiodic image sequence. Here there are two marginal- 
ly stable patterns of fourfold and 21-fold symmetries. The 
trajectory visits neighborhoods of these patterns intermit- 
tently. Analysis of the time-dependent Fourier amplitudes 
of the underlying symmetric pattern shows the behavior is 
described by low-dimensional dynamics and is globally 
stable, and that starting from nearby patterns orbits sep- 
arate rapidly. Thus, the behavior is most likely described 
by a chaotic attractor, although the (necessary) measure- 
ment of the metric entropy has yet to be carried out. 

V. DISLOCATION DYNAMICS 
Photos 9 and 10 show the interdigitated light and dark 

fingers of video dislocations. Similar patterns occur in a 
wide range of physical and biological systems, such as: 

convection cell patterns found in Rayleigh-BCnard 
and Couette fluid flows and in liquid crystal flows; 
domains in two-dimensional (anisotropic) spin sys- 
tems, such as thin magnets used for magnetic bubble 
devices; 
labyrinthine patterns in ferrofluids; 
flux patterns in type I1 superconductors; and 
the ocular dominance pattern in the visual cortex. 

While the particular mechanisms responsible for disloca- 
tions in these examples differ greatly, there is a common 
element. In each there is an “order parameter” that alter- 
nates between saturation extremes over some fixed spatial 
length scale. The order parameter in each of the examples 
above is (1) the direction of fluid flow, charge transport, or 
(2) local magnetization; (3) the existence or absence of 
ferrofluid; (4) the local conductivity, and ( 5 )  the variation 
of left or right visual field associated with cortex columns. 

The diversity of examples calls for a general definition 
of dislocations. They can be defined as the localized de- 
fects arising from the breaking of a pattern’s underlying 
spatial symmetry. The patterns that exhibit the exact sym- 
metry are the “ground” or “ vacuum” states. The lowest 
energy perturbations from these equilibrium states are 
dislocations. 

A wide range of dislocation dynamics is readily ob- 
served. In the typical evolution from a random initial 
pattern, the system first establishes the characteristic spa- 
tial wavelength and produces a tangle of “frustrated” 
fingers with many dislocations. The dislocations collide 
and annihilate and the pattern becomes more regular. At 
this point the system may continue to evolve toward less 

complex patterns or it may begin to spontaneously create 
dislocations. In the former case, the attractor is a fixed 
point reached by a complex transient. In the latter case, 
the attractor manifests itself as a pattern sequence of a 
‘‘gas’’ of capriciously-moving dislocations, whose creation 
and annihilation rates balance. One of the interesting 
questions here is how to describe the underlying state 
space structures [ll]. 

Dislocations result from the interplay of two processes. 
The first is the local bistability of the order parameter. 
Values of the order parameter intermediate between the 
saturation extremes are unstable. The second is “lateral 
inhibition”, to borrow a phrase from neurophysiology. 
This imposes the spatial length scale over which the order 
parameter alternates by forcing neighbors bordering a 
region into the opposite xaturation state from the region 
itself. 

In video feedback, dislocations are found when using 
photoconductor-based cameras at high beam current. I t  
appears that secondary electrons are scattered from the 
beam spot to neighboring regions. In a relative sense, this 
reduces photosensitivity in those regions when the beam 
scans illuminated photoconductor and increases it when 
the beam scans dark photoconductor. 

A simple numerical model of dislocations that embodies 
these processes is given by the following discrete time and 
space lattice dynamical .spteni [6]: 

f ( x >  = 
x - k sin(2nx) 

is the state a site ?at time n ;  
indexes the site in a d-dimensional 
lattice; 
is a relatiyeendex to the neighbor- 
ing sites N ( i ) ;  
are the coupling kernel coefficients 
which control the lateral inhibition- 
and set the finger width. For site i 
and possibly its near neighbors, the 
coefficients are positive. This gives 
a diffusive coupling. For sites fur- 
ther away, the coefficients are 
negative which gives inhibitory 
coupling; 

for k > 0 gives the stable satura- 
tion values of x = 0 and x = 1. This 
function is related to the widely 
studied map of the circle [2]. 

Photos 11, 12, and 13 show the relaxation from a 
random initial pattern in a d = 2 lattice after 20, 100, and 
1100 iterations. Here a 90” rotation of the image is per- 
formed on eackiteration by a suitably chosen nonlocal 
neighborhood N .  The system ultimately relaxes, through 
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the collision and annihilation of dislocations, onto a fixed 
point attractor consisting of concentric rings. 

VI. COUPLED RELAXATION OSCILLATORS 
Many physical, chemical, biological, and engineering 

systems can be described as coupled relaxation oscillators. 
Each oscillator plays the role of a local clock: counting up 
and resetting to some reference state. While the coupling 
communicates the local phase information to accelerate or 
retard neighboring oscillators. This section illustrates some 
of the spatio-temporal patterns that can emerge from this 
combination: spiral waves and transient spatial chaos. 

Spiral waves occur in an active medium with periodic 
local dynamics diffusively coupled. The most famous ex- 
ample of this behavior is the Belousov-Zhabotinsky chem- 
ical reaction [12]. Photos 14, 15, and 16 show the center of 
three different spiral waves with one, two, and three spiral 
arms [13] found in video feedback experiments. Dynami- 
cally every point in the pattern has a well-defined oscilla- 
tion phase except for the spiral center where there is a 
phase singularity. In each photo the distinct colors label 
stages of the local oscillations. 

The second example is a model of a water layer dripping 
from a flat surface. The equations of motion are similar to 
that for the dislocation model, except there is simple 
spatial averaging (all c, = constant) and the local piece- 
wise-linear dynamics is f( x) = w + sx (mod 1). The param- 
eter o gives the increment in the local variable on each 
iteration. T h s  determines, if s =1, the clock’s period. The 
parameter s controls the slope which determines the clock’s 
stability: if s < 1  the cycles will be stable. The (modl)  
operation performs the resetting or dripping of a thick 
region of the water layer. 

Photos 17 and 18 show the patterns after 310 and 492 
steps starting from a uniform pattern with the center site 
slightly perturbed. and from a random initial pattern, 
respectively. Although these patterns appear complex, 
eventually both decay to simple periodic behavior. Thus 
the observed complexity is only a transient. The surprising 
result is that for this very simple system the length of the 
transients grows hyper-exponentially with increasing sys- 
tem size [ I l l .  This is somewhat disturbing since one would 
have to wait, for the examples shown here, many universe 
lifetimes to observe the system’s attractor. This is a clear 
example of spatio-temporal complexity that is not de- 
scribed by a chaotic attractor. 

VII. LOGARITHMIC SPIRALS A N D  PHYLLOTAXIS 
A common large-scale symmetry found in video feed- 

back patterns is the logarithmic spiral illustrated by Photo 
19. This is a natural consequence of camera rotation and 
optical demagnification. On each circuit of the feedback 
loop the image is rotated and reduced in size, leading to a 
sea-shell-like self-similarity. 

Biological patterns appear in other regimes as well. 
Photos 20 and 21 show “crystalline” lattices of stable, 
isolated dots. In the first the dots at the center fall into a 
phyllotaxic symmetry. Phyllotaxis refers to the arrange- 

ment of leaves on a stem or florets in a composite flower, 
such as a sunflower, along logarithmic spirals. The second 
photo (21) illustrates a more complex lattice with domains 
of simple symmetries separated by walls. 

VIII. OPEN FLOWS A N D  THE SPATIAL 
AMPLIFICATIOPI OF FLUCTUATIONS 

There is a wide class of physical phenomena in which 
material transport through a system leads to the spatial 
magnification of small fluctuations. This in turn results in 
complex macroscopic structure downstream. Open flows, 
such as pipe flow, are the most well-known examples of 
this [14]. The structures forrned downstream, such as vortex 
streets or turbulent plugs, are supported in a sense only by 
the fluctuations: the ideal noiseless systems admit regular 
flows. 

This class of systems is (easily studied with video feed- 
back by simply offsetting the camera and monitor centers. 
With the camera unrotated and offset upwards, for exam- 
ple, successive images are seen displaced downwards on 
the monitor. When nonlinear electronic processing is add- 
ed and the local dynamics becomes unstable small fluctua- 
tions at the screen top are magnified and propagate down 
the screen. Photos 22, 23, and 24 show a “waterfall” where 
perturbations propagate down the screen. The first photo 
22 shows the initial development from a small fluctuation 
on the photo’s right side. The second (23) and third (24) 
photos show its growth and propagation’ downscreen. 

Photos 25 and 26 illustrate another example of how 
small fluctuations are filtered into manifesting themselves 
as structured macroscopic patterns. In this situation noise 
drives relaxation-type oscillations. Here large spatial mag- 
nification and light gain make the video system sensitive to 
small fluctuations. If of sufficient size, the fluctuations are 
amplified and filtered spatially and temporally to macro- 
scopic observable patterns. Typically, only a few “amplifi- 
cation” pathways are seen; two of which are shown in the 
photos. 

Ix. BIFURCATIONS 

The foregoing survey has concentrated on the wealth of 
pattern dynamics arising at particular control settings. 
Video feedback, much like any analog computer, does not 
reveal its unique benefits as a real-time investigative tool 
until one realizes all this phenomenology can be interac- 
tively changed and the results immediately seen. This leads 
to the study of bifurcations through which qualitative 
changes in the dynamics occur with the smooth variation 
of control parameters. 

9.1. Symmetry Locking and Chuos 
The majority of patterns seen so far have exhibited 

azimuthal symmetry which has been imposed on the image 
by camera rotation. The ninefold symmetry seen in the 
video dislocation photos corresponds to a camera rotation 
of 40 degrees. The effect camera rotation has on behavior 
can be studied in isolation in the following way. First, the 
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nonlinear electronic processing is simplified so that it clips 
to black and whte  values. Second and more importantly, 
radial pattern motion can be suppressed by imposing 
annular boundary conditions with an annular mask 
centered about the camera-monitor optical axis. T h s  leads 
to a nearly one-dimensional channel with periodic 
boundary conditions. 

With t h s  setup the camera can be rotated and the effect 
of the imposed azimuthal symmetries studied systemati- 
cally. In the language of dynamical systems, the camera 
angle is the control parameter and we are investigating the 
bifurcations between stable symmetric patterns. To take a 
simple example, when the camera is rotated 90 degrees the 
pattern must have an overall four-fold symmetry. Simi- 
larly, for 120 degrees, there is a three-fold symmetry. Thus, 
there must be a bifurcation between these stable symmetric 
patterns as the camera angle is varied from 90 to 120 
degrees. 

Photos 27 through 31 show a bifurcation sequence of 
patterns as the angle is increased quasistatically through 
approximately 10 degrees. The first (photo 27) exhibits a 
five-fold symmetry that rotates counter-clockwise. The sec- 
ond (photo 28) is taken at an angle of 72 degrees. It is 
stationary and also shows a five-fold symmetry as ex- 
pected. The third (photo 29) has the same symmetry but 
rotates clockwise. The fourth photo (photo 30) shows an 
unstable pattern at the angle of bifurcation. At larger 
angle, a stable thirteen-fold pattern appears (photo 31). 

9.2. Transition to Fully Developed Video Turbulence 
One of the motivating physical problems for nonlinear 

dynamics has been the nature of fluid turbulence. Whle  
low-dimensional chaotic behavior has been implicated at 
the very onset of (weakly) turbulent flows, it is at present 
unclear how this chaotic attractor picture will fare for 
more complex fluid flows in whch spatial decorrelation is 
observed [ l l ] .  Video feedback again provides an easily 
manipulated test-bed for studying two-dimensional 
“ fluids” with complex local dynamics that are spatially 
incoherent. This section presents an example of the transi- 
tion to fully developed video turbulence. 

Photos 32, 33, 34, and 35 show this transition as a 
function of the strength of nonlinearity in the local dy- 
namics. The latter maps the local intensity Z through a 
cubic function f ( Z )  = h ( Z  + bZ2 + cZ3) whose height h is 
the nonlinearity control parameter. The cubic function can 
be implemented with either an analog diode function gen- 
erator or with a digital look up table. The first photo (32) 
shows the pattern at low nonlinearity: an inversion of the 
local intensity is seen; the pixel intensities visit a negative 
slope region of f ( x ) .  T h s  plus the 90 degree camera angle 
give rise to the alternating light-dark, four-fold symmetric 
pattern. At higher nonlinearity (photo 33) the smooth 
boundaries have broken down revealing smaller scale 
structure and limited local time-dependent behavior. The 
next photo (34) shows that large-scale structure has broken 
down entirely: spatial coherence is lost and the local 
dynamics is quite aperiodic. This is the analog of fully 

developed turbulence. The last photo (35). taken at yet 
hgher  nonlinearity, demonstrates homogeneous video 
turbulence in whch the spatial scale of structure is smaller 
and the temporal frequencies are higher than the preceding 
photo. 

A quantitative estimate of the complexity of such turbu- 
lence follows from a Kolmogorov eddy-scale argument. 
From ths ,  the attractor dimension is approximately 2 x 10’ 
and the information production rate, called the metric 
entropy, is approximately 6 X l o4  bits per second. 

X. ATTRACTOR-BASIN PORTRAITS FOR 
TWO-DIMENSIONAL MAPS 

Somewhat amusingly, video feedback provides for the 
investigation of conventional nonlinear maps of the plane. 
A map T: R * + R * of the plane R ’ takes a point x’= ( x .  J )  
into a new point 2’ = (x’, y’) = ( f (  x, y ) ,  g( x, y )). The 
functions f and g implement a nonlinear distortion of the 
plane. 

Since there are only two component variables rather 
than an entire screen full, these dynamical systems are 
much simpler than the spatially-extended systems to which 
video feedback is naturally adapted. If we identify the 
plane of a video image with the plane of states for  a 
two-dimensional map, \ideo feedback allows for the 
simultaneous simulation of (two-dimensional) en.ret~~11le.s of 
initial conditions. The basic image processing requirement 
is that the transformation effected by the feedback process 
warp the video raster in a nonlinear fashion prescribed by 
the two-dimensional mapping T. This is the essential func- 
tion of the Rutt-Etra Video Synthesizer. This device is 
comprised of a set of video frequency locked oscillators 
that are used to drive the yoke of a modified monitor. The 
frequency, amplitude, and wave form of the oscillators 
determine the nonlinear raster transformation. The camera 
is simply directed at this monitor to close the feedback 

Photos 36 through 46 show some examples of the invea- 
tigations that are readily performed with such a system. 
Here the only nonlinear processing of the video signal 
amplitude is clipping to black or white. 

Photo 36 shows a chaotic attractor with characteristic 
folds and fractal structure. The latter appears as detailed 
filamentary structure. In \-ideo feedback, as i n  most experi- 
ments, the detail is truncated by finite resolution and 
noise. The mapping performed is a dissipative version of 
the area-preserving standard map [15). 

Photos 37 and 38 show a piecewise-linear mapping due 
to Lozi [16]. At low nonlinearity there is a period 2 orbit. 
Photo 37 shows an ensemble’s approach to this along a 
stable manifold with homoclinic tangle structure. A chaotic 
attractor at hgher nonlinearity appears in Photo 38. Pho- 
tos 39, 40, and 41 illustrate the approach of an ensemble of 
initial conditions to a period 4 attractor. 

A period-doubling bifurcation sequence to chaos is 
shown in the next set of four photos (42, 43. 44, and 45) as 
a function of increasing nonlinearity. The sequence starts 
at a fixed point (42) which then becomes unstable (43) and 

loop. 
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relaxes onto a period two limit cycle (44). Photo 45 shows 
a two “band” chaotic attractor later in the bifurcation 
sequence. 

Finally, with constant illumination, rather than a brief 
initial burst of light, the basin of attraction can be investi- 
gated. Photo 46 demonstrates the basin for a simple period 
2 limit cycle. 

XI. NONLINEAR IMAGE PROCESSING 
This survey has given only a brief introduction to the 

contemporary study of spatially extended nonlinear dy- 
namical systems. In t h s  endeavor, video feedback is seen 
to be a flexible, high-speed simulator, on the one hand, 
and a source of diverse spatio-temporal experimental data, 
on the other. The survey has not described many other 
types of complex behavior, such as, how video feedback 
can be used to implement neural networks, spin glasses, 
and multiple-species chemical reactions. Space has also not 
allowed for a discussion of the theoretical relationshp 
between information and dynamical systems theories that 
are so important in the analysis of this complexity [17]. We 
will close with a discussion of the relationship of this work 
to future directions in nonlinear image processing. 

Some similarities with image processing systems are 
clear from the mathematical formulation of the models 
and from the video apparatus. The systems we have studied 
here are nonlinear iterative image processing systems. The 
diversity of behavior seen in video feedback indicates that 
incorporating both nonlinearity and iteration will lead to 
many new image processing techniques and to a broader 
theoretical framework for image processing based on dy- 
namical systems theory. From the point of view of dy- 
namical systems, image processing tasks suggest questions 
of how to design the attractors and basin structures of 
spatially extended dynamical systems to perform specific 
computation and image processing tasks and how to do 
these efficiently. 

From a slightly different perspective, video feedback as 
presented here is an experimental exploration of the poten- 
tials of optical computing. The camera-monitor system is 
employed essentially as an image operational amplifier. As 
far as the methodology and the phenomena are concerned 
any technology could be used for this function. To date 
there appear to be no reasonable alternative optical op 
amps. If such an instrumentation-quality device were to 
become available, especially one that was truly parallel in 
operation then, for the investigation of two- and higher 
dimensional spatial dynamics, feedback optical computing 
would vastly outstrip digital computers of any architecture 
in speed and ease-of-use. The potential impact on the 
simulation of very complex scientific problems is hard to 
overestimate. Even with current video technology substan- 
tial progress along these lines could be made. The manu- 
facturers of broadcast quality and high definition televi- 
sion (HDTV) video equipment are in unique positions to 
establish laboratories for video feedback investigations of 
nonlinear spatially extended dynamics. 

It is somewhat sobering to realize that the diversity of 
phenomena presented here could have been as easily in- 
vestigated thirty years ago as now. The basic technology 
for video feedback has been available since the 1950’s. If 
history is any indication. then, the alternative approach 
advocated here may be a route not taken. Despite their 
potential for scientific simulation, video feedback and re- 
lated image processing techniques could very well continue 
to be eclipsed by expensive multiple-processor su- 
percomputers. The resurgence in interest in optical 
computing, in distributed processing, and in parallel com- 
putational archtectures, however, are hopeful signs that 
interactive, high-speed machines for the experimental 
mathematical investigation of complexity may be widely 
available in the next decade. The next few years will tell if  
image processing and video feedback contribute directly to 
t h s  line of technological development. 
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Photo 1. A fixed point attractor. Photo 2. Snapshot of a limit cycle attractor 

Photo 3. A snapshot at a later time; the central region has grown, Photo 4. A snapshot of the limit cycle attractor as the state collapses 
back to a uniform pattern. 

Photo 5 .  Chaotic attractor in a symmetry-loclung repime: a snapshot 
when the state is near a fourfold symmetric pattern. 

Photo 6. Transit from a four- to twenty-one-fold symmetric pattern. 

J 

t' i 

Photo 7. Another intermediate state in the transition. 

Q i 

Photo 8. Near the twenty-onefold symmetric, unstable fixed point 
pattern. 
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Photo 9. Snapshot of a gas of video dislocations. Photo 10. Dislocations are created at the center and move out into the 
laminar region where they are annihilated. 

Photo l l .  Numerical model of Photo 12. At 200 time steps do- Photo 13. At 1100 steps the do- 
dislocations: 20 steps after starting mains of parallel fingers appear. mains have increased in size and 
from a random initial pattern. begin to organize into concentric 

rings. 

Photo 15. Two-armed spiral wave. Photo 16. Three-armed spiral wave. Photo 14. One-armed spiral wave. 

Photo 17. Transient spatial chaos 310 steps after a single-site perturbed Photo 18. Transient spatial chaos 492 steps after a random initial 
initial pattern. p:i ttern. 
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Photo 19. Logarithmic spiral Photo 20. Phyllotaxic symmetry in a crystalline dot-lattice. 

Photo 21. Crystalline dot-lattice with locally symmetric domains sep- Photo 22. Spatial amplification of fluctuations in a video waterfall. 
arated by walls. 

Photo 23. Growth of a small perturbation at  the photo's right side. Photo 24. Downscreen propagation of the now macroscopic structure 

Photo 25. One amplification pathway for a noise-driven relaxation oscil- Photo 26. Another amplification pathway for the same oscillator. 
lator. 
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Photo 27. Symmetry-locking bifurca- P h o t o  28. A t  slightly increased Photo 29. The fivefold pattern be- 
tion: countcrclockuise rotating. five- camera angle: a stationary fivefold gins to move clockwise at increabed 
fold slmmtric pattern. pattern. angle 

1) 
b* 0' 

Photo 30 In\tabilit! at the bifurcation to thirteenfold symmetry 

Photo 32. Below, the transition to video turbulence: a stable fixed point 
pattern. 

Photo 31. The thrteentold. stable fixed point pattern. 

Photo 33. At the transition to turbulence. 

Photo 34. Spatial coherence is lost at hgher nonlinearity: fully devel- Photo 35. Homogeneous video turbulence with very small eddy size. 
oped video turbulence sets in. 
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Photo 36. Chaotic attractor in two dimensions. 

Photo 39. Initial stage of a relaxation to a 
period-four limit cycle. 

Photo 37. Transients flow along a stable 
manifold exhibiting “ homoclinic tangle” 
s tmcture. 

Photo 38. Piecewise-linear chaotic attractor. 

Photo 40. Later in the relaxation process. Photo 41. Relaxation almost complete: the 
points on the period-four limit cycle are 
discernihle. 

Photo 42. The period-doubling bifurcation 
to chaos starts at a fixed point. 

Photo 43. The fixed-point looses stability 
and the system relaxes onto a stable period 
two limit cycle. 

Photo 45. A two-band chaotic attractor later in the bifurcation 
sequence. 

Photo 44. The period two limit cycle 

Photo 46. Basin of attraction for period-two limit cycle 


