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1. Introduction

When working with complex functions, it is best to understand exactly how they
work. Of course, complex functions are rather strange and exotic, so it may be difficult to
develop a good intuition. Once one has understood complex functions, their behaviour
is not complicated, and the calculations are often very simple. As a result, the difficulty
in working with complex functions is not in doing the calculations — these are almost
all calculations that are familiar from calculus classes. What is new is that we have
to check for various kinds of exotic things that might happen, such as poles, branch
cuts or essential singularities. These checks are the essential part of any problem in
complex variables; once the bad behaviour of a function has been explicitly described,
the calculations are straightforward (if occasionally messy). Thus when a student writes
up their solution to a problem, the most essential part of the solution is their description
of the function. Did they check that the function was analytic? Did they find all the
relevant poles? Did they miss a residue?

In order to simplify the process of checking these facts, these notes set forth a pro-
cedure for solving most problems that will be encountered in a complex variables class.
Generally many options are presented, not all of which will work for any given problem.
But if a student follows these steps and explains why each required condition is satisfied,
they can be confident that their answer is right and that the marker can see that it is
right.

It is by no means recommended that students memorize these notes: ideally students
should understand the material well enough that all the procedures described make
sense and could be figured out on the spot.

2. Residues

Suppose that f has an isolated singularity at z0. Then we have seen that f has a
Laurent series expansion near z0. This means that we can write

f(z) =
∞∑

n=−∞
an(z − z0)n.

This is what we call a Laurent series. There are similar series that we do not call
Laurent series. For example,

f(z) =
∞∑

n=−∞
anz(z − z0)n

is not a Laurent series near z0 (unless z0 = 0) because of the extraneous factor z in the
series expansion.

Laurent series are of interest for a number of reasons, but the main one is this: They
tell us how a function behaves in small neighborhoods of z0. If a Laurent series contains
nonzero an for infinitely many n < 0, then the function f blows up very badly at z0. If
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the first nonzero coefficient is an, then we know f behaves like (z − z0)n for z close to
z0. So if n < 0, then f blows up like 1/(z − z0)−n; we call this having a pole of order
n. If n = 0, then f has a nonzero value at z0; if n > 0 then f has a zero at z0, and in
fact it looks locally like (z − z0)n; we call this a zero of order n. Note that at a zero of
order n, the first n− 1 derivatives of f will also be zero.

However, the Laurent series does not tell us anything useful about the behavior of
f far from z0. To understand f elsewhere we have to use some other method; for
example, we could compute a Laurent series for f at some other z1; it will probably
have completely different behavior.

For example, the Laurent series for sin at zero is

sin(z) = z − z3

3!
+

z5

5!
− · · · .

Looking at this series, we can tell sin has a zero of order one at z, but we cannot tell
that it has one at π. Its behavior at π/2 we can examine:

sin(z) = 1− (z − π/2)
2!

+
(z − π/2)4

4!
− · · · .

We see that sin has neither zero nor pole at π/2. But we also see that the Laurent
series takes on a completely different form there. In general, to compute such a Laurent
series, one needs to compute all the derivatives of sin at π/2. So computing the Laurent
series is usually a laborious proposition. Even a simple function such as tan has a messy
Laurent series:

tan z = z +
z3

3
+

2z5

15
+

17z7

315
+ · · · .

Therefore we generally look for easier ways to understand the behavior of a function
near a point.

2.1. Describing all the singularities of a function. Frequently we need to know
something about the singularities of a function: perhaps we want to integrate around
a region; then we need to know what bad behavior f has inside the region and on
its boundary. In principle, we would need to use something like the Cauchy-Riemann
equations. In practice, generally functions are assembled from other functions we know
to be analytic. So here is a procedure for determining all the problem points of f :

(1) Is f a familiar function? If so, then we know its problem points. For example,
if f is Log, then we know it has singularities at 0 and on the branch cut. Be
careful with functions that seem familiar such as cosh, which does have zeros in
the complex plane although none of them are real.

(2) Is f = gh or f = g + h? Then the problem points of f will be the problem
points of g and the problem points of h. For example, Log(z − i) + Log(z + i)
has problem points z = x + iy whenever x ≤ 0 and y = 1 or y = −1.

(3) Is f = g/h? If so, f has problem points anywhere f and g do, plus it has
additional problem points wherever h = 0.

(4) Is f(z) = g(h(z))? If so, then f will have a problem point wherever h has a
problem point, but it will also have a problem point at every z for which h(z)
is a problem point for g. For example, tan(1/z) has a problem point at zero,
and a problem point wherever 1/z = kπ + π/2 for some integer k, that is, at
z = 1/(kπ + π/2).

If f is not constructed from familiar complex functions, like f(x + iy) = x2 + y2, then
we have to manually check analyticity everywhere; anywhere that doesn’t work is a
problem point. This particular example isn’t analytic anywhere.
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2.2. Describing the behavior of a function at a problem point. Generally, once
one has found the problem points of a function f , one wants to know whether they are
poles, removable singularities, essential singularities, or other types of problem. The
following procedure will allow us to determine what kind of problem point z0 is. Note
that it will do no harm to do this to points that are not actually a problem; they will
look just like isolated removable singularities.

(1) Is z0 really a problem point? We can check this by checking, first, that

lim
z→z0

f(z)

exists. If this limit exists (that is, really is some number; ∞ does not count
as “existing” for limits), then z0 is a removable singularity. We still need to
check analyticity of f at z0 to claim that it’s not really a problem point; if z0 is
isolated, this is automatic (from the Laurent expansion). For example, sin(z)/z
has a problem point at zero: it is not defined there. But the limit exists and
is 1, and this is an isolated singular point, so 0 is a removable singularity. You
can ignore removable singularities from this point on.

(2) Is z0 an isolated problem point? In other words, are there other problem points
close to z0? If we have obtained a list of all the problem points of f , we can
check this. For example, 0 is not an isolated problem point for Log, as there are
points on the branch cut arbitrarily close to 0. 0 is also not an isolated problem
point for tan(1/z). If z0 is not isolated, there is probably not much that you
can do with it except check that it is not in your region of integration.

(3) Is z0 an essential singularity or a pole? If it’s a pole, what is its order? There
are a number of ways to check this.
(a) If z0 is a pole of order n, by definition that means that near z0 we can

describe f using the Laurent series

f(z) = a−n(z − z0)−n + a−n+1(z − z0)−n+1 + · · ·
where a−n 6= 0. If z0 is an essential singularity, it will have infinitely many
negative terms. If you can actually figure out the Laurent series for f and
look at its coefficients, this answers the question. But be careful: it really
needs to be a Laurent series for f . No spurious z floating around can be
allowed.

(b) Usually the Laurent series is too hard to work with. But in principle it
exists, so we can use other methods to get the same answer. For example,
the limit

lim
z→z0

(z − z0)mf(z) = lim
z→z0

a−n(z − z0)m−n + a−n+1(z − z0)m−n+1 + · · ·
will be 0 if m > n, a−n 6= 0 if m = n, and ∞ if m < n. So if you think z0

is a pole of order m, you can try taking this limit; if you get 0 you guessed
too large, and if you get ∞ you guessed too small. If z0 is an essential
singularity, you will always get ∞.

(c) If f = gh and z0 is neither a problem point nor a zero for g, then we need
only ask about h. For example, looking at 1/(z sin z) near π, we see the
1/z is has no problems at π and is nonzero there, so we need only look at
1/ sin z.

(d) If f = g/h, and g looks locally like (z−z0)k and h looks locally like (z−z0)l,
then f looks locally like (z−z0)k−l. So, for example, if h has a pole of order
3 and g has a pole of order 5, then h looks like (z − z0)−3 and g looks like
(z − z0)−5, so their ratio f(z) = g(z)/h(z) looks like (z − z0)−2, and f has
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a pole of order 2 at z0. This works for zeros as well: if h has a zero of
order 1 and g has a pole of order 2, then h looks like (z − z0)1 and g looks
like (z − z0)−2, so their ratio f(z) = g(z)/h(z) looks like (z − z0)−3, and f
has a pole of order 3 at z0. On the other hand, if g or h has an essential
singularity at z0, this method can’t help.

2.3. Computing residues. We saw that the Laurent series of f at z0 describes how
f behaves near z0. We can use our theorems about the independence of path for a line
integral to turn any line integral into a small loop around each problem point; we can
make this small loop small enough that the Laurent series tells us what will happen. If
C is such a small loop and

f(z) =
∞∑

n=−∞
an(z − z0)n

then we have seen that
∮

C
f(z)dz =

∮

C

∞∑
n=−∞

an(z − z0)ndz =
∞∑

n=−∞
an

∮

C
(z − z0)ndz = 2πia−1.

We defined

Res(f, z0) = a−1 =
1

2πi

∮

C
f(z)dz.

This means that if C is any curve, there are no poles on C, the list {z1, . . . , zn} contains
all the problem points inside C, and if each zi is isolated, then

∮

C
f(z)dz =

n∑

k=1

2πiRes(f, zi).

This means if we can compute residues, we can easily compute complex contour integrals
around closed loops. Note that we must ensure that z1, . . . , zn include all the problem
points inside C: if we have missed any, the answer will probably be wrong. Also, if
there are poles on C, we have to do something different; see Section 3.3 for what to do
if this happens.

Given a point z0, how do we go about computing Res(f, z0)?
(1) If z0 is a removable singularity or a point at which f is analytic, then Res(f, z0) =

0.
(2) If f = g/(z − z0) and g is analytic at z0 and g(z0) 6= 0, then

Res(f, z0) = g(z0).

For example,

Res
(

z

(z − 1)(z + 1)
, 1

)
=

1
(1 + 1)

=
1
2
,

since z
z+1 is analytic and nonzero at 1.

(3) If we know the Laurent series for f around z0 (nowhere else will do, so this is
usually hard), so that

f(z) =
∞∑

n=−∞
an(z − z0)n

then Res(f, z0) = a−1. As before, there can be no spurious zs floating around:
they can only occur in exactly the way described here.
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(4) If you can guess that f has a pole of order at most m at z0, then evaluate

lim
z→z0

1
(n− 1)!

dm−1

dzm−1 (z − z0)mf(z).

If f actually has a pole worse than m, you will get ∞. Otherwise, you will get
Res(f, z0), even if you chose your m too large. You can conclude that f has a
pole of order at most m, but the pole could be of a lesser order; if the residue
is zero, there might possibly be no pole at all. On the other hand, if f has an
essential singularity, you will get ∞ no matter what m you supply.

(5) If f = g/h, and g and h are analytic at z0, and we know g(z0) 6= 0 but h(z0) = 0,
we can compute

lim
z→z0

g(z)
h′(z)

.

If z0 is a simple pole of f , then this will give us Res(f, z0). If z0 is not a simple
pole, then we will get ∞, and we will need to try some other method. If we
were wrong about the conditions (if g(z0) = 0 or h(z0) 6= 0) then we may get
a reasonable-seeming but wrong answer: if we mistakenly apply this method to
f(z) = z/z2 at 0, we get the wrong answer 1/2 rather than the right answer 1.
If we mistakenly apply the method to f(z) = (1+z)/(1−z) at 0, we will get the
wrong answer −1 instead of the right answer 0. So it really is necessary to verify
that g(z0) 6= 0, h(z0) = 0 and g and h are analytic at z0. If this verification is
easy, then this is the quickest way to solve the problem.

(6) You can try to explicitly calculate a line integral. If C is some curve that encircles
z0 once in the counterclockwise direction, and there are no other problem points
inside C, then you can try to evaluate

1
2πi

∮

C
f(z)dz.

This is usually very difficult, but if all other methods have failed, then this is
worth a try. Remember that you can choose C to be a convenient contour for
the integral.

3. Evaluating integrals with residues

The motivation for constructing residues was that they gave a simple way to calculate
complex contour integrals. So, obviously, if you have a complex contour integral, you
can calculate it using residues. But complex contour integrals are relatively rare in
physical problems. They are of interest primarily because there are a number of kinds
of real integral that are most easily evaluated using complex contour integration.

3.1. Integrals around circles. When studying Fourier series and in many other con-
texts, integrals of periodic functions become important. Moreover, it is very common
that these functions depend on the variable θ in a particular way, through sines and
cosines only. Often these functions will be rational functions of sin θ and cos θ, possibly
with variations such as sin kθ and cos kθ for some integer k. These are usually purely
real integrals, over a real interval. It may seem perverse to transform such a familiar
problem into one involving complex calculus, but this will allow us to apply the method
of residues. So the procedure is as follows:

(1) Verify that the problem is of the correct form. It should look like
∫ 2π

0
f(sin θ, cos θ, sin 2θ, cos 2θ, . . .)dθ,
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where f is some function in which θ does not occur (outside the specified depen-
dences on the sin and cos). The function f should also be a complex function
that is analytic on the unit circle. If the problem is not of this form, it may be
possible to transform it slightly, giving such a problem; if this cannot be done,
this method will be of no use.

(2) Change the problem into a complex calculus problem. To do this, write z = eiθ.
This change of variables introduces the usual extra factor of dθ

dz = −i/z. We can
do this by noting that if z = eiθ and θ is a real number, then sin θ = (z−z−1)/2i
and cos θ = (z + z−1)/2. In fact, if k is any integer, we have

sin kθ =
zk − z−k

2i
and

cos kθ =
zk + z−k

2
.

So the problem becomes (remembering the extra factor due to the change of
variable) to compute:

∮

C
f

(
z − z−1

2i
,
z + z−1

2
,
z2 − z−2

2i
,
z2 + z−2

2
, . . .

)
(−i)z−1 dz,

where C is the unit circle in the usual counterclockwise direction.
(3) This is now a complex contour integral, so try to calculate it by using residues.

If f is in fact a rational function, then the contour integral will be the integral
of a rational function, and its residues probably aren’t too difficult to calculate.
Using these values to evaluate the integral, we will get some complex number
as an answer. In the very common case where f is supposed to give real values
for all θ, then we can check our answer: if it is supposed to be the integral of a
real function over a real interval, the answer had better be real.

3.2. Improper integrals on the real line. Periodic functions do turn up from time
to time, and it is nice to have some sort of way to integrate them, but in practice this
kind of integral is not too common. We do, however, often deal with functions on the
whole real line, and we would often like to be able to compute their integrals over the
whole real line.

Of course, this doesn’t work for every function you can dream up: unless the function
goes to zero pretty fast, the area under its curve will very probably be infinite. But
other things can go wrong too. For example, suppose we tried to compute

∫ ∞

−∞
cosxdx.

We can use the Fundamental Theorem of Calculus to do this: we know cos is the
derivative of sin, so the answer should be something like sin∞− sin∞. Now, of course
this makes no sense, so we need to look at some sort of limit. If we just take

lim
R→∞

∫ R

−R
cosxdx,

for each R the answer is sinR − sin(−R) = 2 sinR, which oscillates, and so the limit
does not converge. On the other hand, if we had tried to integrate sin instead, for each
R we would get − cosR + cos(−R) = 0, and the limit would converge. But cos is just a
shifted version of sin, so we’re in trouble: changing the variable of integration, the way
we do all the time, might change our answer.
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The solution to this problem, for a mathematician, is to define the integral somewhat
differently: you take two limits, over the top and bottom of the range, independently.
Only if both converge, separately, do you say that the integral really converges. In our
example, both oscillate, so the integral doesn’t converge for either sin or cos.

Of course, it’s more awkward to work with two limits than just one. So for compu-
tational purposes, we define the Cauchy principal value, just the simplest possible way,
as

lim
R→∞

∫ R

−R
cosxdx.

This has its pitfalls; in particular, you can’t change the variable of integration without
risking changing the answer. Fortunately, these pitfalls only occur for integrals that
don’t exist in the strict sense. Since we are not particularly interested in exactly which
integrals converge and which don’t, it will be enough to simply check that the integral
we are interested really converges and then calculate the Cauchy principal value. This
sometimes allows us to split an integral that actually converges up into two integrals
that don’t actually converge, but whose Cauchy principal value we can compute; their
difference will then be the value of the original integral.

So, all this said, how do we actually calculate one of these integrals over the real
line using residues? Well, first we have to produce a closed contour of some sort. If we
integrate along the real line from some −R to some R, that’s part of a contour. But
we must get back to where we started; since we’re integrating over some new territory,
away from the integral we actually want to calculate, we have to make sure this new
part of the integral only contributes a small amount to the total. So we need to make
sure that our function is small for large values of |z|. That’s okay for real z, since if our
function doesn’t get small the integral won’t converge no matter how we calculate it.
But if we’re going to get back to where we started using a big half-circle in the complex
plane, we must ensure that the function is small for all values on this half-circle. In
fact, because the length of the half-circle grows with R, the size of our function has to
go down faster than 1/R for the integral to get smaller. Usually a complex function
won’t get small like this all over the place (in fact, if it was bounded and entire, we saw
that it would have to be a constant). So we have to choose whether to take a half-circle
in the upper half-plane to get back to the origin, or to take one in the lower half-plane.

We can put all this talk together to get a procedure for calculating integrals on the
real line. Suppose we want to calculate

∫ ∞

−∞
f(x)dx.

(1) Verify that f is a suitable function for this method. First of all, it must be a
complex function (that is, we can feed in complex numbers, not just real ones),
and it must be analytic except possibly for some isolated singularities, none of
which can be on the real line.1 Second, and more difficult, it must go to zero
fast enough for large |z| in one or the other half-plane. In general, this could
be messy. But there are some simple tests that cover almost all the situations
encountered in practice.
(a) If f is a rational function, say f = p/q for polynomials p and q, and q has

no zeros on the real line, then f is suitable if deg q−deg p ≥ 2, and you can

1In fact, it can have branch cuts, non-isolated singularities, or even regions of non-analyticity in the
lower half-plane as long as we use the upper half-plane for integration, or vice versa. It must still be
analytic on the real line.
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use either half-plane. If this condition is not met, then f is not suitable,
and in fact the integral will diverge.

(b) If f(x) = g(x)eitx for some real number t, then it is necessary to consider
cases separately. If t > 0, and g(x) = a(x)/b(x) for some polynomials a and
b with deg b > deg a, Jordan’s lemma asserts that f will be suitable in the
upper half-plane. If t < 0, then we need to look at the lower half-plane, but
the condition on g is the same. If t = 0, f(x) = g(x), so the exponential
plays no role, and we have to check the suitability of g.

(c) If f(x) = g(x) sin(kx) or f(x) = g(x) cos(kx) for some real number k, then
f is almost certainly not suitable: we cannot directly integrate. However,
we can compute this integral by solving a related problem in two ways:
the first, which always works but is more difficult, is to replace the sine or
cosine with its expression in terms of complex exponentials: use sin(x) =
(eix − e−ix)/2i or cos(x) = (eix + e−ix)/2 and break up the sum. This will
be laborious but will always allow one to use the previous method. If g(x)
always gives a real answer when given a real input (for example, g(x) =
1/(x2 + 1) but not g(x) = 1/(x + i)) then we can write f(x) = Re g(x)eikx

or f(x) = Im g(x)eikx; we can then move the real-part outside the integral
and apply the previous method.

(d) If |f(z)| ≤ |g(z)| for all z in the upper (or lower) half-plane with |z| larger
than some K, then it is enough to check the suitability of g. This can
occasionally simplify problems but be wary of assuming, for example, that
| sin z| ≤ 1: this is not necessarily true for z complex.

(2) Knowing that f is suitable, construct the contour of integration. This will be a
large half-circle running along the real line from −R to R and then going back
to the start through either the upper or lower half-plane. If it goes through the
lower half-plane, notice that the direction of integration is opposite to the usual
direction, so each residue should be added with a coefficient of −1.

(3) Figure out what poles f has in the region of integration. You can assume R is
very large, so if f has only finitely many poles, you can assume that they all lie
inside the half-circle. If f has infinitely many poles, you cannot make such an
assumption; the value of the contour integral will depend on R.

(4) Compute the residue of f at each pole. The contour integral is then either 2πi
times the sum of these residues if we are working in the upper half-plane or
−2πi times the sum if we are working in the lower half-plane.

(5) If the value of the contour integral you get depends on R, then take the limit
as R → ∞; this should only occur when f has infinitely many poles in the
half-plane of interest. If this limit fails to converge, you have made an error;
probably f was not suitable. Unfortunately, the fact that the limit converges
does not mean that f was suitable; you still need to check.

3.3. What to do if a contour passes through a singularity. Essentially, this
means the problem was to compute an improper integral, and in fact it means that the
improper integral cannot converge. As before, we can define a Cauchy principal value,
which could be of some use. If the singularity is anything worse than a first-order pole,
the Cauchy principal value does not exist. For example, it can be used to compute
the Fourier transform of sin(x)/x. The trick in this case is to “indent” the contour:
we replace the contour by a similar contour which makes a small half-circle around the
singularity. We have a theorem in the book which says that the integral around such a
small half-circle around a simple pole in the counterclockwise direction is iπ times the
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Figure 1. The contour C we would like to integrate around.

Figure 2. A contour C1 that we can actually integrate around.

Figure 3. A contour C2 that we can actually integrate around.

residue at the pole. Of course, you have a choice about which direction you indent the
contour, and the integral around the small contour will change depending on which side
you choose. But which side you choose will also determine whether the pole lies within
the contour, and these two effects will cancel.

Suppose that we have a function f which we want to integrate around the contour
C of Figure 3.3, and suppose that f has a simple pole having residue 1 at the point
indicated by the “x”. Then we will have to choose to integrate around one of the
contours C1 or C2, letting the size of the indent go to zero. If we choose C1, the integral
along the small semicircle will be −iπ, and the integral we actually want will be∮

C
f(z)dz =

∮

C1

f(z)dz − (−iπ) = iπ,

since there is no pole inside C1. If instead we had chosen C2, the integral around the
small semicircle would be in the positive direction, giving iπ. But now the contour
contains a pole, so ∮

C
f(z)dz =

∮

C2

f(z)dz − iπ = i2π − iπ = iπ.
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