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Discrete Dynamical Systems: Maps

2.1

Introduction

Many physical systems displaying chaotic behavior are accurately described by
mathematical models derived from well-understood physical principles. For ex-
ample, the fundamental equations of fluid dynamics, namely the Navier–Stokes
equations, are obtained from elementary mechanical and thermodynamical con-
siderations. The simplest laser models are built from Maxwell’s laws of electro-
magnetism and from the quantum mechanics of a two-level atom.

Except for stationary regimes, it is in general not possible to find closed-form
solutions to systems of nonlinear partial or ordinary differential equations (PDEs
and ODEs). However, numerical integration of these equations often reproduces
surprisingly well the irregular behaviors observed experimentally. Thus, these mod-
els must have some mathematical properties that are linked to the occurrence of
chaotic behavior. To understand what these properties are, it is clearly desirable
to study chaotic dynamical systems whose mathematical structure is as simple as
possible.

Because of the difficulties associated with the analytical study of differential
systems, a large amount of work has been devoted to dynamical systems whose
state is known only at a discrete set of times. These are usually defined by a rela-
tion

XnC1 D f (Xn) (2.1)

where f W M ! M is a map of a state space into itself and Xn denotes the state
at the discrete time n. The sequence fXng obtained by iterating (2.1) starting from
an initial condition X0 is called the orbit of X0, with n 2 N or n 2 Z, depending
on whether or not map f is invertible. If X0 is chosen at random, one observes
generally that its orbit displays two distinct phases: a transient that is limited in
time and specific to the orbit, and an asymptotic regime that persists for arbitrarily
long times and is qualitatively the same for different typical orbits. Rather than
study individual orbits, we are interested in classifying all the asymptotic behaviors
that can be observed in a dynamical system.
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To understand the generic properties of chaotic behavior, there is no loss of gen-
erality in restricting ourselves to discrete-time systems; it is often easy to extract
such a system from a continuous-time system. A common example is provided by
the technique of Poincaré sections, where the study is narrowed to the dynamics
of the map relating the successive intersections of a trajectory with a given surface
of phase space, which is usually called the first return map. Another example is the
time-one map X(t C 1) D φ1(X(t)) of a differential system, which relates two states
located one time unit apart along the same trajectory.

It might seem natural to restrict our study to discrete-time dynamical systems
sharing some key properties with differential systems. For example, the solution of
a system of ODEs depends continuously on initial conditions, so that continuous
maps are naturally singled out. Invertibility is also a crucial property. Given an
initial condition, the state of an ODE system can in principle be determined at
any time in the future but also in the past; thus, we must be able to go backward
in time. Maps satisfying these two requirements (i.e., continuous maps with a
continuous inverse) are called homeomorphisms. Another important class of maps
is made of diffeomorphisms: These are homeomorphisms that are differentiable as
well as their inverse.

The most important aspects of chaotic behavior should appear in systems of
lowest dimension. Thus, we would like in a first step to reduce as much as possi-
ble the dimension of state space. However, this quickly conflicts with the require-
ment of invertibility. On the one hand, it can be shown that maps based on a one-
dimensional homeomorphism can only display stationary or periodic regimes, and
hence cannot be chaotic. On the other hand, if we sacrifice invertibility temporari-
ly, thereby introducing singularities, one-dimensional chaotic systems can easily be
found, as illustrated by the celebrated logistic map. Indeed, this simple system will
be seen to display many of the essential features of deterministic chaos.

It is, in fact, no coincidence that chaotic behavior appears in its simplest form
in a noninvertible system. As emphasized in this book, singularities and nonin-
vertibility are intimately linked to the mixing processes (stretching and squeezing)
associated with chaos.

Because of the latter, a dissipative invertible chaotic map becomes formally non-
invertible when infinitely iterated (i.e., when the phase space has been infinitely
squeezed). Thus the dynamics is, in fact, organized by an underlying singular map
of lower dimension, as can be shown easily in model systems such as the horse-
shoe map. A classical example of this is the Hénon map, a diffeomorphism of the
plane into itself that is known to have the logistic map as a backbone.

2.2

Logistic Map

A noninvertible one-dimensional map has at least one point where its derivative
vanishes. The simplest such maps are quadratic polynomials, which can always
be brought to the form f (x ) D a � x2 under a suitable change of variables. The
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Figure 2.1 (a) Graph of the logistic map for a D 2; (b) graphical representation of the iteration

of (2.2).

logistic map1)

xnC1 D a � x2
n (2.2)

which depends on a single parameter a, is thus the simplest one-dimensional map
displaying a singularity. As can be seen from its graph (Figure 2.1a), the most im-
portant consequence of the singularity located at the critical point x D 0 is that
each value in the range of the map f has exactly two preimages, which will prove
to be a key ingredient to generate chaos. Maps with a single critical point are called
unimodal. It will be seen later that all unimodal maps display very similar dynami-
cal behavior.

As is often the case in dynamical systems theory, the action of the logistic map
can be represented not only algebraically, as in (2.2), but also geometrically. Given
a point xn , the graph of the logistic map provides y D f (xn). To use y as the
starting point of the next iteration, we must find the corresponding location in the
x space, which is done simply by drawing the line from the point [xn , f (xn)] to the
diagonal y D x . This simple construction is then repeated ad libitum, as illustrated
in Figure 2.1b.

The various behaviors displayed by the logistic map are easily explored, as this
map depends on a single parameter a. As illustrated in Figure 2.2, one finds quickly
that two main types of dynamical regimes can be observed: stationary or periodic
regimes on the one hand, and “chaotic” regimes on the other hand. In the first
case, iterations eventually visit only a finite set of different values that are forever
repeated in a fixed order. In the latter case, the state of the system never repeats
itself exactly and seemingly evolves in a disordered way, as in Figure 2.1b. Both
types of behaviors have been observed in the experiment discussed in Chapter 1.

What makes the study of the logistic map so important is not only that the organi-
zation in parameter space of these periodic and chaotic regimes can be completely

1) A popular variant is xnC1 D λxn (1 � xn ), with parameter λ.
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Figure 2.2 Different dynamical behaviors observed in the logistic map system are represented

by plotting successive iterates: (a) stationary regime, a D 0.5; (b) periodic regime of period 5,

a D 1.476; (c) chaotic regime, a D 2.0.

understood with simple tools, but that, despite its simplicity, it displays the most
important features of low-dimensional chaotic behavior. By studying how period-
ic and chaotic behavior are interlaced, we will learn much about the mechanisms
responsible for the appearance of chaotic behavior. Moreover, the logistic map is
not only a paradigmatic system: One-dimensional maps will later prove also to be
a fundamental tool for understanding the topological structure of flows.

2.3

Bifurcation Diagrams

A first step in classifying the dynamical regimes of the logistic map is to obtain
a global representation of the various regimes that are encountered as control pa-
rameter a is varied. This can be done with the help of bifurcation diagrams, which
are tools commonly used in nonlinear dynamics. Bifurcation diagrams display
some characteristic property of the asymptotic solution of a dynamical system as
a function of a control parameter, allowing one to see at a glance where qualita-
tive changes in the asymptotic solution occur. Such changes are termed bifurca-
tions.

In the case of the logistic map that has a single dynamical variable, the bifur-
cation diagram is readily obtained by plotting a sample set of values of the se-
quence (xn) as a function of parameter a, as shown in Figure 2.3.

For a < a0 D �1/4, iterations of the logistic map escape to infinity from all
initial conditions. For a > aR D 2 almost all initial conditions escape to infinity.
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Figure 2.3 Bifurcation diagram of the logis-

tic map. For a number of parameter values

between a D �0.25 and a D 2.0, 50 suc-

cessive iterates of the logistic map are plotted

after transients have died out. From left to

right, the vertical lines mark the creations of

(i) a period-2 orbit; (ii) a period-4 orbit; (iii) a

period-8 orbit, and (iv) the accumulation point

of the period-doubling cascade; (v) the start-

ing point of a period-3 window.

The bifurcation diagram is thus limited to the range a0 < a < aR , where bounded
solutions can be observed.

Between a0 D �1/4 and a1 D 3/4, the limit set consists of a single value. This
corresponds to a stationary regime, but one that should be considered in this con-
text as a period-1 periodic orbit. At a D a1, a bifurcation occurs, giving birth to a
period-2 periodic orbit: Iterations oscillate between two values. As detailed in Sec-
tion 2.4.2, this is an example of a period-doubling bifurcation. At a D a2 D 5/4,
there is another period-doubling bifurcation where the period-2 orbit gives birth to
a period-4 orbit.

The period-doubling bifurcations occurring at a D a1 and a D a2 are the first
two members of an infinite series, known as the period-doubling cascade, in which
an orbit of period 2n is created for every integer n. The bifurcation at a D a3 leading
to a period-8 orbit is easily seen in the bifurcation diagram of Figure 2.3, the one at
a D a4 is hardly visible, and the following ones are completely indiscernible to the
naked eye. This is because the parameter values an at which the period-2n orbit is
created converge geometrically to the accumulation point a1 D 1.401 155 189 . . .
with a convergence ratio substantially larger than 1:

lim
n!1

an � an�1

anC1 � an
D δ � 4.669 201 609 1 . . . (2.3)

The constant δ appearing in (2.3) was discovered by Feigenbaum [22, 37] and
is named after him. This distinction is justified by a remarkable property: Period-
doubling cascades observed in an extremely large class of systems (experimental or
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Figure 2.4 Enlarged view of the chaotic zone of the bifurcation diagram of Figure 2.3. Inside

periodic windows of period up to 8, vertical lines indicate the parameter values where the corre-

sponding orbits are most stable, with the period indicated above the line.

theoretical, defined by maps or differential equations . . . ) have a convergence rate
given by δ.

At the accumulation point a1, the period of the solution has become infinite.
Right of this point, the system can be found in chaotic regimes, as can be guessed
from the abundance of dark regions in this part of the bifurcation diagram, which
indicate that the system visits many different states. The period-doubling cascade is
one of the best-known routes to chaos and can be observed in many low-dimensional
systems [10]. It has many universal properties that are in no way restricted to the
case of the logistic map.

However, the structure of the bifurcation diagram is more complex than a simple
division between periodic and chaotic regions on both sides of the accumulation
point of the period-doubling cascade. For example, a relatively large periodic win-
dow, which corresponds to the domain of stability of a period-3 orbit, is clearly seen
to begin at a D 7/4, well inside the chaotic zone. In fact, periodic windows and
chaotic regions are arbitrarily finely interlaced, as illustrated by Figure 2.4. As will
be shown later, there are infinitely many periodic windows between any two peri-
odic windows. To interpret Figure 2.4, it should be noted that periodic windows are
visible to the naked eye only for very low periods. For higher periods, (i) the peri-
odic window is too narrow compared to the scale of the plot and (ii) the number
of samples is sufficiently large that the window cannot be distinguished from the
chaotic regimes.

Ideally, we would like to determine for each periodic solution the range of pa-
rameter values over which it is stable. In Section 2.4 we will perform this analysis
for the simple cases of the period-1 and period-2 orbits, so that we get a better un-
derstanding of the two types of bifurcation that are encountered in a logistic map.
This is motivated by the fact that these are the two bifurcations that are generically
observed in low-dimensional dynamical systems (omitting the Hopf bifurcation,
which we discuss later).



2.4 Elementary Bifurcations in the Logistic Map 25

However, we will not attempt to go much further in this direction. First, the
complexity of Figures 2.3 and 2.4 shows that this task is out of reach. Moreover,
we are only interested in properties of the logistic map that are shared by many
other dynamical systems. In this respect, computing exact stability ranges for a
large number of regimes would be pointless.

This does not imply that a deep understanding of the structure of the bifurcation
diagram of Figure 2.3 cannot be achieved. Quite to the contrary, we will see later
that simple topological methods allow us to answer precisely the following ques-
tions: How can we classify the different periodic regimes? Does the succession of
different dynamical regimes encountered as parameter a is increased follow a logi-
cal scheme? In particular, a powerful approach to chaotic behavior, symbolic dynam-
ics, which we present in Section 2.7, will prove to be perfectly suited for unfolding
the complexity of chaos.

2.4

Elementary Bifurcations in the Logistic Map

2.4.1

Saddle–Node Bifurcation

The simplest regime that can be observed in the logistic map is the period-1 orbit.
It is stably observed on the left of the bifurcation diagram of Figure 2.3 for a0 <

a < a1. It corresponds to a fixed point of the logistic map (i.e., it is mapped onto
itself) and is thus a solution of the equation x D f (x ). For the logistic map, finding
the fixed points merely amounts to solving the quadratic equation

x D a � x2 (2.4)

which has two solutions:

x�(a) D �1 � p
1 C 4a

2
xC(a) D �1 C p

1 C 4a
2

(2.5)

The fixed points of a one-dimensional map can also be located geometrical-
ly, since they correspond to the intersections of its graph with the diagonal (Fig-
ure 2.1).

Although a single period-1 regime is observed in the bifurcation diagram, there
are actually two period-1 orbits. Later we will see why. Expressions (2.5) are real-
valued only for a > a0 D �1/4. Below this value, all orbits escape to infinity.
Thus, the point at infinity, which we denote x1 in what follows, can formally be
considered as another fixed point of the system, albeit unphysical.

The important qualitative change that occurs at a D a0 is our first example
of a ubiquitous phenomenon of low-dimensional nonlinear dynamics, a tangent,
or saddle–node, bifurcation: The two fixed points (2.5) become simultaneously real
and are degenerate: x�(a0) D xC(a0) D �1/2. The two designations point to two
different (but related) properties of this bifurcation.
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Figure 2.5 The basin of attraction of the xC

fixed point is located between the left fixed

point x� and its preimage, indicated by two

vertical lines. The orbits labeled 1 and 2 are

inside the basin and converge toward xC . The

orbits labeled 3 and 4 are outside the basin

and escape to infinity (i.e., converge to the

point at infinity x1).

The saddle–node qualifier is related to the fact that the two bifurcating fixed
points have different stability properties. For a slightly above a0, it is found that
orbits located near xC converge to it, whereas those starting in the neighborhood
of x� leave it to either converge to xC or escape to infinity, depending on whether
they are located right or left of x�. Thus, the fixed point xC (and obviously al-
so x1) is said to be stable while x� is unstable. They are called the node and the
saddle, respectively.

Since trajectories in their respective neighborhoods converge to them, xC and
x1 are attracting sets, or attractors. The sets of points whose orbits converge to an
attractor of a system is called the basin of attraction of this point. From Figure 2.5
we see that the unstable fixed point x� is on the boundary between the basins of
attraction of the two stable fixed points xC and x1. The other boundary point is
the preimage f �1(x�) of x� (Figure 2.5).

It is easily seen that the stability of a fixed point depends on the derivative of the
map at the fixed point. Indeed, if we perturb a fixed point x� D f (x�) by a small
quantity δxn , the perturbation δxnC1 at the next iteration is given by

δxnC1 D f (x� C δxn) � x� D d f (x )
dx

ˇ̌̌
ˇ

x�

δxn C O
�
δx2

n

�
(2.6)

If we start with an infinitesimally small δx0, the perturbation after n iterations is
thus δxn � (μ�)n δx0, where μ�, the multiplier of the fixed point, is given by the
map derivative at x D x�.

A fixed point is thus stable (resp. unstable) when the absolute value of its multi-
plier is smaller (resp. greater) than unity. Here the multipliers μ˙ of the two fixed
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Figure 2.6 Graph of the logistic map at the initial saddle–node bifurcation.

points of the logistic map are given by

μ� D d f (x )
dx

ˇ̌̌
ˇ

x�

D �2x� D 1 C p
1 C 4a (2.7a)

μC D d f (x )
dx

ˇ̌̌
ˇ

xC

D �2xC D 1 � p
1 C 4a (2.7b)

Equation 2.7a shows that x� is unconditionally unstable on its entire domain of
existence, and hence is generically not observed as a stationary regime, whereas
xC is stable for parameters a just above a0 D �1/4, as mentioned above. This is
why only xC can be observed on the bifurcation diagram shown in Figure 2.3.

More precisely, xC is stable for a 2 [a0, a1], where a1 D 3/4 is such that μC D
�1. This is consistent with the bifurcation diagram of Figure 2.3. Note that at a D
0 2 [a0, a1], the multiplier μC D 0 and thus perturbations are damped out faster
than exponentially: The fixed point is then said to be superstable.

At the saddle–node bifurcation, both fixed points are degenerate and their mul-
tiplier is C1. This fundamental property is linked to the fact that at the bifurcation
point, the graph of the logistic map is tangent to the diagonal (Figure 2.6), which
is why this bifurcation is also known as the tangent bifurcation. Tangency of two
smooth curves (here, the graph of f and the diagonal) is generic at a multiple inter-
section point. This is an example of a structurally unstable situation: An arbitrarily
small perturbation of f leads to two distinct intersections or no intersection at all
(alternatively, to two real or to two complex roots).

It is instructive to formulate the intersection problem in algebraic terms. The
fixed points of the logistic equations are zeros of the equation G(x , a) D f (x I a) �
x D 0. This equation defines implicit functions xC(a) and x�(a) of parameter a.
In structurally stable situations, these functions can be extended to neighboring
parameter values by use of the implicit function theorem.
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Assume that x�(a) satisfies G(x�(a), a) D 0 and that we shift parameter a by an
infinitesimal quantity δa. Provided that @G(x�(a), a)/@x ¤ 0, the corresponding
variation δx� in x� is given by

G(x , a) D G (x� C δx�, a C δa) D G(x , a) C @G
@x

δx� C @G
@a

δa D 0 (2.8)

which yields

δx� D �
@G
@a
@G
@x

δa (2.9)

showing that x�(a) is well defined on both sides of a if and only if @G/@x ¤ 0. The
condition

@G (x�(a), a)
@x

D 0 (2.10)

is thus the signature of a bifurcation point. In this case, the Taylor series (2.8) has
to be extended to higher orders of δx�. If @2G(x�(a), a)/@x2 ¤ 0, the variation
δx� in the neighborhood of the bifurcation is given by

(δx�)2 D �2

@G
@a

@2G
@x2

δa (2.11)

From (2.11) we recover the fact that there is a twofold degeneracy at the bifur-
cation point, two solutions on one side of the bifurcation and none on the other
side. The stability of the two bifurcating fixed points can also be analyzed: Since
G(x , a) D f (x I a) � x , their multipliers are given by μ� D 1 C @G(x�, a)/@x and
are thus equal to 1 at the bifurcation.

Just above the bifurcation point, it is easy to show that the multipliers of the two
fixed points xC and x� are given to leading order by μ˙ D 1� α

pjδaj, where the
factor α depends on the derivatives of G at the bifurcation point. It is thus generic
that one bifurcating fixed point is stable while the other one is unstable. In fact,
this is a trivial consequence of the fact that the two nondegenerate zeros of G(x , a)
must have derivatives @G/@x with opposite signs.

This is linked to a fundamental theorem, which we state below in the one-
dimensional case but which can be generalized to arbitrary dimensions by replac-
ing derivatives with Jacobian determinants. Define the degree of a map f as

deg f D
X

f (xi )Dy

sgn
d f
dx

(xi ) (2.12)

where the sum extends over all the preimages of the arbitrary point y, and sgnz D
C1 (resp. �1) if z > 0 (resp. z < 0). It can be shown that deg f does not depend
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on the choice of y provided that it is a regular value (the derivatives at its preimages
xi are not zero) and that it is invariant by homotopy. Let us apply this to G(x , a) for
y D 0. Obviously, deg G D 0 when there are no fixed points, but also for any a since
the effect of varying a is a homotopy. We thus see that fixed points must appear in
pairs having opposite contributions to deg G . As discussed above, these opposite
contributions correspond to different stability properties at the bifurcation.

The discussion above shows that although we have introduced the tangent bi-
furcation in the context of the logistic map, much of the analysis can be carried
to higher dimensions. In an n-dimensional state space, the fixed points are deter-
mined by an n-dimensional vector function G . In a structurally stable situation,
the Jacobian @G/@X has rank n. As one control parameter is varied, bifurcations
will be encountered at parameter values where @G/@X is of lower rank. If the Ja-
cobian has rank n � 1, it has a single null eigenvector, which defines the direction
along which the bifurcation takes place. This explains why the essential features of
tangent bifurcations can be understood from a one-dimensional analysis.

The theory of bifurcations is in fact a subset of a larger field of mathematics, the
theory of singularities [50, 51], which includes catastrophe theory [35, 49] as a special
important case. The tangent bifurcation is an example of the simplest type of sin-
gularity: the fold singularity, which typically corresponds to twofold degeneracies.

In the next section we see an example of a threefold degeneracy, the cusp singu-
larity, in the form of the period-doubling bifurcation.

2.4.2

Period-Doubling Bifurcation

As shown in Section 2.4.1, the fixed point xC is stable only for a 2 [a0, a1], with
μC D 1 at a D a1 D �1/4 and μC D �1 at a D a1 D 3/4. For a > a1, both fixed
points (2.5) are unstable, which precludes a period-1 regime. Just above the bifur-
cation, what is observed instead is that successive iterates oscillate between two
distinct values (Figure 2.3), which comprise a period-2 orbit. This could have been
expected from the fact that at a D a1, μC D �1 indicates that perturbations are
reproduced every other period. The qualitative change that occurs at a D a1 (a fixed
point becomes unstable and gives birth to an orbit of twice the period) is another
important example of bifurcation: the period-doubling bifurcation, which is repre-
sented schematically in Figure 2.7. Saddle–node and period-doubling bifurcations
are the only two types of local bifurcation that are observed for the logistic map.
With the Hopf bifurcation, they are also the only bifurcations that occur generically
in one-parameter paths in parameter space and, consequently, in low-dimensional
systems.

Before we carry out the stability analysis for the period-2 orbit created at a D a1,
an important remark has to be made. Expression (2.5) shows that the period-1 or-
bit xC exists for every a > a0; hence it does not disappear at the period-doubling
bifurcation but merely becomes unstable. It is thus present in all the dynamical
regimes observed after its loss of stability, including in the chaotic regimes of the
right part of the bifurcation diagram of Figure 2.3. In fact, this holds for all the
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periodic solutions of the logistic map. As an example, the logistic map at the tran-
sition to chaos (a D a1) has an infinity of (unstable) periodic orbits of periods 2n

for any n, as Figure 2.8 shows.
We thus expect periodic orbits to play an important role in the dynamics even

after they have become unstable. We will see later that this is indeed the case and
that much can be learned about a chaotic system from its set of periodic orbits,
both stable and unstable.

Since the period-2 orbit can be viewed as a fixed point of the second iterate of the
logistic map, we can proceed as above to determine its range of stability. The two
periodic points fx1, x2g are solutions of the quartic equation

x D f ( f (x )) D a � �
a � x2�2

(2.13)

To solve for x1 and x2, we take advantage of the fact that the fixed points xC

and x� are obviously solutions of (2.13). Hence, we just have to solve the quadratic
equation

p (x ) D f ( f (x )) � x
f (x ) � x

D 1 � a � x C x2 D 0 (2.14)
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whose solutions are

x1 D 1 � p�3 C 4a
2

x2 D 1 C p�3 C 4a
2

(2.15)

We recover the fact that the period-2 orbit (x1, x2) appears at a D a1 D 3/4 and
exists for every a > a1. By using the chain rule for derivatives, we obtain the mul-
tiplier of the fixed point x1 of f 2 as

μ1,2 D d f 2(x )
dx

ˇ̌̌
ˇ

x1

D d f (x )
dx

ˇ̌̌
ˇ

x2

� d f (x )
dx

ˇ̌̌
ˇ

x1

D 4x1 x2 D 4(1 � a) (2.16)

Note that x1 and x2 viewed as fixed points of f 2 have the same multiplier, which is
defined to be the multiplier of the orbit (x1, x2). At the bifurcation point a D a1, we
have μ1,2 D 1, a signature of the two periodic points x1 and x2 being degenerate at
the period-doubling bifurcation.

However, the structure of the bifurcation is not completely similar to that of the
tangent bifurcation discussed earlier. Indeed, the two periodic points x1 and x2 are
also degenerate with the fixed point xC. The period-doubling bifurcation of the
fixed point xC is thus a situation where the second iterate f 2 has three degenerate
fixed points. If we define G2(x , a) D f 2(x I a) � x , the signature of this threefold
degeneracy is G2 D @G2/@x D @2G2/@x2 D 0, which corresponds to a higher-
order singularity than the fold singularity encountered in our discussion of the
tangent bifurcation. This is, in fact, our first example of the cusp singularity. Note
that xC has a multiplier of �1 as a fixed point of f at the bifurcation and hence
exists on both sides of the bifurcation; it merely becomes unstable at a D a1. On
the contrary, x1 and x2 have multiplier 1 for the lowest iterate of f, of which they
are fixed points, and thus exist only on one side of the bifurcation.

We also may want to verify that deg f 2 D 0 on both sides of the bifurcation.
Let us denote d(x�) as the contribution of the fixed point x� to deg f 2. We do
not consider x�, which is not invoved in the bifurcation. Before the bifurcation,
we have d(xC) D �1 (d f 2/dx (xC) < 1). After the bifurcation, d(xC) D 1 but
d(x1) D d(x2) D �1, so that the sum is conserved.

The period-2 orbit is stable only on a finite parameter range. The other end of
the stability domain is at a D a2 D 5/4, where μ1,2 D �1. At this parameter value,
a new period-doubling bifurcation takes place, where the period-2 orbit loses its
stability and gives birth to a period-4 orbit. As shown in Figures 2.3 and 2.8, period
doubling occurs repeatedly until an orbit of infinite period is created.

Although one might in principle repeat the analysis above for the successive
bifurcations of the period-doubling cascade, the algebra involved quickly becomes
intractable. Anyhow, the sequence of parameters an at which a solution of period 2n

emerges converges so quickly to the accumulation point a1 that this would be of
little use, except perhaps to determine the exact value of a1, after which the first
chaotic regimes are encountered.

A fascinating property of the period-doubling cascade is that we do not need to
analyze directly the orbit of period 21 to determine very accurately a1. Indeed,
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it can be remarked that the orbit of period 21 is formally its own period-doubled
orbit. This indicates some kind of scale invariance. Accordingly, it was recognized
by Feigenbaum that the transition to chaos in the period-doubling cascade can be
analyzed by means of renormalization group techniques [22, 37].

In this section we have analyzed how the periodic solutions of the logistic map
are created. After discussing changes of coordinate systems in the next section,
we shall take a closer look at the chaotic regimes appearing in the bifurcation dia-
gram of Figure 2.3. We will then be in a position to introduce more sophisticated
techniques to analyze the logistic map, namely symbolic dynamics, and to gain a
complete understanding of the bifurcation diagram of a large class of maps of the
interval.

2.5

Map Conjugacy

2.5.1

Changes of Coordinates

The behavior of a physical system does not depend on how we describe it. Equa-
tions defining an abstract dynamical system are meaningful only with respect to a
given parameterization of its states (i.e., in a given coordinate system). If we change
the parameterization, the dynamical equations should be modified accordingly so
that the same physical states are connected by the evolution laws.

Assume that we have a system whose physical states are parameterized by coor-
dinates x 2 X , with an evolution law given by f W X ! X (i.e., xnC1 D f (xn)).
If we switch to a new coordinate system specified by y D h(x ), with y 2 Y , the
dynamical equations become ynC1 D g(yn), where the map g W Y ! Y satisfies

h( f (x )) D g(h(x )) (2.17)

Relation (2.17) simply expresses that, on the one hand, ynC1 D h(xnC1) D
h( f (xn)), and on the other hand, ynC1 D g(yn) D g(h(xn)). This is summarized by
what follows commutative diagram:

(2.18)

where relation (2.17) is recovered by comparing the two paths from xn to ynC1.
Different types of conjugacy may be defined depending on the class of functions

the transformation h belongs to (e.g., see [52]). Conjugacy, or smooth conjugacy, cor-
responds to the case where h is a diffeomorphism. If h is a homeomorphism, one
has topological conjugacy. Note that in some cases, transformation h can be 2 ! 1.
This is referred to as semiconjugacy.
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2.5.2

Invariants of Conjugacy

Often, the problem is not to compute the evolution equations in a new coordinate
system, but to determine whether two maps f and g correspond to the same physi-
cal system (i.e., whether or not they are conjugate). A common strategy to address
this type of problem is to search for quantities that are invariant under the class
of transformations considered. If two objects have different invariants, they can-
not be transformed into each other. The knot invariants discussed later provide an
important example of this. The ideal case is when there exists a complete set of
invariants; equality of the invariants then implies identity of the objects. In this
section we present briefly two important invariants of conjugacy.

Spectrum of periodic orbits. An important observation is that there is a one-to-one
correspondence between periodic orbits of two conjugate maps. Assume that x� is
a period-p orbit of f W f p (x�) D x�. If f D h�1 ı g ı h, we have

f p D �
h�1 ı g ı h

�p D h�1 ı g p ı h (2.19)

Thus, y� D h(x�) satisfies

y� D h ( f p (x�)) D g p (h(x�)) D g p (y�) (2.20)

This shows that y� is itself a period-p orbit of g. If h is a one-to-one transformation,
it follows immediately that f and g have the same number of period-p orbits.

Of course, this should have been expected: The existence of a periodic solution
does not depend on the coordinate system. Yet this provides a useful criterion to
test whether two maps are conjugate.

Multipliers of periodic orbits. Similarly, the stability and the asymptotic evolution
of a system are coordinate independent. In algebraic terms, this translates into
the invariance of the multipliers of a periodic orbit when transformation h is a
diffeomorphism.

To show this, let us compute the tangent map D g p of g p D h ı f p ı h�1 at a
point y0, using the chain rule for derivatives:

D g p (y0) D D h
��

f p ı h�1� (y0)
� � D f p �h�1(y0)

� � D h�1(y0) (2.21)

To simplify notations, we set x0 D h�1(y0) and rewrite (2.21) as

D g p (y0) D D h ( f p (x0)) � D f p (x0) � D h�1(y0) (2.22)

Relation (2.22) yields no special relation between D f p (x0) and D g p (y0) unless x0

is a period-p orbit and satisfies f p (x0) D x0. In this case, indeed, we note that since
D h( f p (x0)) D D h(x0), and because

D h
�
h�1(y0)

� � D h�1(y0) D 1 (2.23)
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we have

D g p (y0) D P � D f p (x0) � P�1 (2.24)

where P D D h(x0). Equation 2.24 indicates that the matrices D f p (x0) and
D g p (y0) are similar: They can be viewed as two representations of the same linear
operator in two bases, with matrix P (obviously nonsingular since h is a diffeo-
morphism) specifying the change of basis. Two matrices that are similar have,
accordingly, the same eigenvalue spectrum.

This shows that the multipliers of a periodic orbit do not depend on the coordi-
nate system chosen to parameterize the states of a system, and hence that they are
invariants of (smooth) conjugacy. Note, however, that they need not be preserved
under a topological conjugacy.

2.6

Fully Developed Chaos in the Logistic Map

The first chaotic regime that we study in the logistic map is the one observed at the
right end of the bifurcation diagram, namely at a D 2. At this point, the logistic
map is surjective on the interval I D [�2, 2]: Every point y 2 I is the image of two
different points, x1, x2 2 I . I is then an invariant set since f (I ) D I .

It turns out that the dynamical behavior of a surjective logistic map can be ana-
lyzed in a particularly simple way by using a suitable change of coordinates, namely
x D 2 sin(πx 0/4). This is a one-to-one transformation between I and itself, which
is a diffeomorphism everywhere except at the endpoints x D ˙2, where the inverse
function x 0(x ) is not differentiable. With the help of a few trigonometric identities,
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Figure 2.9 Graph of tent map (2.25).
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the action of the logistic map in the x 0 space can be written as

x 0
nC1 D g(x 0

n) D 2 � 2
ˇ̌
x 0

n

ˇ̌
(2.25)

a piecewise linear map known as the tent map.
Figure 2.9 shows that the graph of a tent map is extremely similar to that of a

logistic map (Figure 2.1). In both cases, interval I is decomposed into two subin-
tervals: I D I0 [ I1, such that each restriction f k W Ik ! f (Ik ) of f is a homeomor-
phism, with f (I0) D f (I1) D I . Moreover, f0 (resp. f1) is orientation-preserving
(resp. orientation-reversing).

In fact, these topological properties suffice to determine the dynamics complete-
ly and are characteristic features of what is often called a topological horseshoe. In
the remainder of Section 2.6, we review a few fundamental properties of chaotic
behavior that can be shown to be direct consequences of these properties.

2.6.1

Iterates of the Tent Map

The advantage of the tent map over the logistic map is that calculations are sim-
plified dramatically. In particular, higher-order iterates of the tent map, which are
involved in the study of the asymptotic dynamics, are themselves piecewise-linear
maps and are easy to compute. For illustration, the graphs of the second iterate g2

and of the fourth iterate g4 are shown in Figure 2.10. Their structure is seen to be
directly related to that of the tent map.

Much of the structure of the gn iterates can be understood from the fact that g
maps linearly each of the two subintervals I0 and I1 to the whole interval I. Thus,
the graph of the restriction of g2 to each of the two components Ik reproduces the
graph of g on I. This explains the two-“hump” structure of g2. Similarly, the trivial
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Figure 2.10 Graphs of the second (heavy line) and fourth (light line) iterates of the tent map

(2.25).
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relation

8x 2 Ik gn(x ) D g
�
gn�1(x )

� D gn�1(g(x )) (2.26)

shows that the graph of gn consists of two copies of that of gn�1. Indeed, (2.26) can
be viewed as a semiconjugacy between gn and gn�1 via the two-to-one transforma-
tion x 0 D g(x ).

By recursion, the graph of gn shows 2n�1 scaled copies of the graph of g, each
contained in a subinterval I n

k D [Xk � �n , Xk C �n ] (0 � k < 2n�1), where �n D
1/2n�2 and Xk D �2C (2k C1)�n . The expression of gn can thus be obtained from
that of g by

8x 2 I n
k D [Xk � �n , Xk C �n ] gn(x ) D g (�n(x � Xk )) (2.27)

An important consequence of (2.27) is that each subinterval I n
k is mapped to the

whole interval I in no more than n iterations of g:

8k D 0 . . . 2n�1 gn �I n
k

� D g(I ) D I (2.28)

More precisely, one has g(I n
k ) D I n�1

k 0 , where k0 D k (resp. k0 D 2n�1 � k) if
k < 2n�2 (resp. k � 2n�2). Note also that each I n

k can itself be split into two
intervals I n

k ,i on which gn is monotonic and such that gn(I n
k ,i) D I .

Because the diameter of I n
k is jI n

k j D 23�n and can be made arbitrarily small
if n is chosen sufficiently large, this implies that an arbitrary subinterval J 	 I ,
however small, contains at least one interval I n

k :

8 J 	 I 9N0 n > N0 ) 9k I n
k 	 J (2.29)

Thus, how the gn iterates act on the I n
k intervals can help us to understand how

they act on an arbitrary interval, as we will see later. In general, chaotic dynamics
is better characterized by studying how sets of points are globally mapped rather
than by focusing on individual orbits.

2.6.2

Lyapunov Exponents

An important feature of tent map (2.25) is that the slope jdg(x )/dx j D 2 is constant
on the whole interval I D [�2, 2]. This simplifies significantly the study of the sta-
bility of solutions of (2.25). From (2.6) an infinitesimal perturbation δx0 from a ref-
erence state will grow after n iterations to jδxnj D 2n jδx0j. Thus, any two distinct
states, however close they may be, will eventually be separated by a macroscopic
distance. This shows clearly that no periodic orbit can be stable (Section 2.4.1) and
thus that the asymptotic motion of (2.25) is aperiodic.

This exponential divergence of neighboring trajectories, or sensitivity to initial
conditions, can be characterized quantitatively by Lyapunov exponents, which corre-
spond to the average separation rate. For a one-dimensional map, there is only one
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Lyapunov exponent, defined by

λ D lim
n!1

1
n

n�1X
iD0

log
jδxnC1j
jδxnj D lim

n!1

1
n

n�1X
iD0

log
ˇ̌̌
ˇ d f

dx

�
f i(x0)

�ˇ̌̌ˇ (2.30)

which is a geometric average of the stretching rates experienced at each iteration. It
can be shown that Lyapunov exponents are independent of the initial condition x0,
except perhaps for a set of measure zero [53].

Since the distance between infinitesimally close states grows exponentially as
δxn � enλ δx0, sensitivity to initial conditions is associated with a strictly positive
Lyapunov exponent. It is easy to see that the Lyapunov exponent of surjective tent
map (2.25) is λ D ln 2.

2.6.3

Sensitivity to Initial Conditions and Mixing

Sensitivity to initial conditions can also be expressed in a way that is more topolog-
ical, without using distances. The key property we use here is that any subinterval
J 	 I is eventually mapped to the whole I:

8 J 	 I 9N0 n > N0 ) gn( J ) D I (2.31)

This follows directly from the fact that J contains one of the basis intervals I n
k and

that these expand to I under the action of g; see (2.28) and (2.29).
We say that a map is expansive if it satisfies property (2.31). In plain words, the

iterates of points in any subinterval can take every possible value in I after a suffi-
cient number of iterations. Assume that J represents the uncertainty in the location
of an initial condition x0: We merely know that x0 2 J , but not its precise position.
Then (2.31) shows that chaotic dynamics is, though deterministic, asymptotically
unpredictable: After a certain amount of time, the system can be anywhere in the
state space. Note that the time after which all the information about the initial con-
dition has been lost depends only logarithmically on the diameter j J j of J. Roughly,
(2.28) indicates that N0 ' � ln j J j/ ln 2 � � ln j J j/λ.

In what follows, we use property (2.31) as a topological definition of chaos in
one-dimensional noninvertible maps. To illustrate it, we recall the definitions of
various properties that have been associated with chaotic behavior [12] and which
can be shown to follow from (2.31).

A map f W I ! I :


 Has sensitivity to initial conditions if 9δ > 0 such that for all x 2 I and any
interval J 3 x , there is a y 2 J and an n > 0 such that j f n(x ) � f n(y )j > δ.


 Is topologically transitive if for each pair of open sets A, B 	 I there exists n such
that f n(A) \ B ¤ ;.


 Is mixing if for each pair of open sets A, B 	 I there exists N0 > 0 such that
n > N0 ) f n(A) \ B ¤ ;. A mixing map is obviously topologically transitive.
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Sensitivity to initial conditions trivially follows from (2.31) since any neighborhood
of x 2 I is eventually mapped to I. The mixing property, and hence transitivity, is
also a consequence of expansiveness because the N0 in the definition can be chosen
so that f N0 (A) D I intersects any B 	 I . It can be shown that a topologically
transitive map has at least a dense orbit (i.e., an orbit that passes arbitrarily close to
any point of the invariant set).

Note that (2.31) precludes the existence of an invariant subinterval J 	 I other
than I itself: We would have simultaneously f ( J ) D J and f N0 ( J ) D I for some
N0. Thus, invariant sets contained in I necessarily consist of isolated points; these
are the periodic orbits discussed in the next section.

2.6.4

Chaos and Density of (Unstable) Periodic Orbits

It has been proposed by Devaney [12] to say that a map f is chaotic if it:


 Displays sensitivity to initial conditions

 Is topologically transitive

 Has a set of periodic orbits that is dense in the invariant set.

The first two properties were established in Section 2.6.3. It remains to be proved
that (2.31) implies the third. When studying the bifurcation diagram of the logistic
map (Section 2.4.2), we have noted that chaotic regimes contain many (unstable)
periodic orbits. We are now in a position to make this observation more precise. We
begin by showing that the tent map x 0 D g(x ) has infinitely many periodic orbits.

2.6.4.1 Number of Periodic Orbits of the Tent Map

A periodic orbit of g of period p is a fixed point of the pth iterate g p . Thus, it satisfies
g p (x ) D x and is associated with an intersection of the graph of g p with the diag-
onal. Since g itself has exactly two such intersections (corresponding to period-1
orbits), (2.27) shows that g p has

N f (p ) D 2p (2.32)

fixed points (see Figure 2.10 for an illustration).
Some of these intersections might actually be orbits of lower period. For example,

the four fixed points of g2 consist of two period-1 orbits and of two points consti-
tuting a period-2 orbit. As another example, note in Figure 2.10 that fixed points of
g2 are also fixed points of g4. The number of periodic orbits of lowest period p is
thus

N(p ) D N f (p ) �P
q qN(q)

p
(2.33)

where the q are the divisors of p. Note that this is a recursive definition of N(p ). As
an example, N(6) D [N f (6)�3N(3)�2N(2)�N(1)]/6 D (26 �3�2�2�1�2)/6 D 9,
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with the computation of N(3), N(2), and N(1) being left to the reader. As detailed in
Section 2.7.5.3, one of these nine orbits appears in a period doubling and the eight
others are created by pairs in saddle–node bifurcations. Because N f (p ) increases
exponentially with p, N(p ) is well approximated for large p by N(p ) ' N f (p )/p .

We thus have the important property that there are an infinite number of pe-
riodic points and that the number N(p ) of periodic orbits of period p increases
exponentially with the period. The corresponding growth rate,

hP D lim
p!1

1
p

ln N(p ) D lim
p!1

1
p

ln
N f (p )

p
D ln 2 (2.34)

provides an accurate estimate of a central measure of chaos, the topological en-
tropy hT . In many cases it can be proven rigorously that hP D hT . Topological
entropy itself can be defined in several different but equivalent ways.

2.6.4.2 Expansiveness Implies Infinitely Many Periodic Orbits

We now prove that if a continuous map f W I ! I is expansive, its unstable periodic
orbits are dense in I: Any point x 2 I has periodic points arbitrarily close to it.
Equivalently, any subinterval J 	 I contains periodic points.

We first note that if J 	 f ( J ) (this is a particular case of a topological covering),
then J contains a fixed point of f as a direct consequence of the intermediate value
theorem.2) Similarly, J contains at least one periodic point of period p if J 	 f p ( J ).

Now, if (2.31) is satisfied, every interval J 	 I is eventually mapped to I: f n( J ) D
I (and thus f n( J ) 	 J ) for n > N0( J ). Using the remark above, we deduce that
J contains periodic points of period p for any p > N0( J ), but also possibly for
smaller p. Therefore, any interval contains an infinity of periodic points with arbitrarily
high periods. A graphical illustration is provided by Figure 2.10: Each intersection
of a graph with the diagonal corresponds to a periodic point.

Thus, the expansiveness property (2.31) implies that unstable periodic points are
dense. We showed earlier that it also implies topological transitivity and sensitivity
to initial conditions. Therefore, any map satisfying (2.31) is chaotic according to
the definition given at the beginning of this section.

It is quite fascinating that sensitivity to initial conditions, which makes the dy-
namics unpredictable, and unstable periodic orbits, which correspond to perfectly
ordered motion, are so deeply linked: In a chaotic regime, order and disorder are
intimately entangled.

Unstable periodic orbits will prove to be a powerful tool to analyze chaos. They
form a skeleton around which the dynamics is organized. Although they can be
characterized in a finite time, they provide invaluable information on the asymp-
totic dynamics because of the density property: The dynamics in the neighborhood
of an unstable periodic orbit is governed largely by that orbit.

2) Denote by xa , xb 2 J the points such that f ( J ) D [ f (xa ), f (xb )]. If J � f ( J ), one has f (xa ) � xa

and xb � f (xb ). Thus, the function F(x ) D f (x ) � x has opposite signs in xa and xb . If f is
continuous, F must take all the values between F(xa ) and F(xb ). Thus, there exists x� 2 J such
that F(x�) D f (x�) � x� D 0: x� is a fixed point of f.
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2.6.5

Symbolic Coding of Trajectories: First Approach

We showed above that because of sensitivity to initial conditions, the dynamics of
the surjective tent map is asymptotically unpredictable (Section 2.6.3). However,
we would like to have a better understanding of how irregular, or random, typical
orbits can be. We also learned that there is a dense set of unstable periodic orbits
embedded in the invariant set I and that this set has a well-defined structure. What
about the other orbits, which are aperiodic?

In this section we introduce a powerful approach to chaotic dynamics that an-
swers these questions: symbolic dynamics. To do so as simply as possible, let us
consider a dynamical system extremely similar to the surjective tent map, defined
by the map

xnC1 D 2xn (mod 1) (2.35)

It only differs from the tent map in that the two branches of its graph are both
orientation-preserving (Figure 2.11). As with the tent map, the interval [0, 1] is de-
composed in two subintervals Ik such that the restrictions f k W Ik ! f k (Ik ) are
homeomorphisms.

The key step is to recognize that because the slope of the graph is 2 everywhere,
the action of (2.35) is trivial if the coordinates x 2 [0, 1] are represented in base 2.
Let xn have the binary expansion xn D 0.d0 d1 . . . dk . . ., with dk 2 f0, 1g. It is easy
to see that the next iterate will be

xnC1 D (d0.d1 d2 . . . dk . . .) (mod 1) D 0.d1d2 . . . dk . . . (2.36)

Thus, the base-2 expansion of xnC1 is obtained by dropping the leading digit in the
expansion of xn . This leading digit indicates whether x is greater than or equal to
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Figure 2.11 Graph of map (2.35).
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1/2 D 0.10 (s represents an infinite repetition of the string s) and, hence, which
interval I0 D [0, 0.5) or I1 D [0.5, 1] the point belongs to. Note that in the present
case, 0.10 and 0.01, which usually represent the same number 1/2, correspond
here to different trajectories because of the discontinuity. The former is located at
(1/2)C and remains on the fixed point x D 1 forever, while the latter is associated
with (1/2)� and converges to the fixed point x D 0.

Thus, there is a 1 W 1 correspondence between orbits of dynamical system (2.35)
(parameterized by their initial condition x) and infinite digit sequences (dk ) 2
f0, 1gN . Moreover, the action of the map in the latter space has a particularly simple
form. This correspondence allows one to establish extremely easily all the proper-
ties derived for the tent map in previous sections.


 Sensitivity to initial conditions: Whether the nth iterate of x falls in I0 or I1 is
determined by the nth digit of the binary expansion of x. A small error in the
initial condition (e.g., the nth digit is false) becomes macroscopic after a suffi-
cient amount of time (i.e., after n iterations).


 Existence of a dense orbit: Construct an infinite binary sequence such that it
contains all possible finite sequences. For example, concatenate all sequences
of length 1, 2, . . . , n for arbitrarily large n. The iterates of the associated point
x D 0.0j1j00j01j10j11j000j001 . . . will pass arbitrarily close to any point of the
interval. The existence of a dense orbit implies topological transitivity.


 Density of periodic orbits: Each periodic point of (2.35) obviously corresponds to a
periodic binary sequence. It is known that a periodic or eventually periodic digit
expansion is a characteristic property of rational numbers. Since it is a classi-
cal result that rational numbers are dense in [0, 1], we deduce immediately that
periodic or eventually periodic points are dense in the interval [0, 1]. Alternative-
ly, each point x can be approximated arbitrarily well by a sequence of periodic
points x�(n) whose sequences consist of the infinitely repeated n first digits of
x, with n ! 1.

This analysis can easily be transposed to the case of the surjective tent map. Since
its right branch is orientation-reversing, the action of this map on the binary expan-
sion of a point x located in this branch differs slightly from that of (2.36). Assuming
that the tent map is defined on [0, 1], its expression at the right (resp. left) of the
critical point is x 0 D 2(1� x ) (resp. x 0 D 2x ). Consequently, we have the additional
rule that if the leading digit is d0 D 1, all the digits di , i 2 N, should be replaced by
Qdi D 1 � di before dropping the leading digit d0 as with the left branch (in fact, the
two operations can be carried out in any order). The operation di ! Qdi is known
as complement to one.

Example 2.1

Under the tent map, 0.010 010 11 ! 0.100 101 1 ! 0.110 100. For the first transi-
tion, since 0.010 010 0 < 1/2, we shift the separator one digit to the right. In the
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second transition, since x D 0.100 101 1 > 1/2, we first complement x and obtain
x 0 D (1 � x ) D 0.011 010 0, then multiply by 2: 2x 0 D 0.110 110 0.

Except for this minor difference in the coding of trajectories, the arguments used
above to show the existence of chaos in the map x 0 D 2x (mod 1) can be followed
without modification. The binary coding we have used is thus a powerful method
to prove that the tent map displays chaotic behavior.

The results of this section naturally highlight two important properties of chaotic
dynamics:


 A series of coarse-grained measurements of the state of a system can suffice to
estimate it with arbitrary accuracy if carried out over a sufficiently long time. By
merely noting which branch is visited (one-bit digitizer) at each iteration of the
map (2.35), all the digits of an initial condition can be extracted.


 Although a system such as (2.35) is perfectly deterministic, its asymptotic dy-
namics is as random as coin flipping (all sequences of 0 and 1 can be observed).

However, the coding used in these two examples (n-ary expansion) is too naive to be
extended to maps that do not have a constant slope equal to an integer. In the next
section we discuss the general theory of symbolic dynamics for one-dimensional
maps. This topological approach will prove to be an extremely powerful tool to
characterize the dynamics of the logistic map, not only in the surjective case but
for any value of parameter a.

2.7

One-Dimensional Symbolic Dynamics

2.7.1

Partitions

Consider a continuous map f W I ! I that is singular. We would like to extend
the symbolic dynamical approach introduced in Section 2.6.5 in order to analyze
its dynamics. To this end, we have to construct a coding associating each orbit of
the map with a symbol sequence.

We note that in the previous examples, each digit of the binary expansion of a
point x indicates whether x belongs to the left or right branch of the map. Accord-
ingly, we decompose interval I in N disjoint intervals Iα, α D 0 . . . N �1 (numbered
from left to right), such that


 I D I0 [ I1 [ � � � IN�1


 In each interval Iα , the restriction f jIα W Iα ! f (Iα), which we denote f α , is a
homeomorphism.
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I0 I1 I2 I3 I4

x

f (x)

Figure 2.12 Decomposition of the domain of a map f into intervals Iα such that the restrictions

f W Iα ! f (Iα) to the intervals Iα are homeomorphisms.

For one-dimensional maps, such a partition can easily be constructed by choosing
the critical points of the map as endpoints of the intervals Iα , as Figure 2.12 il-
lustrates. At each iteration, we record the symbol α 2 A D f0, . . . , N � 1g that
identifies the interval to which the current point belongs. The alphabet A consists
of the N values that the symbol can assume.

We denote by s(x ) the corresponding coding function:

s(x ) D α () x 2 Iα (2.37)

Any orbit fx , f (x ), f 2(x ), . . . , f i (x ), . . .g of initial condition x can then be associat-
ed with the infinite sequence of symbols indicating the intervals visited successive-
ly by the orbit:

Σ(x ) D ˚
s(x ), s( f (x )), s

�
f 2(x )

�
, . . . , s

�
f i(x )

�
, . . .

�
(2.38)

The sequence Σ(x ) is called the itinerary of x. We will also use the compact notation
Σ D s0 s1 s2 . . . s i . . ., with the s i being the successive symbols of the sequence (e.g.,
Σ D 01101001 . . .). The set of all possible sequences in the alphabet A is denoted
AN , and Σ(I ) 	 AN represents the set of sequences actually associated with a
point of I:

Σ(I ) D fΣ(x )I x 2 I g (2.39)

The finite sequence made of the n leading digits of Σ(x ) will later be useful. We
denote it Σn(x ). For example, if Σ(x ) D 10110 . . ., then Σ3(x ) D 101. Accordingly,
the set of finite sequences of length n involved in the dynamics is Σn(I ).

An important property of the symbolic representation (2.38) is that the expres-
sion of the time-one map becomes particularly simple. Indeed, if we compare the
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symbolic sequence of f (x )

Σ( f (x )) D
n

s( f (x )), s( f 2(x )), s( f 3(x )), . . . , s( f iC1(x )), . . .
o

(2.40)

with that of x given in (2.38), we observe that the former can be obtained from the
latter by dropping the leading symbol and shifting the remaining symbols to the
left. Accordingly, we define the shift operator σ by

Σ D fs0, s1, s2, . . . , s i , . . .g σ! fs1, s2, . . . , s i , . . .g D σΣ (2.41)

Applying f to a point x 2 I is equivalent to applying the shift operator σ on its
symbolic sequence Σ(x ) 2 Σ(I ):

Σ( f (x )) D σΣ(x ) (2.42)

which corresponds to the commutative diagram

(2.43)

Note that because only forward orbits f f n(x )gn�0 can be computed with a nonin-
vertible map, the associated symbolic sequences are one-sided and extend to infin-
ity only in the direction of forward time. This makes the operator σ noninvertible,
as f is itself. Formally, we can define several “inverse” operators σ�1

α acting on a
sequence by inserting the symbol α at its head:

Σ D fs0, s1, s2, . . . , s i , . . .g σ�1
α�! fα, s0, s1, . . . , s i�1, . . .g D σ�1

α Σ (2.44)

However, note that σ ı σ�1
α D Id ¤ σ�1

α ı σ.
Periodic sequences Σ D fs ig with s i D s iCp for all i 2 N will be of particu-

lar importance in what follows. Indeed, they satisfy σ p Σ D Σ, which translates
into f p (x ) D x for the associated point that is thus periodic. Infinite period-
ic sequences will be represented by overlining the base pattern (e.g., 01011 D
010110101101011 . . .). When there is no ambiguity, the base pattern will be used
as the name of the corresponding periodic orbit (e.g., the orbit 01011 has sequence
01011).

2.7.2

Symbolic Dynamics of Expansive Maps

To justify the relevance of symbolic coding, we now show that it is a faithful rep-
resentation. That is to say, the correspondence x 2 I $ Σ(x ) 2 Σ(I ) defined
by (2.37) and (2.38) can under appropriate conditions be made a bijection, that is,

x1 ¤ x2 () Σ(x1) ¤ Σ(x2) (2.45)
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We might additionally require some form of continuity so that sequences that are
close according to some metric are associated with points that are close in space.

In plain words, the symbolic sequence associated to a given point is sufficient to
distinguish it from any other point in interval I. The two dynamical systems (I, f )
and (Σ(I ), σ) can then be considered as equivalent, with Σ(x ) playing the role of
a change of coordinate. Partitions of state space that satisfy (2.45) are said to be
generating.

In Section 2.6.5, we saw two particular examples of one-to-one correspondence
between orbits and symbolic sequences. Here we show that such a bijection holds if
the following two conditions are true: (i) The restriction of the map to each member
of the partition is a homeomorphism (Section 2.7.1) and (ii) the map satisfies the
expansiveness property (2.31). This will illustrate the intimate connection between
symbolic dynamics and chaotic behavior.

In the tent map example, it is obvious how the successive digits of the binary
expansion of a point x specify the position of x with increasing accuracy. As we
show below, this is also true for general symbolic sequences under appropriate
conditions.

As a simple example, assume that a point x has a symbol sequence Σ(x ) D
101 . . . From the leading symbol we extract the top-level information about the po-
sition of x, namely that x 2 I1. Since the second symbol is 0, we deduce that
f (x ) 2 I0 (i.e., x 2 f �1(I0)). This second-level information combined with the

first-level information indicates that x 2 I1 \ f �1(I0) � I10. Using the first three
symbols, we obtain x 2 I101 D I1 \ f �1(I0) \ f �2(I1) D I1 \ f �1(I0 \ f �1(I1)).
We note that longer symbol sequences localize the point with higher accuracy:
I1  I10  I101.

More generally, define the interval IΛ D Is0 s1...sn�1 as the set of points whose
symbolic sequence begins by the finite sequence Λ D s0 s1 . . . sn�1, the remaining
part of the sequence being arbitrary:

IΛ D Is0 s1...sn�1 D fx I Σn(x ) D s0 s1 . . . sn�1g
D ˚

x I s( f i(x )) D s i , i < n
�

D ˚
x I f i (x ) 2 Is i , i < n

�
(2.46)

Such sets are usually termed cylinders, with an n-cylinder being defined by a se-
quence of length n. We now show that cylinders can be expressed simply using
inverse branches of function f. We first define

8 J 	 I f �1
α ( J ) D Iα \ f �1( J ) (2.47)

This is a slight abuse of notation since we have only that f α ( f �1
α ( J )) 	 J without

the equality being always satisfied, but it makes the notation more compact. With
this convention, the base intervals Iα can be written as

Iα D fx I s(x ) D αg D f �1
α (I ) 8α 2 A (2.48)
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To generate the whole set of cylinders, this expression can be generalized to longer
sequences by noting that

IαΛ D f �1
α (IΛ) (2.49)

which follows directly from definitions (2.46) and (2.47). Alternatively, (2.49) can
be seen merely to express that αΛ D σ�1

α Λ. By applying (2.49) recursively, one
obtains

IΛ D f �n
Λ (I ) (2.50)

where f �n
Λ is defined by

f �n
Λ D f �n

s0 s1...sn�1
D f �1

s0
ı f �1

s1
ı � � � ı f �1

sn�1
(2.51)

Just as the restriction of f to any interval Iα is a homeomorphism f α W Iα ! f (Iα),
the restriction of f n to any set IΛ with Λ of length n is a homeomorphism3)

f n
Λ W IΛ ! f n(IΛ). The function f �n

Λ defined by (2.51) is the inverse of this
homeomorphism, which explains the notation. For a graphical illustration, see Fig-
ure 2.10: Each interval of monotonic behavior of the graph of g2 (resp. g4) corre-
sponds to a different interval IΛ , with Λ of length 2 (resp. 4).

Note that because I is connected and the f �1
α are homeomorphisms, all the IΛ

are connected sets and, hence, are intervals in the one-dimensional context. This
follows directly from (2.49) and the fact that the image of a connected set by a
homeomorphism is a connected set. This property will be important in what fol-
lows.

To illustrate relation (2.50), we apply it to the case Λ D 101 considered in the
example above:

I101 D ( f �1
1 ı f �1

0 ı f �1
1 )(I ) D ( f �1

1 ı f �1
0 )(I1)

D f �1
1 (I0 \ f �1(I1))

D I1 \ f �1(I0 \ f �1(I1))

and verify that it reproduces the expression obtained previously.
The discussion above shows that the set of n cylinders Cn D fIΛI Λ 2 Σn(I )g is

a partition of I:

I D
[

Λ2Σn (I )

IΛ IΛ \ IΛ0 D ; (2.52)

with Cn being a refinement of Cn�1 (i.e., each member of Cn is a subset of a mem-
ber of Cn�1). As n ! 1, the partition Cn becomes finer and finer (again, see
Figure 2.10). What we want to show is that the partition is arbitrarily fine in this
limit, with the size of each interval of the partition converging to zero.

3) Note that f n is a homeomorphism only on set IΛ defined by symbolic strings Λ of length p � n
(e.g., f 2 has a singularity in the middle of I0).
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0 1

y

x x10

Figure 2.13 The dashed line indicates the border of a partition such that the preimages x0 and

x1 of the same point y are coded with the same symbol (0). As a consequence, the symbolic

sequences associated to x0 and x1 are identical.

Consider an arbitrary symbolic sequence Σ(x ), with Σn(x ) listing its n leading
symbols. Since by definition IΣnC1(x ) 	 IΣn (x ), the sequence (IΣn(x ))n2N is decreas-
ing, hence it converges to a limit IΣ (x ). All the points in IΣ (x ) share the same infinite
symbolic sequence.

As the limit of a sequence of connected sets, IΣ (x ) is itself a connected set and,
hence, an interval or an isolated point. Assume that IΣ (x ) is an interval. Then, be-
cause of the expansiveness property (2.31), there is N0 such that f N0 (IΣ (x )) D I .
This implies that for points x 2 IΣ (x ), the symbol sN0 D s( f N0 )(x ) can take any
value α 2 A, in direct contradiction of IΣ (x ) corresponding to a unique sequence.
Thus the only possible solution is that the limit IΣ (x ) is an isolated point, show-
ing that the correspondence between points and symbolic sequences is one to one.
Therefore, the symbolic dynamical representation of the dynamics is faithful.

This demonstration assumes a partition of I constructed so that each interval of
monotonicity corresponds to a different symbol (Figure 2.12). This guarantees that
all the preimages of a given point will be associated with different symbols since
they belong to different intervals.

It is easy to see that partitions not respecting this rule cannot be generating. As-
sume that two points x0 and x1 have the same image f (x0) D f (x1) D y and
that they are coded with the same symbol s(x0) D s(x1) D αk (Figure 2.13). They
are then necessarily associated with the same symbolic sequence, consisting of the
common symbol αk concatenated with the symbolic sequence of their common
image: Σ(x0) D Σ(x1) D αk Σ(y ). In other words, associating x0 and x1 with differ-
ent symbols is the only chance to distinguish them because they have exactly the
same future.

In one-dimensional maps, two preimages of a given point are always separated
by a critical point. Hence, the simplest generating partition is obtained by merely
dividing the base interval I into intervals connecting two adjacent critical points
and associating each with a different symbol.
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 Remark 1: This is no longer true for higher-dimensional noninvertible maps,
which introduces some ambiguity in the symbolic coding of trajectories.


 Remark 2: Invertible chaotic maps do not have singularities, hence the construc-
tion of generating partitions is more involved. The forthcoming examples of
the horseshoe and of the Hénon map will help us to understand how the rules
established in the present section can be generalized.

2.7.3

Grammar of Chaos: First Approach

Symbolic dynamics provides a simple but faithful representation of a chaotic dy-
namical system (Section 2.7.2). It has allowed us to understand the structure of the
chaotic and periodic orbits of the surjective tent map, and hence of the surjective
logistic map (Section 2.6.5). But there is more.

As a control parameter of a one-dimensional map varies, the structure of its in-
variant set and of its orbits changes (perestroika). Symbolic dynamics is a powerful
tool to analyze these modifications: As orbits are created or destroyed, symbolic
sequences appear or disappear from the associated symbolic dynamics. Thus, a
regime can be characterized by a description of its set of forbidden sequences. We
refer to such a description as the grammar of chaos. Changes in the structure of a
map are characterized by changes in this grammar.

As we illustrate below with simple examples, which sequences are allowed and
which are not can be determined entirely geometrically. In particular, the orbit of
the critical point plays a crucial role. The complete theory, namely kneading theory,
is detailed in Section 2.7.4.

2.7.3.1 Interval Arithmetics and Invariant Interval

We begin by determining the smallest invariant interval I (i.e., such that f (I ) D I ).
This is where the asymptotic dynamics will take place. Let us first show how to
compute the image of an arbitrary interval J D [xl , xh ]. If J is located entirely to
the left or right of the critical point xc , one merely needs to take into account that
the logistic map is orientation-preserving (resp. orientation-reversing) at the left
(resp. right) of xc . Conversely, if xc 2 J , then J can be decomposed as [xl , xh ] D
[xl , xc) [ [xc , xh ]. This gives

f ([xl , xh ]) D

8̂̂<
ˆ̂:
�

f (xl ), f (xh)
�

if xl , xh � xc�
f (xh), f (xl )

�
if xc � xl , xh�

minf f (xl ), f (xh)g, f (xc)
�

if xl � xc � xh

(2.53)

As was noted by Poincaré, the apparent complexity of chaotic dynamics is such
that it makes little sense to follow individual orbits; what is relevant is how regions
of the state space are mapped between each other. One-dimensional maps are no
exception, and in fact many properties of the logistic map can be extracted from
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the interval arithmetics defined by (2.53). Here we use them to show in a simple
way that some symbolic sequences are forbidden.

Let us now determine I D [xmin, xmax] such that f (I ) D I . We are interested only
in situations where this interval contains the critical point, so that the dynamics is
nontrivial. Note that this implies that xc � f (xc) because we must have xc D
f (y ) � f (xc) (hence the top of the parabola must be above the diagonal). We use

the third case of (2.53) to obtain the equation�
minf f (xmin), f (xmax)g, f (xc)

� D [xmin, xmax] (2.54)

The upper bound is thus the image of the critical point: xmax D f (xc). The lower
bound xmin satisfies the equation

xmin D min f f (xmin), f (xmax)g D min
˚

f (xmin ), f 2(xc)
�

(2.55)

An obvious solution is xmin D f 2(xc), which is valid provided that f ( f 2(xc)) >

f 2(xc). This is always the case between the parameter value where the period-1
orbit is superstable and the one where bounded solutions cease to exist. The other
possible solution is the fixed point x� D f (x�). In the parameter region of inter-
est, however, one has x� < f 2(xc), and thus the smallest invariant interval is given
by

I D �
f 2(xc), f (xc)

�
(2.56)

That it depends only on the orbit of the critical point xc is remarkable. However,
this merely prefigures Section 2.7.4, where we shall see that this orbit determines
the dynamics completely. Note that I ¤ ; as soon as f (xc ) > xc , which is the only
interesting parameter region from a dynamical point of view.

2.7.3.2 Existence of Forbidden Sequences

As shown previously, the set IΛ of points whose symbolic sequence begins by the
finite string Λ is given by IΛ D f �n

Λ (I ), where f �n
Λ is defined by (2.51) and (2.47).

It is easy to see that if IΛ D ;, the finite symbol sequence Λ is forbidden.
From the discussion above, the base intervals are

I0 D �
f 2(xc), xc

�
I1 D �

xc , f (xc)
�

(2.57)

which are nonempty for f (xc) > xc . The existence of symbolic sequences of length
two is determined by the intervals

I00 D I0 \ f �1
0 (I0) D �

f 2(xc), f �1
0 (xc)

�
(2.58a)

I01 D I0 \ f �1
0 (I1) D �

f �1
0 (xc), xc

�
(2.58b)

I10 D I1 \ f �1
1 (I0) D �

f �1
1 (xc), f (xc )

�
(2.58c)

I11 D I1 \ f �1
1 (I1) D �

xc , f �1
1 (xc)

�
(2.58d)
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Figure 2.14 Intervals I00, I01, I11, and I10 defined in (2.58). In each interval, the itineraries have

the same leading two symbols.

which are computed by means of the interval arithmetics (2.53) but can also be
obtained graphically (Figure 2.14). The last three do not provide useful information:
They are nonempty whenever f (xc) > xc , i.e., as soon as I given by (2.56) is well
defined.

By contrast, (2.58a) yields a nontrivial condition for I00 to be nonempty, namely
that f 2(xc) < f �1

0 (xc). This interval has zero width when its two bounds are equal;
thus the string “00” becomes allowed when the critical point belongs to a period-3
orbit:

f 2(xc) D f �1
0 (xc) ) f 3(xc) D xc (2.59)

which is then superstable since the derivative of f is zero at the critical point. For
the logistic map (2.2), this occurs precisely at a D a00 D 1.754 877 66 . . ., inside the
unique period-3 window that can be seen in the bifurcation diagram of Figure 2.3.

Since I00 D ; for a < a00, we conclude that the symbolic string “00” never
appears in the symbolic dynamics of regimes located at the left of the period-3
window. Thus the presence or absence of this string is sufficient to distinguish
regimes located before and after this window.

In particular, this has consequences for the order of the appearance of periodic
orbits. The first periodic orbit carrying the “00” string is the period-3 orbit 001.
Therefore, all other periodic orbits whose names contain “00,” for example 001011,
must appear after 001. This shows that the geometrical structure of the map has a
deep influence on the order of appearance of periodic orbits, as detailed later in a
more systematic way.

Reproducing the calculation above for longer symbolic strings, we would find
that new symbolic sequences always appeared when the critical point was part of a
periodic orbit (i.e., at the parameter inside the periodic window where the orbit is
superstable). This is not surprising if we note that the bounds of all the IΛ intervals
can be expressed in terms of the images and preimages of the critical point xc .
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As a result, the condition of zero width of these intervals can always be rewritten
as an equation of the type f �n

Λ (xc) D xc , expressing that x belongs to a periodic
orbit of period n and of symbolic sequence Λ. For example, (2.59) corresponds to
f �3

100 (xc) D xc . However, we will not proceed in this direction. The observation
that the grammar of the symbolic dynamics is governed completely by the orbit of
the critical point will lead us to a much more efficient framework for classifying
symbolic sequences of orbits.

We conclude this section with the important remark that the symbolic dynam-
ics of a chaotic dynamical system is in general intimately related to its geometrical
structure. In the case of unimodal maps, the structure of the forbidden sequences
depends only on the position of the image of the critical point organizing the dy-
namics. Thus, given an arbitrary symbolic sequence, it is in principle possible to
determine whether it has been generated by a one-dimensional map. More gen-
erally, extracting the structure of a map from the grammar of the symbolic dy-
namics it generates is a fascinating problem. It has been much less explored for
two-dimensional invertible maps than for maps of the interval, and even less for
noninvertible maps of dimension 2 and higher.

2.7.4

Kneading Theory

Rather than solve algebraic equations such as (2.59) to determine forbidden se-
quences, it would be preferable to work completely in the space of symbolic se-
quences. Since the orbit of the critical point plays a crucial role in understanding
which symbolic sequences are forbidden, it is natural to study more closely the
distinguished symbolic sequence associated with the critical point.

Since the first symbol of this sequence does not carry any information (the crit-
ical point xc is the border between intervals I0 and I1), we accordingly define the
kneading sequence K( f ) as the itinerary of the image of xc :

K( f ) D Σ ( f (xc)) D ˚
s ( f (xc)) , s

�
f 2(xc)

�
, . . .

�
(2.60)

Note that the first two symbols are constant inside the parameter region where
f 2(xc) < xc < f (xc ): f 2(xc) and f (xc) are the left and right ends of the invariant

interval I defined in (2.56) and are thus associated with the symbols 0 and 1, respec-
tively. Since the value of the third symbol depends on whether f 3(xc) is located to
the left or right of the critical point, it changes when f 3(xc) D xc (i.e., when the
string “00” becomes allowed), and thus

a < a00 ) K( f ) D f1, 0, 1, . . .g
a > a00 ) K( f ) D f1, 0, 0, . . .g (2.61)

This confirms the importance of the kneading sequence (2.60): The appearance of
the symbolic string “00” in the symbolic dynamics of the logistic map coincides
with its appearance in the kneading sequence.
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To go beyond this observation, we need to be able to determine from K( f ) alone
which sequences are allowed and which are not. The distinctive property of f (xc )
is that it is the rightmost point of the invariant interval (2.56). To see that there is
indeed a similar property for the kneading sequence, we first show that an order
on itineraries can be defined.

2.7.4.1 Ordering of Itineraries

In the example of the xnC1 D 2xn (mod 1) map (Section 2.6.5), the itinerary of
a point (i.e., its binary expansion) not only identifies it uniquely but also contains
information about its position relative to the other points. In that case, the lexi-
cographic order on symbolic sequences reflects exactly the order of the associated
points on the interval. More generally, we would like to define for an arbitrary map
an order relation � on itineraries so that

Σ(x ) � Σ
�
x 0
� () x < x 0 (2.62)

Ordering two itineraries is easy when their leading symbols differ. If the base
intervals Iα are numbered sequentially from left to right as in Figure 2.12, the
itinerary with the smallest leading symbol is associated with the leftmost point and
should be considered “smaller” than the other.

If the two itineraries have a common leading substring, one has to take into
account the fact that map f can be orientation-reversing on some Iα intervals. For
example, the two-symbol cylinders Iαα0 given by (2.58) and shown in Figure 2.14
appear left to right in the order I00, I01, I11, and I10.

Thus, 11 � 10 for the logistic map, which differs markedly from the lexicograph-
ic order. This is because both strings have a leading 1, which is associated with the
orientation-reversing branch f1. Indeed, assume that x11 2 I11, x10 2 I10. From
the second symbol we know that f (x10) < f (x11) because 0 < 1. However, since f
is orientation-reversing in I1, this implies that x11 < x10, hence 11 � 10. With this
point in mind, two arbitrary itineraries Σ , Σ0 can be ordered as follows.

Assume that the two sequences Σ D Λ sm . . . and Σ0 D Λ s0
m . . . have a com-

mon leading symbolic string Λ of length m and first differ in symbols sm and s0
m .

Thus the corresponding points x and x 0 are such that f m(x ) and f m(x 0) belong
to different Iα intervals and, hence, can be ordered. As in the example above, it
then suffices to determine whether the restriction f m

Λ of f m to the interval IΛ is
orientation-preserving or orientation-reversing (has a positive or a negative slope,
respectively) to obtain the ordering of x and x 0, and thus that of Σ and Σ0. Define
the branch parity

�(α) D
(
C1 if f α W Iα ! I is orientation-preserving

�1 if f α W Iα ! I is orientation-reversing
(2.63)

The parity of the finite sequence Λ D s0 s1 . . . sm�1 is then given by

�(Λ) D �(s0) � �(s1) � � � � � �(sm�1) (2.64)
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Figure 2.15 Determination of the relative or-

der of symbolic sequences. White (resp. black)

nodes correspond to positive (resp. nega-

tive) parity. The topmost node corresponds

to the empty sequence, and sequences are

formed by following edges carrying the sym-

bols 0 or 1. When an edge “1” is followed,

the parity of the node changes. A white node

has an edge “0” on its left and an edge “1” on

its right (this is the lexicographic order). At a

black node, these two edges are in the oppo-

site order because of the negative parity. To

order a set of symbolic sequences, one follows

the edges corresponding to the successive

symbols of the sequence until no other se-

quence remains in the branch. The ordered

sequences can then be read from left to right.

If the map f m
Λ D f sm�1 ı . . . f s1 ı f s0 (i.e., the restriction of f m to the interval IΛ)

is orientation-preserving (resp. orientation-reversing), then �(Λ) D C1 (resp. �1).
In the case of unimodal maps, �(Λ) D C1 if there is an even number of “1” (or of
the symbol associated with the orientation-reversing branch), and �1 otherwise.

We can now define the order

Σ D Λ s . . . � Σ0 D Λ s0 . . . ()

8̂̂<
ˆ̂:

s < s0 and �(Λ) D C1

or

s > s0 and �(Λ) D �1

(2.65)

This order satisfies condition (2.62). Let us illustrate these rules with the example
of period-4 orbit 0111 of the logistic map. The relative order of the four periodic
orbits is

0111 � 1101 � 1110 � 1011 (2.66)

as detailed in Figure 2.15.
Another common technique for ordering symbolic sequences is to use invariant

coordinates. Given a sequence Σ D s0 s1 s2 . . . sk . . . 2 f0, . . . , N � 1gN , we define its
invariant coordinate θ (Σ) by

θ (Σ) D
1X

iD0

ti

N iC1 ti D
(

s i if �(s0 . . . s i�1) D C1

(N � 1) � s i if �(s0 . . . s i�1) D �1
(2.67)

so that 0 � θ (Σ) � 1. By inspecting (2.65) and (2.67), one easily verifies that two
symbolic sequences can be ordered by comparing their invariant coordinates:

Σ � Σ0 () θ (Σ) < θ (Σ0) (2.68)
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As an example, the invariant coordinate of the periodic point 1011 of the logistic
map is

θ (1011) D
�

1
21 C 1

22 C 0
23 C 1

24 C 0
25 C 0

26 C 1
27 C 0

28

�

�
�

1 C 1
28

C 1
216

C � � �
�

D 105
128

� 256
255

D 14
17

(2.69)

where the digits in bold are those that have been inverted with respect to the orig-
inal sequence. Because 1011 has negative parity, the binary digit sequence of θ (Σ)
has period 8 instead of 4. The first factor in (2.69) corresponds to the basic pattern
“11010010,” and the second term comes from the infinite repetition of this pat-
tern. Note that the fraction obtained is the position of the corresponding periodic
point of the tent map defined on [0, 1]. The reader may verify as an exercise that
2 � j1 � θ (1011)j D θ (0111) and that 2 � θ (0111) D θ (1110).

2.7.4.2 Admissible Sequences

We showed earlier that each point x inside the invariant interval (2.56) satisfies
f 2(xc) < x < f (xc). Using (2.62), we can now translate this ordering relation

between points into a ordering relation between symbolic sequences:

8x 2 I σK( f ) � Σ(x ) � K( f ) (2.70)

since K( f ) D Σ( f (xc )), by definition. Moreover, the orbit of a point x 2 I is
forever contained in I, by definition. A necessary condition for a sequence Σ to be
the itinerary Σ(x ) of a point x 2 I is thus that (2.70) holds for any Σ( f n(x )) and
thus that

8n � 0 σn Σ � K( f ) (2.71)

One of the fundamental results of one-dimensional symbolic dynamics is that
this is also a sufficient condition: Condition (2.71) completely determines whether
a sequence occurs as the itinerary of a point [12, 52]. A sequence satisfying it is said
to be admissible (equivalently, one can test whether σK( f ) < σn Σ for all n).

Therefore, all the information about the symbolic dynamics of a map is contained
in its kneading sequence K( f ). As a matter of fact, it can be shown that if two uni-
modal maps have the same kneading sequence, and that if this sequence is dense
(i.e., the orbit of xc is aperiodic), then the two maps are topologically conjugate.

Condition (2.71) is particularly simple to test when the symbolic sequence Σ is
periodic since the shifts σn Σ are finite in number. For example, let us assume that
K( f ) D 1001001 . . . and that we want to know whether the periodic sequences
01101101 and 00101 are admissible. We first determine the rightmost periodic
points (for which σn Σ is maximal) of the two orbits: These are 10110110 and 10010.
We then compare them to the kneading sequence K( f ) and find that

10110110 � K( f ) D 1001001 . . . � 10010
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Thus the period-8 sequence 10110110 is admissible, whereas the period-5 sequence
10010 is not. This indicates that the periodic orbit associated with the latter se-
quence does not exist in maps with the given K( f ). We also see that every map
that has the second periodic orbit also has the first. Therefore, the order of ap-
pearance of periodic orbits is fixed, and the structure of the bifurcation diagram of
Figure 2.3 is universal for unimodal maps. We investigate this universality in the
next section.

2.7.5

Bifurcation Diagram of the Logistic Map Revisited

We are now in a position to understand the structure of the bifurcation diagram
shown in Figure 2.3 using the tools of symbolic dynamics introduced in the previ-
ous sections. This bifurcation diagram displays two types of bifurcations: saddle–
node and period-doubling bifurcations. Each saddle–node bifurcation creates a pair
of periodic orbits of period p, one unstable (the saddle) and the other stable (the
node). The latter is the germ of a period-doubling cascade with orbits of periods
p � 2n .

As discussed in Section 2.7.4, the kneading sequence governs which symbol-
ic sequences are admissible and which are forbidden, hence the order in which
new sequences appear. Therefore, there must be a simple relation between the
symbolic names of the orbits involved in a saddle–node or in a period-doubling
bifurcation. Moreover, the different saddle–node bifurcations and their associated
period-doubling cascades must be organized rigidly.

2.7.5.1 Saddle–Node Bifurcations

At a saddle–node bifurcation, the two newly born periodic orbits of period p are
indistinguishable. Thus, they have formally the same symbolic name. This is not
in contradiction with the one-to-one correspondence between orbits and itineraries
that was shown to hold for chaotic regimes: At the bifurcation, the node is stable
and there is no sensitivity to initial conditions.

When the two orbits are born, they have a multiplier of C1 (Section 2.4.1), which
implies that f p is orientation-preserving in the neighborhood of the orbit. Con-
sequently, the common symbolic itinerary of the two orbits must contain an even
number of symbols “1” (in the general case, an even number of symbols with neg-
ative parity).

A symbolic itinerary can change only if one of the periodic points crosses the
critical point, which is the border of the partition. This happens to the stable node
when it becomes superstable, changing its parity on its way to the period-doubling
bifurcation where its multiplier crosses �1. Thus, its parity must be negative, and
its final symbolic name (i.e., the one in the unstable regime) must differ from that
of the saddle by a single symbol.

One can proceed as follows to see which symbol differs. Each periodic point is
associated with a cyclic permutation of the symbolic name. For example, the orbit
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Figure 2.16 The 01111 orbit becomes 01011 at a superstable point.

01111 has periodic points with sequences 01111, 11110, 11101, 11011, and 10111.
These periodic points can be ordered using the kneading order (2.65), here

01111 � 11110 � 11011 � 11101 � 10111

The symbol that is flipped at the superstable parameter value is obviously asso-
ciated with the point that is then degenerate with the critical point. The image of
this point is thus the rightmost periodic point, corresponding to the highest se-
quence in the kneading order (Figure 2.16). Consequently, a simple rule to obtain
the symbolic name of the saddle–node partner of an orbit of given name is to flip
the last symbol of the highest itinerary (i.e., of the itinerary of the rightmost point).
Alternatively, one can flip the second to last symbol of the leftmost itinerary.

In the example above, the saddle–node partner of the 01111 orbit is thus 01101.
Other examples of saddle–node pairs include 00

11, 000
11, and 011010

11.

2.7.5.2 Period-Doubling Bifurcations

When applying the algorithm above on an arbitrary symbolic name, it can occur
that the result is not valid because it is the repetition of a shorter name. For exam-
ple, 0111 leads to 0101 D (01)2. This indicates that the long name corresponds to
the period-doubled orbit (the daughter) of the orbit identified by the short name
(the mother). The 0111 orbit is the daughter of the 01 orbit. The latter is itself the
daughter of the 1 orbit.

This can be understood with the same arguments as for the saddle–node bifur-
cations. When the period-doubled orbit is born, its itinerary is a double copy of that
of the mother. Its parity is thus positive, which is consistent with the fact that the
orbit is born with a multiplier of C1. The symbolic name of the mother at the bifur-
cation is its final name. As the daughter orbit proceeds to its own period doubling
(and thus to its unstable domain), the preimage of its rightmost point crosses the
critical point, changing the associated symbol.
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Hence we have a simple way to determine whether an orbit belongs to a period-
doubling cascade and what the names of its mother and all its ancestors are. Other
examples of mother–daughter pairs are (001, 001011) and (00101, 0010100111). We
conclude with the period-doubling cascade originating from the period-1 orbit. The
symbolic names of the successive period-doubled orbit can be constructed as

1
D�! 11

F�! 01
D�! 0101

F�! 0111
D�! 01110111

F�! 01110101 � � � (2.72)

where D and F represent the action of doubling the word and flipping the second
to last symbol, respectively.

2.7.5.3 Universal Sequence

Consider two periodic itineraries Σ � Σ0. For some parameter a, the kneading
sequence K( f a) is such that Σ � K( f a) � Σ0, so that Σ satisfies the admissibility
condition (2.71) but not Σ0. Thus, the periodic orbit associated to Σ must be created
before the one associated to Σ0.

This observation suffices to build a complete list of the successive bifurcations
occurring in the bifurcation diagram of Figure 2.3. Using the rules derived in pre-
vious sections, we can classify all the symbolic names according to which series of
bifurcations they belong to.

To this end, all periodic itineraries up to a given period p are sorted according to
the kneading order, with saddle–node pairs and orbits of the same period-doubling

Table 2.1 Sequence of bifurcations in the

logistic map up to period 8 (from top and

to bottom and left to right). The notation Pi

refers to the ith bifurcation of period P. We

also give inside brackets an alternative clas-

sification that distinguishes between saddle–

node and period-doubling bifurcations. In this

scheme, the ith saddle–node bifurcation of

period P is denoted si
P , and si

P � 2k is the

orbit of period P � 2k belonging to the period-

doubling cascade originating from si
P .

Name Bifurcation Name Bifurcation Name Bifurcation

0
1 11[s1] 001010

11 73[s3
7] 00010

11 64[s3
6]

01 21[s1 � 21] 0010100
11 85[s4

8] 0001110
11 811[s9

8]
0111 41[s1 � 22] 0010

11 52[s2
5] 000110

11 77[s7
7]

01010111 81[s1 � 23] 0011100
11 86[s5

8] 0001100
11 812[s10

8 ]

01110
11 61[s1

6] 001110
11 74[s4

7] 0000
11 53[s3

5]
0111110

11 82[s1
8] 0011110

11 87[s6
8] 0000100

11 813[s11
8 ]

011110
11 71[s1

7] 00110
11 63[s2

6] 000010
11 78[s8

7]

0110
11 51[s1

5] 0011010
11 88[s7

8] 0000110
11 814[s12

8 ]
011010

11 72[s2
7] 001100

11 75[s5
7] 00000

11 65[s4
6]

0110110
11 83[s2

8] 000
11 42[s1

4] 0000010
11 815[s13

8 ]
00

11 31[s3] 00010011 89[s1
4 � 21] 000000

11 79[s9
7]

001011 62[s3 � 21] 000100
11 76[s6

7] 0000000
11 816[s14

8 ]

0010110
11 84[s3

8] 0001010
11 810[s8

8]
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cascade grouped together. We denote the ith bifurcation creating period-P orbits as
Pi , with the node being called Pi f (for flip) and the saddle Pi r (for regular). This
is illustrated in Table 2.1, which lists the symbolic names of all periodic orbits of
period up to 8 of the logistic map. These names are sorted by order of appearance,
and the bifurcation in which they appear is indicated.

This sequence of symbolic names, often referred to as the universal sequence, was
discovered by Metropolis, Stein, and Stein [5]. It is universal in that it depends only
on the kneading order (2.65): The bifurcation diagram of any unimodal map will
display exactly the same bifurcations in exactly the same order.

Note, however, that this holds only for one-dimensional maps. If a two-dimen-
sional map is sufficiently dissipative so that its return map can be well approxi-
mated by a one-dimensional map, most of the bifurcation sequences will occur in
the order predicted by the universal sequence. However, there will be a few dis-
crepancies, and the order of many bifurcations will be reversed as one decreases
dissipation [54].

2.7.5.4 Self-Similar Structure of the Bifurcation Diagram

In this section we mention briefly another surprising property of the bifurcation
diagram of the logistic map that is unveiled by symbolic dynamics. Look at the
period-3 window beginning at a D 1.75 in Figure 2.4. There is a whole parameter
range where the attractor is contained in three disconnected pieces, before it ex-
pands suddenly. These pieces are visited successively in a fixed order. We call this
parameter region the generalized period-3 window. Look more closely at, say, the
middle branch: This is a complete copy of the whole bifurcation diagram! In par-
ticular, there is a period-9 window that is to the period-3 window what the period-3
is itself to the whole diagram.

To understand this, we note that the base symbols 0 and 1 can be viewed as
the names of the period-1 orbits organizing the global dynamics. Similarly, let us
denote by X D 101 and Y D 100 the symbolic names of the two period-3 orbits
born in the saddle–node bifurcation initiating the period-3 window. All periodic
orbits appearing in the generalized period-3 window can be written as words in the
letters X and Y.

Indeed, since the attractor is split into three pieces visited successively, the dy-
namics can be simplified by considering the third iterate f 3. Each of the three
pieces is a different attractor of f 3. The return map for each attractor is a unimodal
map, with two “period-1” orbits that are in fact periodic points of the two period-3
orbits 100 and 101. Any pair of symbols X 0 and Y 0, such that the sequences X 0 and
Y 0 correspond to periodic points that are degenerate at the period-3 saddle–node
bifurcation, can thus be used to code orbits of this map. Because we chose X and
Y above to be higher in the kneading order than all their cyclic permutations, they
satisfy this condition as well as any pair σk X , σk Y .

Since the two words X D 101 and Y D 100 are such that (i) X � Y and (ii) they
have parities �(X ) D C1 and �(Y ) D �1, it is easy to see that the ordering of two se-
quences W1(X , Y ) and W2(X , Y ) will be exactly the same as for the corresponding
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sequences W1(0, 1) and W2(0, 1). For example,

Y X Y Y X Y Y X � Y X X Y X () 10110110 � 10010

This explains why the bifurcation diagram in the generalized period-3 window
has exactly the same structure as the whole diagram. Using the names of the stan-
dard period-doubling cascade given in (2.72), we find that the orbits involved in the
period-doubling cascade of this window are Y, X Y , X Y Y Y , X Y Y Y X Y X Y . The
first orbits to appear in the window are the X and Y orbits (naming them after their
sequences in the unstable regime); the last is the Y X 1 orbit.

In fact, the results of this section could have been foreseen: They are a conse-
quence of the qualitative universality of bifurcations in unimodal maps. Inside the
period-3 window, the third return map is a unimodal map and therefore displays
the same series of bifurcations as the first return map.

2.8

Shift Dynamical Systems, Markov Partitions, and Entropy

In Section 2.7, we saw how a chaotic system can be analyzed with the tools of
symbolic dynamics. In particular, each regime of the logistic map is characterized
by a different grammar (i.e., a set of forbidden symbolic sequences). Moreover,
symbolic dynamics can be shown in some cases to provide a complete description
of a dynamical system; for example, it is known that chaotic unimodal maps are
conjugate if they have the same kneading sequence.

It is thus natural to study systems whose evolution laws are defined directly in a
symbolic space by rules specifying which sequences are admissible. Such systems
are usually referred to as symbolic dynamical systems, or as shift dynamical systems
when they are based on the shift map [55]. Tools developed to characterize these
systems can then be applied to any physical system for which a symbolic dynamical
description has been obtained. This is illustrated by computations of entropy, an
important measure of chaotic dynamics.

Here we limit ourselves to shifts of finite type, which are characterized by a finite
set of forbidden sequences. The interest of finite shifts is twofold. First, there are
dynamical systems, those for which a Markov partition exists, that can be shown to
be equivalent to a finite shift. Second, systems whose grammar cannot be specified
by a finite set of rules can always be approximated with increasing accuracy by a
sequence of finite shifts of increasing order.

2.8.1

Shifts of Finite Type and Topological Markov Chains

The natural phase space of a symbolic dynamical system is the set of infinite or
bi-infinite sequences of symbols from an alphabet A. Here we assume that the
alphabet is finite and choose A D f0, . . . , N�1g, where N is the number of symbols.
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The systems we consider here share the same time-one map: the shift operator σ,
which shifts symbols one place to the left (Section 2.7.1).

In the case of the logistic map, the symbolic space consisted of one-sided sym-
bolic sequences. We noted in Section 2.7.1 that this makes σ noninvertible, since
memory of the leading symbol is lost after each time step. If the shift operator has
to be invertible, its action must not discard information. Thus sequences must be
bi-infinite (two-sided), for example,

Σ D . . . s�3 s�2 s�1.s0 s1 s2 (2.73)

with the dot separating the forward sequence ΣC D s0 s1 . . . from the backward se-
quence Σ� D s�1 s�2 . . . These two sequences describe the future and the past of
the point, respectively. The action of the shift operator on a sequence is then given
by

σ(. . . s�1.s0 s1 . . .) D . . . s�1s0.s1 . . .

The dot is merely moved to the right, which obviously preserves the information
contained in the sequence. This is illustrated with the horseshoe map in Sec-
tion 2.10.

The distinction between invertible and noninvertible dynamics is not made by
most methods developed for characterizing symbolic dynamical systems. As we
see below, they usually involve determining which finite blocks of symbols can
appear in a typical sequence and which cannot. Thus, whether sequences are one-
or two-sided is not relevant.

Full shifts are the simplest shift symbolic dynamical systems: Any sequence made
of letters of the alphabet is allowed. Thus the symbolic space is AN or AZ, de-
pending on the invertibility of the dynamics. Two full shifts can differ only by the
number of symbols of their alphabets. A full shift on r symbols is termed an r-shift.

In a general shift dynamical system, not all sequences are allowed: It is then
called a subshift. We are interested only in subshifts whose set of allowed se-
quences S is shift-invariant (i.e., σS D S). This implies that whether a finite
symbol string can be found in a sequence Σ 2 S depends not on its position in the
sequence but only on the content of the string. Finite symbol strings are also often
referred to as blocks, with an n-block containing n symbols, or as words.

One could therefore provide a complete description of a dynamical system (S , σ)
by specifying its language (i.e., the list of all finite strings of symbols that can be
extracted from infinite sequences). It is usually much more convenient to specify
its set F of irreducible forbidden words (IFWs). An IFW never appears in a sequence
of S and does not contain any other forbidden word. For example, assume that
F D f00g. The word 001 is a forbidden word but is not irreducible because it
contains 00. More generally, any word of the form u00v , where u and v are arbitrary
words, is not irreducible. By construction, any forbidden word of a language must
have one of the elements of F as a substring or is itself an IFW. IFWs are of length
l � 2 since length-1 forbidden words can be removed by reducing the alphabet.

Of particular importance are the shifts of finite type (SFTs), which are described
by a finite number of IFWs. Indeed, they can be specified with a finite amount of
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information, and invariant quantities such as the entropies described later can then
be computed exactly. If the longest IFW of an SFT is of length L C 1, the order of
the shift is L.

SFTs of order 1 are also called topological Markov chains. Since their set of IFWs
contains only 2-blocks, the structure of this set can be described by a transition
matrix M such that

Ms1,s0 D
(

0 if s0s1 is forbidden

1 if s0s1 is allowed
(2.74)

That is, Ms1,s0 is nonzero if s1 is allowed to follow s0 in a sequence (i.e., there is
a transition s0 ! s1). A simple example is the transition matrix of the SFT with
F D f00g:

M D
	

0 1
1 1



(2.75)

which characterizes the symbolic dymamics of the logistic map immediately before
the period-3 window (Section 2.7.3.2).

Markov chains are all the more important as any SFT of order L can be reformu-
lated as a Markov chain by recoding sequences appropriately. Assume that there
are N 0 allowed L-blocks, and denote by AL the alphabet made of these N 0 symbols.
Any sequence s0 s1 . . . sk . . . can then be recoded as S0S1 . . . Sk . . ., where the new
symbol Sk 2 AL is the L-block starting at position k: Sk D sk skC1 . . . sL�1Ck . For
example, S0 D s0 s1 . . . sL�1 and S1 D s1 s2 . . . sL.

Now, assume that S D s0 s1 . . . sL�1 and S 0 D s0
0 s0

1 . . . s0
L�1 are two symbols of

AL. The element MS 0 ,S of the new transition matrix is 1 if:


 The head of S coincides with the tail of S 0: s0
0 s0

1 . . . s0
L�2 D s1 . . . sL�1;


 s0 s1 . . . sL�2 s0
L�1 is an allowed L-block of the original shift

and is 0 otherwise. For example, assume that F D f00, 0110g and sequences are
recoded using blocks of four symbols. Then one has M101,011 D 0 because 11
(tail of S) differs from 10 (head of S 0), M110,011 D 0 because 0110 is an IFW, but
M111,011 D 1 because 0111 does not contain any IFW.

Therefore, we see that any SFT can be described completely by a transition ma-
trix M. In the following section we show how to extract from this matrix informa-
tion about the spectrum of periodic orbits of the dynamical system and an impor-
tant measure of chaos, topological entropy.

2.8.2

Periodic Orbits and Topological Entropy of a Markov Chain

As discussed previously, periodic points of a symbolic dynamical system corre-
spond to periodic sequences Σ satisfying σ p Σ D Σ. Since periodic orbits play a
crucial role, we want to be able to compute the number of periodic sequences of
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Figure 2.17 A transition matrix can be repre-

sented by a directed graph. Nodes correspond

to possible states and edges indicate whether

transition from one state to another is possi-

ble. (a) This graph corresponds to transition

matrix (2.75); (b) this graph describes a gram-

mar in which C must be preceded by A: The

sequences BC and C C cannot occur.

period p of an arbitrary Markov chain, given its transition matrix M. This problem
is part of a more general one, which is to determine the number of allowed symbol
strings of length n. An important measure of chaos, topological entropy, character-
izes how this number increases when n ! 1.

A transition matrix is conveniently represented by a directed graph. To each sym-
bol corresponds a node, which can be viewed as a state. When the transition from
“state” i to “state” j is allowed (i.e., M j i ¤ 0), there is a directed edge going from
node i to node j (Figure 2.17). The problems stated above can be reformulated as
follows: How many distinct paths of length n does the graph have? How many of
these paths are closed?

We first compute the number P n
j i of paths connecting node i to node j in exactly

n steps. This can be done inductively. Obviously, one can go from i to j in one step
only if there is an edge between the two sites, thus P1

j i D M j i . Then we note that
each itinerary linking i to j in n steps goes from i to some site k in n � 1 steps, then
follows the edge from k to j in one step. By summing over all possible intermediary
sites k, one obtains

P n
j i D

NX
kD0

M j k P n�1
k i

which is immediately seen to be the rule for matrix multiplication. Since P1
j i D

M j i , it follows that

P n
j i D (M n) j i (2.76)

Hence all the relevant information is contained in the successive powers of the
transition matrix.
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Periodic sequences of period p correspond to paths of length p that begin and
end at the same node. Thus the number N f (p ) of periodic points of period p is

N f (p ) D
N�1X
kD0

M p
k k D trM p (2.77)

Similarly, the number Ns(p ) of p-symbol strings equals the total number of paths
of length p � 1 and thus is given by the sum of the elements of M p�1. This can
be formalized as follows. Let V p be the vector whose ith component V p

i is the
number of length-p symbol strings beginning with symbol i. It is easy to see that
the components of V 1 are all 1 and that V p D M p�1V 1. Thus,

Ns(p ) D (V 1)T V p D (V 1)T M p�1V 1 (2.78)

Expressions (2.77) and (2.78) show that N f (p ) and Ns(p ) have the same asymp-
totic behavior. Indeed, the action of M p for large p is determined by its largest
eigenvalue λmax and the associated eigenvector. It is easily shown that if λmax > 1,
then

lim
p!1

log N f (p )
p

D lim
p!1

log Ns(p )
p

D log λmax (2.79)

The growth rate of the number Ns(p ) of p-blocks

hT D lim
p!1

log Ns(p )
p

D log λmax (2.80)

is called the topological entropy. It measures the average amount of information
that is extracted by reading one symbol of a typical sequence. Equation 2.79 shows
that the topological entropy of a Markov chain depends in a very simple way on
the transition matrix. It also illustrates the fact that in general the growth rate
of the number of periodic points is equal to the topological entropy, as noted in
Section 2.6.4.1. More sophisticated techniques to compute topological entropy are
presented in Section 2.8.6. Let us consider two examples:


 The eigenvalues of transition matrix (2.75) are (1 ˙ p
5)/2. The largest one is

λmax � 1.618 033 9 and is known as the golden mean. This Markov chain, accord-
ingly called the golden mean shift, has topological entropy hT � 0.481 211 8.


 The transition matrix of the full N-shift is filled with 1s. Its largest eigenvalue
is N, and the topogical entropy is hT D ln N . In particular, the 2-shift has hT D
0.693 147 1, which is greater than for the golden mean shift: Topological entropy
increases as chaos becomes more developed.

2.8.3

Markov Partitions

Markov chains are interesting not only as model dynamical systems but also be-
cause there are some classical dynamical systems whose symbolic dynamics can
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be represented exactly by a topological Markov chain. We have already encountered
a few examples of such systems. The simplest ones are the tent and logistic maps
associated with a full 2-shift: Every sequence of “0” and “1” is associated with a
physical orbit. The logistic map at the beginning of the period-3 window is another
example of a finite shift; the only forbidden sequence is the string “00.” A natural
question then is: Under what conditions is a dynamical system described faithfully
by a Markov chain?

The symbolic coding of a dynamical system relies on the existence of a parti-
tion P D fP0,P1, . . . ,PN�1g of phase space into N disjoint regions Pi . At each
time step, the current system state is coded with the symbol i associated with the
region Pi to which it belongs. Because the partition and the time-one map deter-
mine completely the symbolic dynamics, it is not surprising that the condition for
being describable by a Markov chain involves the partition and the images of the
members of the partition.

We now state this condition without a proof. Assume that there exists a partition
P D fPig such that the intersection of any member with the image of another is
either itself or empty:

8i, j Pi \ f
�P j

� D
(
Pi

; (2.81)

The structure of such a partition can be described concisely but faithfully by a tran-
sition matrix MP defined by

MP
i j D

(
1 if Pi \ f (P j ) ¤ ;
0 otherwise

(2.82)

It can be shown that the dynamical system coded by the partition P is then com-
pletely equivalent to the Markov chain of transition matrix MP . In particular, the
topological entropy of the original dynamical system is equal to that of the Markov
chain, and both systems have the same spectrum of periodic orbits. According-
ly, a partition P satisfying (2.81) is called a Markov partition. Examples of Markov
partitions in the logistic map at special values of parameter a are given in Sec-
tion 2.9.2.

Note that even when there is a generating partition (such as the one based on
critical points of a one-dimensional map) and it is not of a Markov type, the exis-
tence of a Markov partition is not precluded. If the system is equivalent to a shift of
a finite type, then an analysis of the symbolic dynamics obtained with the generat-
ing partition should reveal that there are a finite number of irreducible forbidden
words. As described in Section 2.8.1, a Markov chain can then be obtained with a
suitable recoding and the topogical entropy computed using the associated transi-
tion matrix.
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2.8.4

Approximation by Markov Chains

In fact, only a small fraction of the regimes of a logistic map can be represented by
a Markov chain exactly. Indeed, there is only a countable number of finite matrices
of 0 and 1, whereas these regimes are indexed by parameter a, which is a real
number [52]. Moreover, chaotic regimes are associated with kneading sequences
that are not eventually periodic, which makes it generally impossible to describe
the symbolic dynamics by a finite number of IFWs.

However, this does not make shifts of a finite type irrelevant. Indeed, it is not
possible to analyze arbitrarily long symbol sequences. In practice, there is an upper
bound on the length of the longest symbolic sequence that can be obtained in a
reasonable time. This limits the search for forbidden symbol blocks to a maximal
length. Otherwise, longer symbol blocks may be classified incorrectly as forbidden
only because their probability of occurrence is too small. For example, assume that
an orbit of 1 million (� 220) points has been recorded and coded on two symbols. It
is certainly pointless to determine forbidden blocks longer than 20 symbols since
the least probable one will occur at most once in the best case, where all blocks are
equiprobable.

Therefore, Markov chains are still relevant for characterizing dynamical systems
that are not conjugate to a shift of finite type, provided that a generating partition
is known and a long symbolic sequence has been recorded. If the list of forbidden
words has been determined for word lengths up to L, this gives a natural approxi-
mation of the system under study by a finite-type shift of order L, and hence by a
Markov chain after a suitable recoding. Note that this systematically overestimates
topological entropy estimates because higher-order forbidden sequences are ne-
glected. The expression hT D ln λmax for a Markov chain assumes that the number
Ns(p ) of p-blocks can be determined for arbitrary p from the transition matrix. If
there is more “pruning” than described by this transition matrix, the actual num-
ber of sequences will be lower, as well as the topological entropy. Carrying out this
computation for increasing block lengths and comparing the results may help to
estimate its accuracy.

2.8.5

Zeta Function

As shown in Section 2.8.2, the number of periodic points of period n, Pn , can be
computed as Pn D tr M n , where M is the Markov transition matrix. The infor-
mation contained in the transition matrix can be transformed into a generating
function for Pn by defining

� (t) D exp

 
1X

nD1

Pn

n
t n

!
(2.83)

With a little bit of algebraic calisthenics, it is possible to show that

� (M, t) D 1
det(Id � tM )

(2.84)
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We illustrate one use of the zeta function in the example below.

Example 2.2

The spectrum of orbits forced by the period-3 orbit 31 of the logistic map is com-
puted using the Markov transition matrix M; cf. (2.75). If the matrices

Id D
	

1 0
0 1




and

M D
	

0 1
1 1




have been defined previously, as well as the positive integer N (D 12 below), the
generating function

P
n Pn/nt n is given up to degree N by the simple Maple call

> taylor (�log (det(Id � t � M )) , t D 0, N C 1)

t C 3
2

t2 C 4
3

t3 C 7
4

t4 C 11
5

t5 C 18
6

t6 C 29
7

t7 C 47
8

t8 C 76
9

t9

C 123
10

t10 C 199
11

t11 C 322
12

t12 C O �
t13� (2.85)

We read these results as follows:

1. There is one period-1 point 11.
2. There are three period-2 points. One is the period-1 point 11; the other two be-

long to the single period-2 orbit 21.
3. There are four period-3 points. One is 11; the other three belong to the degenerate

saddle–node pair 31 (001 and 011).
4. There are seven period-4 points, which belong to the orbits 11, 21, and 41 of the

initial period-doubling cascade.
5. There are 11 period-5 points. One belongs to 11. The remaining 10 belong to

two period-5 orbits, which comprise the saddle–node pair 01111 and 01101.

Continuing in this way, we construct the remaining results. These are summarized
in Table 2.2. It is a simple matter to verify that the results of this table are consistent
with the results of Table 2.1 up to period 8.

2.8.6

Dealing with Grammars

At the saddle–node bifurcation of the period-3 orbit, the adjacency matrix (Markov
transition matrix) is given by (2.75). This matrix tells us that the symbol 0 must
be followed by the symbol 1, and the symbol 1 can be followed by either of the
symbols 0 or 1.
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Table 2.2 Number of orbits up to period p D 12 forced by 31 computed using the zeta function

based on the golden mean matrix (2.75).

p N(p ) Lower-period orbits Period-doubled Number of saddle–node pairs

1 1 11

2 3 (11C 21)

3 4 11 C 31

4 7 (11 C 21C 41) 0
5 11 11 1

6 18 11 C 21 C 31 1
7 29 11 2

8 47 (11 C 21 C 41 81) 2

9 76 11 C 31 4
10 123 11 C 21 C (51C 104) 5

11 199 11 9

12 322 (11 C 21 C 41) C 31 C (61C 122) 12

2.8.6.1 Simple Grammars

It is useful to introduce an alternative representation for the dynamics. This in-
volves introducing two symbols (words) A D 01 and B D 1. These two words have
lengths 2 and 1, respectively. In this representation, A can be followed by either A
or B, as is true also for B. The transition matrix is full:

M D
	

1 1
1 1



(2.86)

and the grammar is simple (no transitions are forbidden).
The periodic orbits in the dynamics can be constructed as follows. Replace the

nonzero elements in the first row of M by the symbol A and those in the second
row by the symbol B (A and B do not commute).

M D
	

1 1
1 1



�!

	
A A
B B



D M (2.87)

Then the complete set of periodic orbits is constructed by computing trMn , n D
1, 2, 3, . . .

Example 2.3

For n D 1, 2, and 3 we find

n tr Mn Orbits

1 A C B 01 C 1

2 2A2 C AB C B2 2(01)2 C 011 C (1)2

3 2A3 C 2ABA C 2A2 B C AB2 C B3 2(01)3 C 4(01101) C 0111 C (1)3
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Reduction to simple grammars is often useful in analyzing experimental da-
ta. For example, chaotic data generated by the Belousov–Zhabotinskii reaction
(cf. Chapter 7) have been reduced to a symbolic code sequence involving the two
symbols 0 and 1. The rules of grammar observed in the experimental data are as
follows:

1. The symbol 0 must be followed by the symbol 1.
2. The symbol 1 can be followed by 0 or 1.
3. Symbol sequences (11 � � � 1) of length p can occur for p D 1, 2, 3, 4 but not for

p > 4.

It appears that the vocabulary of this dynamics consists of the four words 01, 011,
0111, and 01111. It also appears that any of these words can be followed by any
other word. The grammar is simple and represented by a 4 � 4 Markov transition
matrix whose 16 elements are 1. The periodic orbits are obtained as described above
for the golden mean case.

The topological entropy for dynamics consisting of a finite number of words
of varying length obeying a simple grammar (full shift) is easily determined as
follows. Assume that there are w (p ) words of length p, p D 1, 2, 3, . . . Then the
number of ways, N(T ), of constructing a word of length T is determined by the
difference equation

N(T ) D w (1)N(T � 1) C w (2)N(T � 2) C � � � D
X
pD1

w (p )N(T � p ) (2.88)

The number N(T ) behaves asymptotically like N(T ) � A(XM )T , where A is some
constant and XM is the largest real root of the characteristic equation

X T D
X
pD1

w (p )X T�p or 1 D
X
pD1

w (p )
X p (2.89)

Example 2.4

For the full shift on two symbols 0 and 1,

1 D 2
X

H) hT D log 2

Example 2.5

For golden mean dynamics, w (1) D 1, w (2) D 1, and

1 D 1
X

C 1
X 2 H) XM D 1 C p

5
2

and hT D 0.481 212
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Example 2.6

For the Belousov data described above, w (p ) D 1 for p D 2, 3, 4, 5 and w (p ) D 0
for p D 1 and p > 5, so that

1 D 1
X 2

C 1
X 3

C 1
X 4

C 1
X 5

XM D 1.534 158 and hT D 0.427 982

2.8.6.2 Complicated Grammars

There are many cases in which the dynamics either consists of or is well approx-
imated by a finite vocabulary with a nontrivial grammar. The two questions ad-
dressed above (description of periodic orbits, computation of entropy) are still of
interest.

The spectrum of periodic orbits can be computed by following the algorithm
used above.

1. Write out the Markov transition matrix M for the vocabulary.
2. Replace each nonzero matrix element 1 in row i by the noncommuting symbol

wi representing the ith word, effecting the transition M ! M.
3. Compute trMn for n D 1, 2, . . .
4. Replace each word sequence by the appropriate sequence of symbols from the

original alphabet (i.e., 0 and 1).

The problem of computing the topological entropy for this dynamics is more sub-
tle. It is isomorphic to the problem of computing the capacity of a transmission
channel. The capacity of a transmission channel is (Shannon, [56, 57])

C D lim
T!1

1
T

log N(T )

Here N(T ) is the number of allowed signals of duration T, and log is to base e.
In many grammars, not all symbol sequences are allowed (qu is OK, qv is not).

In such cases, assume that there are m states b1, b2, . . . , bm. For each state only
certain symbols from the set S1, S2, . . . , Sn can be transmitted (different subsets
for different states). The transmission of symbol Sk from state bi to state b j (bi

may be the same as b j ) takes time t (k )
i j , where k indexes all possible paths from bi

to b j . This process is illustrated by a graph such as that shown in Figure 2.17.

Theorem 2.1

The channel capacity C is log W0, where W0 is the largest real root of the m � m
determinantal equationˇ̌̌

ˇ̌X
k

W �t
(k)
i j � δ i j

ˇ̌̌
ˇ̌ D 0 (2.90)

For our purposes, we can regard each state as a word and ti j is the length of word i.
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Example 2.7

Assume that the vocabulary has three words A, B, and C or w1, w2, and w3 of
lengths p, q, and r and a grammar defined by Figure 2.17b. The Markov matrix is

M D
2
41 1 1

1 1 0
1 1 0

3
5

The determinantal equation constructed from the Markov matrix and word lengths
is 2

664
1

W p � 1 1
W p

1
W p

1
W q

1
W q � 1 0

1
W r

1
W r �1

3
775 D 0

The characteristic equation for this dynamical system is

1
W p C 1

W q C 1
W pCr D 1

The topological entropy is hT D log W0, where W0 is the largest real eigenvalue of
this characteristic equation.

2.9

Fingerprints of Periodic Orbits and Orbit Forcing

2.9.1

Permutation of Periodic Points as a Topological Invariant

Using kneading theory, periodic points with given symbolic itineraries can be or-
dered along the interval. This is not only useful to determine the order in which
periodic orbits appear but also to identify periodic orbits.

Indeed, consider the period-5 orbit with symbolic name 01011 of the logistic map
(Figure 2.16). Its five periodic points are associated with the five cyclic permutations
of the symbolic name, ordered by kneading theory as follows:

01101 � 01011 � 11010 � 10101 � 10110 (2.91)

Label the sequences in (2.91) from left to right by Σ i , i D 1 . . . 5, and express
them in terms of the leftmost sequence Σ1 D 01101 and of powers of the shift
operator. We have

Σ1 � Σ2 D σ3Σ1 � Σ3 D σΣ1 � Σ4 D σ2Σ1 � Σ5 D σ4Σ1 (2.92)

We observe that under the action of the shift operator σ, these sequences are per-
muted: The lowest sequence becomes the third, the second one the last, and so on.
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The corresponding permutation

π(01011) D (π i) D (3, 5, 4, 2, 1) (2.93)

such that σΣ i D Σπ i provides crucial information about the orbit. Its dynamical
relevance owes much to two fundamental properties.

First, the permutation can be extracted directly from the periodic orbit without using
any symbolic encoding and without having the graph of the map. Indeed, consider the
period-5 orbit in Figure 2.16. If we label the periodic points x1, x2, . . . , x5 from
left to right, we can determine as above a permutation π such that f (xi ) D xπ i .
Obviously, this permutation is identical to (2.93) (e.g., the image of the first point
is the third), which can easily be checked in Figure 2.16.

Second, permutation (2.93) remains identical on the entire domain of existence of the
orbit in parameter space. As a parameter is varied, points xi of a periodic orbit move
along the interval, but they do so without ever becoming degenerate (otherwise,
we would have one point with two images, in contradiction with the determinis-
tic nature of the map). Thus the relative order of points is preserved, hence the
corresponding permutation.

An important attribute of this invariance property is that the permutations asso-
ciated with orbits interacting in a bifurcation will be strongly related. For example,
saddle–node partners will have identical permutations since they are indistinguish-
able at the bifurcation. Similarly, the permutation associated with a period-doubled
orbit can easily be obtained from that of its mother.

Since there is a definite relation between symbolic names and permutations on
the one hand, and periodic orbits and permutations on the other hand, we see
that the symbolic names of the orbits are more than a convenient labeling and
that they carry topological information. To illustrate this, we now show that in one-
dimensional maps, much about the symbolic name of an orbit can be recovered
merely from the permutation. Consider the graphical representation in Figure 2.18
of permutation (2.93) extracted from Figure 2.16.

The global shape of Figure 2.18 is characteristic of unimodal permutations: The
relative order of the leftmost points is preserved, while that of the rightmost points
is reversed (in particular, the rightmost point is mapped to the leftmost). This is a
signature of the existence of branches with different parities in the underlying map
(assumed unknown). In fact, Figure 2.18 can be viewed as a topological represen-
tation of this map in a coordinate system where points xi are equidistant.

Let us note the orientation-preserving (resp. orientation-reversing) branch 0 (re-
sp. 1). It can be seen from Figure 2.18 that x1 is necessarily on branch 0, while x3,
x4, and x5 must be on branch 1. The coding of x2 is ambiguous: It can be on one
branch or the other without modifying the permutation. Taking into account that
the orbit of x1 is x1 ! x3 ! x4 ! x2 ! x5, the symbolic name of this orbit is
thus 0110

11 (i.e., any of the two saddle–node partners born in the 51 saddle–node
bifurcation listed in Table 2.1). If additional information is available, such as pari-
ty (is the multiplier of the orbit positive or negative?), it is possible to distinguish
between these two orbits.
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0 1 2 3 4 5 6

x n
+

1

xn

Figure 2.18 Graphical representation (i, π i ) of permutation (2.93). Orientation-preserving and

orientation-reversing parts are easily distinguished.

By generalizing the example above, it is easy to see that every pair of saddle–
node partners and every period-doubled orbit is associated with a different permu-
tation. The permutation realized by a periodic orbit can thus be viewed as a genuine
fingerprint of this orbit.

It is comforting to know that much of the discussion of this section is still rel-
evant for orbits in three-dimensional flows. As discussed throughout this book,
orbits in these systems will be associated with braids (a generalization of permuta-
tions deeply linked to knot theory). These braids will be characterized by topological
invariants that do not depend on parameters and contain much information about
the symbolic dynamics and the genealogy of periodic orbits. Just as the structure of
unimodal maps governs that of the permutations (Figure 2.18), there is a system-
atic way to study the global organization of braids in three-dimensional systems.

2.9.2

Topological Entropy of a Periodic Orbit

The permutation associated with a periodic orbit not only provides qualitative in-
formation, but it can also provide estimates of fundamental quantitative measures
of chaotic dynamics, as we show next. The key idea is that if the underlying map is
continuous, the way in which the points of the orbit are mapped onto each other
provides information on orbits in an extended neighborhood of the orbit.

For simplicity, let us consider a superstable periodic orbit such as the period-5
orbit of Figure 2.16. As previously, the points are numbered from left to right. Since
x2 is the critical point xc , the leftmost and rightmost points x1 and x5 correspond
to the lower and upper bounds of the invariant interval I D [ f (xc), f 2(xc)] where
the relevant dynamics is confined. Using the fact that the xi are mapped exactly
onto each other, this will allow us to build a topological model of the dynamics.

To this end, consider the following partition of the invariant interval I:

I D [x1, x5] D I1 [ I2 [ I3 [ I4 D [x1, x2] [ [x2, x3] [ [x3, x4] [ [x4, x5] (2.94)
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Using the interval arithmetics (2.53) and permutation (2.93), we find easily that

f (I1) D f ([x1, x2]) D [x3, x5] D I3 [ I4 (2.95a)

f (I2) D f ([x2, x3]) D [x4, x5] D I4 (2.95b)

f (I3) D f ([x3, x4]) D [x2, x4] D I2 [ I3 (2.95c)

f (I4) D f ([x4, x5]) D [x1, x2] D I1 (2.95d)

The set of relations (2.95) is the analog of relations f (I1) D f (I2) D I1 [ I2, which
characterize the surjective logistic and tent maps (note that in a complete descrip-
tion of the map, the branch parities should also be specified). The key observation
here is that both sets of relations define Markov partitions. In the example above,
the Markov transition matrix as defined in (2.82) reads

A D

2
664

0 0 0 1
0 0 1 0
1 0 1 0
1 1 0 0

3
775 (2.96)

where the nonzero entries correspond to pairs (Ii , I j ) such that Ii \ f (I j ) D Ii .
Even though the regime under study corresponds to a superstable orbit, ma-
trix (2.96) is a signature of a chaotic dynamics. Its largest eigenvalue is λmax �
1.512 876 398, which yields a topological entropy of hT D ln λmax � 0.414 012 738 1.
Moreover, the matrix is transitive, which indicates that the associated Markov chain
is topologically mixing.

In fact, the topological entropy as computed above characterizes the periodic or-
bit rather than the dynamical system to which it belongs: It is obtained from the
permutation associated to the orbit,4) not from the global structure of the system.
However, the entire system cannot be less chaotic than implied by the periodic
orbit. In particular, its topological entropy is necessarily greater than the entropy
of the orbit. Thus, the observation of an orbit with a positive topological entropy
(as obtained from its permutation), even in a window of stability, indicates the
presence of chaos in the system under study, and in particular the existence of an
infinity of periodic orbits. This is illustrated in the next section with the “period-3
implies chaos” theorem. A similar statement will be made later for flows: Some
periodic orbits have knot types that can exist only in a chaotic system.

Note that the tools introduced here show why one-dimensional diffeomorphisms
are not chaotic: Since they globally preserve or reverse the order of points, the asso-
ciated transition matrices cannot have eigenvalues larger than 1. In fact, the reader
may want to check that a one-dimensional diffeomorphism can only have a period-
1 orbit, possibly a period-2 orbit if it globally reverses orientation.

4) For the sake of simplicity, we have indicated how to compute the topological entropy of an orbit
only at a special parameter value, where the orbit is superstable. However, the topological entropy
of an orbit depends only on the permutation associated with it and should be considered as a
topological invariant of the orbit, defined on its entire domain of existence.
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2.9.3

Period 3 Implies Chaos and Sarkovskii’s Theorem

To illustrate the discussion above, we present now the famous statement “period 3
implies chaos,” according to which the presence in a map of the interval of a peri-
odic orbit of period 3 forces the presence of orbits of any other period [58].

If we carry out the same calculation for the superstable 00
11 orbit as for the 0110

11
orbit in Section 2.9.2, we find a partition I D [ f 2(xc), xc ] [ [xc , f (xc)] whose tran-
sition matrix is the golden mean matrix (2.75) that we have already encountered:

A GM D
	

0 1
1 1



(2.97)

It is easy to prove that 8n � 2, An
i i ¤ 0, hence there are fixed points for any period

p. This is our first example of the general fact that the existence of some periodic
orbits can force the existence of many other (here, an infinity) periodic orbits. This
phenomenon is usually referred to as orbit forcing.

Note that the Markov partitions constructed from superstable orbits are refine-
ments of the partition used for symbolic codings since the critical point is one of
the border points. As a result, the transition matrices contain all the information
needed to determine whether a given symbolic name is admissible. The example
of the period-3 orbit is particularly simple since the Markov partition coincides
with the coding partition: Transition matrix (2.97) indicates that all itineraries are
allowed except those containing the string “00” (showing again that orbits of all
periods exist). One may check in Table 2.1 that this is indeed what distinguishes
orbits born before the 31 saddle–node bifurcation from orbits created afterward.

That the existence of an orbit of period 3 implies the existence of orbits of any
other period can in fact be viewed as a particular case of a more general theorem
due to Sarkovskii [59] (see also [52]). Consider the following ordering of the natural
integers, written as the product 2k � (2n C 1) of a power of 2 by a prime number:

2k � 1 C 2l � 1 (k < l) (2.98a)

2k � 1 C 2l � (2n C 1) (n > 0) (2.98b)

2l � (2n C 1) C 2k � (2n C 1) (k < l, n > 0) (2.98c)

2k � (2n C 1) C 2k � (2m C 1) (m < n) (2.98d)

For example,

1 C 2 C 22 C 23 C 24 � 7 C 24 � 3 C 22 � 5 C 22 � 3 C 2 � 3 C 7 C 5 C 3

Sarkovskii’s theorem states that if a continuous map of an interval into itself has
an orbit of lowest period p and q C p , it also has an orbit of lowest period q. It is
easily seen that (i) if there are infinitely many different periods in a map, all the
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periods corresponding to the period-doubling cascade of the period-1 orbit must
be present; (2) since 3 comes last in (2.98), the presence of a period-3 orbit forces
orbits of all other periods as shown above. It can be verified that the succession of
bifurcations given in Table 2.1 satisfies the Sarkovskii theorem. In particular, the
first period-7 orbit is created before the first period-5 orbit, which itself is created
before the period-3 orbit. Moreover, all even periods are present when the first odd
period appears.

2.9.4

Period 3 Does Not Always Imply Chaos: Role of Phase-Space Topology

Since so many properties of unimodal maps hold at least approximately for higher-
dimensional systems, it might be troubling that numerous apparent counterexam-
ples to the “period 3 implies chaos” theorem can be found in physical systems. In
the modulated CO2 lasers described in Chapter 1 and in Section 7.5.2, for example,
it is quite common to observe multistability, with a period-3 orbit coexisting with
the initial period-1 orbit, no other periodic orbit being present. Thus, a period-3
orbit does not necessarily imply chaos.

The clue to this paradox is that the modulated CO2 laser can be described by
a three-dimensional flow, hence by a two-dimensional Poincaré map, while the
Sarkovskii theorem holds for a map of a one-dimensional interval into itself. It
turns out that phase-space topology has a dramatic influence on orbit forcing.

The key topological difference between the two geometries is that in the two-
dimensional case, it is possible to connect each of the three periodic points of
the period-3 orbit to any other without encountering the third one. In the one-
dimensional case, the two extreme points are isolated by the middle one.

Therefore, the three periodic points must be considered as arranged along a
topological circle (obviously, this also applies to maps of a circle into itself; see
Section 2.12). The three points divide this circle into three intervals versus two in
the one-dimensional case. When the map is applied, the three points are cyclically
permuted and the three intervals accordingly exchanged. As a result, the associated
transition matrix is a simple permutation matrix, with zero topological entropy. The
action of the map on the periodic orbit is equivalent to a pure rotation, which does
not itself imply the existence of a chaotic dynamics. However, although it appears
that orbit forcing can be modified dramatically when the topology of phase space is
changed, it remains true in all cases that some orbits can force the existence of an
infinity of other orbits.

2.9.5

Permutations and Orbit Forcing

The statements of the Li–Yorke theorem and of the Sarkovskii theorem seem to
imply that period is the fundamental property in implication chains among orbits.
However, forcing relations are more fine-grained. Admittedly, the existence of a
period-5 orbit forces the existence of at least a period-7 orbit. However, an orbit of
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the period-5 pair 51 of a logistic map does not force every period-7 orbit of this map.
Actually, it forces the two 71 orbits but is forced by the two 72 orbits. As we will see
below, it is in fact the permutation associated with a given orbit that determines
which orbits it forces.

In Section 2.9.1, we noted that the permutation associated with a periodic orbit
O could be represented graphically by a piecewise-linear map such as is shown in
Figure 2.18. This map is conjugate to the Markov chain that describes the action
of the map on the periodic points of the orbit (Section 2.9.2). If the Markov chain
has positive topological entropy, it is chaotic, as is the piecewise-linear map, which
has thus an infinite number of unstable periodic orbits. These orbits comprise the
minimal set of orbits that must exist in a map having the original orbit O as one of
its periodic orbits. The existence of these orbits is forced by that of O.

As an example, we show that the period-5 orbit 01011 (born in bifurcation 71)
forces exactly one pair of period-7 orbits and determines the symbolic code of this
orbit. To this end, we apply the techniques outlined in Section 2.8.6 to transition
matrix (2.96). Using the noncommutative symbols I1, I2, I3, and I4, we first rewrite
it as

A D

2
664

0 0 0 I1

0 0 I2 0
I3 0 I3 0
I4 I4 0 0

3
775 (2.99)

Then we compute

trA7 D [I1 I3 I3 I2 I4 I1 I4] C [I1 I3 I3 I3 I3 I2 I4] C (I3)7 (2.100)

where [W ] represents the n cyclic permutations of a length-n word W. The minimal
model compatible with the period-5 orbit 01011 has thus two period-7 orbits, whose
itineraries in the Markov partition can be read from (2.100). Since interval I1 is
located to the left of the critical point (Section 2.9.2) and the intervals I2, . . . , I4

to the right of it, the canonical symbolic names of these orbits can be obtained
through the recoding I1 ! 0, fI2, I3, I4g ! 1. The two period-7 orbits forced by
the period-5 orbit under study are thus 0111101 and 0111101.

The reader can check in Table 2.1 that these are the two orbits born in saddle–
node bifurcation 71 and that this bifurcation indeed occurs before 51 in the uni-
versal sequence. By repeating the above calculation for all low-period orbits of the
logistic map, the whole universal sequence of Table 2.1 can be reproduced.

It is not a coincidence that the two period-7 orbits forced in the example are
saddle–node partners and thus are associated with the same permutation. As was
suggested by the simple example above, orbit forcing in one-dimensional maps is
naturally expressed as an order on permutations rather than on periods. This is
illustrated in Section 9.3.1. In unimodal maps, each bifurcation corresponds to a
different permutation (Section 2.9.1) so that this order on permutations induces a
total order on bifurcations, which corresponds to the universal sequence discussed
in Section 2.7.5.3.
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As is discussed in Chapter 9, there is no longer a total ordering of bifurcations in
two-dimensional maps (and three-dimensional flows). The topological structure of
a periodic orbit, then, is specified not by a permutation but by a braid type. There
is a forcing relation on braid types. However, several saddle–node bifurcations can
be associated with the same braid type, so that the induced order on bifurcations is
only a partial order.

2.10

Two-Dimensional Dynamics: Smale’s Horseshoe

2.10.1

Horseshoe Map

While one-dimensional maps display the most distinctive features of deterministic
chaos, they lack a crucial property of time-one maps or Poincaré maps of flows:
They are not invertible, as are the equations describing flows. Because many phys-
ical systems are described by differential equations, it is now time to turn to two-
dimensional invertible maps to understand how the basic mechanisms studied in
previous sections can be embedded in an invertible dynamics. This is not a trivial
problem; many key points of our analysis of the tent and logistic map, such as prop-
erty (2.31), rely heavily on noninvertibility. To help us in this task, our keystone will
be the two-dimensional analog of the tent map, the paradigmatic Smale horseshoe.

The tent map example makes it clear that a key ingredient of chaos is expansion,
or stretching. Yet many experimental and numerical examples of chaotic systems
show that for a large number of them (i.e., dissipative systems), the asymptotic
dynamics is confined to a small region of state space. Thus expansion must be bal-
anced by contraction, or squeezing, so that trajectories remain forever in a bounded
region. In continuous systems, these two antagonistic mechanisms can be com-
bined by folding processes, as illustrated by Smale’s horseshoe map f S , defined as
follows.

Take the unit square S, stretch it along one direction (the unstable direction)
by a factor of approximately 2, while squeezing it in the transverse direction (the
stable direction). Then fold the deformed rectangle so that it occupies roughly the
same region as the original square, intersecting the latter in two disjoint strips
(Figure 2.19a). Note that points located in the middle and the ends of S do not
return to it.

The key topological property of the horseshoe map is that f (S ) \ S consists of
two disjoint components:

f (S ) \ S D H0 [ H1 (2.101)

which are the two horizontal strips H0 and H1 shown in Figure 2.19a.
To specify the action of the inverse map f �1, we only need to determine

f �1(H0 [ H1) since f �1( f (S ) \ S ) D S \ f �1(S ). As shown in Figure 2.19b,
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S

f(S)fold

(a)

(b)

S S

S

H1

H0

0V V 1

Figure 2.19 Graphical representation of Smale’s horseshoe map. (a) The unit square S is

stretched horizontally and squeezed vertically, then folded so that f (S) intersects S in two hori-

zontal strips Hi ; (b) the map is iterated backward to obtain the preimages Vi of the strips Hi .

all the points sent by f to a given horizontal strip Hi come from a vertical strip
Vi D f �1(Hi ) and thus

f �1(S )\S D V0[V1 (2.102)

2.10.2

Symbolic Dynamics of the Invariant Set

We want to study the structure of the invariant set Λ D \C1
�1 f n(S ), which con-

tains points whose orbits remain in S forever. As a first approximation, Λ 	
f �1(S ) \ S \ f (S ) or, by (2.101) and (2.102),

Λ 	 (V0[V1) \ (H0[H1) (2.103)

As illustrated in Figure 2.20, Λ is partitioned into four components, Hi \ Vj ,
by the horizontal rectangles Hi and the vertical rectangles Vj . Since Hi D f (Vi ),
whether a point X belongs to a square Hi \ Vj depends only on the vertical rectan-
gles Vj its orbit successively visits:

X 2 Hi \ Vj , X 2 f (Vi ) \ Vj , f �1(X ) 2 Vi and X 2 Vj (2.104)

that is, on the symbolic sequence Σ(X ) obtained by encoding the orbit of X with
the coding function

8X 2 Λ , s(X ) D
(

0 if X 2 V0

1 if X 2 V1
(2.105)

corresponding to the partition Λ D (Λ \ V0) [ (Λ \ V1). Because f is invertible, the
action of the shift operator on symbolic sequences must not discard information,
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0.0 0.1

1.0 1.1H1

H0

0V V1

Figure 2.20 The invariant set Λ is contained in the intersec-

tions of the vertical rectangles Vi with the horizontal rectangles

Hi . As explained in the text, Hi \ Vj is labeled i. j .

unlike in the one-dimensional case. Thus the sequence Σ(X ) associated to X must
be bi-infinite:

Σ(X ) D . . . s�3 s�2 s�1.s0 s1 s2 . . . s i D s( f i(X )) i 2 Z (2.106)

with the dot separating the forward sequence ΣC(X ) D s0 s1 . . . from the backward
sequence Σ�(X ) D s�1s�2 . . . These two sequences describe the future and the past
of the point, respectively. Applying the shift operator to a sequence simply amounts
to shifting the dot: σ(. . . s�1.s0 s1 . . .) D . . . s�1s0.s1 . . .

As in (2.46), let us define cylinders as sets of points whose symbolic sequences
contain a common substring, such as

C [s�2s�1.s0 s1] � fX 2 ΛI Σ(X ) D . . . s�2 s�1.s0 s1 . . .g (2.107)

It is easily seen from (2.104) that the squares in Figure 2.20 are cylinders:

�
Hi \ Vj

� \ Λ D C[i. j ] (2.108)

which explains the labeling of the squares in Figure 2.20. To show that the partition
based on (2.105) is generating, we now detail the structure of Λ and of higher-order
cylinders.

Start from the cylinders C[i. j ] D Hi \ Vj shown in Figures 2.20 and 2.21a
and compute their images C[i j.] D f (C[i. j ]). These are the horizontal rectan-
gles Hi j D f (Hi ) \ H j shown in Figure 2.21b, which are seen to be the com-
ponents of f 2(S ) \ S . A dual decomposition of Λ is based on the preimages
C[.i j ] D f �1(C[i. j ]), which are the vertical rectangles Vi j D Vi \ f �1(Vj ) cov-
ering f �2(S ) \ S (Figure 2.21c).

Figure 2.21d illustrates the fact that the four-symbol cylinders C[i j.k l ] can be ob-
tained as the intersections of the vertical and the horizontal two-symbol rectangles:

C[i j.k l ] D C[i j.]\C[.k l ] D Hi j \Vk l D f 2(Vi)\ f (Vj )\Vk\ f �1(Vl ) (2.109)

which follows directly from definition (2.108). The forward (resp. backward) se-
quence ΣC(X ) (resp. Σ�(X )) specifies in which of the vertical (resp. horizontal)
rectangles Vi j (resp. Hi j ) point X lies.

Note that if one takes into account that Σ�(X ) D s�1 s�2 . . . should be read from
the labels of Figure 2.21b from right to left, forward and backward sequences are
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11.00 11.01 11.11 11.10
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10.00 10.01 10.11 10.10

00.00 00.01 00.11 00.10
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(a) (c)

(d)

01.00

0.10.0

1.0 1.1

.00 .01 .11 .10

11.

01.

10.

00.

Figure 2.21 (a) Decomposition of f (S) \ S \
f �1(S) in squares Hi \Vj . These are mapped

by the horseshoe map f to (b) the horizontal

rectangles Hi j D f (Hi ) \ H j , which are

the components of f 2(S) \ S , and by f �1 to

(c) the vertical rectangles Vi j D Vi \ f �1(Vj ),

which cover f �2(S) \ S . Arrows indicate the

action of the horseshoe map; (d) by intersect-

ing the horizontal with the vertical rectangles,

one obtains a cover of the invariant set Λ by

cylinders C[i j.k l].

ordered in exactly the same way along the horizontal and vertical sides of S, re-
spectively. In fact, they follow the unimodal order that governs the tent and logistic
maps: This is a signature of the folding process (cf. Figure 2.14).

In general, cylinders of the type C[s�N . . . s�1.s0 . . . sN�1] will be contained in
the 22N intersections of 2N vertical rectangles with 2N horizontal rectangles. With-
out loss of generality, the action of the horseshoe map can be chosen to be piece-
wise linear in the regions of interest, with expansion and contraction rates λu > 2
and λ s < 1/2. In that case, the vertical rectangles Vs0...sN�1 will be of width 1/λN

u
while the height of the horizontal rectangles Hs�N ...s�1 will be λN

s . It is easy to see
that both sizes shrink to zero in the limit N ! 1, and thus that the cylinder
C[s�N . . . s�1.s0 . . . sN�1] converges to a unique point, as required for a generating
partition.

This shows that the invariant set Λ is the product of a Cantor set of vertical lines
with a Cantor set of horizontal lines, and that it is in 1 W 1 correspondence with
the set of bi-infinite binary sequences. It can even be shown that this correspon-
dence is a homeomorphism if the space of symbolic sequences is equipped with
the following metric:

d
�fskgk2Z,

˚
s0

k

�
k2Z

� D
1X

iD�1

δ i

2jij
δ i D

(
0 if s i D s0

i

1 if s i ¤ s0
i

(2.110)
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which means that the closer two sequences are according to this metric, the closer
the associated points are. This property will be useful in what follows.

2.10.3

Dynamical Properties

A few dynamical properties of the horseshoe map can be deduced from the discus-
sion of previous sections. Some of them follow directly from the correspondence
with a full shift, as discussed in Section 2.6.5: sensitivity to initial conditions, exis-
tence of a dense set of periodic orbits, existence of dense orbits, and so on. Others
are linked to the coexistence of two complementary mechanisms, stretching and
squeezing, and to the horseshoe map’s being two-dimensional. In particular, a fo-
liation of Λ can be constructed in the following way.

Consider a point X and the vertical line V(X ) passing through X. From the results
of Section 2.10.2 it is easy to see that X and any point Y 2 V(X ) have the same
forward sequence ΣC(X ) D ΣC(Y ) (the vertical line is the limit of a sequence of
vertical rectangles). This implies that X and Y have the same future, more precisely
that their orbits converge to each other in forward time: d( f n(X ), f n(Y )) ! 0 as
n ! 1. Indeed, the two corresponding symbolic sequences converge to each other
according to metric (2.110) as the discrepancies between them are pushed farther
and farther in the backward sequence.

Let us define the stable and unstable manifolds Ws(X ) and Wu(X ) of a point X
as the sets of points whose orbits converge to that of X in the future and in the past,
respectively:

Ws(X ) D
n

Y 2 Λ , lim
n!1

d ( f n(X ), f n(Y )) D 0
o

(2.111a)

Wu(X ) D
n

Y 2 Λ , lim
n!1

d ( f �n(X ), f �n(Y )) D 0
o

(2.111b)

According to this definition, the vertical line V(X ) is a segment of the stable mani-
fold of X: V(X ) 	 Ws(X ).

Similarly, two points X 0 and Y 0 located along the same horizontal line H(X 0)
have the same backward sequence, hence the same past. Their orbits converge to
each other backward in time: d( f �n(X 0), f �n(Y 0)) ! 0 as n ! 1. Thus they
belong to the same segment of unstable manifold Wu(X 0) D Wu(Y 0).

Hence Λ is foliated by horizontal and vertical lines that are segments of stable
and unstable manifolds, respectively. The astute reader may have noticed that this
could have been obtained directly from the geometrical description of the horse-
shoe map. However, it is in general not straightforward to determine these seg-
ments for a general two-dimensional invertible map. Because the discussion above
is based on symbolic dynamical properties only, it can be extended directly to a
large class of dynamical systems: As soon as a symbolic encoding of the invari-
ant set is available, segments of stable and unstable manifolds can be obtained
simply by following points with identical forward or backward sequences, respec-
tively.
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We conclude this section with an important remark regarding how noninvertibil-
ity can be embedded in an invertible dynamics. As discussed above, each vertical
line V is associated with a unique forward sequence ΣC(V) shared by all the points
in the line. Obviously, the images of all these points will have the same forward
sequence: The image of the line by the horseshoe map is thus another vertical line
f (V) whose forward sequence is ΣC( f (V)) D σΣC(V).

If V(Λ) represents the complete set of vertical lines (or, equivalently, of class-
es of points with identical forward sequences), the horseshoe map induces a map
f V W V(Λ) ! V(Λ). Because forward sequences are one-sided, map f V is intrin-

sically noninvertible; in fact, it is conjugate to the tent map since we know that
forward sequences are ordered according to the unimodal order. In the invertible
horseshoe map, there is thus an underlying noninvertible map that organizes the dy-
namics.

The clue to this paradox is that the shift operator acts on symbol sequences by
transferring one symbol from the forward sequence to the backward sequence. The
forward sequence loses information (i.e., the associated dynamics is noninvertible),
gained by the backward sequence (whose dynamics thus depends on the forward
sequence), while the net information flow is zero for the complete sequence (i.e.,
the global dynamics is invertible). Again, we see that this observation applies to a
large class of dynamical systems, and it will be one of the building blocks of this
book.

To conclude, let us emphasize that the two-sidedness of symbolic sequences for
the horseshoe map is not due directly to the dynamics’ being two-dimensional.
Rather, it originates in the distinction between stable and unstable subspaces, re-
gardless of their dimension. For example, one could imagine that forward (resp.
backward) sequences parameterize a two (resp. one)-dimensional subspace.

2.10.4

Variations on the Horseshoe Map: Baker Maps

The tent map is the simplest one-dimensional map that is conjugate to a full
one-sided 2-shift. To illustrate horseshoe dynamics, we now present examples of
piecewise-linear maps that are conjugate to two-sided full shifts. These maps are
the two-dimensional counterparts of the tent map. As we shall see, the stretching
and squeezing mechanisms at play in the horseshoe map can be organized in a
few inequivalent ways.

For definiteness, we restrict ourselves to bijections of the unit square into itself.
Our first example, shown in Figure 2.22a, is a deformation of the horseshoe map
of Figure 2.19. It is easily seen that this map can be described by two linear maps
defined on the domains x < 1/2 and x > 1/2. More precisely, the coordinates
(x 0, y 0) of the image of a point (x , y ) are given by

x 0 D 1 � 2
ˇ̌̌
ˇx � 1

2

ˇ̌̌
ˇ , y 0 D

(
y 0

2 if x � 1
2

1 � y 0

2 if x > 1
2

(2.112)
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Figure 2.22 Two topologically distinct horseshoelike maps that differ in the folding process.

Rotation of rectangle B can occur in the (a) counterclockwise or in the (b) clockwise directions.

Note that while the one-dimensional tent map is continuous but not differentiable
at the critical point, the two-dimensional piecewise-linear map (2.112) has neces-
sarily a discontinuity, here at the line x D 1/2. More importantly, (2.112) are our
first example of a reducible system. Indeed, they have the following structure:

x 0 D f (x ) (2.113a)

y 0 D g(x , y ) (2.113b)

The key property of (2.113) is that it has a lower-dimensional subsystem (2.113a)
that can be iterated independently: The dynamics of the x variable depends only
on x itself. From the discussion of previous sections, this is not surprising. Indeed,
the y direction is the stable direction, and vertical lines x D c are segments of the
stable manifold. Since the vertical lines parameterized by x are mapped to other
vertical lines, the original two-dimensional map induces a one-dimensional map
x 0 D f (x ). As discussed earlier, this map is intrinsically noninvertible: An invert-
ible chaotic dynamics in the global state space is associated with a noninvertible
dynamics in the unstable space.

This structure allows one to represent the action of map (2.112) by plotting the
graphs (x , x 0) and (y , y 0), as shown in Figure 2.23. We see that the chaotic two-
dimensional map (2.112) is associated with two singular one-dimensional maps
( f u, f s ) such that x 0 D f u(x ) and y D f s(y 0). The existence of f u has been dis-
cussed previously and is a signature of the folding process. The existence of f s

follows from the fact that map (2.112) is invertible and that for the inverse map,
stable and unstable spaces are exchanged. Hence the inverse map is associated
with one-dimensional maps ( f s , f u). Note that f s is not arbitrary: Each monotonic
branch of f s corresponds to a given branch of f u. Therefore, both maps have the
same number of branches.

Figures 2.22b and 2.23b display another map that is extremely similar to our first
example, except that folding takes place in the other direction. We note that the two
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Figure 2.23 Graphs of the noninvertible one-dimensional maps associated with the invertible

maps of Figure 2.22; (a) corresponds to the map in Figure 2.22a and (b) corresponds to the

map in Figure 2.22b.

maps are associated with the same map in the unstable space, but not in the stable
space. They are topologically distinct. These two topologically classes will later be
referred to as the horseshoe and the reverse (or twisted) horseshoe. We shall see in
Chapter 7 that both classes can be observed experimentally.

In these examples, reducibility is clearly apparent because the unstable and sta-
ble directions are fixed over the state space. This makes it easy to find coordinate
systems whose axes are parallel to these directions. As the example of the Hénon
map in the next section will show, this is not the case in general. However, it is
tempting to conjecture that the equations describing a chaotic system can always
be brought, at least approximately, to a reducible form (2.113) by a suitable change
of coordinates. As noted previously, this should be the case if a good symbolic de-
scription of the system is available: Points that have identical forward (resp. back-
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Figure 2.24 Examples of piecewise-linear maps on three domains that are topologically distinct.

The associated one-dimensional maps are shown on the right-hand side.

ward) sequences should be on the same segment of the stable (unstable) mani-
fold.

To elaborate on this classification, we display in Figure 2.24 a few examples of
piecewise-linear maps with three branches. The associated pairs of noninvertible
maps are also shown. We note that all three maps have the same map in the unsta-
ble space. Maps in Figure 2.24a,c have apparently the same map in the stable space.
However, the way in which branches of the stable map are associated to branches
of the unstable map differ. Thus, we see that a two-dimensional piecewise-linear
map such as shown in Figures 2.22 and 2.24 can be specified by (i) the map f u in
the unstable space and (ii) the permutation indicating the order in which different
branches are encountered along the stable direction (how they are stacked). This
observation will help us to understand the construction of templates in Chapter 5.

2.11

Hénon Map

2.11.1

A Once-Folding Map

The Smale horseshoe is the classical example of a structurally stable chaotic sys-
tem: Its dynamical properties do not change under small perturbations, such as
changes in control parameters. This is due to the horseshoe map’s being hyperbolic
(i.e., the stable and unstable manifolds are transverse at each point of the invariant
set). Recall that the study of the symbolic dynamics of the horseshoe map involved
horizontal and vertical rectangles used to define cylinders (Section 2.10.2). If these
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horizontal and vertical rectangles intersect transversely everywhere, intersections
are preserved if the rectangles are slightly deformed. Thus the symbolic dynamics
remains described by a full shift. Consequently, every map sufficiently close to the
standard horseshoe map has the same spectrum of periodic orbits.

This is usually not the case for real systems, where periodic orbits are created or
destroyed as a control parameter is varied. This is well illustrated by the example
of the logistic map studied in Section 2.7. As the control parameter a is increased
from 0 to 2, this one-dimensional system displays a gradual transition from a per-
fectly ordered state to a chaotic behavior that is associated with a binary symbolic
dynamics and thus is asymptotically as random as coin tossing.

Similarly, the Hénon map [60]

xnC1 D a � x2
n C yn (2.114a)

ynC1 D bxn (2.114b)

is undoubtedly the most widely studied invertible two-dimensional map. It displays
bifurcation sequences that lead to a complete horseshoe at large values of param-
eter a. Since the Jacobian @(xnC1, ynC1)/@(xn , yn) D �b, parameter b admits of a
simple interpretation: The area of an arbitrary region of the plane is reduced by a
factor of �b under the action of the map. When jbj D 1, areas are preserved and
the map is said to be conservative. When jbj is decreased to zero, the map becomes
more and more dissipative. At b D 0, the y variable is forced to zero. The system
then reduces to the logistic map, thereby becoming noninvertible.

If (2.114) are iterated at the usual parameter values (a, b) D (1.4, 0.3) (which will
be used throughout this section), and if successive points of a typical orbit are plot-
ted in the (x , y ) plane, the familiar picture shown in Figure 2.25a is obtained. It has
been widely used to illustrate the fractal structure of chaotic attractors. While few
other chaotic systems have been more deeply studied, a number of questions about
its dynamics have not received a final answer, such as: How does one construct a
symbolic encoding? Or: What are all the possible routes to a complete horseshoe?
These questions are discussed in Section 2.11.2 and Chapter 9.

Interestingly, the Hénon map was originally introduced as a simplified model of
a Poincaré map but is orientation-reversing at the parameters given above (i.e., its
Jacobian is negative). However, this is impossible for the Poincaré map of a flow,
which can be viewed as resulting from a smooth deformation of the plane continu-
ously connected to the identity. For most properties (fractal dimensions, Lyapunov
exponents), this makes no difference. However, there are topological measures that
distinguish the orientation-preserving Hénon map from the orientation-reversing
one [61].

The action of the Hénon map on points of a plane is represented graphically
in Figure 2.25b. The folded dark curve is the image of the enclosing square and
shows that the Hénon map is a once-folding map. The lighter curve corresponds
to the second iterate of this square and is accordingly folded twice. This figure
illustrates the similarity of the Hénon map with the hyperbolic horseshoe but also
shows a crucial difference. At the parameter values considered, the intersection of
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Figure 2.25 (a) The Hénon attractor obtained with (2.114) for a D 1.4, b D 0.3; (b) to illustrate

the action of the map, the first and second iterates of the square [�2, 2] � [�0.6, 0.6] have been

plotted, showing that the Hénon map is a once-folding map.

the square enclosing the invariant set and of its image is in one piece, whereas it
had two disjoint components in the case of the horseshoe map (Figure 2.19).

Since this natural partition of state space in two regions was the keystone of our
study of the symbolic dynamics of the horseshoe map, it is not obvious whether
there is a symbolic coding for the Hénon map and how it can be constructed.
We discuss this important question in Section 2.11.2. We shall see that it is di-
rectly connected to the nonhyperbolicity of the Hénon attractor (i.e., to the lack
of transversality of certain intersections between the stable and unstable mani-
folds).

2.11.2

Symbolic Dynamics of the Hénon Map: Coding

The relevance of symbolic codings relies heavily on the mixing property of chaotic
dynamics (Section 2.7.2). Assume that we have an arbitrary partition M D M1 [M2

of phase space. If a map f is mixing, there exists for any region N 2 M an integer
n0(M ) such that f n0 (N )\M1 ¤ ; and f n0 (N )\M2 ¤ ;. However small a region N
is, there exist points in N with different symbolic itineraries, and thus N can always
be divided into smaller regions. Since this operation can in principle be repeated
indefinitely, it could be tempting to believe that well-defined symbolic codings exist
for any choice of the partition.

However, the example of the logistic map in Section 2.7 has shown that this is not
true. The weakness in the argument above is that mixing cannot be invoked if the
orbits of two points are strongly correlated for arbitrarily long times. In particular,
we noted in our study of the logistic map that the different preimages of a given
point must be associated with different symbols. This rule is indeed necessary to
prevent the symbolic itineraries of such points from being identical since their
orbits differ only in their initial conditions. If the map under study is expansive,
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separating preimages is actually sufficient for obtaining generating partitions, as
was shown in Section 2.7.2.

However, this criterion cannot be applied to the Hénon map; since it is invertible,
every point has one and only one preimage. Thus we have to extend the simple
rule used for the logistic map to handle the case of invertible chaotic maps. The
extension should also be consistent with the coding of the hyperbolic horseshoe
map.

The key point is that while the orbits of two different points cannot collapse onto
each other in finite time if the map is invertible, they can become indiscernible after
an infinite number of iterations: Two different points can have the same asymptotic
future or the same asymptotic past (or both), as we see below.

In Figure 2.26a, we have plotted segments of the local stable and unstable mani-
folds of the fixed point X � � (0.884, 0.265). We denote these segments by W l

s and
W l

u , respectively. Recall that the stable manifold Ws(X �) and unstable manifold
Wu(X �) consist of the points whose orbits converge to the fixed point X � under
repeated action of the Hénon map f and of the inverse map f �1, respectively:

X 2 Ws(X �) , lim
n!C1

jj f n(X ) � X �jj D 0 (2.115a)

X 2 Wu(X �) , lim
n!C1

jj f �n(X ) � X �jj D 0 (2.115b)

Obviously, the stable and unstable manifolds are invariant under both f and f �1,
hence the restrictions of these maps to the invariant manifolds behave like one-
dimensional diffeomorphisms. Since the eigenvalues of the Jacobian at X � along
the stable and unstable directions are 0.156 > 0 and �1.92 < 0, f and f �1 preserve
(reverse) orientation along the stable (unstable) manifold. The action of f �1 on
the stable segment W l

s and that of f on the unstable segment W l
u are illustrated

in Figure 2.26b–f, which display f �n(W l
s )) and f n(W l

u) for n D 1, 2, 3, 4, and 8,
respectively. The two segments are stretched at each step and span a longer and
longer part of the two invariant manifolds.5) They are also folded at each iteration,
a signature of the horseshoelike process that organizes the Hénon attractor. For
example, Figure 2.26c can be compared with Figure 2.21 (keeping in mind that,
unlike the classical horseshoe map, the Hénon map is orientation-reversing along
the unstable manifold).

An extremely important consequence of the folding mechanism is that the stable
and unstable manifolds of the fixed point X � intersect themselves not only at X �

but also at other locations, called homoclinic points. Since homoclinic points belong
to both the unstable and the stable manifolds, their orbits converge to the fixed
point both forward and backward in time. The stable and unstable manifolds being
invariant, the set of homoclinic points is itself invariant: All images and preim-
ages of a homoclinic point are themselves homoclinic points. More generally, two
points are said to be homoclinic to each other if their orbits converge to each other

5) This is how segments W l
s and W l

u of this example were themselves obtained, by iterating
repeatedly from extremely small linear segments located around the fixed points and aligned
along the stable and unstable direction at that point.
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Figure 2.26 (a) The solid (dotted) line rep-

resents a segment W l
u (W l

s ) of the unstable

(stable) manifold of the fixed point located

at their intersection. The orbits of points be-

longing to this line converge to the fixed point

backward (forward) in time; (b–e) images

f n (W l
u ) and preimages f �n (W l

s ) of the seg-

ments W l
u and W l

s for n D 1, 2, 3, 4. They

are folded at each iteration and the number

of intersections grows exponentially; (f) this

is the same picture after eight iterations. The

image of the unstable segment becomes in-

discernible from the strange attractor. One

clearly notices locations where the stable and

unstable manifolds are tangent. These de-

generate intersections are called homoclinic

tangencies.
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both forward and backward in time, with “homoclinic points” denoting points that
are homoclinic to a fixed point. The loop formed by the pieces of the stable and
unstable manifolds joining X � and P is called a homoclinic loop.

Figure 2.26 also shows that, since the segments f �n(W l
s ) and f n(W l

u) are in-
creasingly folded as the iteration number n increases, the number of intersections
Ni(n) between the two segments (and thus of apparent homoclinic points) increas-
es exponentially with n. However, it does not grow as fast as could have been expect-
ed from the study of the horseshoe map: Ni (1) D 4, Ni (2) D 12 and Ni (3) D 30
instead of Ni (n) D 4n for the horseshoe. This is an indication that the symbolic
dynamics is not described by a full 2-shift.

In Figure 2.26b, we have distinguished two of the three homoclinic points
present at that stage. By studying how f and f �1 act on the segments shown
in Figure 2.26a,b, it is easy to see that one point, denoted by P, is the image of
the other, indicated as f �1(P ). Images and preimages of P are easily located in
Figure 2.26b–e. Since they are themselves homoclinic points, they can be found
among the intersections that appear in the consecutive plots of Figure 2.26. For
example, P D W l

s \ ( f (W l
u ) n W l

u ), hence f (P ) 2 W l
s \ ( f 2(W l

u) n f (W l
u )), which

consists of two points. These two points are the images of P and of the unlabeled
homoclinic point shown in Figure 2.26b. Since the latter is further from X � than P
and since f is continuous, f (P ) is the point of W l

s \( f 2(W l
u)n f (W l

u )) that is closest
to X � (Figure 2.26c). Determining the positions of all the images and preimages
f i (P ) shown in Figure 2.26b–e is an interesting exercise left to the reader.

We see that the sequence fP, f (P ), f 2(P ), f 3(P ), . . .g converges to the fixed point
X � along the stable manifold, approaching it from one side. Similarly, the se-
quence fP, f �1(P ), f �2(P ), f �3(P ), . . .g converges to the fixed point along the
unstable manifold, alternating between the two sides of the fixed point and with
a smaller convergence rate since the unstable eigenvalue is negative and has a
modulus closer to one than the stable eigenvalue. Thus, the orbits of X � and P are
strongly correlated both in the past and in the future, and some care has to be taken
in order to prevent the two points from being associated with the same symbolic
itinerary.

Before addressing this problem, a few remarks are in order. First, we note that
the existence of homoclinic points forces the unstable manifold to be infinitely
folded. On the one hand, all the f i (P ) iterates belong to the unstable manifold,
by definition. On the other hand, it can be seen in Figure 2.26b–e that they all
belong for i > 0 to the segment of the stable manifold joining P and X � (f is
contracting along the stable manifold). Thus, the unstable manifold intersects this
segment infinitely many times and is infinitely folded, which is consistent with
what Figure 2.26 shows. The same argument can be applied to the stable manifold.
This suggests that homoclinic points are associated with a complicated dynamics.
As a matter of fact, it can be proven that if a dynamical system displays homoclinic
points, then it has an invariant set on which the dynamics is chaotic and there are
periodic orbits arbitrarily close to the homoclinic point [52].

Figure 2.26f shows the segments f 8(W l
u) and f �8(W l

s ). At the resolution of the
plot, they provide good approximations of the unstable and stable manifolds of the
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fixed point. Two important properties are illustrated by this picture. The first one is
that the unstable segment f 8(W l

u ) is indistinguishable from the strange attractor
shown in Figure 2.25. Indeed, it is believed that the strange attractor is nothing
but the closure of the unstable manifold Wu(X �). Figure 2.26 thus provides an
illustration of how strange attractors are built and of their hierarchical structure.
The second property is that, although the intersections between the unstable and
stable manifolds are mostly transverse, places where the two manifolds are tangent
to each other can be clearly discerned. These points, where it is not possible to de-
fine distinct stable and unstable directions, are called homoclinic tangencies. Their
existence is a crucial difference between the horseshoe map and the Hénon map:
The former is hyperbolic, the latter is not. Note that images or preimages of a ho-
moclinic tangency are themselves homoclinic tangencies. Homoclinic tangencies
play a foremost role in the problem of coding the Hénon attractor, to which we now
return.

Assume that fixed point X � lies in the region Pk of the partition. Its symbolic
itinerary Σ(X �) then consists of the symbol sk infinitely repeated. A necessary
and sufficient condition for points P and X � to have different symbolic itineraries
is thus that at least one iterate f i (P ) is separated from X � by the border of the
partition, so that it is associated with a symbol sk 0 ¤ sk . Note also that if Σ(P ) ¤
Σ(X �), then obviously Σ( f i(P )) ¤ Σ(X �), so that the problem is solved at once
for the whole orbit of homoclinic points based on P.

For the sake of simplicity, assume that we search for a partition where P itself and
X � belong to different regions. This is a natural choice because P is more distant
from X � than other points of its orbit, most of them being extremely close to X �.
Furthermore, P is one of the three intersections in Figure 2.26b, a first-generation
homoclinic point so to speak. To design a simple criterion for placing the border of
the partition, we need a quantity that distinguishes P from X � (and more generally
two points that are homoclinic to each other), that is related in a natural way to the
geometry of the invariant manifolds, and that makes it easy to define a “middle
point.”

We note that since X � and P in Figure 2.26b form a homoclinic loop, the unsta-
ble manifold crosses the stable manifold in different directions at X � and P. This
can be used to distinguish the two points in a robust way. To this end, we consider
at each point X the angle 
(X ) between the unstable and stable manifolds. This is
a signed quantity because the two manifolds can be oriented. For example, assume
that the two stable and unstable segments going from X � to P are positively ori-
ented. Then, an oriented frame (v s(X ), v u(X )) can be defined at each point, with
the two vectors being tangent to the stable and unstable manifold, and positively
oriented. The quantity 
(X ) is then defined as the oriented angle between v s (X )
and v u(X ), with 
(X ) 2 [�π, π].
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Figure 2.27 (a) Illustration of the definition of

the oriented angle 
(X ). A two-dimensional

frame vs (X ), vu(X ) is attached to each point

of the plane, each vector being tangent with

one of the two invariant manifolds and posi-

tively oriented. The angles at two points con-

nected by a homoclinic loop have necessar-

ily opposite signs; (b) magnified view of the

neighborhood of a homoclinic tangency HT.

One can find pairs (A i , Bi ) of points homo-

clinic to each other arbitrarily close to the ho-

moclinic tangency. Consequently, the border

of the partition (shown here as a straight line)

must pass through the homoclinic tangency in

order to separate each pair.

The key observation is that 
(X ) varies continuously in the plane, as do the un-
stable and stable directions,6) and that 
(P ) and 
(X �) have necessarily opposite
signs because X � and P are connected by a homoclinic loop (Figure 2.27a). Thus,
any path going from X � to P has a point where 
(X ) D 0. Such a point is noth-
ing but one of the homoclinic tangencies mentioned earlier. This observation is
a two-dimensional version of the theorem stating that two zeroes of a continuous
function g W R ! R must be separated by a zero of its derivative, i.e., by a singular-
ity.

Now we note that around a homoclinic tangency, there are arbitrarily small ho-
moclinic loops (Figure 2.27). Thus, all the corresponding pairs of homoclinic points
will be encoded with unique itineraries if and only if the partition border passes ex-
actly through the homoclinic tangency.

Accordingly, it has been conjectured by Grassberger and Kantz that a generating
partition for a nonhyperbolic system can be obtained by connecting homoclinic tan-
gencies [62, 63]. This generalizes the procedure for coding one-dimensional maps,
with the singularity located at the homoclinic tangency replacing the singularity
located at the critical point, and pairs of homoclinic points replacing preimages of
a given point. This conjecture has not been proven yet, but extensive numerical
evidence that it yields generating partitions has been given over the years [63–
69]. The simplest partition that can be obtained in this way for the Hénon at-

6) In the pictures shown in this section, we have shown only the unstable manifold of the fixed point
X � . This manifold is confined to the strange attractor. However, a stable and an unstable direction
can be determined at each point of the plane using definitions (2.115). Thus, 
(X ) is well defined
everywhere, inside or outside of the strange attractor.
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Figure 2.28 A generating partition for the Hénon map constructed by connecting homoclinic

tangencies.

tractor is shown in Figure 2.28. Note that with this partition, the itinerary of P
is Σ(P ) D � � � 111.0111 � � � and differs from Σ(X �) by only one symbol.

However, there are some difficulties with this approach. Individual lines defined
by the equation 
(X ) D 0 usually do not make a satisfactory partition border. In
fact, one generally finds that several such lines have to be followed, the connec-
tion between two different lines occurring outside the attractor. As a result, it is
not always obvious which homoclinic tangencies to connect. Various criteria have
been proposed to overcome this ambiguity (see, e.g., [66, 69]), but to our knowl-
edge, no definitive solution has been found so far. Another problem is that there is
a dramatic noise amplification precisely at homoclinic tangencies [68], which can
make their extraction from experimental time series difficult. However, the folding
and squeezing processes that build the strange attractor not only create localized
singularities (homoclinic tangencies) but also determine the global structure of the
attractor. We shall see later that analyzing the topological organization of a chaotic
attractor provides detailed information about its symbolic dynamics. In particular,
the symbolic name of many low-period orbits can be determined directly from its
topological invariants. This fact has been used to design methods for contructing
generating partitions that are based on topological analysis and do not rely on the
structure of homoclinic tangencies [61, 70]. These methods will be outlined in Sec-
tion A.4.

2.11.3

Symbolic Dynamics of the Hénon Map: Grammar

In the previous section, we discussed how to code trajectories of the Hénon map
so that they can be associated in a one-to-one way with bi-infinite sequences of
0s and 1s. The purpose of such a coding is to characterize the dynamics by de-
termining the grammar that determines which symbol sequences are allowed and
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which never appear. We have already encountered this question when discussing
the symbolic dynamics of the logistic map. In this case, there was a simple an-
swer: Admissible sequences are such that none of their iterates is larger than the
kneading sequence (Section 2.7.4). For the Hénon map and, more generally, dif-
feomorphisms of a plane, the problem is much more complicated, and in fact has
not been completely solved, even if many profound results have been obtained.
In the present section, we will only touch on it, with more details given in Chap-
ter 9, where orbit forcing will be discussed. Indeed, understanding which symbol
sequences can be realized involves understanding in what order they appear.

As was noted in Section 2.11.2, the stable and unstable manifolds of a Hénon
map have fewer intersections than a full horseshoe map. While there are four in-
tersections in both Figures 2.26b and 2.21a, there are only 12 in Figure 2.26c, which
is to be contrasted to the 16 D 42 that exist in Figure 2.21d. In Figure 2.26d, there
are 30 instead of 64. The key point is that a Hénon map evolves from parameter
values where there are no transverse intersections between invariant manifolds,
and thus no chaos, to a fully chaotic state where it is topologically equivalent to
a Smale horseshoe. As it evolves, intersections gradually appear through series of
bifurcations associated with tangencies between invariant manifolds. Each new in-
tersection corresponds to a new homoclinic orbit similar to point P in Figure 2.26b
but with a distinct symbolic itinerary, so that new symbol sequences become al-
lowed. Conversely, one could see a given Hénon map as a full horsehoe map from
which some orbits and symbol sequences have been “pruned away.” The key ques-
tion is how to characterize the pruned symbol sequences in the most simple and
logical way.

The term “pruning” was introduced in a pioneering paper by Cvitanovíc, Gu-
naratne, and Procaccia [64] in which the “pruning front conjecture” was formulat-
ed. The key idea is that since the unstable manifold is folded into infinitely many
“leaves” located in different parts of the phase plane, stacked in the stable direc-
tion, a single kneading sequence is no longer sufficient. Rather, infinitely many are
needed, one for each “leaf.” More precisely, complexity arises because the knead-
ing sequence, which determines the admissible forward sequences, depends on the
backward sequence, which indicates what leaf the current iterate is located in. The
kneading sequence changes monotonically from leaf to leaf, hence the term “prun-
ing front.”

Due to dissipation, however, only a finite number of kneading sequences are
relevant in practice since only a finite number of leaves can be distinguished for
a given resolution. For example, there is little difference to the naked eye between
the unstable manifolds drawn in Figure 2.26e and f, whereas we clearly see the
finer structure in Figure 2.26d compared to Figure 2.26c.

Accordingly, Hansen and Cvitanovíc were able to reproduce much of the struc-
ture of the Hénon map bifurcation diagram by considering bi-unimodal and four-
unimodal maps [71]. An n-unimodal map is defined by n different unimodal maps,
each associated with a symbol sequence. At each iteration, the map correspond-
ing to the symbol or symbol sequence last seen (which indicates position along
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(a) (b)

Figure 2.29 (a) A complete homoclinic tangle

with all the intersections between the unsta-

ble and stable manifolds allowed by a binary

grammar; (b) an incomplete tangle where

some of the intersections have been removed.

Intersections disappear through tangencies in

sequences that are constrained by the geome-

try of the tangle.

the stable manifold) is applied. An n-unimodal map is naturally characterized by n
kneading sequences, which can serve as canonical parameters for the map.

In particular, Hansen and Cvitanovíc could reproduce specific codimension-2 bi-
furcation structures in the two-parameter space of bi-unimodal maps, which are
ubiquitous in invertible maps and flows. These structures involve two pairs of
saddle–node twin orbits that exchange partners depending on parameter values.
Termed “swallowtails” by Hansen and Cvitanovíc [71], these structures are also
known as “shrimps” in the literature [72, 73].

More generally, the complex structure formed by the intertwined unstable and
stable manifolds of a fixed point or periodic orbit is known as a homoclinic tan-
gle (Figure 2.26) (or heteroclinic if it involves several orbits). As is well known,
their importance was first recognized by Poincaré in his analysis of the three-body
problem [48]. More recently, characterizing the structure of tangles has attracted
much interest [74–81]. As parameter values are changed, the stable and unstable
manifolds change. Their intersections, which correspond to homoclinic or hetero-
clinic orbits, appear or disappear through tangencies. As suggested by Figures 2.26
and 2.27, the order in which this occurs is severely constrained by the geometry of
the tangle, which induces a partial order between homoclinic orbits: the presence
of some orbits implies infinitely many others [77, 78], as illustrated by Figure 2.29.
Comparing this picture to Figure 2.21 also provides insight into the pruning front
conjecture and the property that the kneading sequence (i.e., the rightmost admis-
sible forward sequence) depends on the backward sequence. The monotonicity of
the pruning results from the fact that inner loops must disappear first.

Invariant manifolds are unbounded objects, and thus difficult to study, but their
structure can be hierarchically approached with finite portions of increasing length
of the invariant manifolds, trellises, which are amenable to combinatorial analy-
sis [77]. Using trellises, the forcing order between homoclinic orbits can be com-
puted and important information about the dynamics of the system and its symbol-
ic dynamics extracted [75, 78, 81, 82]. Thus, homoclinic orbits are very important
for understanding a chaotic dynamics. However, they are much more difficult to
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extract from experimental time series than periodic orbits, which explains why the
emphasis will be put on the latter in this book.

2.12

Circle Maps

2.12.1

A New Global Topology

In Section 2.9.4 we saw that the global topology of phase space can have dramat-
ic consequences: A period-3 orbit forces orbits of every period if it belongs to a
map of an interval into itself, none if the state space is two-dimensional or is the
unit circle. This indicates that qualitatively different behaviors can appear when
phase space topology is changed. Accordingly, this section is devoted to a brief re-
view of dynamical properties of maps from the unit circle S1 into itself. If S1 is
parameterized with an angular variable θ 2 [0, 1], these maps can be written as
θnC1 D f (θn) (mod 1).

Physically, the study of circle maps is motivated by the problem of coupled os-
cillators. Assume that we have two systems oscillating on periodic cycles at fre-
quencies ν and ν0, respectively. The state of each oscillator can be described by an
angular variable θ (t) D ν t (mod 1). In the spirit of Poincaré sections, let us sample
these angles stroboscopically at the frequency ν0 so that we need only measure the
successive samples θn D θ (t0 C n/ν0) of the first angle, given by

θnC1 D (θn C w ) (mod 1) (2.116)

where w D ν/ν0. Map (2.116) describes a rotation by a fraction w of a full turn per
sampling period and is denoted R(w ) in what follows.

Two different qualitative behaviors can occur depending on the value of w. If w
is a rational p/q with p , q 2 Z, we have that θnCq D θn C qw (mod 1) D θn : The
dynamical regime is a periodic orbit, and θn takes only a finite number of different
values. If w is irrational, the sequence fθng fills densely the interval [0, 1]. This is a
quasiperiodic regime and corresponds to the superposition of two incommensurate
frequencies.

2.12.2

Frequency Locking and Arnold Tongues

It is known that the set of rational numbers is dense in [0, 1] but that it has ze-
ro measure: The frequency ratio of two uncoupled oscillators is irrational with a
probability of 1, even if one can find rational values arbitrarily close. However, this
changes as soon as a coupling is introduced. One then observes frequency locking:
The frequency ratio of the two oscillators remains fixed at a rational value p/q in a
finite range w 2 [p/q � Δ�1, p/q C Δ�2].



2.12 Circle Maps 97

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x n
+

1

xn

Figure 2.30 Graph of circle map (2.117) for w D 0.47 and K D 0.8. A period-2 orbit is also

represented.

To study this phenomenon, the following circle map was introduced by Ar-
nold [83]:

θnC1 D
	

θn C w C K
2π

sin (2πθn)



(mod 1) (2.117)

which features a nonlinear coupling characterized by its strength K. Figure 2.30
displays the graph of the map obtained for (w, K ) D (0.47, 0.8).

To describe the asymptotic regimes of (2.117), one introduces the rotation num-
ber [12, 52, 84]

� D lim
N!1

1
N

N�1X
nD0

Δθn with Δθn D
	

w C K
2

π sin (2πθn)



(2.118)

Note that � D w in the limit K D 0. The structure of the function �(w, K )
thus provides insight into the phenomenon of frequency locking as the nonlinear
coupling is increased.

When the circle map (2.117) is a homeomorphism of S1 into itself (i.e., for
K � 1), the following properties of the rotation number �(w, K ) can be established:


 The rotation number (2.118) does not depend on the orbit used to compute it.

 If �(w, K ) is irrational, the circle map is equivalent to the pure rotation R(�); the

motion is quasiperiodic.

 If �(w, K ) D p/q with p and q relatively prime integers, the asymptotic regime

is a periodic orbit of period q. The periodic points of this orbit are ordered along
the unit circle as with the pure rotation R(p/q).

Thus, the classification of dynamical behaviors of the Arnold map for K � 1
amounts to determining the parameter regions in the (w, K ) plane, where �(w, K )
is rational.
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Figure 2.31 Graph of the circle map for K D 0.8 and (i) w D 0.8/2π; (ii) w D 0; (iii) w D
�0.8/2π.

As a simple example, let us consider the region �(w, K ) D 0, where the oscillator
frequencies are locked to each other in a 1 W 1 ratio. The corresponding asymptotic
regime is a fixed point θnC1 D θn whose location, according to (2.117), is given by
the equation w D �(K/2π) sin θ . It is easy to see that for w 2 [�K/2π, CK/2π],
there are two solutions, one of which is stable in the whole domain 0 � K � 1, at
least (Figure 2.31). Indeed, the slope of the graph at the two intersections is positive
(the function is monotonic) and must be lower than 1 at one of the intersections.
Hence, there is a periodic orbit having multiplier 0 � μ � 1. For w D ˙K/2π, the
graph of the map is tangent to the diagonal, indicating that the stable and unstable
periodic orbits are created and destroyed through saddle–node bifurcations. Note
that the width of the frequency-locking interval � D 0 increases linearly with K and
corresponds at K D 1 to almost one-third of the possible values of w.

By determining which regions of the (w, K ) plane correspond to rotation num-
bers �(w, K ) D p/q with a small denominator q, the diagram shown in Figure 2.32
is obtained for q � 8. The regions of frequency locking are called the Arnold tongues.
Each of them corresponds to a different rational p/q, which governs the order in
which they are encountered as w is increased at fixed K, since �(w, K ) is a monoton-
ic function of w. As discussed above, tongues are bounded on both sides by saddle–
node bifurcations where periodic orbits of the corresponding rotation number are
created or destroyed.

It is interesting to note that the rotation numbers corresponding to the most im-
portant tongues can be classified according to a hierarchy based on an arithmetic
operation on fractions. Indeed, it turns out that the principal tongue located be-
tween two tongues of rotation numbers p1/q1 and p2/q2 that satisfy p1q2 � p2q1 D
˙1 is the one associated with the Farey sum of these two fractions, defined as fol-
lows: p1/q1 ˚ p2/q2 D (p1 C p2)/(q1 C q2). Starting from the fundamental tongues
0/1 and 1/1, one first obtains the 1/2 tongue. The latter is then separated from 0/1
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Figure 2.32 Arnold tongues for circle map (2.117) corresponding to rational rotation numbers

�(w, K) D p/q with q � 8.
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Figure 2.33 The graph of the rotation number �(w, K D 1) is a devil’s staircase.

by 1/3 and from 1/1 by 2/3. At the third level, one obtains 1/4, 2/5, 3/5, 3/4, and
so on. Tongues at a given level are wider than those at the next levels, as can be
verified by visual inspection of Figure 2.32.

As K is increased from 0 to 1, the relative proportions of the quasiperiodic and
periodic regimes are exchanged. At K D 0, quasiperiodic regimes have a probabili-
ty of 1, as mentioned above. Since there are an infinite number of tongues, it might
not be obvious that the total length in w of the frequency-locked intervals goes to
zero as K ! 0. That this is the case is due to the width Δw (p/q) of the � D p/q
tongue decreasing sufficiently fast as K ! 0, more precisely as Δw (p/q) � K q or
Δw (p/q) � K q�1, depending on p/q.

At K D 1, values of w yielding quasiperiodic regimes are confined to a Cantor set
of measure 0 and of fractal dimension D � 0.87; frequency-locked regimes have
measure 1. The graph of the function �(w, K D 1), shown in Figure 2.33, has a very
peculiar structure, known as a devil’s staircase. It is continuous and monotonic but
increases only where � is irrational: Each rational value occurs on a finite interval.
Moreover, it is self-similar: Any part of the graph contains a reduced copy of the
entire graph. Incomplete devil’s staircases are observed for K < 1 (i.e., the set of
parameters yielding irrational rotation numbers then has positive measure).
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2.12.3

Chaotic Circle Maps as Limits of Annulus Maps

The K D 1 line in the phase diagram of Figure 2.32 is called the critical line. Be-
yond it, circle map (2.117) has a point with zero derivative and hence is no longer
invertible, which has dramatic consequences on the dynamics. On the one hand,
there are no longer quasiperiodic regimes. Indeed, the latter are equivalent to a
pure rotation with an irrational rotation number, which cannot be conjugate to a
noninvertible map. On the other hand, more complex behavior can then appear,
including chaos. Since map (2.117) has branches with negative slope, the stable
periodic orbit can now have a negative multiplier and undergo a period doubling
when the latter crosses �1. Most of the analysis carried out for the logistic map ap-
plies here: One observes cascades of period doubling leading to chaos. The white
zones in the K > 1 part of Figure 2.32 correspond to chaotic regimes or to periodic
regimes of high period.

Another consequence of noninvertibility is that the rotation number (2.118) now
depends on the initial condition. Accordingly, a given regime is characterized by
a rotation interval [��, �C] rather than by a single number. This corresponds to
Arnold tongues gradually overlapping as K is increased above 1, as can be seen in
Figure 2.32.

As discussed in the introduction to this section, invertible circle maps can be
obtained rigorously as a first-return map when the dynamics is confined to a two-
dimensional torus T 2. Obviously, this interpretation is not valid for noninvertible
circle maps. However, just as the one-dimensional logistic map can be viewed as
the infinitely dissipative of a two-dimensional horseshoelike invertible map, non-
invertible circle maps can be thought of as limits of maps of an annulus into itself.
Not that this interpretation is limited to circle maps having a degree of 1 (the im-
age of the annulus winds once around the center). This is illustrated in Section 10.8
with the important example of the forced van der Pol oscillator.

2.13

Annulus Maps

Annulus maps have been represented in a number of different ways. One such
map is shown in Figure 2.34. The expression for the map (�, θ ) ! (�00, θ 00) is

�0 D �0
�
cos(πθ ) C 2θ

�
�00 D �0 C d (� � �0)

dθ 0

dθ

θ 0 D ω C θ C K
2π

sin (2πθ ) θ 00 D θ 0 � d (� � �0)
d�0

dθ
(2.119)

In this map the two state variables are � and θ , 0 � θ � 1 (mod 1) with the
endpoints identified. The latter is essentially the same as that for the circle map,
while the new state variable � is the distance of a point from the origin in the
phase space R2. The two control parameters ω (rotation angle) and K (strength
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Figure 2.34 The transformation (�, θ ) ! (�00 , θ 00) invertibly maps the annular set (circles with

radii �˙ D �0 ˙ Δ� D 3.5, 6.5) onto the deformed set, shown with darker lines inside the

annulus. Parameter values: (�0, ω, K/2π, d) D (5.0, 0.0, 2.0, 0.06).

of nonlinearity) have the same meaning as for the circle map. The new control
parameter d is a measure of the dissipation: as d ! 0 we recover the circle map.

Annulus maps exhibit a variety of exciting behaviors. Some of this behavior is
described by the Afraimovich–Shilnikov torus breakdown theorem [85, 86]. This
theorem is local in nature, describing a spectrum of behaviors in the neighborhood
of an Arnold tongue [83]. Annulus maps can support multiple coexisting basins of
attraction. This is made manifest by the occurrence of hysteresis in bifurcation
diagrams under some conditions. This type of global behavior is not covered by the
Afraimovich–Shilnikov theorem.

We describe the Afraimovich–Shilnikov theorem as it applies to a period-3
Arnold tongue in an annulus map. The tongue in a two-control parameter plane
is indicated in Figure 2.35. The Arnold tongue is bounded by two saddle–node
bifurcation curves, labeled SNB1 and SNB2. Crossing these curves involves a di-
rect or an inverse saddle–node bifurcation. For the period-3 tongue, this involves
the creation or annihilation of a period-3 pair of orbits, one saddle and one node.
“Opposite” the vertex of the Arnold tongue is a curve indicating the beginning of
a period-doubling cascade to chaos. The larger the period q of the p/q tongue, the
faster the transition through this region to chaos. Curves H o�

1 and H o�
2 indicate

where there is a homoclinic connection between the stable and unstable manifolds
of the period-3 saddle orbit. These curves connect the saddle–node curves with the
period-doubling curve. Outside the tongue curves H e1 and H e2 locate the hetero-
clinic connection, the curve in control parameter space along which the unstable
manifold of the saddle is tangent to the stable manifold of the node. Below this
exterior region the behavior is quasiperiodic; above it is chaotic.

We now illustrate this behavior with the study by Letellier, Messager, and
Gilmore [87] of the dynamics of an annulus map introduced by Curry and
Yorke [88]. The Curry–Yorke map is defined as follows. Let Ψ1 and Ψ2 be two
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Figure 2.35 Schematic of an Arnold tongue

in a control parameter plane and the kinds

of behavior in its vicinity. SNB1, SNB2 are

saddle–node bifurcation curves. P D is

the first period-doubling bifurcation curve.

H o�
1 , H o�

2 are curves indicating homo-

clinic connections, tangencies of the stable,

and unstable manifolds of the saddle cycle.

H e1, H e2 are curves defining the heteroclinic

connections of the unstable and stable man-

ifolds of the saddle and node period-3 orbits.

Path 1: Figure 2.36a–c. Path 2: Figure 2.36d–f.

homeomorphisms of the plane. Ψ1 is defined in polar coordinates (�, θ ) by

Ψ1(�, θ ) D �
� ln(1 C �), θ C θ0

�
(2.120)

and Ψ2 is defined in cartesian coordinates by

Ψ2(x , y ) D �
x , x2 C y

�
(2.121)

The Curry–Yorke map Ψ is obtained by composing these two maps: Ψ D Ψ2 ıΨ1.
A complicated dynamics, typical of an annulus map, can be observed when this
map is iterated.

In the left part of Figure 2.36 we show snapshots of the attractor at three points
along Path 1 in Figure 2.35. In Figure 2.36a the motion is quasiperiodic on the
torus, which has been deformed to triangular shape in anticipation of the impend-
ing saddle–node bifurcation that creates the stable period-3 node. The circles show
the location of the real part of the saddle node pairs just before the bifurcation.
After the bifurcation there is a stable period-3 orbit. It is not shown here, but the
locations of the three points in this orbit are clear from the positions of their analyt-
ic continuations in Figure 2.36a (just before entering the tongue) and Figure 2.36b
(just after leaving the tongue). The torus is wrinkled (see insets, Figure 2.36b) on
leaving the tongue above the curve H e1. There is a “hard” transition to chaos. As
the control parameter moves further away from the boundary of the tongue, the
attractor becomes increasingly wrinkled, as shown in Figure 2.36c.

Path 2 enters the tongue by crossing the other saddle–node boundary curve
SNB2 below the heteroclinic curve H e2. Before entering the tongue the behav-
ior is quasiperiodic. Once again the torus becomes deformed to a triangular shape
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Figure 2.36 (a–c) Snapshots of the attractor

at three points along Path 1 of Figure 2.35;

(a) quasiperiodicity is evident just outside the

left-hand boundary of the period-3 tongue and

below the heteroclinic curve H e1; (b) toroidal

chaotic behavior is exhibited after crossing

the tongue boundary above H e1. Wrinkling is

evident close to the remnants of the period-3

orbit (see insets): the real parts of the coor-

dinates are shown here; (c) toroidal chaos

becomes increasingly evident and the folding

more pronounced as the path receeds from

the tongue boundary; (d–f) snapshots of the

attractor at three points along Path 2 of Fig-

ure 2.35; (a) quasiperiodicity is evident just

outside the right-hand boundary of the period-

3 tongue and below the heteroclinic curve

H e2; (b) a banded period-3 chaotic attrac-

tor occurs after passage through the period-

doubling cascade and beyond the inverse

noisy period-halving bifurcations; (c) toroidal

chaos occurs after one or more crises increase

the size of the attractor. After Letellier, Mes-

sager, and Gilmore [87].

in anticipation of the impending saddle–node bifurcation. The dots shown in Fig-
ure 2.36d indicate the locations of the real part of the period-3 orbit. The path exits
the tongue through the period-doubling region. After the accumulation curve is
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crossed, a series of noisy period-halving bifurcations ensues, creating a banded
(three bands) chaotic attractor. This is shown in Figure 2.36e. The locations of the
period-3 orbit, stable inside the tongue but now unstable, are shown as dots. After
one or more crises have taken place, a chaotic toroidal attractor is formed. This is
shown in Figure 2.36f.

2.14

Summary

Although maps are very simple dynamical systems, they display most of the key
features of chaos. This has allowed us to become familiar with concepts that will
appear throughout this book, without excessive mathematical complexity.

Even the simplest dynamical system that one can think of, the logistic map, is
able to reproduce surprisingly well qualitative behaviors that are observed exper-
imentally in the laser system described in Chapter 1. As a control parameter is
varied, it experiences bifurcations, in particular a period-doubling cascade leading
to chaos, and a variety of chaotic regimes.

The simple structure of the logistic map makes it possible to study one of the
basic mechanisms responsible for chaotic behavior, namely stretching. In its most
chaotic regime, the logistic map is basically a “multiply by two” machine. This has
far-reaching consequences: sensitivity to initial conditions, existence of an infinite
number of periodic orbits that are dense in the invariant set, and so on.

Stretching is at the root of an extremely powerful tool for unfolding chaos, sym-
bolic dynamics. Thanks to the unlimited magnification provided by sensitivity to
initial conditions, a series of coarse-grained measurements of the system state suf-
fices to specify it with arbitrary accuracy. Symbolic dynamics not only allows us to
classify orbits (e.g., how many periodic orbits of period p?) but also to study their
genealogies (e.g.: In what order do orbits appear? Which orbit is a period-doubled
orbit from another?). By studying the grammar of a chaotic system, we can classify
regimes and compute quantitative invariants such as topological entropy. Not all
of the results obtained (e.g., the universal sequence) can be directly extended to
higher dimensions. That there are topological invariants (e.g., permutations) both
of which are deeply related to symbolic dynamics and play a major role in forcing
relations will later prove to be a key property.

The logistic map is a noninvertible system. Many physical systems are described
by ODEs and thus are associated with invertible maps, such as the Hénon map. A
chaotic invertible map shares many properties with noninvertible ones. In particu-
lar, the dynamics in the unstable space is associated with a noninvertible map, as
the example of the horseshoe map shows. There are also new problems, such as
constructing relevant symbolic encodings in that case. Finally, global phase space
topology can have a profound influence on phenomena observed, as exemplified
by circle and annulus maps.


