
466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

A New Outlook on Shannon’s 
Information Measures 

Raymond W. Yeung, Member, IEEE 

Abstact --Let. Xi, i = 1,. . . , n, be discrete random variables, 
and Xi be a set variable corresponding to Xi. Define the 
universal set to be U ;= IXi and let S be the U-field 
generated by (Xi, i = 1,. . . , n}. It is shown that Shannon’s infor- 
mation measures on the random variables Xi, i = 1; .,n, con- 
stitute a unique measure p* on F, which is called the I-Mea- 
sure. In other words, the Shannon information measure (i.e., 
Shannon’s information measures as a whole) is a measure on 
S, thus establishing the analogy between information theory 
and set theory. Therefore each information theoretic operation 
can formally be viewed as a set theoretic operation, and vice 
versa. This point of view, which we believe is of fundamental 
importance, has apparently been overlooked in the past by 
information theorists. As a consequence the I-Diagram is intro- 
duced, which is a geometrical representation of the relationship 
among the information measures. The I-Diagram is analogous 
to the Venn Diagram in set theory. The use of the I-Diagram is 
discussed; some applications of which reveal results that may 
otherwise be difficult to discover. A formula is also derived for 
the value of the I-Measure of the atoms of S and its sub-a- 
fields generated by some subsets of the basic set variables. 

Index Terms -Shannon’s information measures, I-Measure, 
I-Diagram. 

I. PRELIMINARIES AND MOTIVATION 
HE random variables in this paper are discrete. For T two random variables X and Y ,  Shannon’s informa- 

tion measures ([ll, also c.f. [21, [31, [61-[91) are H(_X),  
H(Y) ,  H ( X ) Y ) ,  H(YIX),  and I ( X ; Y ) .  Let A? and Y be 
set varia_bles-corresponding to X and Y ,  respectively. By 
letting X U Y be the universal set R, we can define a real 
measure’ p* on the a-field 

( dc n P , ( d n f ‘, 4 }  
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p * ( 2  U P)  = H ( X , Y )  

p*( 2 )  = H (  X )  

p*( P) = H (  Y )  

p * ( ; E n ? ) = I ( x ; ~ )  

~ * ( ~ - ~ ) = H ( x I Y )  ( Z - P = d n f c )  
p*( P - 2) = H (  Y IX) 

p * ( ( 2  n f )“)  = H ( X I Y )  + H ( Y I X )  

and 

P * ( 4 )  = 0. (1.1) 

We observe that the left sides of the first six equalities in 
(1.1) can be obtained from the right sides (which are 
Shannon’s information measures on X and Y )  via the 
following substitution of symbols: 

H / I  + P 

, + U  

; + n  
I + -. 

We shall refer to this as the formal substitution of sym- 
bok. (There is no substantial difference between entropy 
and mutual information; entropy is sometimes referred to 
as self-information.) Thus for two random variables X 
and Y ,  Shannon’s information measures can formally be 
regarded as a measure on the a-field F. We shall refer to 
p* as the I-Measure for the random variables X and Y .  It 
is easy to see that for any information theoretic identity 
on X and Y ,  we can obtain a corresponding set theoretic 
identity via the formal substitution of symbols. For exam- 
ple, for the information theoretic identity 

H (  x ,  Y )  = H( X )  + H( Y )  - I( x ;  Y )  , 

there is the set theoretic identity 
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The latter, of course, is a special case of the inclusion- 
exclusion formula. 

Since the distinction between a_random variable X and 
the corresponding set variable X is apparent from the 
context in most cases, we shall use X to cenote both the 
random variable X and the se_t variable X .  For example, 
X U Y obviously means X U Y. We shall specify whether 
we are referring to the random variable or the set variable 
when necessary. 

In light of the above analogy between information 
theory and set theory for two random variables, it is 
natural to ask whether this analogy can be generalized. 
To be precise, we raise the following two questions for 
any finite number of random variables. 

1) For any information theoretic identity, is there a 
corresponding set theoretic identity via the formal 
substitution of symbols? 

2) For any set theoretic identity, is there a correspond- 
ing "information theoretic" identity? If so, in what 
sense? 

It was proved by Hu Guo Ding [4] (also see [8, p. 511) that 
the proposition in 1) is true. This result, although funda- 
mental in nature, may be less useful from the application 
point of view. From this point of view, the result asserts 
that one can discover a set theoretic identity by first 
discovering an information theoretic identity. This, how- 
ever, is not a very good approach to discover a set 
theoretic identity, because there is a much richer set of 
operations in set theory than in information theory. After 
all, we are more interested in discovering information 
theoretic identities than set theoretic identities. (In 
Hu Guo Ding's framework, not every set theoretic iden- 
tity has an information theoretic interpretation. For ex- 
ample, the set identity p ( X )  + p ( X " )  = p ( 0 )  has no in- 
formation theoretic interpretation because SZ is not de- 
fined. Therefore it is not clear from their work how all 
the set theoretic operations can be applied in information 
theory.) 

In this paper we present a new approach to understand 
the underlying mathematical structure of Shannon's infor- 
mation measures, which provides answers to 1) and 2) on 
the same footing. In Section 11, we construct the I- 
Measure p* for any finite number of random variables on 
a properly defined a-field F, and show that it is the 
unique measure on F that is consistent with Shannon's 
information measures. Therefore the Shannon informa- 
tion measure (Shannon's information measure as a whole) 
is a measure on F. This point of view, which we believe is 
of fundamental importance, has apparently been over- 
looked in the past by information theorists. As a conse- 
quence of this result, the use of a diagram similar to a 
Venn Diagram to represent the relation among the infor- 
mation measures becomes valid. We call such a diagram 
an I-Diagram. Section I11 is a formal discussion of the 
use of the I-diagram, some applications of which reveal 

results that may otherwise be difficult to discover. The 
use of diagrams to represent the relation among Shannon's 
information measures has been suggested by Reza [2l, 
Abramson [3], Dyckman [5], and Papoulis [15]. In Section 
IV, we discuss some properties of the mutual information 
among three random variables. A formula for the value of 
the I-Measure on the atoms of F and its sub-a-fields 
generated by some subsets of the basic set variables is 
derived in Section V. In Section VI we present an inter- 
pretation of our results. In Section VII, we conclude by 
addressing several open issues. 

11. CONSTRUCTION OF THE I-MEASURE 
Let F be the a-field generated by W = ( X i ,  i = 1,. . ., n) 

with SZ = U y='=lXi being the universal set, where each Xi 
denotes a random variable as well as the corresponding 
set variable. We shall refer to the Xi's as the basic set 
variables. An element A E F is called an atom of F if 
A = n where Y, is either Xi  or X;. Let d c F be 
the set of all the atoms of F except for n ;= lX;,  which is 
4 because 

n 

nx;= uxi = n c = + .  

i = l  i i r 1  I C  
Then a measure p on F is completely specified by any 
set of values p ( A ) ,  A E d. Let 1 1 .  II be the cardinality of a 
set. Note that there are 2" atoms in F, so Ildll= 2" -1. 
Since each element of F is the union of a collection of 
elements in d, IIF(I= 211dll = 2(2"-1). 

Theorem 1: Let 

B =  B E E B =  U X f o r s o m e G c W , G # + .  

Then a measure p on F is completely specified by any 
set of values p ( B ) ,  B E &?. 

Proof: Each element of &? is the union of a conempty 
collection of elements of W. Therefore 

{ X E G  I 

l l@ll= t ('L) 
r = l  

= 2 " - 1  
using the binomial formula. Thus lldll= llBll= 2" - 1. 
Denote (2" - 1) by k. Let U be a column k-vector of 
p.(A),  A E ~ ,  and U be a column k-vector of p ( B ) ,  
BE&?.  It is clear that for each B E @ ,  p ( B )  can be 
expressed as the sum of some of the elements of U. Thus 

U = cu ,  (2.1) 
where C is a k x k matrix. Note that C is unique. On the 
other hand, for each A E d, it can be shown by induction 
(see Appendix) that p ( A )  can be expressed as a linear 
combination of p ( B ) ,  B E B using the following identi- 
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ties: 1) is obviously true by definition. We now show that 4) is 
true: 

p ( X  n Y - 2 )  = p ( X  - 2 )  + p ( Y  - Z )  

- p ( X  U Y -  Z )  (2.2) 

w*(( U .)U( U ,;)) p ( X -  Y )  p ( X  U Y )  - p ( Y ) .  (2.3) 
X E G  Z E G  

(The existence of this expansion does not imply its 
uniqueness, but we shall see shortly that this is the case.) 
Thus 

u = D v  (2.4) 

for some k x k matrix D .  Substituting (2.1) into (2.4) we 
obtain U = (DC)u,  which implies D is the inverse of C ,  so 
D is unique. Therefore p(A),  A E ~  are determined 
once p ( B ) ,  B E  A? are specified. Hence p is completely 
specified by any set of values p ( B ) ,  B E G9. 0 

We now prove two identities that will be used shortly. 
Lemma la: 

- p*( U , , Z )  
by Lemma l a  

Z E G  

= H ( (  X , X  E G ) , ( Z , Z  E G")) 

+ H (  ( Y ,  Y E G')  , ( Z ,  Z E G") ) 

- H ( ( X , X  E G ) , ( Y , Y  E G ' ) , ( Z , Z  E G " ) )  

- H (  Z ,  Z E G " )  p ( X  n Y - Z )  = p ( X  u 2 )  + p ( Y  u 2 )  

- p ( X  U Y U Z )  - p( Z ) .  

0 

= I (  X ,  X E G ; Y ,  Y E G'IZ, Z E G") 

proof: This is immediate from (2.2) and (2.3). by Lemma lb. 2) and 3) can be proved likewise. Therefore 
p* is consistent with Shannon's information measures. It 
is also clear that p* is the unique measure on 9 which is 

H (  x,  z )  + H (  y ,  z )  - H (  x ,  y ,  z )  - ~ ( 2 ) .  consistent with Shannon's information measures, because 
for such a measure, 1) must be satisfied. Therefore the 
Shannon information measure (Shannon's information 
measures as a whole) is a measure on 9. We point out, 
however, that there exists A E 9 such that p*(A)  does 
not correspond to a Shannon's information measure (e.g., 
p*(X n Y n Z)) .  Nevertheless, we call p*(A) for all A E 

F information measures. 
Now, for any information theoretic identity, we can 

obtain the corresponding set theoretic identity by the 

Lemma lb: 

I (  x;  y ( 2 )  

Proof: 

I ( X ; Y l Z )  = H ( X I Z ) - H ( X l Y , Z )  

+z(x,z) - H ( z )  - [ H ( x , Y , z )  - ~ ( y , z ) ]  
=H( x ,  Z )  +H( Y ,  Z )  -H( X , Y ,  Z )  -H( Z )  . 

0 

Note that Lemmas l a  and l b  are related by the formal 
substittltion of symbols. We now construct the I-Measure 
p* on 9 using Theorem 1 by defining p*(U x E G X )  = 
H ( X ,  X E G), for all nonempty G c W. Shannon's infor- 
mation measures include the entropy, the conditional 
entropy, and the mutual information and conditional mu- 
tual information between two groups of variables. The 
I-Measure p* must be consistent with these information 
measures in order to be meaningful. In other words, the 
following identities must hold for all nonempty G,G' ,  
G" c bV: 

1) $(U X E G X )  = H ( X ,  X E G )  

3) p*(W X E G X ) n ( U  yEG,Y))= I ( X , X  E G ;  

2) p*((UXEGX)-(UYEG'Y))~H(X,XEGI 
Y,Y E G') 

Y,Y E G ' )  

I ( X , X E G ;  Y,Y E G ' I Z , Z E G " ) .  
4) p*((u  X E G X ) ~ ( U  y ~ G ' y ) - ( u  Z E G " ~ ) ) ~  

direct substitutions in (1)-(4). Thus the proposition in 
question 1) is true. On the other hand, for any set 
theoretic identity for a measure p on 9, the identity is 
still valid if p is replaced by p*. (Note that a set theoretic 
identity is invariant with the measure, but this is not true 
for a set theoretic inequality.) Then the set theoretic 
identity is also an information theoretic identity in the 
sense that p* is uniquely defined by Shannon's informa- 
tion measures, thus answering question 2). Hence the 
analogy between information theory and set theory is 
established. 

For the rest of the paper we shall assume that 9 is the 
a-field generated by the set variables corresponding to all 
the random variables involved in the discussion, and R is 
the union of all these set variables. We shall also use the 
formal substitution of symbols in both directions for p* on 
the atoms of 9 and its sub-a-fields generated by some 
subsets of the basic set variables, which include all Shan- 
non's information measures (see examples in Section W. 
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I(x;Y) 

Fig. 1. I-Diagram for X and Y .  

For example, I (X;Y;  2)  is the same as p * ( X  n Y (7 Z ) .  
We call this quantity the mutual information among the 
three random variables X ,  Y ,  and 2. Similarly, we have 
the mutual information among any finite number of ran- 
dom variables. Some properties of the quantity I ( X ;  Y; 2)  
will be discussed in Section IV. We, however, shall not 
use the formal substitution of symbols for p* on an 
element in F that is not an atom of either F or its 
sub-a-fields generated by some subsets of the basic set 
variables (e.g., p*( (XI  n X,)‘)). 

111. THE I-DIAGRAM 
We have established that the Shannon information 

measure is a measure on F. Therefore it is valid to use a 
diagram similar to a Venn Diagram to represent the 
relation among the information measures. We shall refer 
to such a diagram as an I-Diagram. The I-Diagram for 
two random variables X and Y is shown in Fig. 1. 

A Venn Diagram involving more than three set vari- 
ables is less easy to visualize, because it in general cannot 
be illustrated in two dimensions. This is also true for an 
I-Diagram involving more than three variables. In this 
section we first discuss the use of the I-Diagram involving 
three random variables. We then discuss the use of the 
I-Diagram involving four random variables that form a 
Markov chain. 

In an I-Diagram, the “area” of a region represents the 
value of p* on the corresponding subset of R in F. 
However, it is not in general true that p* is nonnegative 
(see Section IV). Therefore the area of a region in an 
I-Diagram can represent a negative value. As a conse- 
quence, when two random variables X and Y are inde- 
pendent, it only implies that the sum of the area of the 
regions representing I ( X ;  Y )  in the I-Diagram vanishes. 
It was incorrectly pointed out in [2] that when two ran- 
dom variables are independent, the corresponding set 
variables are disjoint. We, however, contract a particular 
region in the I-Diagram if the measure of the correspond- 
ing subset of R vanishes. 

A. Random Variables X, X Z 

ables x, Y ,  and Z is shown in Fig. 2. 
The I-Diagram in the general form for random vari- 
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\ 
I(X;Y;Z) 

I(X;ZIY) 

Fig. 2. I-Diagram for X, Y,  and Z. 

Example I :  We first point out that I ( X ;  Y; 2)  is sym- 
metrical in X ,  Y ,  and 2. We see from Fig. 2 that 

I ( X ; Y ) -  I ( X ; Y l Z )  
= I (  Y ;  2 )  - I (  Y ;  Z l X )  
= I (  x ;  2 )  - I (  x ;  ZIY)  

( E I ( X ; Y ; Z ) ) .  
This identity is not well known although it is simple. 

Example 2: Let X and Z be independent. Then 
I (  x; 2 )  = I (  x ;  ZIY) + I (  x ;  Y ;  2 )  = 0. 

I (  X ; Y )  = I (  X ; Y  IZ) + I (  x ;  Y ;  2 )  I I (  X ; Y I Z ) .  

Since I ( X ; Z I Y )  is nonnegative, I ( X ; Y ; Z )  must be non- 
positive. Therefore 

This is readily obtained by inspection of Fig. 2. 

then 
Example 3: If X ,  Y ,  and Z are pairwise independent, 

I ( X ; Y ) = I ( Y ; Z ) = I ( X ; Z )  ( = O ) .  

I ( X ; Y I Z )  = I ( Y ; Z I X )  = I ( X ; Z I Y ) .  
Then it can be seen by inspection of Fig. 2 that 

Example 4: Suppose X-O-Y-C-Z is a Markov chain, 
that is I ( X ;  ZIY)  = O.‘By contracting the region corre- 
sponding to I ( X ;  ZIY) in Fig. 2, we obtain the I-Diagram 
in Fig. 3. Note that in this I-Diagram the area of all the 
regions are nonnegative because they correspond to Shan- 
non’s information measures. In other words, p* is a 
nonnegative measure on F. Then the following can be 
obtained by inspection: 

a) I ( X ; Y ) z  I ( X ; Z )  
b) H ( X I Y )  I H ( X l Z )  
c) I ( X ;  Y )  2 (I ) I ( Y ;  Z )  iff I ( X ;  Y 12) 2 ( I ) 

The idea of c) is that when we compare I ( X ; Y )  and 
I (Y;  Z), we can eliminate the quantity commonly “pos- 
sessed” by both, that is, I ( X ;  Y; 2). It was mentioned in 

I (Y;  Z l X ) .  
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Csiszar and Korner [8] that this quantity has no intuitive 
meaning. We, however, recognize its mathematical signif- 
icance because it is a quantity commonly possessed by the 
set variables X ,  Y ,  and Z ,  although this quantity may be 
negative. 

B. Random Variables X,  Y,  2, U that Form a Markov Chain 

It is in general not possible to illustrate the I-Diagram 
for four random variables in two dimensions. However, 
this is possible if X-c-Y+Z-c-U is a Markov chain. 
Using the Markov subchains, we have 

a) X-c-YuZ implies 

I (  X ;  Z ;  U I Y )  + I (  X ;  ZIY,  U )  = I (  X ;  Z I Y )  = 0.  (3.1) 
b) XUY-C-U implies 
I (  X ;  Z ;  U I Y )  + I (  X ; U I Y ,  Z )  = I (  X ;  U I Y )  = 0 .  
c) X+Z+U implies 

(3.2) 

I ( X ; Y ; U I Z ) + I ( X ; U l Y , Z )  = I ( X ; U l Z )  = o .  (3.3) 

Fig. 4. I-Diagram for XGYGZGLI. 

implies I ( X ; Z ; U I Y ) ,  I ( X ; U I Y , Z ) ,  I ( X ; Y ; U I Z )  and 
I ( Y ;  UIX,  Z >  all vanish. By contracting the corresponding 
regions, the I-Diagram for X ,  Y ,  Z ,  and U is shown in 
Fig. 4. Note that the I-Diagrams in Figs. 3 and 4 have the 
common property that all the circles in the diagram 
intersect at one point. 

Again the area of all the regions in Fig. 4 correspond to 
Shannon’s information measures, thus p* is nonnegative. 
The following can then be obtained by inspection: 

a) I ( Y ;  Z )  2 I ( X ;  U )  
b) I ( Y ; Z ) =  I ( X ; U ) +  I ( X ; Z l U ) +  I (Y;UIX)+ 

I (Y;  Z I X ,  U )  
c) H ( Y , U l X , Z ) =  H ( Y l X , Z ) +  H(UIZ) 
d) H ( Y I X , U ) =  H ( Y I X , Z ) +  I(Y;ZIX,U).  

Note that a) is the celebrated Data Processing Theorem 
([21, [31, [6]-[9]). These relations can of course be obtained 
using the chain rule and the Markov conditions, but they 
can be visualized with the I-Diagram. In an upcoming 
paper [14] we shall discuss the general structure of the 
I-Measure of a Markov chain. 

d) YuZ+U implies 
IV. CHARACTERIZATION OF I ( X ;  Y ;  Z )  

In this section we discuss some properties of the quan- 
tity I ( X ; Y ; Z ) ,  which appears to be of fundamental 

I ( X ; Y ; U I Z )  = I ( Y ; U I X , Z )  = I ( Y ; U I Z )  =o .  (3.4) 
e) ( X ,  Y )-c- Z U U implies 

I (  X ; Y ;  UlZ) + I (  X ;  UIY, 2 )  + I (  Y ;  U I X ,  Z )  interest. 
= I (  x;  U l Z )  + I (  Y ;  U I X ,  Z )  
= I ( X , Y ; U I Z )  
= 0. 

Theorem 2: 
-min( I (  X ; Y I Z ) ,  I (  Y ; z I X ) , I (  X ; Z I Y ) )  

(3.5) - < I ( X ; Y ;  Z )  I min { I ( x ; Y ) ,  I(  Y ;  Z ) ,  I (  X ;  Z ) )  . 
Proof: We first prove the lower bound, Now (3.1) and (3.2) imply 

I (  X ; Y ;  2 )  = I (  x ;  Y )  - I (  X ; Y  IZ)  

2 - I ( X ; Y I Z ) .  (4.1) 
I (  x;  UIY,  Z )  = I (  x ;  ZIY,  U ) .  (3-6) 

(3.3) and (3.6) imply By symmetry of I ( X ;  Y; Z ) ,  it is also greater than or equal 
to - (Y;  Z l X )  and - I ( X ;  ZIY) ,  proving the lower bound. 
The upper bound can also be obtained trivially. From 
(4.1) we have I ( X ; Y ; Z ) s  I ( X ; Y ) .  Again we establish 

(3.8) the upper bound by symmetry, completing the proof. 0 

We now give a classical example (see Gallager [61, 
Problem 2.20) in which the quantity I ( X ; Y ; Z )  is strictly 

I ( X ; Y ; U l Z )  = - I ( X ; Z l Y , U ) .  (3.7) 
(3.4) and (3.7) imply 

I (  Y ;  U I X ,  Z )  = I (  x;  ZIY,  U ) .  

We then substitute (3.6), (3.71, and (3.8) in (3.5) to obtain 
I ( X ; Z I Y , U ) =  0. From (3.1), (3.6), (3.7), and (3.8) this 
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negative. Let X and Y be independent binary random 
variables taking values in IO, 11, with p [ X  = 01 = 

p[ Y = 01 = i, and Z be their modulo 2 sum. Then I ( X ;  Y )  
= 0, and 

I (  X ; Y  IZ) = H (  X l Z )  - H (  XIY, Z )  
=1-0  
= 1.  

Therefore 
I (  X ; Y ;  Z )  = I (  X ; Y )  - I (  X ; Y  IZ) 

= -1. 
Recall that Z(X;Y; Z )  is symmetrical in X ,  Y ,  and Z .  The 
interpretation of I ( X ;  Y ;  Z )  being negative is that the 
mutual information between any two of the random 
variables X ,  Y ,  and Z increases when the other random 
variable is given. Similar interpretations can be made for 
I ( X ,  Y; 2) being positive and zero. 

A trivial sufficient condition for I ( X ;  Y ;  Z )  to vanish is 
X ,  Y ,  and Z being mutually independent. A less trivial 
sufficient condition is given in the next theorem. 

Theorem 3: I ( X ;  Y ;  Z )  vanishes if 

1) X + Y + Z  is a Markov chain and X and Z are 
independent, or 

2) X + Z + Y  is a Markov chain and X and Y are 
independent, or 

3 )  Y + X + Z  is a Markov chain and Y and Z are 
independent. 

Proof: It suffices to prove 1) because I ( X ; Y ; Z )  is 
symmetrical in X ,  Y ,  and Z .  The Markov chain 
X +  Y -c+ Z implies 

P ( X , Y , Z )  = P ( X ) P ( Y I X ) P ( Z I Y ) .  

P ( X , Z )  = p ( X ) p ( Z ) .  

The independence of X and Z implies 

Thus 
I (  x ;  Y ;  Z )  

P ( Y I X ) P ( Z I Y )  
P ( Y I X ) P ( Z I Y )  

= E log 

= Elog l  
= 0. 0 

It is not apparent that, for example, condition 1) in 
Theorem 3 is possible if neither X and Y nor Y and Z 
are independent of each other. The following is such an 
example: Let X and Z be independent of each other, and 
choose Y to be ( X , Z )  (also see examples in Hekstra and 
Willems 1121). This has recently been studied by Berger 

and Yeung, in [lo], [ll], where they tackled a multitermi- 
nal source coding problem. They introduced the notion of 
weak independence and their results are as follows. 

Definition: X is weakly independent of Y if the rows of 
the stochastic matrix Pxlr = [ p ( x l y ) ]  are linearly depen- 
dent. 

Theorem 4: For jointly distributed random variables X 

1) X + Y +  Z is a Markov chain, 
2) X and Z are independent, 
3 )  Y and Z are not independent, 

and Y ,  there exists a random variable Z satisfying 

if and only if X is weakly independent of Y .  

The conditions in Theorem 3, however, are not neces- 
sary. The following is a counterexample. For binary ran- 
dom variables X ,  Y ,  and Z ,  let p [ X  = i ,  Y = j ,  Z = k ]  be 
denoted by p i jk ,  i, j ,  k E (0, l}. Then I ( X ;  Y; Z )  vanishes 
for the distribution 

pooo = 0.0625 pool = 0.07719 polo = 0.0625 
poll = 0.0625 ploo = 0.0625 plol = 0.1103 
p l l o  = 0.1875 p l l  = 0.0375 

while none of the conditions in Theorem 3 is satisfied. 

V. A FORMULA FOR THE VALUE OF p* 

In this section we derive a formula for the value of p* 
on the atoms of 9 and its sub-a-fields generated by some 
subsets of the basic set variables, which include all the 
Shannon’s information measures. (For example, suppose 
F is generated by ( X l , X 2 , X 3 } .  Then H(XlIX2)  (i.e., 
p * ( X 1  - X,))  is an atom of the sub-a-field of F gener- 
ated by IX,,  X,}.)  

Let G = ( X , ; . . , X , , } ,  Qe(G) be the set of the joint 
probabilities of an even number of elements in G, and 
Q,(G) be the set of the joint probabilities of an odd 
number of elements in G. For example, for G = 

Wl, x,, x31, 
Qe( G ) = { P ( X I  7 X2) 7 P( x2 7 x,) 9 P( x3 7 X l )  1 

and 

Q,(G) = { ~ ( x 1 ) ~ ~ ( x 2 ) ~ ~ ( x 3 ) ~ ~ ~ x 1 ~ x 2 ~ x 3 ~ } ~  (5.1) 
For any set Q such that each element in Q is the joint 
probability of some finite number of variables, define 

4 Q ) =  n P, 
P E Q  

where ~ ( 4 )  = 1 by convention, and for any finite collec- 
tion of variables S ,  define the set J(Q,Y E S )  such that it 
is obtained from Q by replacing p ( - )  with p ( . ,  Y E S) in 
the elements of Q. For example, following (5.1) and 
S = (Y1, Y J ,  

J (  Q,( G)  9 Y E S )  = {P( X i ,  X2 ,Yi,Y2) 3 

p (  x2 7 x3 7 y 1  9 y 2 )  7 p (  x3  9 9 ‘ 1 ,  * 

If S = 4, we adopt the convention J(Q,Y E S) = Q. Simi- 
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larly, we define the set K(Q,Y E S) such that it is ob- 
tained from Q by replacing p ( . )  with p(.lY E S) in the 

Close examination of Qe(G U {X,,  + 1}) and Q,(G U (X, ,  + 

reveals that 
elements of Q. Thus 

K(Qe(G) ,Y E S) 

r (  J (  Qe(G U { Xn + 11 9 Y E S )) 
r (  J (  Qo(G U {Xn+ 11 )yY E S)) 

Instead of proving this theorem directly, which we 
believe is very difficult, we first prove the following lemma. = E log 

Lemma 2: Following the notation in Theorem 5 ,  

r (J (Qe(G' ) ,YE S)) 
= E log 

r (  J (  Q,( G') , Y E S)) ' 
( 5 ' 2 )  completing the proof. 

Proof of Theorem 5: We have Proof: We prove (5.2) by induction on n. For n = 1 
and for all m 2 0, 

llQe(G)ll= C ( i  1 
2 s k s n  

k even 

0 

1 
= E log llQ,(G)ll= (;I. P( X l  9 y E s l s k s n  

k odd 

By substituting a = 1 and b = - 1 in the binomial theorem 
r(J(Qe(G) ,Y E S)) 
~ ( J ( Q , ( G ) , Y E S ) )  ' 

= E log 

where Qe(G) is empty and QJG) = ( p ( X , ) }  for this case. ( a  + b)" = ( i j a k b n - k ,  
Thus (5.2) is true for n = 1. Assume for some n 2 1 (5.2) is k = O  
true for all m 2 0, and consider GI= {X , ; .  ., X,,, X,,+l}. 
Then 
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Therefore 

X1 

"2 

where the last equality is obtained by dividing the numer- 
ator and denominator by p ( Y  E SI2"-', proving the 
theorem. 0 

VI. DISCUSSION 
We adopt the standard interpretation that the entropy 

of a random variable is the amount of uncertainty about 
that random variable. For two random variables X and Y ,  
why should the amount of uncertainty about X reduced 
when Y is given be the same as the amount of uncertainty 
about Y reduced when X is given (i.e., H ( X ) -  H ( X I Y )  
be identical to H ( Y ) -  H(Y IX))? More generally, why 
should Shannon's information measures possess the struc- 
ture of a measure? While it may be difficult to explain 
this result for the general case on an intuitive level, we 
shall see that it is transparent in some special cases. 

Let q, i = 1, * a ,  7 be independent random variables, 
and Xi,  j = 1,2,3 be random variables defined by 

= ( yl, y2 7 y3 7 y 4 )  9 

x2 = ( y 2 , y 4 ? y 6 , y 7 ) ,  

Fig. 5 .  Relationship among X I ,  X,, and X,. 

Our results show that Shannon's information measures 
on any finite number of random variables always possess 
the structure of a measure. This may be viewed as an 
extension of our interpretation in this example, although 
the nonnegativity of p* is not necessarily preserved in the 
general case. 

VII. FUTURE WORK 
We now address some issues for further investigations. 
a) We have constructed a real measure p* on 9, 

which we call the I-Measure, from the joint distribution 
of the random variables involved. It should be pointed out 
that not every real measure p on 9 is an I-Measure. For 
p to be an I-Measure, it is necessary that the value of p 
on the elements of 9, which correspond to Shannon's 
information measures are nonnegative. However, given 
such a measure, it is not clear whether we can always find 
a joint distribution for the random variables such that 
Shannon's information measures on these random vari- 
ables agree with the value of p on the corresponding 
elements of 9. This is a very fundamental question to be 
answered. 

b) The value of p* on the elements of 9 that corre- 
spond to Shannon's information measures are always non- 
negative. A question of interest is: What are the elements 
of 9 on which the value of p* are always nonnegative? 
The more general question of what linear combinations of 
entropies are always nonnegative was raised by Te Sun 
Han [13]. 

x3 = ( Y 3 , Y , Y . , Y 6 ) .  
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The relationship among X , ,  X , ,  and X3 is illustrated in 
~ i ~ .  5.  ln this particular example, Shannon information 

on the random variables x,, x,, and x3 natuu- 
rally possess the structure of a measure. It is intuitively 
clear, for example, that 

H(X,)-H(X,IX,)=H(X,)-H(X,IX,), 
since both sides of this equation are equal to the sum of 
the entropies of Y2 and &. Note that in this example p* 
is nonnegative. 

APPENDIX 
A VARIATION OF THE INCLUSION-EXCURSION FORMULA 
In this appendix we derive a formula that has the same 

spirit as the inclusion-exclusion formula. This formula is 
stated in the following theorem. 
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Theorem Al: For a set-additive function p, 

p( j l A k - B )  

= c p ( 4 - B )  
l s i s n  

- p ( A i U A j - B )  
l s i < j s n  

+ p ( A i U A j U A k - B ) +  . . *  
l s i < j < k s n  

+( - l y + l p (  A ,  U . * * U An - B ) .  
(A.1) 

Proof: The theorem will be proved by induction. First 
(A.l) is obviously true for n = 1. Assume (A.1) is true for 
some n 2 1. We now consider 

+ p ( A i U A j U A ~ U A n + , - B )  
l s i < j < k s n  

+ . * * +( -1)”+’p(A,  U . * * U An U A,+1- B ) ]  

= p ( A i - B ) -  p ( A i U A j - B )  
l s i s n + l  l s i < j s n + l  

+ p ( A i U A j U A k - B )  
l s i < j < k s n + l  

+ - . .  + ( - 1 ) ” + * p ( A , U  * - *  U A ” + l - - B ) ,  

where we have used the induction hypothesis to expand 
p ( n  :=,A, - B )  and p ( n  :=1(Ak U An+l)-  B). Thus the 
theorem is proved. 0 
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