
CHAPTER 1

Probabilistic Reasoning

1.1 Probability Refresher

Variables, States and Notational Shortcuts

Variables will be denoted using either upper case X or lower case x and a set of variables will typically be
denoted by a calligraphic symbol, for example V = {a, B, c} .

The domain of a variable x is written dom(x), and denotes the states x can take. States will typically
be represented using sans-serif font. For example, for a coin c, we might have dom(c) = {heads, tails} and
p(c = heads) represents the probability that variable c is in state heads.

The meaning of p(state) will often be clear, without specific reference to a variable. For example, if we are
discussing an experiment about a coin c, the meaning of p(heads) is clear from the context, being short-
hand for p(c = heads). When summing (or performing some other operation) over a variable

P

x f(x), the
interpretation is that all states of x are included, i.e.

P

x f(x) ⌘
P

s2dom(x)

f(x = s).

For our purposes, events are expressions about random variables, such as Two heads in 6 coin tosses.
Two events are mutually exclusive if they cannot both simultaneously occur. For example the events
The coin is heads and The coin is tails are mutually exclusive. One can think of defining a new variable
named by the event so, for example, p(The coin is tails) can be interpreted as p(The coin is tails = true).
We use p(x = tr) for the probability of event/variable x being in the state true and p(x = fa) for the
probability of event/variable x being in the state false.

The Rules of Probability

Definition 1 (Rules of Probability (Discrete Variables)).

The probability of an event x occurring is represented by a value between 0 and 1.

p(x) = 1 means that we are certain that the event does occur.

Conversely, p(x) = 0 means that we are certain that the event does not occur.

The summation of the probability over all the states is 1:
X

x

p(x = x) = 1 (1.1.1)
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Such probabilities are normalised. We will usually more conveniently write
P

x p(x) = 1.

Two events x and y can interact through

p(x or y) = p(x) + p(y)� p(x and y) (1.1.2)

We will use the shorthand p(x, y) for p(x and y). Note that p(y, x) = p(x, y) and p(x or y) = p(y or x).

Definition 2 (Set notation). An alternative notation in terms of set theory is to write

p(x or y) ⌘ p(x [ y), p(x, y) ⌘ p(x \ y) (1.1.3)

Definition 3 (Marginals). Given a joint distribution p(x, y) the distribution of a single variable is given
by

p(x) =
X

y

p(x, y) (1.1.4)

Here p(x) is termed a marginal of the joint probability distribution p(x, y). The process of computing a
marginal from a joint distribution is called marginalisation. More generally, one has

p(x
1

, . . . , xi�1

, xi+1

, . . . , xn) =
X

xi

p(x
1

, . . . , xn) (1.1.5)

An important definition that will play a central role in this book is conditional probability.

Definition 4 (Conditional Probability / Bayes’ Rule). The probability of event x conditioned on knowing
event y (or more shortly, the probability of x given y) is defined as

p(x|y) ⌘ p(x, y)
p(y)

(1.1.6)

If p(y) = 0 then p(x|y) is not defined.

Probability Density Functions

Definition 5 (Probability Density Functions). For a single continuous variable x, the probability density
p(x) is defined such that

p(x) � 0 (1.1.7)
Z 1

�1
p(x)dx = 1 (1.1.8)
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p(a < x < b) =
Z b

a
p(x)dx (1.1.9)

As shorthand we will sometimes write
R b
x=a p(x), particularly when we want an expression to be valid for

either continuous or discrete variables. The multivariate case is analogous with integration over all real
space, and the probability that x belongs to a region of the space defined accordingly.

For continuous variables, formally speaking, events are defined for the variable occurring within a defined
region, for example

p(x 2 [�1, 1.7]) =
Z

1.7

�1

f(x)dx (1.1.10)

where here f(x) is the probability density function (pdf) of the continuous random variable x. Unlike
probabilities, probability densities can take positive values greater than 1.

Formally speaking, for a continuous variable, one should not speak of the probability that x = 0.2 since the
probability of a single value is always zero. However, we shall often write p(x) for continuous variables,
thus not distinguishing between probabilities and probability density function values. Whilst this may
appear strange, the nervous reader may simply replace our p(X = x) notation for

R

x2�

f(x)dx, where �
is a small region centred on x. This is well defined in a probabilistic sense and, in the limit � being very
small, this would give approximately �f(x). If we consistently use the same � for all occurrences of pdfs,
then we will simply have a common prefactor � in all expressions. Our strategy is to simply ignore these
values (since in the end only relative probabilities will be relevant) and write p(x). In this way, all the
standard rules of probability carry over, including Bayes’ Rule.

Interpreting Conditional Probability

Imagine a circular dart board, split into 20 equal sections, labelled from 1 to 20 and Randy, a dart thrower
who hits any one of the 20 sections uniformly at random. Hence the probability that a dart thrown by
Randy occurs in any one of the 20 regions is p(region i) = 1/20. A friend of Randy tells him that he
hasn’t hit the 20 region. What is the probability that Randy has hit the 5 region? Conditioned on this
information, only regions 1 to 19 remain possible and, since there is no preference for Randy to hit any
of these regions, the probability is 1/19. The conditioning means that certain states are now inaccessible,
and the original probability is subsequently distributed over the remaining accessible states. From the
rules of probability :

p(region 5|not region 20) =
p(region 5,not region 20)

p(not region 20)
=

p(region 5)
p(not region 20)

=
1/20
19/20

=
1
19

giving the intuitive result. In the above p(region 5,not region 20) = p(region {5 \ 1 \ 2\, . . . ,\19}) =
p(region 5).

An important point to clarify is that p(A = a|B = b) should not be interpreted as ‘Given the event B = b
has occurred, p(A = a|B = b) is the probability of the event A = a occurring’. In most contexts, no such
explicit temporal causality is implied1 and the correct interpretation should be ‘ p(A = a|B = b) is the
probability of A being in state a under the constraint that B is in state b’.

The relation between the conditional p(A = a|B = b) and the joint p(A = a, B = b) is just a normalisation
constant since p(A = a, B = b) is not a distribution in A – in other words,

P

a

p(A = a, B = b) 6= 1. To
make it a distribution we need to divide : p(A = a, B = b)/

P

a

p(A = a, B = b) which, when summed
over a does sum to 1. Indeed, this is just the definition of p(A = a|B = b).

1We will discuss issues related to causality further in section(3.4).
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Definition 6 (Independence).

Events x and y are independent if knowing one event gives no extra information about the other event.
Mathematically, this is expressed by

p(x, y) = p(x)p(y) (1.1.11)

Provided that p(x) 6= 0 and p(y) 6= 0 independence of x and y is equivalent to

p(x|y) = p(x) , p(y|x) = p(y) (1.1.12)

If p(x|y) = p(x) for all states of x and y, then the variables x and y are said to be independent. If

p(x, y) = kf(x)g(y) (1.1.13)

for some constant k, and positive functions f(·) and g(·) then x and y are independent.

Deterministic Dependencies

Sometimes the concept of independence is perhaps a little strange. Consider the following : variables x
and y are both binary (their domains consist of two states). We define the distribution such that x and y
are always both in a certain joint state:

p(x = a, y = 1) = 1
p(x = a, y = 2) = 0
p(x = b, y = 2) = 0
p(x = b, y = 1) = 0

Are x and y dependent? The reader may show that p(x = a) = 1, p(x = b) = 0 and p(y = 1) = 1,
p(y = 2) = 0. Hence p(x)p(y) = p(x, y) for all states of x and y, and x and y are therefore independent.
This may seem strange – we know for sure the relation between x and y, namely that they are always in
the same joint state, yet they are independent. Since the distribution is trivially concentrated in a single
joint state, knowing the state of x tells you nothing that you didn’t anyway know about the state of y,
and vice versa.

This potential confusion comes from using the term ‘independent’ which, in English, suggests that there is
no influence or relation between objects discussed. The best way to think about statistical independence
is to ask whether or not knowing the state of variable y tells you something more than you knew before
about variable x, where ‘knew before’ means working with the joint distribution of p(x, y) to figure out
what we can know about x, namely p(x).

1.1.1 Probability Tables

Based on the populations 60776238, 5116900 and 2980700 of England (E), Scotland (S) and Wales (W),
the a priori probability that a randomly selected person from these three countries would live in England,
Scotland or Wales, would be approximately 0.88, 0.08 and 0.04 respectively. We can write this as a vector
(or probability table) :

0

@

p(Cnt = E)
p(Cnt = S)
p(Cnt = W)

1

A =

0

@

0.88
0.08
0.04

1

A (1.1.14)

whose component values sum to 1. The ordering of the components in this vector is arbitrary, as long as
it is consistently applied.
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For the sake of simplicity, let’s assume that only three Mother Tongue languages exist : English (Eng),
Scottish (Scot) and Welsh (Wel), with conditional probabilities given the country of residence, England
(E), Scotland (S) and Wales (W). We write a (fictitious) conditional probability table

p(MT = Eng|Cnt = E) = 0.95 p(MT = Scot|Cnt = E) = 0.04 p(MT = Wel|Cnt = E) = 0.01
p(MT = Eng|Cnt = S) = 0.7 p(MT = Scot|Cnt = S) = 0.3 p(MT = Wel|Cnt = S) = 0.0
p(MT = Eng|Cnt = W) = 0.6 p(MT = Scot|Cnt = W) = 0.0 p(MT = Wel|Cnt = W) = 0.4

(1.1.15)

From this we can form a joint distribution p(Cnt,MT ) = p(MT |Cnt)p(Cnt). This could be written as a
3⇥ 3 matrix with (say) rows indexed by country and columns indexed by Mother Tongue:

0

@

0.95⇥ 0.88 0.7⇥ 0.08 0.6⇥ 0.04
0.04⇥ 0.88 0.3⇥ 0.08 0.0⇥ 0.04
0.01⇥ 0.88 0.0⇥ 0.08 0.4⇥ 0.04

1

A =

0

@

0.836 0.056 0.024
0.0352 0.024 0
0.0088 0 0.016

1

A (1.1.16)

The joint distribution contains all the information about the model of this environment. By summing a
column of this table, we have the marginal p(Cnt). Summing the row gives the marginal p(MT ). Similarly,
one could easily infer p(Cnt|MT ) / p(Cnt|MT )p(MT ) from this joint distribution.

For joint distributions over a larger number of variables, xi, i = 1, . . . ,D, with each variable xi taking
Ki states, the table describing the joint distribution is an array with

QD
i=1

Ki entries. Explicitly storing
tables therefore requires space exponential in the number of variables, which rapidly becomes impractical
for a large number of variables.

A probability distribution assigns a value to each of the joint states of the variables. For this reason,
p(T, J,R, S) is considered equivalent to p(J, S,R, T ) (or any such reordering of the variables), since in each
case the joint setting of the variables is simply a di↵erent index to the same probability. This situation is
more clear in the set theoretic notation p(J \ S \ T \ R). We abbreviate this set theoretic notation by
using the commas – however, one should be careful not to confuse the use of this indexing type notation
with functions f(x, y) which are in general dependent on the variable order. Whilst the variables to the
left of the conditioning bar may be written in any order, and equally those to the right of the conditioning
bar may be written in any order, moving variables across the bar is not generally equivalent, so that
p(x

1

|x
2

) 6= p(x
2

|x
1

).

1.1.2 Interpreting Conditional Probability

Together with the rules of probability, conditional probability enables one to reason in a rational, logical
and consistent way. One could argue that much of science deals with problems of the form : tell me
something about the parameters ✓ given that I have observed data D and have some knowledge of the
underlying data generating mechanism. From a modelling perspective, this requires

p(✓|D) =
p(D|✓)p(✓)

p(D)
=

p(D|✓)p(✓)
R

✓ p(D|✓)p(✓)
(1.1.17)

This shows how from a forward or generative model p(D|✓) of the dataset, and coupled with a prior
belief p(✓) about which parameter values are appropriate, we can infer the posterior distribution p(✓|D)
of parameters in light of the observed data.

This use of a generative model sits well with physical models of the world which typically postulate how to
generate observed phenomena, assuming we know the correct parameters of the model. For example, one
might postulate how to generate a time-series of displacements for a swinging pendulum but with unknown
mass, length and damping constant. Using this generative model, and given only the displacements, we
could infer the unknown physical properties of the pendulum, such as its mass, length and friction damping
constant.
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Subjective Probability

Probability is a contentious topic and we do not wish to get bogged down by the debate here, apart from
pointing out that it is not necessarily the axioms of probability that are contentious rather what interpre-
tation we should place on them. In some cases potential repetitions of an experiment can be envisaged so
that the ‘long run’ (or frequentist) definition of probability in which probabilities are defined with respect
to a potentially infinite repetition of ‘experiments’ makes sense. For example, in coin tossing, the proba-
bility of heads might be interpreted as ‘If I were to repeat the experiment of flipping a coin (at ‘random’),
the limit of the number of heads that occurred over the number of tosses is defined as the probability of
a head occurring.

Here’s another problem that is typical of the kind of scenario one might face in a machine learning
situation. A film enthusiast joins a new online film service. Based on expressing a few films a user likes
and dislikes, the online company tries to estimate the probability that the user will like each of the 10000
films in their database. If we were to define probability as a limiting case of infinite repetitions of the same
experiment, this wouldn’t make much sense in this case since we can’t repeat the experiment. However,
if we assume that the user behaves in a manner consistent with other users, we should be able to exploit
the large amount of data from other users’ ratings to make a reasonable ‘guess’ as to what this consumer
likes. This degree of belief or Bayesian subjective interpretation of probability sidesteps non-repeatability
issues – it’s just a consistent framework for manipulating real values consistent with our intuition about
probability[145].

1.2 Probabilistic Reasoning

The axioms of probability, combined with Bayes’ rule make for a complete reasoning system, one which
includes traditional deductive logic as a special case[145].

Remark 1. The central paradigm of probabilistic reasoning is to identify all relevant variables
x

1

, . . . , xN in the environment, and make a probabilistic model p(x
1

, . . . , xN ) of their interaction.
Reasoning (inference) is then performed by introducing evidence2 that sets variables in known states,
and subsequently computing probabilities of interest, conditioned on this evidence.

Example 1 (Hamburgers). Consider the following fictitious scientific information: Doctors find that peo-
ple with Kreuzfeld-Jacob disease (KJ) almost invariably ate hamburgers, thus p(Hamburger Eater|KJ ) =
0.9. The probability of an individual having KJ is currently rather low, about one in 100,000.

1. Assuming eating lots of hamburgers is rather widespread, say p(Hamburger Eater) = 0.5, what is
the probability that a hamburger eater will have Kreuzfeld-Jacob disease?

This may be computed as

p(KJ |Hamburger Eater) =
p(Hamburger Eater,KJ )

p(Hamburger Eater)
=

p(Hamburger Eater|KJ )p(KJ )
p(Hamburger Eater)

(1.2.1)

=
9

10

⇥ 1

100000

1

2

= 1.8⇥ 10�5 (1.2.2)

2. If the fraction of people eating hamburgers was rather small, p(Hamburger Eater) = 0.001, what is
the probability that a regular hamburger eater will have Kreuzfeld-Jacob disease? Repeating the
above calculation, this is given by

9

10

⇥ 1

100000

1

1000

⇡ 1/100 (1.2.3)
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Intuitively, this is much higher than in scenario (1) since here we can be more sure that eating
hamburgers is related to the illness. In this case only a small number of people in the population
eat hamburgers, and most of them get ill.

Example 2 (Inspector Clouseau). Inspector Clouseau arrives at the scene of a crime. The victim lies
dead in the room and the inspector quickly finds the murder weapon, a Knife (K). The Butler (B) and
Maid (M) are his main suspects. The inspector has a prior belief of 0.8 that the Butler is the murderer,
and a prior belief of 0.2 that the Maid is the murderer. These probabilities are independent in the sense
that p(B,M) = p(B)p(M). (It is possible that both the Butler and the Maid murdered the victim or
neither). The inspector’s prior criminal knowledge can be formulated mathematically as follows:

dom(B) = dom(M) = {murderer, not murderer} ,dom(K) = {knife used, knife not used} (1.2.4)

p(B = murderer) = 0.8, p(M = murderer) = 0.2 (1.2.5)

p(knife used|B = not murderer, M = not murderer) = 0.3
p(knife used|B = not murderer, M = murderer) = 0.2
p(knife used|B = murderer, M = not murderer) = 0.6
p(knife used|B = murderer, M = murderer) = 0.1

(1.2.6)

What is the probability that the Butler is the murderer? (Remember that it might be that neither is the
murderer). Using b for the two states of B and m for the two states of M ,

p(B|K) =
X

m

p(B,m|K) =
X

m

p(B, m,K)
p(K)

=
p(B)

P

m p(K|B,m)p(m)
P

b p(b)
P

m p(K|b, m)p(m)
(1.2.7)

Plugging in the values we have

p(B = murderer|knife used) =
8

10

�

2

10

⇥ 1

10

+ 8

10

⇥ 6

10

�

8

10

�

2

10

⇥ 1

10

+ 8

10

⇥ 6

10

�

+ 2

10

�

2

10

⇥ 2

10

+ 8

10

⇥ 3

10

� =
200
228

⇡ 0.877 (1.2.8)

The role of p(knife used) in the Inspector Clouseau example can cause some confusion. In the above,

p(knife used) =
X

b

p(b)
X

m

p(knife used|b, m)p(m) (1.2.9)

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the question! Note that the
quantity p(knife used) relates to the prior probability the model assigns to the knife being used (in the
absence of any other information). If we know that the knife is used, then the posterior

p(knife used|knife used) =
p(knife used, knife used)

p(knife used)
=

p(knife used)
p(knife used)

= 1 (1.2.10)

which, naturally, must be the case.

Another potential confusion is the choice

p(B = murderer) = 0.8, p(M = murderer) = 0.2 (1.2.11)

which means that p(B = not murderer) = 0.2, p(M = not murderer) = 0.8. These events are not exclusive
and it’s just ‘coincidence’ that the numerical values are chosen this way. For example, we could have also
chosen

p(B = murderer) = 0.6, p(M = murderer) = 0.9 (1.2.12)

which means that p(B = not murderer) = 0.4, p(M = not murderer) = 0.1
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